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Abstract
Stream‐based biometric authentication using a novel approach based on spiking neural
networks (SNNs) is addressed. SNNs have proven advantages regarding energy con-
sumption and they are a perfect match with some proposed neuromorphic hardware
chips, which can lead to a broader adoption of user device applications of artificial in-
telligence technologies. One of the challenges when using SNNs is the discriminative
training of the network since it is not straightforward to apply the well‐known error
backpropagation (EBP), massively used in traditional artificial neural networks (ANNs).
A network structure based on neuron columns is proposed, resembling cortical columns
in the human cortex, and a new derivation of error backpropagation for the spiking
neural networks that integrate the lateral inhibition in these structures. The potential of
the proposed approach is tested in the task of inertial gait authentication, where gait is
quantified as signals from Inertial Measurement Units (IMU), and the authors' approach
to state‐of‐the‐art ANNs is compared. In the experiments, SNNs provide competitive
results, obtaining a difference of around 1% in half total error rate when compared to
state‐of‐the‐art ANNs in the context of IMU‐based gait authentication.

1 | INTRODUCTION

Artificial Neural Networks (ANNs) have become the most
prevalent pattern recognition tool, being used in a multiplicity
of applications. Regarding biometrics, it is already used in most
biometric modalities, such as speaker authentication [1], face
recognition [2], fingerprint recognition [3], hand‐based bio-
metrics [4, 5], electrocardiogram‐based recognition [6], hand-
written online signature recognition [7], or inertial gait
recognition [8]. However, deep learning neural networks often
come at the cost of larger complexity and computational re-
quirements in terms of memory and processing power, which
may thwart its deployment on constrained user devices, espe-
cially for continuous authentication. Additionally, in the case of
biometrics, there are security and privacy concerns regarding
storing biometric models and processing biometric data on
cloud facilities.

In recent years, there has been an increasing interest in a
different type of neural network, the Spiking Neural Networks
(SNN) [9]. This interest has been driven mainly by the

possibility to use these networks within ultra‐low power
consumption‐specific hardware modules called neuromorphic
hardware [10–12], ideally suited for instance for continuous
authentication. Results shown in [13] show gains in power
consumption that go from 20 to 100 times more efficient.
However, the drawback of this technology is the lack of mature
learning approaches as opposed to standard ANNs. The most
widely used method for SNNs is Synaptic Time‐Dependent
Plasticity (STDP), a generative approach that is a biologically
inspired unsupervised method based on Hebbian rules [14],
reaching limited discrimination performance when compared
to discriminative approaches based on gradient descent for
ANNs. Therefore, some approximations to gradient descent
have been recently proposed as we will discuss later.

SNNs provide a natural integration of temporal informa-
tion, since the spiking neurons have an internal state that
evolves with time, spiking when it reaches a certain value. This
makes networks using this type of neurons well suited for
processing time series, a category of data to which many bio-
metric modalities belong. Moreover, the promise of energy
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efficient evaluation of biometric data would be a key enabler
for continuous authentication systems.

In this paper, we study the problem of gait authentication
from inertial signals in light of SNNs. Specifically, we propose
the use of SNNs topologically organised in columns, resem-
bling cortical neuron columns in the mammal's cortex [15], and
a novel error backpropagation method that allows to perform
competitive supervised learning. Neurons in a column share
the synaptic field and perform lateral inhibition, so each
neuron in a column will specialise in specific input patterns.
These columns may be understood as improved convolutional
kernels, since they incorporate a mathematically sound mech-
anism to encourage intracolumn competition. Therefore, the
proposed approach combines the structural benefits of neuron
columns, which helps neuron specialisation, with the perfor-
mance of discriminative approaches. We demonstrate the po-
tential of this approach in the challenging biometric problem
of inertial gait recognition. Inertial measurement unit (IMU)‐
based gait recognition uses the inputs captured by IMU sensors
placed somewhere on the subjects' body. Thus, gait is modelled
as a six dimensional time series: 3D linear acceleration and 3D
angular velocity. We augment this signal and represent it as a
26D time sequence as described in prior work [16]. To sum-
marise, the key contributions of our research are the following:
use of column‐based SNNs for gait authentication based on
inertial signals and to provide this architecture with a new error
backpropagation algorithm.

We must notice that this paper does not intend to perform
a complete feasibility analysis of the proposed techniques for
its application to biometric recognition. Instead, in this work,
we show the potential of the proposed technique and tech-
nologies not only for the concrete inertial gait recognition
process, but in general for processing streams, where infor-
mation in the temporal dimension is paramount. To the best of
our knowledge, this constitutes the first work on stream‐based
biometrics using the SNN technology. We compare the ob-
tained results in terms of authentication performance to state‐
of‐the‐art ANNs to get a clear idea of the potential of this
technology. This paper is an extended version of our previous
work [17], where we additionally propose: (i) an alternative
neuron model with additive thresholding instead of multipli-
cative thresholding, which avoids numerical problems in de-
rivatives, especially when using several layers, and enables
successful multilayer architectures; (ii) two different and com-
plementary homoeostatic mechanisms, which successfully
avoid neuronal death within the neuronal columns; (iii) present
more thorough experiments, including multilayer SNNs, and
non‐column‐based SNNs; (iv) and perform a much deeper
analysis of the experimental results, which also allows us to
reach also more thorough conclusions.

The rest of this paper is structured as follows: in Section 2,
we describe the works related to this paper with regard to both
gait recognition and SNNs. In Section 3, we present the SNNs
used in this paper, whereas the employed ANNs are described
in Section 4. The experimental setup and data pre‐processing
are shown in Section 5. The experimental results are shown
and discussed in Section 5. The paper draws conclusions in

Section 7, and finally, future research directions derived from
this work on SNNs are shown in Section 8.

2 | RELATED WORK

In this section, we describe the state of the art in both IMU‐
based gait recognition and spiking neural networks.

