
Relay selection in Bluetooth Mesh networks by
embedding genetic algorithms in a Digital

Communication Twin
Jorg Wieme
imec - IDLab

Ghent University
Ghent, Belgium

jorg.wieme@ugent.be

Mathias Baert
imec - IDLab

Ghent University
Ghent, Belgium

mathias.baert@ugent.be

Jeroen Hoebeke
imec - IDLab

Ghent University
Ghent, Belgium

jeroen.hoebeke@ugent.be

Abstract—Bluetooth Mesh (BM) technology is a suitable can-
didate to realize mesh networks leveraging on a mains-powered
backbone. However, the flooding-based technology requires addi-
tional management in order to operate efficiently. Consequently,
it offers a diverse set of configuration options to control network
behavior, including the selection of relays in the backbone
that rebroadcast packets further into the network. In the past,
Digital Twin technology has been applied to design a Digital
Communication Twin (DCT) of a BM network. The DCT (or
Digital Twin Network, DTN) can be used to find an optimal
network configuration for given application requirements. This
includes a relay selection approach that finds a set of relays
to assure sufficient path redundancy in the network. However,
existing results prove that this approach can be improved in terms
of computation time, flexibility and validity of the proposed set
of relays. In this paper, we present a reinterpreted version of a
genetic algorithm to tackle this issue. The results show it achieves
better results on all three improvement targets, compared to the
original approach. Furthermore, it showcases the flexibility and
adaptability of the DCT whilst adequately improving the relay
selection approach.

Index Terms—Digital Communication Twin, DCT, Bluetooth
Mesh, Digital Twin Network, DTN, multipath routing, genetic
algorithm, relay selection

I. INTRODUCTION

Bluetooth Low Energy (BLE) can establish single-hop
connection-based or connectionless communication between
a single master/broadcaster and multiple workers/receivers.
The recent extension to Bluetooth technology, Bluetooth Mesh
(BM), sets up a multi-hop mesh network, consisting of BLE-
enabled devices that employ a connectionless approach to
communicate with each other [1]. Devices in a BM network
should always be active, to be able to receive and transmit
messages at any time [2]. Due to the necessity of a 100 %
duty cycle, the base applications for these networks are mains-
powered solutions (e.g. smart lighting). The BM specification
defines additional concepts to add low-power devices to the
network, by leveraging on temporary storage capabilities of
the mains-powered backbone. Each node in the network also
maintains a repeat value related to the amount of times a
source node rebroadcasts a packet after its initial broadcast.

Next to this, to ensure that each device in the network can
reach other devices related to its application flows, a selected
set of nodes in the network should rebroadcast packets (i.e. act
as relays). Nodes that act as relay maintain a second repeat
value related to the rebroadcasting of relayed packets. The
configuration of these per-node parameters should ensure that
the network can adhere to the requirements of all application
flows and limit the negative impact of them on each other.
The work in [3] allows each node to employ a dedicated
configuration of these parameters per application flow and can
enforce a different priority between flows. This way, the search
for an optimal configuration can be performed separately per
application flow, but should still take into account the impact
of network congestion introduced by other flows. The work in
[4] searches for an optimal configuration of a wireless lighting
application flow, by means of a Digital Communication Twin
(DCT) (can also be referred to as Digital Twin Network or
similar) of a BM network. The proposed DCT is a combination
of multiple popular approaches for wireless network manage-
ment, where theoretical models are crossed with simulations
into one versatile multifaceted entity that is continuously
linked to the physical network. The physical network is en-
hanced with monitoring mechanisms to provide the DCT with
continuous information about the network’s state. Currently,
the multi-faceted DCT offers a selective simulation component
and graph model, both enhanced via a Packet Error Rate
(PER) model based on continuous monitoring in the physical
network. These facets are used to gain insights in the network
or to find more optimal configurations. For this, a flexible
approach has been taken in the form of recipes and pipelines
thereof. With the recipe-controlled pipeline it is possible to
configure the network partially or completely matching the
application input requirements, through the usage of one recipe
or a chain of recipes, which is visualized in Fig. 2. A recipe
typically focuses on optimizing one aspect of the network (i.e.
path redundancy, Packet Delivery Ratio (PDR), End-to-End
(E2E) latency, etc.) or assessing network performance based on
the current configuration or other reconfiguration suggestions.
The connectivity recipe focuses on path redundancy, which

