
A Functional and Performance Benchmark of
Lightweight Virtualization Platforms for Edge

Computing
Tom Goethals

Department of Information Technology
Ghent University - imec, IDLab

Gent, Belgium
ORCID 0000-0002-1332-2290

Merlijn Sebrechts
Department of Information Technology

Ghent University - imec, IDLab
Gent, Belgium

ORCID 0000-0002-4093-7338

Mays Al-Naday
School of CSEE

University of Essex
Colchester, England

ORCID 0000-0002-2439-5620

Bruno Volckaert
Department of Information Technology

Ghent University - imec, IDLab
Gent, Belgium

ORCID 0000-0003-0575-5894

Filip De Turck
Department of Information Technology

Ghent University - imec, IDLab
Gent, Belgium

ORCID 0000-0003-4824-1199

Abstract—The recent rise of edge computing and FaaS trig-
gered a revolution in the field of software virtualization, improv-
ing performance and security. This paper benchmarks various
lightweight virtualization platforms, such as microVMs and
containers, in the context of edge microservices. Factors taken
into account include toolchain maturity, networking capabilities,
boot time, resource use, microservice performance, and ARM
architecture readiness. We present a functional comparison
and benchmarks on both a Raspberry Pi 4 and an x86-64
platform. The results indicate standard Docker containers offer
reliable performance and low memory use, while microVM-based
solutions such as Firecracker are more isolated. Moreover, OSv
unikernels have extremely low boot times and significantly better
performance than Docker containers. Finally, while gVisor offers
improved security and excellent compatibility, its performance is
only 10% of default Docker performance.

Index Terms—containers, unikernels, microVM, microservices,
virtualization, edge computing

I. INTRODUCTION

The rise of edge computing and FaaS has triggered a
revolution in the field of virtualization, in an attempt to offer
improved performance and useful features for a variety of use
cases. While virtual machines (VMs) and containers used to
be the only available technologies, recent developments have
resulted in various types of microVMs, isolation layers, and
mixed technology that borrows features from both containers
and VMs.

The work on microVMs [1] attempts to minimize the
overhead of classical VMs, which contain an entire operating
system merely to run a single application. While some ap-
proaches pre-build a minimal Linux kernel tailored to existing
software, others offer their own API, often in C++, and attempt
to integrate programs with the kernel itself (i.e. unikernels [2]).

Container technology has received criticism for not being
sufficiently secure [3], resulting in initiatives to improve the

isolation of containers from the host and other containers.
Some solutions offer an alternate container runtime (the con-
tainer equivalent of a hypervisor), which is easily integrated
into existing engines (e.g. Docker [4], containerd [5]), while
other solutions use a microVM as a security shell around
containers.

This paper compares various lightweight virtualization plat-
forms in terms of functionality and performance in the context
of edge microservices. Factors taken into account include:
toolchain maturity, networking capabilities, booting times,
resource use, and microservice performance, as well as ARM
architecture readiness. Docker containers, being a mature tech-
nology, are used as a baseline for performance and features.
Concretely, the contributions of this paper are:

1) A cursory explanation of the differences between con-
tainers, microVM platforms and microVM kernels

2) A feature comparison of representative platforms of each
class, including platform requirements, runtime depen-
dencies, toolchain maturity, and high-level performance
indicators.

3) Examining the ARM(64) readiness of each platform.
4) A benchmark for both ARM64 and x86-64, showing

how each platform performs in the context of REST
webservices, as well as service boot times and their
impact on system resources.

The results indicate that while Docker containers offer
reliable performance and compatibility with various architec-
tures, microVMs generally boot faster, and OSv [6] unikernels
outperform containers in single-core applications. The added
security of the runsc runtime (gVisor [7]), however, results
in significantly lower REST service performance and network
throughput.



The rest of this paper is organized as follows: Section II
presents existing research related to various lightweight virtu-
alization approaches. Section III describes the different types
of virtualization considered for evaluation, while Section IV
discusses concrete platforms and presents a functional com-
parison. In Section V, the performance benchmark setup and
methodology are presented, while the results are presented in
Section VI, and discussed in Section VII. Finally, Section VIII
draws high level conclusions from the paper.

II. RELATED WORK

Wang et al. [1] examine the performance of QEMU,
Firecracker, and Docker in terms of boot times, disk I/O,
network throughput and event processing. This provides raw
performance numbers for basic indicators measured on the
local machine. A similar study by Li et al. [8] explores MySQL
and NGINX performance, showing that Kata Containers are
generally on par with Docker, but gVisor is significantly
slower.