2.1 | Previous work on gait recognition

For well over a decade, researchers have studied human loco-
motion as a means for authentication. The first works [18–21] all
took a similar approach: considerable effort was spent to extract
and align gait cycles and steps. Once cycles were extracted they
were length normalised and analysed in both the time and fre-
quency domain, after which comparisons were made using
techniques, such as dynamic time warping and k‐NN. However,
results between these works were hard to compare due to a lack
of a reliable benchmark. In 2014, Ngo et al. [22] published a
large‐scale benchmarking dataset and re‐evaluated the afore-
mentioned works, which shows that the top performing method
achieved an Equal Error Rate (EER) of ≈14.3%.

Further improvements in recognition performance were
achieved by relying on Gaussian Mixture Models (GMM)
[23–26] andHiddenMarkovModels [27, 28]. Thesemethods are
less dependent on robust gait cycle extraction and apply a sliding
window over the gait sequence. Verification is done by
computing the log‐likelihood ratio of the query sample w.r.t. a
personalised model and a general – universal background –
model (UBM). The elegance of these methods is in the limited
amount of enrolment samples required to train the personalised
models as they can be adapted from the UBM. This benefit was
not exploited by the first works that exploitedHMMs, that is, the
work by Nickel et al. [27]. The state‐of‐the‐art performance on
the OU‐ISIR dataset obtained with GMMs [23] is ≈ 5.6%, while
with HMMs [28], an EER of ≈1.4% is achieved.

The most recent IMU‐based gait authentication solutions
rely on deep learning. One of the first approaches that leverage
deep learning by Nguyen et al. [29] uses very shallow (1‐layer)
Convolutional Neural Networks (CNNs). On the OU‐ISIR
dataset, Nguyen et al. achieve an EER of ≈11.6% for a
closed set scenario, that is, all users used for evaluation are used
during the training phase. Another CNN‐based approach is
IDNet [30], which extracts deep features that are fed to a one‐
class SVM, thereby adhering to an open set assumption.
IDNet, was not evaluated with OU‐ISIR, instead they collected
their own data with only 50 users. But IDNet was later out-
performed by the approach from Zou et al. [31] who did
evaluate their system with OU‐ISIR. Zou et al. combine CNNs
and Long Short‐Term Memory (LSTM) Networks, thereby
achieving a Half Total Error Rate (HTER) of ≈ 0.4%1.

1
Zou et al. reported an accuracy of ≈ 99.6%, which, due to their experimental setup, is
equivalent to a Half Total Error Rate (HTER) of ≈ 0.4%
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However, this number is optimistic as they perform their
evaluation with pairs of sequences that can overlap or can
belong to the same gait cycle. Another system by Fernandez
et al. [32] that is also based on RNNs does not introduce such
dependencies. Fernandez et al. report an EER of ≈ 6.7% on
the OU‐ISIR dataset for an open set scenario. The deep
learning‐based approaches mentioned above again use heuris-
tics to extract or align gait cycles. Such heuristics are often
tuned to perform optimally for the dataset. Delgado‐Escãno
et al. [33] avoid such biases by not extracting or aligning gait
cycles. Furthermore, they adopt a multi‐task learning approach
and achieve an EER of ≈ 1.1% on the OU‐ISIR dataset for a
closed set scenario. A last recent work by Van hamme et al. [34]
leverages RNNs with attention mechanisms. Moreover, they
generate four different deep learnt systems based on CNNs
and RNNs, which are trained with state‐of‐the‐art loss func-
tions from face recognition, that is, triplet loss [35] and arcface
[36] loss. Their evaluation comprises also of HMMs and
GMMs. They report EERs that range between ≈0.97% and
≈2.13% on the OU‐ISIR dataset with an open‐set assumption.

We refer to the recent survey of dos Santos et al. [37] on
the application of deep learning for gait recognition. The au-
thors review several deep learning methods, including the well‐
known CNNs and RNNs, but also Deep Belief Networks
(DBNs), Capsule Networks (CNs), AutoEncoders (AEs), and
Generative Adversarial Networks (GANs). They review how
these methods were applied for video‐based and
accelerometer‐based gait recognition and biometric identifica-
tion on top of different datasets. While broad in the techniques
surveyed, SNNs are out of scope in this survey study.

2.2 | Previous work on spiking neural
networks

Although SNNs are a relatively new neural network paradigm,
a lot of research efforts have focussed on this area lately.
Regarding the learning technique, initially most of the works
focussed on diverse versions of Synaptic Time Dependent
Plasticity (STDP), a non‐supervised technique that produces
generative models, which produce spikes related to the most
relevant or frequent inputs observed by the network. There are
plenty of examples, such as [38–44]. However, all of them
suffer from the same intrinsic limitation: its generative nature
makes them not as accurate when dealing with classification
tasks as other state‐of‐the‐art discriminative approaches. The
main problem is the non‐differentiability of the spikes, the
output of the networks, which makes traditional error back-
propagation (EBP) not directly applicable.

There exist two main approaches to tackle this problem
when using SNNs. The first one consists of converting
conventional neural networks trained with traditional super-
vised EBP‐based techniques as a way to circumvent the
difficulties to backpropagate the error due to the non‐
differentiability of spikes. Some examples of this approach
can be found in [45–55]. The second approach involves
developing a framework where it is possible to perform EBP

on the SNN. A comparison of the mentioned approaches can
be found in [38]. Although both approaches can provide
reasonable performances, specific training can be theoretically
more accurate, especially if SNNs have special topological
features, which do not easily map from ANNs, as the col-
umns used in this paper. This motivated us to use a specific
training approach. Developments shown in [56–63] are some
representative examples of EBP on SNNs. Since our
approach belongs to this category, we will briefly describe
these works and compare with our proposed algorithm to
clearly state what is novel with respect to the state of the art
in SNNs.