has the goal to guarantee a reliability baseline based on a
redundancy target, whilst maintaining the lowest number of
relays. This directly impacts the number of rebroadcasts, thus
reducing the network congestion over time. Removing too
many relaying nodes would drastically decrease the reliability
of the network. Consequently, the recipe searches for an
optimal balance between the redundancy and its side effects,
as depicted in Fig. 1. The recipe starts by performing Suurballe
[5] for the redundancy target as number of node disjoint paths
to find. The algorithm uses hop count as weight, thus every
arc has cost 1. Once this is computed, the highest PER link
is removed from the graph, and Suurballe is computed again.
This process is repeated until Suurballe fails to compute the
requested number of node disjoint paths. Finally, the last
removed link is restored, and the recipe provides the outcome
of the Suurballe algorithm for the current topology as output.
This can be used as an input parameter for subsequent recipes
in the pipeline.

The current connectivity assessment provides valid paths but
distinguishable issues occurred during our analytical evalua-
tion. The DCT must be responsive in order to provide insights
into a rapidly changing network environment. The responsive-
ness of the recipe is within reasonable range but it would
be beneficial to have an even lower computation time. Next,
it was proven in [4] that the distributions of the simulation
results align with the experiments in the physical network.
However, when performing the simulation and experiments
with the relay configuration provided by the connectivity
assessment recipe, the paths taken are always shorter than
the suggested paths by the recipe. This issue arises through
the restrictive concept of the recipe where it solely focuses
on finding node disjoint paths with links having the lowest
PER link in the network, by subsequently removing the worst
PER link without taking into account the number of hops
(except using it as to be minimized weight in the Suurballe
algorithm). This leads to longer paths, while in reality, the
path distributions of the results prove that the number hops
have a much stronger impact on the path that will be taken,
even though the link shortcuts on those longer paths have
a slightly higher PER. Those E2E path distributions prove
that it is possible to define a smaller set of relaying nodes
that achieves the same reliability baseline while providing a
more truthful representation of the E2E path distribution in the
physical network. The link shortcuts on the longer paths and
crosslinks between the different paths are not necessarily a
bad thing since they are part of the nature of a flooding-based
approach. But the current outcome of the recipe introduces to
much unnecessary overhead by relays that do not contribute
to the successful E2E communication between source and
destination. Our goal is to limit the number of relays as much
as possible by means of a different connectivity assessment
approach. The paths selected by the recipe should be, as much
as possible, the dominating paths in the distributions while
still benefiting from the inherently present link shortcuts and
crosslinks. Lastly, as mentioned, internally the recipe uses
Suurballe to find node disjoint paths, which works appropriate

Fig. 1. Workflow diagram for the connectivity assessment recipe.

in a dense network, but it is not applicable in a sparse
network, implicating that the recipe is not versatile enough.
This paper continues to build upon the proposed DCT solution
in [4], by assessing some improvements for the connectivity
assessment recipe and designing a replacement for it by means
of a reinterpreted way of a genetic algorithm, illustrating the
flexibility and adaptability of the DCT. The original recipe
and its replacement are then evaluated by focusing on the
computation time, flexibility and a finding a lower set of
relays to adhere to a given path redundancy target. The genetic
algorithm (and by extension, the entire DCT) are described
for a BM network, but the concept is applicable to other
technologies as well.

The remainder of the paper is organized as follows. Section
II describes some extensions for the original connectivity
assessment recipe. Section III provides a replacement for this
recipe by means of a genetic algorithm. Section IV compares
the performance of the novel genetic algorithm with the
connectivity assessment recipe. Finally, Section V provides a
conclusion and an outlook on future work.