Mavridis et al. [9] compare a number of container engines,
including microVM- and unikernel-based runtimes, providing
a taxonomy and categorization of the various technologies and
layers involved. The result is a study of the interoperability of
technologies, along with performance indications for cloud-
oriented functionality. Wang et al. [10] provide a similar cloud-
oriented study, focused on runC, gVisor and Kata Containers.

Another study [11] provides an in-depth examination of the
continuum of kernel space versus user space functionality of
various runtimes, focusing on the specific cases of gVisor and
Firecracker compared to containers. Meanwhile, a comparison
of unikernels and containers for industrial applications is
presented by Chen et al. [12].

This overview indicates that cloud applications, along with
the categorization and low-level technological mapping of
microVMs and container engines, are well studied. As such,
the focus of this paper is to benchmark a number of microVM
and container platforms in terms of practical functionality
specifically for edge computing. This includes a suitability
comparison and performance indications for microservices,
and an assessment of ARM architecture readiness.

III. LIGHTWEIGHT VIRTUALIZATION APPROACHES

This section discusses various types of lightweight alterna-
tives to regular virtual machines, visualized in Figure 1, and
their suitability for microservices on edge devices.

A. Containers

Containers share the kernel of the host system and are
isolated using Linux features such as namespaces and cgroups.
Generally, “chroot” is used to alter the root filesystem of the
process, while namespaces determine what types of hardware
devices (e.g. network interfaces) are available to it. Soft and
hard resource limits are imposed using cgroups.

This approach results in smaller image size and memory
usage compared to VMs. Due to the shared kernel, containers
can also directly use specialized host hardware such as GPUs,

assuming that they contain the necessary drivers. Finally,
containers have little to no overhead in terms of networking
and processing, putting them on equal ground with standard
Linux processes. Sharing a kernel, however, leaves both the
host and containers vulnerable to exploits, and more recent
initiatives seek to mitigate this risk [13].

The most popular container engine is Docker, although the
underlying container engine containerd is a useful lower-level
alternative.

B. MicroVM runtimes

MicroVM runtimes, such as Firecracker [14], are tiny hy-
pervisors that aim to reduce the footprint and improve security
of the virtualization layer. They lower the attack surface and
overhead of a VM by implementing only minimal virtual
devices and excluding all non-essential functionality. They
typically offer performance comparable to native processes by
using paravirtualized devices such as virtio [15] and hardware
virtualization instruction sets such as Intel VT-x and AMD-
v [16]. Guest operating systems often require small changes
in order to run in such a minimal environment.

C. Specialized VM guests

To further reduce the overhead of virtualization, a number
of specialized VM guests have emerged. These fall into two
categories. The first category runs existing software on a
highly minified Linux kernel such as the default Firecracker
kernel [17]. While this ensures near perfect compatibility with
most Linux software, there is a limit to how small they can be
made. Custom kernels with reduced API support are usually
supported, however, which can result in even smaller size and
attack surface.

The second category, known as unikernels [2], integrate an
executable directly into the kernel, resulting in a monolithic
process that runs entirely in kernel mode. This allows im-
proved performance by removing context switches, smaller
images, and reduced attack surface [18]. The smallest, most
optimized unikernel platforms, such as UniK [19], provide cus-
tom system interfaces and dedicated programming languages
which produce unikernels of only hundreds of KiB for basic
web functions such as a DNS server [20]. In contrast, POSIX-
compatible unikernel platforms, such as OSv [6], produce
significantly larger images, but can integrate existing POSIX
executables such as Linux software [21]. Nevertheless, even
these images are significantly smaller than minified Linux
kernels.

D. Hybrid approaches

Kata Containers [22] runs each container inside a mi-
croVM, allowing it to fully isolate all containers from each
other and from the host. This approach is rather resource inten-
sive for edge devices, however, as it introduces the additional
memory and processing overhead of a microVM [23].

gVisor [7] is an alternate container runtime compatible with
Docker and containerd, which offers a custom implementation
of the Linux system call interface. This improves isolation and



Fig. 1. Comparison of system architecture of various lightweight virtualization methods. Orange parts are kernel space, while green parts are user space.

security by emulating the host kernel in user space, rather than
sharing it directly. Theoretically, this type of solution may add
less processing and memory overhead than a microVM layer,
although this depends on the implementation.