In [56], membrane potential plays the role of a differen-
tiable output, and spikes are considered as noise. EBP is per-
formed at all times (independently of spiking times). In [57], an
EBP framework is derived for SNNs using temporal encoding,
where the information is carried on the time of the first spike
that each neuron produces (if any). In [58], conversion from
traditional networks and Spatio‐Temporal BackPropagation
(STBP) are compared, and specific training on SNNs shows
improvements in terms of efficiency. In [59], Normalised
Approximate Descent learning rule is used to derive a back-
propagation rule that efficiently minimises the differences be-
tween membrane potentials of target and training examples. In
[60], SLAYER is presented as an error backpropagation
method that allows to learn spiking output sequences from
target sequences. SuperSpike is presented in [62] as a surrogate
derivative rule that allows to perform EBP on SNNs. In [61],
Spatio‐Temporal Backpropagation is derived for SNNs,
combining layer‐by‐layer spatial domain and timing‐dependent
temporal domain.

All the backpropagation frameworks made for SNNs so far
share that the objective function is either specialised for clas-
sification tasks (trying to get a specific label as the average
spiking rate at the output layer) or it tries to provide spike
trains very similar in different inputs, implying a homogeneous
dimensionality and duration (if applicable) of input signals. In
both cases, it is hard to use these ideas to get a universal (open
set, where the same network will be used to process samples
from individuals not included in the training set) network for
sequence‐based biometric authentication, where the length of
the sequence is variable (non‐homogeneous, making the use of
sequence approximation cumbersome). Both SLAYER and
SuperSpike are exceptions since they provide enough flexibility,
allowing for a similar objective function. However, none of
these approaches are considering the specific structure of
neuron columns, which play a crucial role in obtaining
competitive learning. We can consider this feature of our
approach as not only a novelty in discriminative learning‐based
SNNs, but also in ANNs in general.

3 | GAIT RECOGNITION SYSTEM
USING SNNS

In this paper, we use Leaky Integrate and Fire (LIF) neurons
[64] as fundamental computation units. Our networks will be
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constituted of columns of these neurons, organised in layers.
Each layer feeds with the outputs of the columns from pre-
vious layers, after an optional max pool layer.

We train the SNNs in two phases. In the first one, we use
the unsupervised method Synaptic Time‐Dependent Plasticity
to get a good baseline for the second phase, which is a novel
supervised Gradient Descent. In the following sections, we
describe in detail the topological elements of the networks and
the learning algorithms.

3.1 | Columns of LIF neurons

As mentioned above, neurons are organised in columns as
shown in Figure 1. Neurons in a column share the synaptic
field (input space), and only one can emit a spike at a given
instant in time. This behaviour is modelled using a Winner
Takes All (WTA) circuit, which chooses the neuron with the
maximum normalised membrane potential, above the spiking
threshold, as the spiking one. When a neuron spikes, a lateral
inhibition signal iC½n� is fed back to the neurons in the column,
which will put them in a refractory state, as explained below.

3.2 | LIF neuron

Two different discrete time LIF neurons are explored in this
paper. The first one is shown in Figure 2, and it has been
previously presented in our previous work [17]. These LIF
neurons use multiplicative thresholds. In contrast, the LIF
neurons presented in this work, shown in Figure 3, use additive
thresholds.

LIF neurons can be in two different states: active and re-
fractory. During the active state, the membrane potential leaky
integrates the inputs filtered by their corresponding synaptic
response filters as shown in the membrane feedback loop.
Before the membrane potential is fed into the WTA circuit, the
threshold θ either divides the membrane potential when mul-
tiplicative or it is subtracted when the threshold is additive. In
the case of multiplicative thresholding neurons, the neuron can
spike when the normalised potential exceeds unity, while in the
case of additive thresholding neurons, the neuron can spike
when the normalised potential is positive. The WTA circuit
selects the most active neuron among the ones that can spike
as follows for multiplicative and additive thresholding,
respectively:

yCi ½n� ¼
1 ⇔ i¼ argmaxj v̂Cj ½n�∣v̂

C
j ½n� ≥ 1

n o

0 ⇔ ∄j∣v̂Cj ½n� ≥ 1

8
<

:
;

iC½n� ¼maxi yCi ½n�
� �

ð1Þ

yCi ½n� ¼
1 ⇔ i¼ argmaxj v̂Cj ½n�∣v̂

C
j ½n� > 0

n o

0 ⇔ ∄j∣v̂Cj ½n� > 0

8
<

:
;

iC½n� ¼maxi yCi ½n�
� �

ð2Þ

When any neuron in the column emits a spike, each
neuron in the column receives an inhibition impulse from the
column WTA circuit (i.e., iC½n� ¼ 1) and goes into the re-
fractory state, where the membrane potential is reset and
synaptic inputs are ignored by using 1 − iC½n� and
1 − iC½n� ∗ r½n� as gate signals in the membrane potential
feedback loop and input, respectively, with r½n� ¼

PR
k¼1

δ½n − k�, and R the refractory period duration. It must be
noticed that if R = 0, the inhibition only affects the feedback
loop. Both R and the membrane persistence α (or equiva-
lently) are the same in all the neurons in our model, since we
understand that these are parameters related to the neurons'
physiology in this biologically inspired system.

3.3 | Input layers

In many examples of SNNs, the input layer needs a trans-
formation from continuous signals to spike trains. However, in

F I GURE 1 Column of neurons with lateral inhibition

F I GURE 2 Diagram of neuron i in column C with the multiplicative
threshold

F I GURE 3 Diagram of neuron i in column C with the additive
threshold

488 - ARGONES RÚA ET AL.
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our case, this is not formally required. Our proposed LIF
model can deal with continuous inputs, while providing a spike
train output. However, we focussed on two different input
transformations, which are convenient due to the positive filter
weight initialisation required by STDP, as it will be shown later.

3.3.1 | MinMax

First, each input signal x [n] is normalised using the minimax
transformation:

xminmax½n� ¼
x½n� − mx

Mx − mx
; ð3Þ

where mx ¼minTrain Set x½n�f g and Mx ¼maxTrain Set x½n�f g.
Then, two signals are derived: x+[n] = xminmax [n] and
x−[n] = −xminmax [n]. These two signals constitute the trans-
formed input.