II. IMPROVING THE ORIGINAL RECIPE

A. Minimizing Error Rather Than Hop Count

Currently, hop count is used as weight in the Suurballe
algorithm. However, in [6] it was experimentally proven
that minimum-hop-count routing is not a reliable metric for
wireless multi-hop networks as it often chooses significantly
weaker paths. Instead, the work in [7] proposed Expected
Transmission Count (ETX) as metric. Other works such as
[8], [9], [10] compared and designed different metrics for
wireless network routing. However, none of these proposals
are applicable for us because acknowledgment packets are
required. Instead, we can extend the recipe with the option
to instruct Suurballe to minimize E2E PER instead of num-
ber hops. Suurballe [5] is conceptually built upon Dijkstra’s
shortest path algorithm [11]. Dijkstra’s shortest path algorithm
uses summation of arcs, thus the arc values for PER are
not immediately suitable as Dijkstra weights. Instead, we

Fig. 2. Illustration of a DCT linked to a BM network. It can provide insights via a single recipe or assess an entire application by means of a recipe pipeline.

propose the following equation that can be used by Dijkstra
(& Suurballe) to minimize E2E PER:

Prob[No error on path] =
N∏
i=1

(1− PERi)

Prob[Error] = 1−
N∏
i=1

(1− PERi)

− log

[
N∏
i=1

(1− PERi)

]
(minimize)

N∑
i=1

log

(
1

1− PERi

)
log

(
1

1− PERi

)
(arc weight)

(1)

To compute the E2E packet success ratio (PSR) of a path, the
(1−PER) of all arcs on that path are multiplied, as defined in
(1) on the first line. The opposite of this value is the E2E PER,
which should be minimized. Similarly, the logarithmic value
should also be minimized. Thus, if we apply the logarithmic
value and then use its corresponding mathematical rules,
we achieve a summation that can be employed by Dijkstra.
Conceptually, this formula is equivalent to ETX without the
reverse delivery ratio. Nevertheless, using (1) as metric in the
recipe did not result into an improvement, for both sparseness
as well as the number of relays. This occurs because we are
still using the same idea of removing the worst PER link in
between each usage of Suurballe, thus the result given by each
iteration of Suurballe differs, but in the end the recipe does
not provide a better result.

B. Preemptive Filtering
A different approach conceptualized was the usage of filters

to reduce the search space. We first collect all the possible
paths for the current network topology. Once collected, the
recipe is applied on the 10% best paths, where the best is
quantified using the E2E PSR. Applying this filter ensued into
a set of paths that better aligns with the simulation results, due
to the fact that the initial filtering of paths limits the number of
worst PER links to be removed by the connectivity assessment
recipe and allows the Suurballe algorithm to operate directly in
a reduced, more probable search space. However, the filtering
mechanism is infeasible to run within reasonable time for
larger networks.

III. GENETIC ALGORITHM

A. Classical Interpretation

In Section II we examined some extensions to the existing
recipe but this did not provide sufficient improvements re-
garding computation time and finding a smaller set of relays.
This section proposes an entirely different approach, by means
of a genetic algorithm. The connectivity assessment problem
is reducible to a k-shortest path problem from source to
destination, with an additional rule for node disjointness. Var-
ious research has been conducted to solve the k-shortest path
problem in a network using genetic algorithms [12], [13], [14],
but they did not apply a node disjoint restriction on the results.
Other research works ([15], [16]), that do not rely on a genetic
algorithm, did apply the node disjoint restriction on their
results but are not within responsive time and often required
unavailable information. The genetic algorithm proposed by
[17] did solve k-shortest path whilst maintaining a reduced
form of node disjointness. The node disjoint restriction is
substituted into an independent rule, where the recurrence of
nodes is allowed but highly discouraged. For a sparse network
it is often impossible to get k node disjoint paths, hence
the relaxation of the node disjoint restriction. Initially, they
proposed to solve the k-shortest path problem using a genetic
algorithm and keeping track of the k-best results throughout
all generations. They concluded that most of those paths are a
clone of the best path with some minor variations. Thus, their
second proposal was to use multiple fitness functions, where
each fitness function corresponds with some geographical
location. This way, each fitness function searches for the best
path that correlates to a different section of a map. Unfor-
tunately, BM networks do not have geographical information
for each device. Additionally their solution only supports one
metric for path length, either hop count or path cost, whilst we
require a combination of those. Hence, a different approach is
proposed with our genetic algorithm.