WebAssembly (WASM), combined with WebAssembly Sys-
tem Interface (WASI) [24] forms another virtualization solu-
tion. WebAssembly itself originates from the necessity to ac-
celerate JavaScript in web browsers, but evolved into a highly
efficient form of bytecode, now often used in combination
with Rust [25] as a programming language. WASI forms a
system interface around WASM, much like gVisor does for
containers. As WASI does not yet provide any networking
capabilities1, however, it is not yet useful in the context of
edge microservices.

IV. CANDIDATE PLATFORMS

As the focus of this paper is microservices at the edge, all
platforms must necessarily have fully functional networking
capabilities, and ARM platform compatibility is required for
many low-resource devices. Additionally, only platforms ca-
pable of running compiled Go code are considered, in order
to compare the exact same service on the selected platforms.
This requirement is introduced because some microVM and
unikernel platforms only offer a highly modified C++ system
API, often limited in capabilities, making a direct comparison
to POSIX compatible alternatives impossible. Furthermore,
some POSIX compatible platforms are not stable enough
to run software written in various programming languages;
as Golang is compiled into a standalone executable, being
able to run it is used as an implicit minimum measure of
platform maturity. Note that not all platforms are capable of
both creating images and running them; while Docker can do
both, OSv unikernel images are evaluated on KVM. Inversely,

1https://github.com/WebAssembly/WASI/issues/370

a default kernel is used to evaluate the compiled filesystem
images on Firecracker.

Docker (v20.10.3) is a popular container engine which
has contributed to several container standards. The basis of
Docker containers consists of layered images, declaratively
defined by Dockerfiles, which can be used recursively, adding
additional files and libraries with each layer. While Docker
itself manages images and some aspects of Linux namespaces
and cgroups, it relies on containerd for lower-level container
operations. Docker itself is fully ARM compatible, and is
capable of running containers in the edge by itself or through
orchestrators such as Kubernetes [26].

OSv (v0.56 branch) is a POSIX-compatible unikernel plat-
form which aims for maximum compatibility with existing
software, and can run on a variety of hypervisors. Its main
focus is on speed and security through efficient drivers and
kernel design, although low memory overhead has become an
important secondary focus. It offers two methods of creating
a unikernel; either by compiling a program directly into a
custom kernel and selecting OSv libraries through config-
uration, or by using Capstanfiles, an analog of Dockerfiles
which allow a layered compilation process. Both processes
are relatively straightforward, but only the first one supports
ARM cross-compilation. Although there have been efforts to
integrate unikernels into orchestrators [27], there is no default
OCI/CNI-compatible solution to orchestrate both unikernels
and containers.

Firecracker (v0.25.2) is still in early development, and
although v1.0.0 was recently released, it breaks compatibility
with firectl [28], which is used by various image building
applications for Firecracker. Based on KVM and originally
developed for the cloud, Firecracker is essentially a specialized
Virtual Machine Monitor for microVMs. It offers a default
kernel, and third-party scripts can build Firecracker filesystems



from compiled applications. Control of Firecracker happens
either through the API socket, or through firectl, although
networking capabilities are limited to using existing TAP
devices on the host, and the integration of these devices
into a larger scale network (i.e. what CNI plugins do for
Kubernetes) is left as an exercise to the user. As Firecracker is
mainly a microVM runtime which happens to provide a default
kernel, it is possible to actually run OSv-created unikernels on
Firecracker. Finally, Firecracker is fully operational on ARM
devices.

gVisor (v20220103.0), which does not have an official
release yet, is an alternative container runtime which re-
places runC [29] for various container engines. Because it
transparently replaces the low-level runC runtime, it inherits
the higher-level advantages and disadvantages of whichever
container engine it is used with. Although, it provides better
security by emulating the host kernel rather than directly
exposing it to containers. While it implements a large part
of the Linux system call interface, the implementation is not
yet complete and options such as using the host network
namespace are not (yet) possible.

An overview of the features and properties of the presented
virtualization platforms is shown in Table I.

V. BENCHMARKING SETUP

This section discusses the physical test setup and methodol-
ogy used to obtain the results, and the Go REST service used
for the evaluations is described in detail.