3.3.2 | Gaussian

This transformation computes 4 different signals from each
input. First, we obtain xminmax [n] following Equation (3).
Then, four different signals are derived as inputs to the input
layer from each signal:

xiGaussian½n� ¼ e−
xminmax ½n�−μið Þ

2

2σ2 ; ð4Þ

where μi = i/3 and σ ¼ 1
6

ffiffiffiffiffiffiffiffiffi
1

2lnð2Þ

q
, and i ∈ {0, 1, 2, 3}. Each

derived signal will provide information on the amplitude of the
original input. All four signals will always be fed jointly, so
neurons will always have a complete information on the rela-
tive amplitude of their inputs.

3.4 | Unsupervised initialisation using
STDP

Synaptic weights are randomly initialised from Gaussian dis-
tributions and clamped into the interval [0, 1]. Then, STDP is
used to adapt these weights to the statistics of the gait input
sequences. Different update rules for the weights have been
proposed for STDP, but the main idea is to implement (i) Long‐
Term Potentiation (LTP) to weights recently contributing to the
potential of a neuron that spikes, that is, increasing this weight;
and (ii) Long‐Term Depression (LTD) to weights that did not
contribute to the potential of a neuron that spikes. In other
words, neurons that spike reinforce the weights that contribute
to the spiking and weaken those weights that do not contribute.
In our case, we implement LTP and LTD by increasing the
weights proportionally to the observed input contribution.
Given the synaptic filter w ½n� ¼

PL
i¼0 w

kδ½n − k�, if a spike is
emitted at time s, then Δwk ¼ p

Pk
j¼0x½s − ðkþ jÞ�αj ifPk

j¼0x½s − ðk þ jÞ�αj > ϵ, and Δw = −d otherwise. A

homoeostatic rule is also used to avoid too dominant neurons
in a column, decreasing the activation thresholds of neurons
that spike below the columns' average spiking rate and
increasing them for neurons with a spiking rate higher than the
columns' average. These averages are computed using first‐
order average estimators r½n� ¼ τ−1r½n� þ 1 − τ−1ð Þr½n − 1�
with τ equal to 5 times the average gait sequence length.
Thresholds are updated at the end of each sequence STDP by
ΔθCi ¼ β r C − Cr Ci Þ

�
, where C is the number of neurons in

column C, r C and r Ci are the average spiking rate of the column
and its ith neuron, respectively. After the update, the thresholds
are clamped to the interval [1, 10].

3.5 | Supervised training using EBP

The main obstacle to perform EBP on SNNs is the non‐
differentiability of the neuron's output. Its discontinuous (it
is either 0 or 1) and homogeneous (all the spikes look the
same) nature require adopting a different approach to the one
used in traditional ANNs. One of the most common ap-
proaches is to define a surrogate function f that is, differen-
tiable, and substitute the output of the neuron by that
surrogate during gradient computations, that is, δy ~ δf. One
sensible approach is to make this surrogate function model the
probability of that neuron firing. A sensible surrogate function
for the proposed neuron columns should be based on the
normalised membrane potential signals ~vCi ½n�, which are
differentiable with respect to the neurons' input and synaptic
filter weights. In this regard, it should also

1. Be monotonically increasing with its normalised membrane
potential and monotonically decreasing with the normalised
membrane potential of the other neurons in the column.

2. Saturate when the membrane potential of the neuron
dominates the other neurons' membrane potential in the
column.

Taking these into account, we propose to use the softmax
function of the normalised membrane potential as a surrogate
function:

f C½n� ¼ softmax ~v C½n�
� �

¼
1

PC
j¼1 e

v̂Cj ½n�

ev̂
C
1 ½n�

⋮
ev̂
C
C ½n�

0

B
@

1

C
A ð5Þ

We evaluate this differentiable surrogate function during
the backward phase of EBP only at the spiking times, that is,
when one neuron in the column emits a spike. By doing this,
we only take into account the spiking events, which are the
ones forwarding real information, thus removing influence of
instants where the neurons do not get enough evidence to
spike and saving a lot of computation power and training time.
Thus, spikes serve as noise removing and energy efficiency
mechanisms.
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3.6 | Objective function, optimiser, and
boosting

Although there could be information on time dependencies
among spiking events (local information), we only use the
average spiking rate at the output layer neurons. We use a Sia-
mese architecture, where a reference sequence SR, belonging to
class CR, and a probe sequence SP , belonging to class CP and
make a forward pass through the network, obtaining two average
output average spiking rates r oR and r oP . We then maximise the
following cosine similarity‐based objective function:

O SR;SPð Þ ¼ 2δ CR − CP½ � − 1ð Þ
r oR

tr oP
r oR
�
�
�
� r oP
�
�
�
�
; ð6Þ

where δ[⋅] is the Kronecker delta function.
We use the Nadam optimiser as described in [65] to improve

convergence, abiding the parameters suggested in this paper. We
also incorporated boosting to train the neural network, grouping
the pairs of sequences matching a given enrolment sequence in
the same minibatch, as in tuplet loss [66], and performing the
updates based only on the hard negative sequences and the
positive sequence (if any of the negative examples is hard, or if
the positive sequence is hard itself). A hard sample is the one that
gets a wrong decision or a right decision but closer to the de-
cision threshold than a given margin. The decision threshold is
updated each epoch to the one resulting in Equal Error Rate
(EER) performance on the train set.

3.7 | Homoeostatic mechanisms on
columns

Since columns compete in columns for spiking, some neurons
may be too successful and make other neurons to never spike,
what is usually called neurons death. To avoid this, two
different homoeostatic mechanisms are implemented on the
additive thresholding LIF neurons.