B. Design of a Nucleotide based Genetic Algorithm

Genetic algorithms consist of a population, where a popu-
lation is a collection of chromosomes, this population evolves
across multiple generations [18]. We introduce a new term
named the nucleotide. The remainder of this subsection ex-
plains how every aspect of our genetic algorithm is set up.

Nucleotide: A nucleotide represents one possible path in the
entire network, this representation is equal to the chromosome
definition in [17]. All nucleotides have the same length, with

the length being equal to the number of nodes in the network.
Thus, a fixed array is used and in this array the index represents
the source of an unnamed arc, whilst the value at that index
indicates the destination of that arc. Chaining this concept,
starting at the source node until the destination node, allows
us to store a path. The indices that are not on the path contain
randomly one of their neighbors.

Chromosomes: For this algorithm the chromosome is a
collection of nucleotides, and it contains exactly k nucleotides.
Therefore, one chromosome could be a possible solution for
the k-shortest path problem. The population remains equal
to the common interpretation, where it contains a certain
number of chromosomes and each generation the population
will evolve.

Fitness Function: Fitness functions are defined for both
the nucleotide and the chromosome. As with the nucleotide
definition, the fitness function of the nucleotide is inspired by
the fitness function of the chromosome in [17]:

FitnessN =
1∑N

i=1 arc(i)

/
#hop (2)

with N representing the number of nodes on a path and the
arc is calculated as in (1) where node i is the destination of the
arc, and i − 1 the source. However, as previously illustrated,
it is not sufficient to focus solely PER, i.e. the hop count
has a significant impact on the path taken, due to the nature
of flooding-based communication. Thus, the fitness function
does not compute the shortest path, but the shortest path on
average across the hop count. This way we mix the PER with
the hop count, and therefore prioritize short and relatively
strong probable paths over long and very probable paths. Due
to the division, a higher fitness value implies a shorter path
with better E2E PSR. The fitness value of a chromosome is
computed as follows:

FitnessC =
(#uniq − 2)×

∑i
k FitnessN (i)

(#total − k ∗ 2)
(3)

FitnessN from (2) is calculated for each nucleotide in the
chromosome. Path independency (i.e. disjointness) is pro-
moted by punishing recurring nodes across all nucleotides.
Recurring nodes are defined by #uniq/#total where #uniq
represent the number of unique nodes within one chromosome
and #total is the number of nodes in one chromosome.
However, to uniformly define the denominator, we need to
remove the source and destination from the equation.

Crossover: Half of the crossovers are applied on the nu-
cleotide level whilst the other half is applied on the chro-
mosome level. Lethal nucleotides are suppressed in similar
fashion as crossover defined in [17]. Chromosome crossover is
significantly easier when nucleotides are randomly exchanged
between two selected parents. No lethal chromosomes can be
composed using this technique.

C. Usage of a Nucleotide based Genetic Algorithm

Generation of the nucleotides and chromosomes is com-
pletely random. Consequently, a nucleotide is created as

Fig. 3. Representation of a sparse network. Every arc, except E → F and
D → F , has an error probability of 1%

follows. Starting at the source, pick a neighbor. This is
now temporarily the source. Repeat this process until the
neighbor is the destination. If no neighbors are left, discard
the nucleotide and restart the creation process from scratch. A
chromosome is formed by performing the previous operation
k times. The selection process uses a spinning biased roulette
wheel, similar to [17]. However, our replacement strategy is
not elitism [17] but rather fitness-based selection where the
offspring is combined with its parents into the next generation.
Lastly, the mutation process is naively defined, i.e. instead
of making small changes, a completely new nucleotide or
chromosome is generated. This decreases the convergence rate
but it prevents the local optima problem, which is the intended
goal of mutation in genetic algorithms [18].