A. Test Machine

For x86-64, the benchmarks are run on an Intel Core i5-
3570k processor, with virtualization extensions enabled. The
machine has a total of 8GiB RAM and a 120GB ADATA S510
SSD. Containers are run on Docker (v20.10.3) and Ubuntu
20.04, while Firecracker microVMs and OSv unikernels use
the default version of KVM in Ubuntu. Docker containers
are allowed to use the host network; while for gVisor, port
forwarding is used instead, as it does not support using the
namespace of the host network. For microVMs, iptables rules
are set to forward host port 8080 to the VMs.

For ARM, a Raspberry Pi 4 with 4GiB RAM is used, with
a different operating system per platform for compatibility
reasons. Ubuntu Desktop 21.10 with KVM is used for OSv,
Ubuntu Server 20.04 for gVisor, and Raspberry Pi OS (kernel
version 5.10) for the other platforms. Other aspects of the test
setup are identical to the x86-64 evaluations.

For single-core benchmarks, virtual machines and contain-
ers are limited to one CPU core by passing the appropriate
flags to their runtimes. For multi-core benchmarks, all in-
stances are given four cores. The test machine is only used as a
server; all performance monitoring apart from memory status
and boot times is run on a separate machine (the “client”).
The client is connected to the test machine in a LAN, to avoid
result collection from interfering with the performance of the
benchmarked platforms, and it performs service requests using
Apache JMeter [30].

The code of the REST service and walkthroughs for build-
ing and executing Go web services on the various platforms
are made available on GitHub2.

B. REST service

For the benchmarks, a simple REST service is created
that contains an in-memory array of to-do items. The service
supports the following methods:

• GET /todos: lists all to-do items
• GET /todos/get/{id}: gets the to-do with the specified id

and returns it as JSON
• POST /todos/create/: creates a new to-do item from the

posted JSON string
• POST /sort: sorts a posted array of numbers using Bubble

Sort
• GET /largeData: simulates a larger response by returning

a pre-built JSON string of 100KiB

While these methods are straightforward, they are intended
to simulate requests that are typical for edge devices, e.g.
sensor values or short status messages. The largeData method
is intended to simulate communication with nodes further
away from the edge, which generally consists of larger chunks
of data.

The web service is implemented in Go 1.17.4, and uses
the Gorilla Toolkit mux (v1.6.2) [31] for its simplicity. Multi-
threading code is not required; Go automatically creates a
number of threads befitting its hardware environment.

C. REST Request stress-test

This test uses the get and create to-do methods to study the
ability of the chosen platforms to handle a large number of
small requests. Both single- and multi-core benchmarks are
run to determine how well each platform scales. To ensure a
constant maximum load, the client machine uses 40 threads
in single-core benchmarks, and 100 threads in multi-core
benchmarks. Although exact scaling requires 160 threads, 100
is sufficient for the fastest platform, and a higher number of
threads merely results in higher latency for waiting requests.
The number of requests per thread is 20000 for get requests,
and 5000 (ARM) or 10000 (x86-64) for create requests.

D. Processing jobs

The sort method is used to determine the ability of each
platform to perform tasks involving a high CPU load and
intensive memory use. An array of 20000 sequential numbers
in descending order is posted to the web service, sorted using
Bubble Sort, and returned in ascending order. The conversion
to and from JSON strings represents a non-trivial overhead, but
as these operations are CPU- and memory-oriented, they are an
acceptable part of the test. This type of task can be compared
to receiving updates for small AI models and integrating them,
or processing small batches of sensor data.

2https://github.com/togoetha/lw-edge-virtualization



TABLE I
OVERVIEW OF FEATURES AND PROPERTIES BY VIRTUALIZATION PLATFORM. *RATING DERIVED FROM BENCHMARKS IN SECTION VI, + AND - TO BE

INTERPRETED AS STRONG AND WEAK POINTS

Docker (containers) OSv Firecracker gVisor
Main focus Flexibility Speed Speed Security
Features Compatibility, widely adopted Security, flexibility Low resources, compatibility Compatibility, transparency
Requirements Linux (kernel) Hypervisor Linux + KVM Linux + container engine
Image creation Docker OSv default/third party Docker
Runtime(s) Docker, containerd Xen, KVM, Firecracker Firecracker (KVM) Docker, containerd
Toolchain ++ +/- +/- ++
Security +/- ++ ++ +
Networking ++ + - - +
Resource use* ++ - - +/-
Speed* + ++ +/- - -
Start time* - ++ +/- -
ARM support Yes Functional Yes Yes

E. Network throughput

The largeData method is used to determine the ability of
each platform to saturate a 1Gbps LAN connection. Practical
situations with this kind of behavior involve short periods of
peak data transfer, e.g. sending aggregate data to a server for
further processing or sending batches of (meta)data to other
nodes.