3.7.1 | Homoeostatic gradient

The first one consists of adding a term to each neurons' de-
rivative with respect to the neurons' activity, related to the
spiking rate for each neuron, in addition to the increment
derived from error backpropagation. This regularisation
slightly shifts the error derivative towards making all the neu-
rons spike at the same rate, which will discourage neurons
death. This is implemented as follows:

Δθi ¼ Δθið ÞEBPþ γ rC − CrCi Þ
�

ð7Þ

where C is the number of neurons in column C, rC and rCi are
the average spiking rates of the column and its ith neuron,
respectively, and γ is small constant, which will decay
geometrically when there are not dead neurons in the column.

3.7.2 | Homoeostatic threshold boosting

The second one is a reactive homoeostatic mechanism, which
slightly decreases the thresholds of dead neurons and slightly
increases the thresholds of too active neurons after each
training batch is processed. A neuron is considered as dead
when its spiking rate is less than the possible maximum spiking
rate of any neuron in the same layer divided by 10 times the
number of neurons in the column. A neuron is considered as
too active when its spiking rate is more than the possible
maximum spiking rate of any neuron in the same layer divided
by two. This threshold boosting only occurs when there exist
dead neurons in a column, and it modifies the thresholds of
dead neurons and too active neurons as follows:

ΔθC;deadi ¼ −ζ
kW C

i k

D
ð8Þ

ΔθC;too active
k ¼ ζ

kW C
kk

D
ð9Þ

where ζ is a small constant, ‖ ‖ is the Frobenius norm, and D
is the number of dead neurons in column C. In addition to this,
all neuron thresholds are decreased abiding Equation (8) when
the column spiking rate is less than 0:95

Rþ1, where R is the re-
fractory period. This keeps the columns as active as possible.
These two mechanisms can be combined or used separately.

3.8 | Non‐column‐based SNNs

For comparison purposes, we also include an SNN archi-
tecture, which does not use neuron columns. In this archi-
tecture, each layer is fed with the whole output of the
previous layer (or MinMax normalised input). Each layer is
constituted by a set of linear 1D filters with as many channels
as inputs, each of them followed by a Max pooling layer and
an FIR neuron. The last layer is followed by a Global
Average Pooling. We use a sigmoid surrogate for EBP with a
slope of 10 in all FIR neurons [62].

This architecture is trained by maximising the cosine
similarity‐based objective function in Equation (6), but adding
necessary regularisation terms proportional to the norm 1 of the
output at each layer, to avoid neuronal death. The weight of
these regularisation terms is adapted through the training phase,
increasing it when the norm goes below a given threshold, and
decreasing it when the norm is stable. The inclusion of this
approach will allow to highlight the actual contribution made by
the neuron columns in terms of authentication performance.

4 | GAIT RECOGNITION SYSTEM
USING ANNS

We build a gait recognition system based on ANNs, which
serves as a baseline to adequately demonstrate the potential of
SNNs to model gait. We choose an architecture that led to
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competitive results for gait sequence modelling tasks [34, 67].
Specifically, we chose Temporal Convolutional Networks
(TCN), which are proven to be an effective strategy to model
time series data in general [68]. Furthermore, to accommodate
the needs of authentication, that is, an open set assumption
with limited amounts of enrolment data, we leverage metric
learning to train the system, that is, we use the triplet loss [35].

We construct multiple TCN networks with varying depth
and an approximately constant model complexity. We present
the baseline architecture from our prior work in Figure 4.
This TCN has a fairly simple architecture with only three
layers. The layers are three 1D convolutional layers with
dilation, where the number of kernels increases from 32 in
the first layer, to 64 in the second, and to 128 for the final
layer. The dilation rate is 2, 4, and 8; while the kernel sizes
are 3, 3, and 5, respectively. Global average pooling is per-
formed, which provides a final embedding of size 128. The
embedding is length normalised and used to evaluate the
triplet loss function:

LðA; P;NÞ ¼max
�
kf ðAÞ − f ðPÞk2

− kf ðAÞ − f ðNÞk2 þm; 0
� ð10Þ

where f(A) is the embedding of the anchor, f(p) the embedding
of a gait sequence, which belongs to the same user as the
anchor, and f(N) the embedding of a gait sequence from a
different user. m, the margin, is an additional term, which
further reduces inter‐cluster similarity and encourages higher
intra‐cluster similarity. We mine semi‐hard triplets to learn on,
that is, those where the negative sample is further from the
anchor than the positive one, but still a positive loss is
incurred. We train the network for 500 epochs with the Adam
optimiser with a learning rate of 0.001.

During training, we feed fixed length sequences of size 180
to the network due to the sample rate of 100 Hz this corre-
sponds to 1.8 s of data. We chose this value such that at least
one gait cycle is captured. The starting point within the original
gait sequence of this window of length 180 is chosen at
random. A new choice is made every epoch. Note that the
input sequences are the pre‐processed augmented sequences

that contain 26 dimensions. This pre‐processing is described in
Section 5. During testing, the full length sequences are used to
compute the embedding.

Following the same strategy, we also construct a one layer
and two layer TCN with a similar amount of trainable pa-
rameters. This allows us to provide baselines for different
network depths. These depths mainly influence the effective
receptive field of the network, which depend on the amount of
layers N, the dilation rate d, and the filter size k. The effective
history of a layer can be computed as (k − 1)d. Thus, the
effective receptive field of the whole network is then:PN

n¼1 kn − 1ð Þdn, with kn and dn the filter size, and dilation
rate of the nth layer, respectively. Thus, we train three networks
with the following parameters:

� 3‐layer TCN: the network described above with a kernel
size 3, 3, 5; a dilation rate 2, 4, 8; and a number of kernels
32, 64, 128, which gives an effective receptive field of 40.
This architecture is illustrated in Figure 4.

� 2‐layer TCN: with a kernel size 3, 5; a dilation rate 2, 4; a
number of kernels 64, 152, which gives an effective recep-
tive field of 20.

� 1‐layer TCN: with a kernel size 10, a number of kernels
206, and no dilation, which gives a receptive field of 10.