IV. EVALUATION

The evaluation compares the original connectivity assess-
ment recipe with our proposed solutions, regarding flexibility,
computation time and finding a minimal set of relays to
achieve redundancy. The evaluation is performed via simu-
lations on a DCT of both an artificial network (i.e. flexibility)
and a physical network (i.e. computation time and relay
selection), where monitoring mechanisms are present [4]. The
physical network represents a BM network in a dynamic
office environment, where mains-powered lighting is used as
a backbone.

A. Flexibility

For the assessment of the sparseness problem, we created a
small artificial network represented in Fig. 3. As can be seen,
the network is divided into two subnetworks that are connected
through one node. An application flow that starts in the left
subnetwork and ends in the right subnetwork must always
visit that connecting node. Note that there are other methods,
not related to connectivity assessment, to solve this problem,
however in this situation it merely serves as an example for
sparseness. If the original connectivity assessment recipe is
executed with a redundancy target of 2, it provides us with
only one path: A → C → D → F → H → J → K. In spite
of this path being the shortest possible path, one of its arcs has
a high error rate, implying that a secondary path could have
been appropriate to improve the network reliability. However,
the node disjoint restriction simply does not allow this method
to compute a secondary path for this network. Executing our
genetic algorithm with the same redundancy target, returns

Fig. 4. Testbed representing a BM network.

the requested number of paths, thus including a second path:
A → B → E → F → G → I → K.

B. Computation Time

The DCT mirroring the physical network is extended with
our genetic algorithm as recipe, enabling accurate comparison
of the computation time between the original recipe and the
proposed replacement. Fig. 4 represents the topology of the
physical network in a real-life testbed, i.e. a network con-
taining 21 nodes1. It represents an office environment where
mains-powered lighting serves as the backbone. Throughout
the evaluation we will work with a fixed source and desti-
nation, both marked with their respective abbreviation S and
D respectively. The standard raw configuration is equivalent
for all the nodes, where each node is a relay and uses 0
repeats. The number of possible paths between the source and
destination in this network is of an exponential factor. With
a maximum path length of 7 hops, there are approximately
2.5 × 105 paths between the source and destination in our
network. If this value is extrapolated to the maximal possible
hop counts, there are approximately 6.4× 1016 paths, making
the search space non-iterable within reasonable computation
time. We calculate the computation time for three versions of
the connectivity assessment recipe: the original version from
[4], an enhanced version using (1) as arc weight and the ge-
netic algorithm approach. This process was repeated on several
snapshots of the DCT, across multiple hours, i.e. to experience,
capture and test the volatility of an office environment. The
original recipe performed with hop count or formula (1) takes
22.14s and 24.42s on average respectively. In contrast, the
genetic algorithm takes only 1.60s. This clearly illustrates that
the genetic algorithm performs on average ten times faster
than the current solution. We also see that the different metric
used within the original version does not have any impact
on the computation time, which is expected given that both
versions use the same workflow as in Fig 1. Each iteration
of the original workflow executes the Suurballe algorithm and
removes the worst PER link, until the redundancy target is

1Office Lab testbed at Ghent University

no longer satisfied. This leads to a much longer computation
time, compared to our genetic algorithm approach using 1000
generations.

C. Relay selection

The objective of this part of the evaluation is to assess
the accuracy of the relation between the suggested paths
(i.e. relay selection) by the evaluated recipe and the path
distribution of a subsequent run of 200 simulations of the same
communication flow, performed on the network depicted in
Fig. 4. We assess two versions of the connectivity assessment,
i.e. the original approach from [4] and the genetic algorithm.
Each outcome represents a set of relays and a simulation is
performed for both relay selection sets, providing us with
two path distributions, i.e. original & genetic algorithm based.
The accuracy of each version is calculated by counting the
occurrence of the suggested paths from the recipe in their
associated path distribution.