F. Gathered metrics

All network metrics are gathered using Apache JMeter,
including requests/s, request latency, and throughput. Memory
use is determined by measuring the reserved memory for each
process directly involved in running a VM or container. For
example, for Docker containers both the container process and
containerd-shim are considered, but not Docker or containerd
themselves, while for Firecracker only the firecracker process
running the VM is taken into account. The measurements are
gathered after the service is started, but before any service
calls are performed. Booting (or starting) times are determined
differently depending on the platform used. For containers, the
difference in system time is measured between starting the
container and entering the main method of the containerized
process. For microVMs, booting times are printed by the
runtime during the booting process.

VI. RESULTS

In this section the benchmarks results are presented. In
addition to request throughput capacity, multi-core scaling,
memory footprint, response latency, and boot times will be
discussed. As both x86-64 and ARM results are presented,
the results are color coded, with a blue/red scheme for ARM
and beige/gray for x86-64.

Because the subject of this paper is lightweight virtualiza-
tion for edge devices, the rest of this section focuses on ARM
results; comparing them to x86-64 where useful.

A. Single-threaded REST Performance

Fig. 2 shows the to-do get and create performance of each
virtualization platform on x86-64, using a single core (and
single thread) for all processing. OSv is 50% faster than
default Docker, while Firecracker with its default kernel is

Docker OSv Firecracker gVisor
0

5,000

10,000

15,000

20,000

25,000

C
om

pl
et

ed
re

qu
es

ts
/s

Get Create

Fig. 2. Request processing performance in different virtualization solutions
on x86-64. Higher is better. Unikernels show considerable performance
improvements while gVisor incurs a significant performance penalty.

about 20% slower. These numbers indicate that microVM
performance can vary greatly depending on kernel design and
virtual drivers. Containers using gVisor are only 25% as fast as
those using runC, showing that the emulated software kernel
of gVisor presents a significant overhead for the benefit of
added security, by isolation.

Fig. 3 shows the results of to-do get and create requests
on ARM. OSv unikernels offer the fastest processing, being
16% faster than Docker containers. Despite running a simi-
lar microVM kernel, Firecracker only manages 72% of the
performance of OSv unikernels on KVM. Considering the
added protection of running in a VM, the 15% performance
hit of Firecracker compared to Docker containers may be
acceptable in some scenarios. gVisor is the slowest alternative,
offering only around 10% of the performance of Docker
containers. The comparison with the x86-64 results is striking;
the gap between Docker and OSv is significantly smaller due
to the KVM vhost using a relatively high amount of CPU,
thus starving the unikernels. However, this is not a common



OSvDocker Firecracker gVisor
0

2,000

4,000

6,000
C

om
pl

et
ed

re
qu

es
ts

/s

Get Create

Fig. 3. Request processing performance in different virtualization solutions
on ARM. Higher is better. The performance penalty of gVisor is even
more pronounced on ARM systems. Unikernels still show a performance
improvement over other guest approaches.

property of microVMs, as Firecracker performs slightly better
compared to Docker, relative to x86-64. gVisor takes the
biggest performance hit, as it is entirely software-based.

Fig. 4 shows the results for processing job requests. All plat-
forms offer similar performance, indicating that all platforms
handle CPU and memory instructions with native efficiency.
However, there are some minute differences; Firecracker is
around 1% slower than Docker, likely due to the combina-
tion of its microkernel and KVM. OSv, on the other hand,
is 1% faster than Docker, showing a high level of kernel
optimization. gVisor however, is nearly 20% slower than the
alternatives, indicating significantly slower memory access due
to the runsc runtime. Compared to x86-64, most platforms are
around 32% as fast, although gVisor only manages 28%.

B. Multi-threaded REST Performance

When handling large numbers of requests, it may be useful
to spawn multiple threads in a single process to avoid the
overhead of starting multiple processes. Fig. 5 shows the
relative performance of the evaluated platforms when running
a REST service provided with four cores (and four threads).
Docker performance scales perfectly with the number of cores,
but the VM-based platforms are significantly less suitable for
multi-core scaling. Although Firecracker manages 240% to
250% of the performance of a single core, it fails to make
use of all the processing power provided. OSv unikernels
suffer from a significant overhead, scaling at around 160%
to 185% on KVM, although some of this can be attributed to
the KVM vhost. Paradoxically, gVisor, and Docker to a lesser
extent, scale superlinearly with the number of available cores,
indicating that some static CPU overhead is amortized over
all available cores.