5 | EXPERIMENTAL SETUP AND DATA
PRE‐PROCESSING

To train and evaluate our systems, we use the IMU sequences
contained in the OU‐ISIR dataset labelled as level walk and
captured by the centre sensor. Usually for each user, there are
two sequences, of which we use one for enrolment and one for
testing. We only consider the 483 users with two valid walking
sequences for all three sensors, that is, left, right, and centre
located sensors. Only the centre sensor is used for the
experiments.

The walk sequences of the OU‐ISIR dataset are represented
as a six‐dimensional (6D) time series: 3D linear acceleration and
3D angular velocity. We augment this signal and represent it as a
26D time sequence as described in prior work [16]:

F I GURE 4 The architecture of the 3‐layer
artificial neural networks (ANN) system, which is
based on one‐dimensional convolutions with
dilation and trained with the triplet loss
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� Eight dimensions are derived from the gyroscopic dynamics
(8D): the angular velocity ω!ðnÞ ¼ ωxðnÞ;ωyðnÞ;ωzðnÞ

� �
,

their first‐order differences αdðnÞ ¼ ωdðnÞ − ωdðn − 1Þ,
and the magnitude of both vectors ωðnÞ ¼ kω!ðnÞk and
αðnÞ ¼ k α!ðnÞk.

� Six dimensions are related to the vertical and horizontal
components (6D), which are an approximation of the vertical
and horizontal acceleration in the world pane, computed as

[23] vðnÞ ¼ a!ðnÞ ⋅ G
!

and hðnÞ ¼ a!ðnÞ − vðnÞ G
!

kG
!
k

 !

with G
!

the estimate of the gravity component computed as

G
!
¼ mean ax!ðnÞ

� �
;mean ay!ðnÞ

� �
;mean az!ðnÞ

� �� �
. They

are complemented with their jerks (first‐order differences)
and velocities (integration). The constant factor introduced
by integration is filtered out by applying a butter high‐pass
filter of order 5 with a cutoff frequency of 1 Hz.

� Twelve dimensions are related to roll and pitch (12D). We
make two approximations of roll and pitch: the first
approximation only uses linear accelerations: raðnÞ ¼ atan2
agzðnÞ; a

g
yðnÞ

� �
and paðnÞ ¼ atan2 agxðnÞ; a

g
yðnÞ

� �
. The sec-

ond approximation fuses the first with an estimation of roll
and pitch from the angular velocity: f ðnÞ ¼ 0:98 f n − 1ð Þ þ½

fgðnÞ� þ 0:02faðnÞ, where f is either the pitch p or the roll r;
and fa fg are the approximations of roll and pitch from the
accelerometer and gyroscope data, respectively: pgðnÞ ¼Pn

k¼0ωxðnÞ and rgðnÞ ¼
Pn

k¼0ωzðnÞ. We keep both ap-
proximations and complement them with their first‐order
and second‐order differences: _raðnÞ, _paðnÞ, €raðnÞ, and
€paðnÞ; and the fused approximations of roll and pitch _rðnÞ,
_pðnÞ, €rðnÞ, and €pðnÞ.

We adopt a 5‐fold cross‐validation protocol, where we
randomly split the 483 users into 5 disjoint sets, which contain
either 96 or 97 users: Ss ¼ Us

0;U
s
1;…;Us

x
� �

with x ∈ [96, 97]
and s ∈ [0, 4]. Thus, we do 5 rounds, where during each round
k, we select Sk as the test set, and the remaining 4 sets as the
training set. We report the Equal Error Rate (EER) in the test
set, that is, the threshold at which False Rejection Rate (FRR) is
equal to False Acceptance Rate (FAR). Besides, we plot the
Detection Error Trade‐off curves for a visual comparison. As
each set contains x users for whom there are two walking se-
quences, x benign authentication attempts and x (x − 1) ma-
licious authentication attempts can be simulated.

In addition to the experiments performed in our prior
work [17], we tested different multilayer SNNs and also per-
formed experiments with additive thresholding columns, not
only focussing on the final biometric recognition figures, but
also analysing the influence of the two presented homoeostatic
mechanisms.

We have developed our column‐based SNN framework as
a standalone C++ library, which uses armadillo [69] for fast
linear algebra computations, such as convolutions.

For the non‐column‐based SNN, we used the library
SNNTorch [63]. During the experiments done in this paper, we

set the norm 1 threshold in the regularisation strategy to 0.05
as a well‐performing value.

The SNN experiments were performed in two different
machines:

� CPU server: 2 � 2 � 10‐core Intel® Xeon® E5‐2687 W v3
3.1 GHz, 25 M Cache, 9.60 GT/s QPI, Turbo, HT, 10 C/
20 T (160 W) Max Mem 2133 MHz. Memory: 256 GB.

� Workstation: AuthenticAMD® AMD Ryzen® 9 3900XT
12‐Core Processor x24. Memory 4 � 32 GB, DDR4
3000 MT/s.

The TCN architecture was implemented using tensorflow
v2.3.0. The implementation of the triplet loss function of the
tensorflow addons package [70] is used. The models are trained
on a workstation with the following specifications: Intel®

Core® i5‐9500 CPU with 6 cores at 3.00 GHz, a GeForce®

RTX® 2060 Rev. A graphics card with 6 GB ram and memory
32 GB.

6 | EXPERIMENTAL RESULTS

In our experiments, we tested different SNN topologies, with
one, two, and three layers, some with additive and some with
multiplicative thresholding, using max pooling between them.
We present here the performance obtained by the TCN ar-
chitectures presented in Section 4, together with the following
SNNs:

� N1: 1 layer, 4 columns, 32 neurons/column, 1 coefficient
filter, 32D MinMax column input, multiplicative thresh-
olding, refractory period R = 1.

� N2: 1 layer, 4 columns, 32 neurons/column, 4 coefficient
filter, 32‐D MinMax column input, multiplicative thresh-
olding, refractory period R = 1.

� N3: 2 layers, each with 4 columns, 32 neurons/column, and
4 coefficient filters, multiplicative thresholding. The first
layer has 32‐D and the second layer has 96‐D MinMax
column inputs. Max pooling with window and stride 2 is
used between layers, and refractory period R = 2 in both
layers.