The accuracy assessment is illustrated in Table I, where the
path distribution is sorted on the number of occurrences for
each path in the simulation, after applying either the original
connectivity assessment recipe or the genetic algorithm ap-
proach. The original connectivity assessment recipe indicates
that there is not a single suggested path in the top 4 most
occurring paths. In contracts, the assessment of the genetic
algorithm approach indicates that all 3 suggested paths are
in the top 4. It is clear that the genetic algorithm provides a
more accurate representation of the relation between suggested
paths and a simulated path distribution. The process used

TABLE I
SORTED PATH DISTRIBUTION FOR EACH RECIPE VERSION OUTCOME

Version Path # Redundancy

Original

S → K → D 59 NO
S → L → D 37 NO
S → M → N → D 12 NO
S → L → O → D 11 NO
...
S → K → O → D 4 YES

Genetic

S → Z → D 69 YES
S → Y → D 34 NO
S → Y → X → D 32 YES
S → W → D 19 YES
S → Z → X → D 15 NO
...

in Table I was repeated for several iterations of the two
connectivity assessment versions and the associated simulation
to find associated path distributions. The average accuracy of
this endeavor is 0.76% (with 3.5 suggested relays on average)
for the original recipe version and 58.35% for the genetic
algorithm (with 1.5 suggested relays on average). As expected
from the results in indicated in Table I, the average accuracy
of the original solution is very low. The genetic algorithm
provides a drastic increase in average accuracy, providing
a more truthful assessment on realistic network behavior.
The remaining 40% are paths that use link shortcuts on the
suggested paths and crosslinks between them. Although our

goal is to design an algorithm that provides a relay selection
that is as truthful as possible, the usage of these link shortcuts
and crosslinks is only natural. This behavior is also present
in the original solution, but there the suggested paths are too
distinct from realistic network behavior and thus lead to too
much unnecessary overhead from useless relays. The genetic
algorithm approach has proven to drastically reduce the relay
selection set (indicated by the # relays column), which is
exactly one of the goals that we want to achieve in this paper.

V. CONCLUSION AND FUTURE WORK

In this paper a restructured genetic algorithm was proposed
to replace an existing, flawed, solution for a multi-path routing
problem. It has been added as an additional recipe to a DCT’s
toolbox, proving the latter’s adaptability towards extensions.
Its accuracy, speed and flexibility were experimentally evalu-
ated and compared to the original solution. The results prove
that the genetic algorithm can circumvent restrictions of a
sparse network (which the original solution was not able to
do), has a significant lower computation time and provides
higher relay accuracy, leading to much less unnecessary relays
and their associated overhead. The fitness function can easily
be extended or adapted to similar requirements, making it ver-
satile for other routing restriction problems. Further improve-
ments on each of the evaluated aspects are possible. Speed
and convergence rate would increase if additional alterations
were applied. For example, a proper mutation operation would
increase the convergence rate. Having a better convergence
rate would enable a lower number of generations, increasing
the speed but also accuracy, by avoiding continuous iterations
within a local optima. Aside of conceptual improvements,
implementation wise decisions could further improve the
speed as well. The connectivity assessment recipe is only
one aspect of the recipe pipeline proposed in [4]. Conse-
quently, a comparison should be made between the original
pipeline and a enhanced version that replaces the connectivity
assessment recipe with the genetic algorithm. Furthermore,
it should be examined whether an extension of the genetic
algorithm itself with additional parameters corresponding to
other recipes in the pipeline, yields better reconfiguration
suggestions compared to the original or enhanced pipeline. For
example, the goal of the repeats recipe is to further enhance
the reliability towards a PDR target by means of additional
repeats on the paths provided by the previous recipe. The
genetic algorithm could include the number of repeats for both
the source node and intermediate relays in the fitness function
and find paths according to required redundancy and PDR
simultaneously. However, inclusion of too many parameters
in a single recipe potentially undermines the original idea of a
DCT that combines diverse approaches into a single solution
instead of a single model that is continuously extended [4].