OSvDocker Firecracker gVisor
0

200

400

600

800

1,000

1,200

E
xe

cu
tio

n
tim

e
(m

s)

ARM x86-64

Fig. 4. Bubble sort execution time in different virtualization solutions on
ARM and X86-64. Lower is better. The results are similar, showing all
virtualisation solutions handle CPU and memory instructions with native
efficiency.

OSvDocker Firecracker gVisor
0

100

200

300

400

500
R

el
at

iv
e

pe
rf

or
m

an
ce

(%
)

Get Create

Fig. 5. Relative performance of multi-threaded vs single-threaded request
processing on ARM. Higher is better. While Docker and gVisor scale
superlinearly, implying amortized overhead, OSv and Firecracker are not able
to fully utilise additional cores.

C. Latency and Throughput

Because edge microservices are often used to provide a
smoother user experience than with cloud-based solutions,
a reliably low service response time is important. Fig. 6
shows the range of response times for to-do create (POST)
requests for the benchmarked platforms, from the 2nd to 98th
percentiles. Note that these response times are influenced by
the throughput from Fig. 3, so inflated numbers should be
expected for slower platforms. While VM-based platforms
have significantly higher median response times than Docker
containers, their maximum response times are significantly
more stable, staying below 20ms. gVisor exhibits the same



Docker OSv Firecracker gVisor

0

50

100

150

200
R

es
po

ns
e

tim
e

(m
s)

Fig. 6. Response latency variation of different virtualization solutions on
ARM. Lower is better. While Docker has significantly lower average latency,
its maximum latency varies significantly. Virtualization-based platforms have
significantly more stable maximum response latency, even though their
average latency is higher.

high maximum response times as Docker, making contain-
ers less suitable for applications that need guaranteed real-
time responsiveness. Throughput-corrected latency LC can be
calculated, using LC = LP (RP /RD), where LP is median
platform latency, and RP and RD are platform requests/s and
Docker requests/s, indicating median VMs latencies 3 times
higher than those of Docker, and a median gVisor latency 4
times higher.

Fig. 7 shows the traffic generated by largeData requests
(100KB) as the service runs on a single core. Docker and
Firecracker almost saturate the gigabit connection, but OSv is
limited by the KVM vhost and only manages around 720Mbps.
gVisor performance is in line with the other benchmarks, at
around 10% of Docker performance. Interestingly, OSv has
the lowest CPU use while fully saturating a gigabit connection
on x86-64, indicating that the virtualization capabilities of the
ARM platform, or at least the Raspberry Pi 4, are not quite
suitable for large amounts of virtual network traffic.

D. Memory Footprint

To accurately compare memory use, support processes di-
rectly linked to running the service instance are included in
the measurements. For Docker, the containerd-shim process is
added, while for gVisor, several spawned “exe” processes are
included. VM-based platforms do not spawn additional pro-
cesses, but the full memory requirement of the VM processes
is considered, measured using the lowest possible memory
allocation that allowed them to boot and idle.

Figure 8 shows the memory requirements for each platform
on both ARM and x86-64 are similar, with Docker requiring
slighty more memory on ARM and the other platforms using
slightly more memory on x86-64.

While Docker containers have a small overhead of around
7MiB over a native process, gVisor requires significantly more
memory for the runsc runtime, and the memory cost of kernel
isolation and added security is around 50MiB.

OSvDocker Firecracker gVisor
0

200

400

600

800

T
hr

ou
gh

pu
t

(M
iB

/s
)

ARM x86-64

Fig. 7. Sustained throughput for 100KiB response payload (ARM/x86-64).
Higher is better. gVisor performs considerably worse, showing the overhead
of user-space syscall emulation.

N
at

iv
e

D
oc

ke
r

gV
is

or

Fi
re

cr
ac

ke
r

O
Sv

20

40

60

80
M

em
or

y
co

ns
um

pt
io

n
(M

iB
)

ARM x86-64

Fig. 8. RAM usage of a basic service on ARM and x86-64. Lower is better.
Docker shows incredible memory savings compared to both gVisor and VM-
based platforms.