� N4: 1 layer, 32 columns, 32 neurons/column, 2 coefficient
filter, 32‐D MinMax column input, multiplicative thresh-
olding, refractory period R = 1.

� N5: 1 layer, 4 columns, 32 neurons/column, 2 coefficient
filter, 32‐D MinMax column input, additive thresholding,
refractory period R = 1. This network has been included to
analyse the role of homoeostatic rules.

� N6: 1 layer, 16 columns, 16 neurons/column, 8 coefficient
filter, 32‐D Gaussian column input, 4‐Gaussian input, re-
fractory period R = 3, additive thresholding.

� N7: 3 layers, additive thresholding. Input layer with 16
neurons/column, 16 columns, 32‐D Gaussian column
input, 3 coefficient filter, refractory period R = 1; second
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layer with 16 neurons/column, 16 columns, 3 coefficient
filter, refractory period R = 1, 32‐D input; output layer with
64 columns, 16 neurons/column, 7 filter coefficient, re-
fractory period R = 2, 32‐D input.

� N8: 3 layers, additive thresholding. Input layer with 16
neurons/column, 16 columns, 32‐D Gaussian column
input, 3 coefficient filter, refractory period R = 1; second
layer with 16 neurons/column, 16 columns, 5 coefficient
filter, refractory period R = 2, 32‐D input; output layer with
64 columns, 16 neurons/column, 5 filter coefficient, re-
fractory period R = 2, 32‐D input.

� N9: 3 layers, additive thresholding. Input layer with 16
neurons/column, 16 columns, 32‐D Gaussian column
input, 3 coefficient filter, refractory period R = 1; second
layer with 16 neurons/column, 16 columns, 3 coefficient
filter, refractory period R = 2, 32‐D input; output layer with
64 columns, 16 neurons/column, 5 filter coefficient, re-
fractory period R = 2, 32‐D input.

� N10: 1 layer, 64 columns, 16 neurons/column, 8 coefficient
filter, 32‐D Gaussian column input, 4‐Gaussian input, re-
fractory period R = 3, additive thresholding.

� N11: Non‐column‐based SNN with 3 layers using Super-
Spike. Input layer with a filter kernel size 16 and a pool

kernel size and stride 3; second layer with a filter kernel size
8, a pool kernel size and stride 3; output layer with a filter
kernel size 4, a pool kernel size and stride 3.

It has to be noted that the different SNN and ANN
methods have their own optimal hyperparameters, making it
difficult to perform performance comparisons using the same
architectures. For instance, multiplicative thresholding SNNs
do not perform well in multilayer experiments due to stability
issues, which appear when the threshold gets close to 0.
Different architectures have been explored for all the different
systems, and the architectures used in this paper are good
examples for each approach.

Table 1 shows the performance of the tested neural net-
works. The conventional TCN outperforms the SNN
approach, although the best performing ones, that is, N6, and
especially N4, get only slightly worse results. The performance
of N6 is remarkable taking into account the small complexity
of this network in comparison to N4 or the TCN. Also,
shallow spiking neural networks perform better than the 2‐
layered N3. The performance of the best performing net-
works for each depth can be visually compared in Figure 5,
where the Detection Error Trade‐off curve is shown.

TABLE 1 Authentication performance in terms of test HTER% of the different networks

Label Algorithm HTER% for each test fold μHTER% ± σHTER%

N1 STDP 7.97 4.88 6.19 10.66 6.25 7.19 � 2.23

EBP 3.98 2.51 3.09 6.25 5.21 4.21 � 1.53

N2 STDP 9.28 5.96 8.25 10.71 11.46 9.13 � 2.17

EBP 4.16 2.13 4.12 7.27 4.17 4.37 � 1.84

N3 STDP 10.53 7.22 11.16 15.62 11.46 11.20 � 3.00

EBP 7.62 2.80 4.99 6.33 8.33 6.01 � 2.20

N4 STDP 5.62 4.12 5.15 9.38 6.25 6.10 � 1.99

EBP 2.49 1.03 2.06 3.12 2.08 2.16 � 0.76

N6 STDP 7.08 5.94 6.04 9.81 6.78 7.13 � 1.57

EBP 4.33 2.10 2.45 6.24 2.42 3.51 � 1.76

N7 STDP 13.31 15.86 12.50 18.21 17.98 15.57 � 2.62

EBP 3.14 2.97 3.89 9.63 7.07 5.34 � 2.91

N8 STDP 17.21 18.43 17.82 20.61 20.66 18.55 � 1.60

EBP 4.16 3.26 6.30 8.85 5.68 5.65 � 2.16

N9 STDP 18.29 13.65 14.31 21.04 18.01 17.06 � 3.06

EBP 4.86 2.58 3.21 8.73 4.10 4.70 � 2.42

N10 STDP 6.78 5.42 5.92 9.65 8.27 7.21 � 1.74

EBP 3.44 2.93 2.12 7.52 2.77 2.76 � 2.16

N11 (SuperSpike) EBP 8.35 4.54 5.57 8.33 8.85 7.13 � 1.94

1‐layer TCN EBP 2.06 1.03 2.06 3.00 1.12 1.88 � 0.76

2‐layer TCN EBP 1.19 0.79 1.03 2.08 0.84 1.19 � 0.47

3‐layer TCN EBP 1.03 1.92 1.92 2.08 1.06 1.60 � 0.46
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Regarding the comparison between multiplicative and additive
thresholding methods for SNNs, our experiments do not show
significant differences on HTER% between them. Also, both
MinMax, represented by N1‐4, and 4‐Gaussian, represented by
N5‐10, both input transformations obtain comparable results.

In both SNN and TCN experiments, we did not find better
results for the deepest networks. The gait database size is an
important factor. A bigger dataset might lead to different re-
sults with respect to depth. In the case of SNNs, 2‐layered and
3‐layered networks obtain very good results in the training set
(not shown here), but performance is worse in the test set
when compared to 1‐layered networks.