REFERENCES

[1] J. Yin, Z. Yang, H. Cao, T. Liu, Z. Zhou, and C. Wu, “A
survey on bluetooth 5.0 and mesh: New milestones of iot,” ACM
Trans. Sen. Netw., vol. 15, no. 3, may 2019. [Online]. Available:
https://doi.org/10.1145/3317687

[2] M. Baert, J. Rossey, A. Shahid, and J. Hoebeke, “The bluetooth mesh
standard: An overview and experimental evaluation,” Sensors, vol. 18,
no. 8, 2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/
8/2409

[3] S. S. Basu, M. Baert, and J. Hoebeke, “Qos enabled heterogeneous ble
mesh networks,” Journal of Sensor and Actuator Networks, vol. 10,
no. 2, 2021. [Online]. Available: https://www.mdpi.com/2224-2708/10/
2/24

[4] M. Baert, E. De Poorter, and J. Hoebeke, A Digital Communication
Twin for Performance Prediction and Management of Bluetooth
Mesh Networks. New York, NY, USA: Association for Computing
Machinery, 2021, p. 1–10. [Online]. Available: https://doi.org/10.1145/
3479242.3487327

[5] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, no. 2,
pp. 125–145, 1974. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/net.3230040204

[6] D. S. J. De Couto, D. Aguayo, B. A. Chambers, and R. Morris,
“Performance of multihop wireless networks: Shortest path is not
enough,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, p. 83–88,
jan 2003. [Online]. Available: https://doi.org/10.1145/774763.774776

[7] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” in Proceedings
of the 9th Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’03. New York, NY, USA: Association
for Computing Machinery, 2003, p. 134–146. [Online]. Available:
https://doi.org/10.1145/938985.939000

[8] R. Draves, J. Padhye, and B. Zill, “Comparison of routing metrics
for static multi-hop wireless networks,” in Proceedings of the 2004
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’04. New York,
NY, USA: Association for Computing Machinery, 2004, p. 133–144.
[Online]. Available: https://doi.org/10.1145/1015467.1015483

[9] L. Zhao and A. Y. Al-Dubai, Routing Metrics for Wireless
Mesh Networks: A Survey. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 311–316. [Online]. Available: https://doi.org/10.
1007/978-3-642-25769-8 45

[10] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-
hop wireless mesh networks,” in Proceedings of the 10th Annual
International Conference on Mobile Computing and Networking, ser.
MobiCom ’04. New York, NY, USA: Association for Computing
Machinery, 2004, p. 114–128. [Online]. Available: https://doi.org/10.
1145/1023720.1023732

[11] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[12] A. Y. Hamed, “A genetic algorithm for finding the k shortest
paths in a network,” Egyptian Informatics Journal, vol. 11, no. 2,
pp. 75–79, 2010. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S111086651000023X

[13] G. Nagib and W. G. Ali, “Network routing protocol using genetic
algorithms,” 2010. [Online]. Available: https://api.semanticscholar.org/
CorpusID:9226476

[14] A. Bhardwaj and H. El-Ocla, “Multipath routing protocol using genetic
algorithm in mobile ad hoc networks,” IEEE Access, vol. 8, pp. 177 534–
177 548, 2020.

[15] T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser, and D. B.
Blumenthal, “Finding k-dissimilar paths with minimum collective
length,” in Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ser.
SIGSPATIAL ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 404–407. [Online]. Available: https://doi.org/10.
1145/3274895.3274903

[16] T. Akiba, T. Hayashi, N. Nori, Y. Iwata, and Y. Yoshida, “Efficient top-
k shortest-path distance queries on large networks by pruned landmark
labeling,” in Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, ser. AAAI’15. AAAI Press, 2015, p. 2–8.

[17] J. Inagaki, M. Haseyama, and H. Kitajima, “A genetic algorithm for
determining multiple routes and its applications,” in 1999 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), vol. 6, 1999, pp.
137–140 vol.6.

[18] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic
algorithm: past, present, and future,” Multimedia Tools and Applications,
vol. 80, no. 5, pp. 8091–8126, Feb 2021. [Online]. Available:
https://doi.org/10.1007/s11042-020-10139-6