VM-based platforms are expected to use more memory for
their kernels and drivers, and the difference between VMs
and Docker containers is 55-75MiB, with OSv at the high
end. While these measurements merely represent the idle state
of the web service, such differences are significant on edge
devices where free memory after boot is sometimes limited to
hundreds of MiB.

E. Boot Times

The boot times (or start times) of the various platforms
on ARM are shown in Fig. 9. All alternatives can be made
to boot in around a second or less, although the start times



Docker gVisorFirecrackerOSv
0

200

400

600

800

1,000

B
oo

t/s
ta

rt
tim

e
(m

s)

Fig. 9. Boot and start times of the service for the evaluated virtualization plat-
forms on ARM. Lower is better. OSv boots in just 200ms, while Firecracker
performs slightly better than Docker.

of container-based platforms vary significantly. Firecracker
microVMs boot slightly faster than container-based alterna-
tives, and OSv unikernels generally boot extremely fast in
just 200ms, making them a highly suitable option for real-
time demand-driven deployment of microservices.

VII. DISCUSSION

Each platform has its specific strengths and weaknesses,
leading to suitable use cases. Docker containers require the
least resources, while offering good performance and excellent
multi-core scaling, but they exhibit unreliable latency and have
potential security issues. As such, they are useful for any ser-
vices that rely on host system compatibility, and which process
data without user interaction, for example containerized AI
models that run on specialized host hardware. OSv unikernels
can run on various hypervisors, and offer better performance,
better security, faster booting times, and more stable latency
than Docker containers. On the other hand, they have the
highest memory overhead and do not scale well on multiple
cores. While the memory overhead does not encourage vertical
scaling to handle load spikes, single-core unikernels can be
deployed strategically and dynamically on edge gateways to
handle spikes of QoS sensitive requests. Firecracker, with its
default kernel, is slightly less performant than Docker contain-
ers, scales significantly better than OSv, and may justify its
memory overhead through compatibility with existing software
and ease of use. As such, it is suitable for services that
require strong Linux compatibility and isolation, making it
a prime platform to virtualize existing, privacy-sensitive IoT
edge services. gVisor has the latency disadvantage of Docker
combined with a high memory overhead and low performance,
but may be a feasible choice if a service architecture demands
the use of containers and good security. For example, a
containerized, privacy-sensitive AI model which requires host
hardware. Finally, the sub-optimal multi-core scaling of VM-
based platforms is not limiting, as most edge services are
designed for lightweight operation, and are not generally

assigned, much less guaranteed, all of the CPU cores on a
device.

VIII. CONCLUSION

Novel virtualization methods in the edge are introduced, and
various applicable types of virtualization are discussed, mainly
focusing on containers, microVMs, and hybrid solutions. Can-
didate platforms for a benchmark of virtualization in the edge
are presented, with Docker for containers, OSv for unikernels,
Firecracker for microVMs in general, and gVisor as a hybrid
solution for containers. The features and functional advantages
of each platform are discussed and compared.

A test setup is provided, together with a basic REST
service and a number of evaluation scenarios comparable
to typical edge communication and workloads. Performance
evaluations and metric gathering are performed to supplement
the functional comparison.

The results show that each platform has its own strengths
and weaknesses, which are discussed along with example
scenarios and applications.

REFERENCES

[1] Z. Wang, “Can “micro vm” become the next generation computing plat-
form?: Performance comparison between light weight virtual machine,
container, and traditional virtual machine,” in 2021 IEEE International
Conference on Computer Science, Artificial Intelligence and Electronic
Engineering (CSAIEE), 2021, pp. 29–34.

[2] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
operating systems for the cloud,” ACM SIGARCH Computer Architecture
News, vol. 41, no. 1, pp. 461–472, 2013.

[3] K. Brady, S. Moon, T. Nguyen, and J. Coffman, “Docker container
security in cloud computing,” in 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, 2020, pp.
0975–0980.

[4] “Docker: Empowering app development for developers,” Feb. 2022.
[Online]. Available: https://www.docker.com/

[5] “containerd - an industry-standard container runtime with an emphasis
on simplicity, robustness and portability,” Feb. 2022. [Online]. Available:
https://containerd.io/

[6] “Osv, a new operating system for the cloud,” Feb. 2022. [Online].
Available: https://github.com/cloudius-systems/osv

[7] “gvisor application kernel for containers,” Feb. 2022. [Online].
Available: https://gvisor.dev/

[8] G. Li, K. Takahashi, K. Ichikawa, H. Iida, P. Thiengburanathum,
and P. Phannachitta, “Comparative performance study of lightweight
hypervisors used in container environment.” in CLOSER, 2021, pp. 215–
223.