Regarding the non‐column‐based SNN system, its per-
formance lies between STDP and EBP performance of the
column‐based SNN systems proposed in this work. This is
motivated by a higher instability shown by the non‐column‐
based SNN, which makes the regularisation term more
important with respect to the discriminative gradient term
during optimization than in the column‐based case. Without
regularisation, there would be nothing avoiding the spiking rate
to arbitrarily decrease in our distance learning the objective
function and eventually produce dead neurons, thus stopping
effective learning. Although this is true for both column‐ and
non‐column‐based approaches, this effect is more outspoken
in the non‐column‐based approach.

There is another phenomenon that shows up in the results:
fold heterogeneity. Fold 4 appears to be especially difficult for

all the tested systems. Since fold division has been done
randomly, without fairly distributing important factors, such as
age and gender throughout the different folds, this may affect
the performance of a fold. Since these side factors are not
disclosed in the OU‐ISIR database, we must accept these
random nuisances.

To analyse the influence of the homoeostatic rules during
training, and its performance on test set performance, we run
experiments where these rules are switched on or off using N5
as a benchmark. This is the reason why the performance of this
network is reported in Table 2. The training error evolution
during training when no homoeostatic mechanisms are used is
compared in Figure 6 with the training error when homoeo-
static mechanisms are used for network N5 in fold 5 as a
representative example. The best performing network during
training is chosen, so the performance seems comparable
attending to the results shown in Table 2. However, it can be
seen that when no homoeostatic mechanisms are used, the
performance in the training set eventually degrades. This is due
to the increasing number of dead neurons in the SNN col-
umns, which eventually thwarts their discrimination ability.
Homoeostatic threshold boosting is a necessary mechanism in
our experiments. When comparing its training set performance
during training while also incorporating homoeostatic gradient,
there are no significant differences as can be observed in detail

F I GURE 5 DET curve for the best performing EBP‐trained SNNs
and Temporal Convolutional Networks (TCN) for each network depth

TABLE 2 N5 performance in terms of a priori HTER% (using Equal Error Rate (EER) threshold) when using the different homoeostasis strategies

Homoeostatic rule HTER% for each test fold Average ±

None 4.56 4.01 3.93 6.83 3.10 4.49 � 1.41

Homoeostatic Gradient 7.02 3.96 4.99 7.31 10.59 6.77 � 2.55

Homoeostatic Thresholding Boosting 5.18 3.43 4.83 6.69 2.53 4.53 � 1.61

Both 5.22 2.43 4.67 4.95 2.97 4.05 � 1.26

F I GURE 6 EER% in training set during training in fold 5 when no
homoeostatic rules are applied error backpropagation (EBP), and when
homoeostatic gradient (HG) or homoeostatic threshold boosting (HTB) is
used
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in Figure 7. However, using both mechanisms simultaneously
results in a better performance for the test set, as shown in
Table 1, due to the even lower number of dead neurons.

7 | CONCLUSIONS

In this work, we presented a novel column‐based SNN ar-
chitecture and derived a novel EBP approach for supervised
learning for this architecture, two different LIF neuron models
that can be alternatively employed, and two homoeostatic rules
that when applied during discriminative training in the pro-
posed SNN architectures help to ensure that all neurons keep
spiking at an optimal rate. We tested this approach on the
challenging task of authenticating persons using IMU gait
signals in an open set protocol and compared it to state‐of‐the‐
art ANNs and SNNs.

Although the results obtained by EBP on SNNs are yet
slightly behind from the ones shown by state‐of‐the‐art ANN
architectures, a clear improvement over the generative
approach STDP is demonstrated, resulting in closing the per-
formance gap with respect to state‐of‐the‐art ANNs. Also, the
neuron columns show better performance when compared to
non‐column‐based SNNs due to the higher instability of
spiking rates exhibited by the non‐column‐based case.

The low power consumption shown by SNN hardware
implementations, together with the reduced performance gap
with respect to ANNs, encourages further research on the
application of SNN for biometrics. This makes this technology
especially suitable for continuous authentication solutions,
where power consumption on the user device may be a limiting
factor, but also for a wider range of applications related to data
stream processing, which may include smart cameras, auton-
omous driving, drone autopilot and navigation, etc.

This work constitutes a first approach to biometrics using
the SNN technology. Of course, this work cannot be under-
stood as a full exploration of the possibilities that this tech-
nology brings to the biometrics community, and even less to
the signal processing and artificial intelligence communities.
However, in this work, we have shown that this technology has
great potential for data stream processing, using gait recogni-
tion as a challenging working example.

8 | FUTURE WORK

From the conclusions of this work, we can envision different
research topics that are enabled by this work. These include
testing the proposed SNN architecture in other biometric
modalities and more generally in other artificial intelligence
tasks. SNNs are stateful systems, and as such, very well suited
to process temporal information. At a first glance, the tech-
niques proposed in this paper can be immediately applied to
multidimensional signals (understood as temporal streams),
and given the generality of the EBP learning technique, the
biometric's metric learning objective function is only one of
the many possibilities, but the proposed framework and the
EBP technique are not limited to this specific use case.

Furthermore, the synaptic input structure can be further
generalised in future works to be able to process 2D multi-
channel streams (one case can be video signals). Other research
lines could also be devoted to explore new neuron models,
where, for instance, alternative membrane potential update
strategies are chosen. Last, but not least, new column‐based
architectures should be explored, and incorporating back-
propagation through time (BPTT) and recurrent architectures
should also be a goal in future works.

NOMENCLATURE
In the following figures and equations, we will use the following
symbols whose meaning is briefly explained in this section:

D Input dimensionality.
C Number of neurons in a neurons column.
xC½n� input of neurons column C at time n.
v̂Ci ½n� normalised membrane potential of neuron i in neu-

rons column C at time n.
y C½n� output (spike signals) of neuron column C at time n.
α neurons memory factor.
R refractory period.
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