[9] I. Mavridis and H. Karatza, “Orchestrated sandboxed containers,
unikernels, and virtual machines for isolation-enhanced multitenant
workloads and serverless computing in cloud,” Concurrency and Com-
putation: Practice and Experience, vol. n/a, no. n/a, p. e6365. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6365

[10] X. Wang, J. Du, and H. Liu, “Performance and isolation analysis of
RunC, gVisor and kata containers runtimes,” Cluster Computing, jan
2022.

[11] Anjali, T. Caraza-Harter, and M. M. Swift, “Blending containers and
virtual machines: A study of firecracker and gvisor,” in Proceedings
of the 16th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, ser. VEE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 101–113. [Online].
Available: https://doi.org/10.1145/3381052.3381315

[12] S. Chen and M. Zhou, “Evolving container to unikernel for edge
computing and applications in process industry,” Processes, vol. 9, no. 2,
p. 351, 2021.

[13] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues,
challenges, and the road ahead,” IEEE Access, vol. 7, pp. 52 976–52 996,
2019.



[14] “Secure and fast microvms for serverless computing,” Feb. 2022.
[Online]. Available: https://firecracker-microvm.github.io/

[15] R. Russell, “virtio: towards a de-facto standard for virtual i/o devices,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 95–103,
2008.

[16] H. Lee, “Virtualization basics: Understanding techniques and fundamen-
tals,” School of Informatics and Computing Indiana University, vol. 815,
2014.

[17] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in 17th USENIX symposium on networked
systems design and implementation (NSDI 20), 2020, pp. 419–434.

[18] J. Talbot, P. Pikula, C. Sweetmore, S. Rowe, H. Hindy, C. Tachtatzis,
R. Atkinson, and X. Bellekens, “A security perspective on unikernels,”
in 2020 International Conference on Cyber Security and Protection of
Digital Services (Cyber Security). IEEE, 2020, pp. 1–7.

[19] “Unik, a platform for automating unikernel & microvm compilation and
deployment,” Feb. 2022. [Online]. Available: https://github.com/solo-
io/unik

[20] A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, and K. Beg-
num, “Includeos: A minimal, resource efficient unikernel for cloud
services,” in 2015 IEEE 7th international conference on cloud computing
technology and science (cloudcom). IEEE, 2015, pp. 250–257.

[21] B. Xavier, T. Ferreto, and L. Jersak, “Time provisioning evaluation
of kvm, docker and unikernels in a cloud platform,” in 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid). IEEE, 2016, pp. 277–280.

[22] “Kata containers - the speed of containers, the security of vms,” Feb.
2022. [Online]. Available: https://katacontainers.io/

[23] R. Kumar and B. Thangaraju, “Performance analysis between runc and
kata container runtime,” in 2020 IEEE International Conference on
Electronics, Computing and Communication Technologies (CONECCT),
2020, pp. 1–4.

[24] “Webassembly/wasi: Webassembly system interface,” Feb. 2022.
[Online]. Available: https://github.com/WebAssembly/WASI

[25] “Rust - a language empowering everyone to build reliable and efficient
software.” Feb. 2022. [Online]. Available: https://www.rust-lang.org/

[26] “kubernetes - production-grade container orchestration,” Feb. 2022.
[Online]. Available: https://kubernetes.io/

[27] H. Lefeuvre, G. Gain, D. Dinca, A. Jung, S. Kuenzer, V.-A. Badoiu,
R. Deaconescu, L. Mathy, C. Raiciu, P. Olivier et al., “Unikraft and the
coming of age of unikernels,” login; The Usenix Magazine, 2021.

[28] “firectl is a command-line tool to run firecracker microvms,” Feb. 2022.
[Online]. Available: https://github.com/firecracker-microvm/firectl

[29] “runc,” Feb. 2022. [Online]. Available:
https://github.com/opencontainers/runc

[30] “Apache jmeter,” Feb. 2022. [Online]. Available:
https://jmeter.apache.org/

[31] “Gorillamux - a powerful http router and url matcher for
building go web servers with,” Feb. 2022. [Online]. Available:
https://github.com/gorilla/mux


