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Abstract: The Internet of Things (IoT) is being deployed to provide smart solutions for buildings,
logistics, hospitals, and many more. It is growing with billions of connected devices. However, with
such tremendous growth, maintenance and support are the hidden burdens. The devices deployed
for IoT generally have a light microcontroller, low-power, low memory, and lightweight software.
The software, which includes firmware and applications, can be managed remotely via a wireless
connection. This improves flexibility, installation time, accessibility, effectiveness, and cost. The
firmware can be updated constantly to remove known bugs and improve the functionality of the
device. This work presents an approach to update firmware over-the-air (OTA) for constrained IoT
devices. We used Narrowband IoT (NB-IoT) as the wireless communication standard to communicate
between the managing server and devices. NB-IoT is one of the most promising low power wide
area (LPWA) network protocols that supports more than 50k devices within a cell using a licensed
spectrum. This work is a proof of concept demonstrating the usage of NB-IoT to update firmware
for constrained devices. We also calculated the overall power consumption and latency for different
sizes of the firmware.

Keywords: firmware update; OTA; NB-IoT

1. Introduction

Billions of IoT devices are expected to work for more than ten years operating at
very low-energy consumption considering their limited capabilities such as battery life,
processing power, and memory. It means the microcontroller, sensors, and communica-
tion need to be low-power. These devices are controlled and monitored remotely using
network connections, usually over the Internet. However, to connect these devices to the
network, traditional power-hungry Wi-Fi or mobile technology cannot be used. We can
use a low-power wide-area network (LPWAN) technology such as NB-IoT, which is a
communication standard that provides low energy consumption, reliable connection and
deep-indoor coverage for the device. There are two techniques, namely extended discontin-
uous reception (e-DRX) and power saving mode (PSM), which are applied in NB-IoT to
lower the energy consumption of the device. In [1], we already determined that an NB-IoT
device with a 5 Wh battery can operate for more than 12 years when transmitting at most
one packet per day. The maintenance of these devices can be performed by updating the
firmware periodically to upgrade features, resolve known security vulnerabilities, update
supported protocols and fix existing software bugs. We focus in particular on firmware
update mechanisms that can work on constrained NB-IoT enabled devices.

The firmware is usually stored in electrically erasable programmable read-only mem-
ory (EEPROM) or flash memory. The firmware of IoT devices has features such as working
with real-time behaviour, deterministic execution, fast boot time, closed system with fixed-
function, and fixed boot target [2]. The required activities for the firmware update can be
categorized as management, availability, notification, transfer, and security. The update
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mechanism should not affect the user’s ordinary data communication. Depending on
the devices, updating the firmware can be done manually with a Joint Test Action Group
(JTAG) connected to the device, via an On-The-Go (OTG) cable, or via a serial port. How-
ever, over-the-air (OTA) updating using a wireless connection provides flexibility, remote
accessibility, easy maintenance, and cost-effectiveness. The update process can be divided
into four steps, (a) firmware generation, (b) distribution, (c) verification of its integrity and
authenticity, and d) installation on the device [3]. We adopt a client-server model where the
server alone is responsible for sending updated firmware images, and also receiving device
data. The update notification can be pushed by the server or can be pulled by the device
(client) by periodically polling the server to check for any updates. This push or pull can be
done manually or automatically. The manual update is time-consuming and error-prone
because of the involvement of the user(s). Therefore, it is generally recommended to do it in
a fully automated manner when updating many devices. However, to automatically receive
or poll the update, the device can perform it at the end of the Tracking Area Updating
(TAU) period or needs to wake up outside its sleeping mode (PSM), which impacts its
battery life. Based on our evaluation, we can say that the proposed system works well for
various use cases in the domains of smart cities and building automation.

The major contribution of our work is the development of a remote firmware update
architecture using NB-IoT as a low-power energy consumption network and effectively
transferring the firmware images to a large number of devices by having a negligible impact
on the battery lifetime. The remainder of the paper is organized as follows. In Section 2, we
provide an overview of the related literature. Section 3 describes an overview of our system
architecture and the prototype. Section 4 presents the observation from the implemented
prototype, and we conclude our discussion in Section 5.

2. Related Work

The IoT device firmware update generally consists of the development of a manage-
ment framework, device design for supporting the remote update, and transferring the
firmware remotely. A study of the firmware update for embedded IoT systems is described
by Nikolov [4]. He showed a way of updating the management software of an embed-
ded system remotely from the cloud. Before transferring the updated image, the devices
need to be notified of its transfer. Another system design has been proposed by Chandra
et al. [5] for a lightweight mesh-based network protocol to update an interconnected device
firmware that requires low power consumption.

Smart systems use technologies such as Wi-Fi, Bluetooth, and ZigBee for software
update transfer. Texas Instruments has developed the Z-Stack protocol stack-based wireless
firmware updating technique, which can meet the basic need of ZigBee nodes [6]. A few
researchers have attempted to optimize this standard technique. Shen et al. propose
one such scheme based on tree networks to solve efficiency problems in the process of
broadcasting upgrades [7]. In 2017, Feng [8] proposed a Distributed Priority Page-request
algorithm for updating via ZigBee-based networks.

However, other communication standards for low-powered devices include LoRaWAN
and NB-IoT. LoRaWAN restricts the maximum amount of data communication per time
period, making the system slower for updating. The updates interfere with data com-
munication and the device becomes non-communicable for a long time. On the other
hand, the NB-IoT standard supports group services with the multimedia broadcast mul-
ticast service (MBMS), which can help send update notifications. The single cell-point to
multi-point (SC-PTM) framework is one of the approaches that extend MBMS to provide
group communications within a single cell [9]. More recently, it was also standardized in
NB-IoT [10].

A few works analyzed the NB-IoT firmware update theoretically. Feltrin et al. [11]
compared the performance achieved with unicast DL and SC-PTM transmission schemes.
They concluded that the data latency in an NB-IoT network is affected by the number of
UEs in the unicast case, but not with SC-PTM. Gonzalez [12] analyzes the transmission
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time for large firmware size of 1 MB for different coverage conditions of the NB-IoT
network. However, this work does not consider the power consumption and focuses
only on the theoretical analysis. Recently, Nikic et al. [13] presented a working firmware
update solution using custom-designed edge nodes, focusing on the update timings for
non-encrypted and encrypted protocols, whereas our work focuses on a prototype design
for firmware update and analyzes not only the transmission latency but also the battery
power consumption on a live NB-IoT network in Belgium.

Some works have focused on calculating the power consumption of NB-IoT modules
from different vendors on different deployed networks. Alobaidy et al. [14] performed
the experiment using Pycom FiPy as NB-IoT UE and measured its power consumption on
MAXIS, which is a mobile network operator in Malaysia. Khan et al. [15] evaluated the
power consumption of two different evaluation boards of Quectel BG96 LPWAN module
from Avnet Silica NB-IoT sensor shield and Quectel UMTS & LTE EVB Kit. They performed
their experiments in two different NB-IoT operators in Estonia. It is observed that the
power consumption varies for different operators, whereas, the Avnet board consumes less
power in all the radio states. Yeoh et al. [16] worked with NB-IoT module from Quectel
and u-blox but on virtual EPC from Huawei. It is observed that the network attach time is
much lower on the virtual EPC compared to the experiments on a deployed live network.
Michelinakis et al. [17] also used Quectel and u-blox modules and observed that the u-blox
module consumes more power compared to Quectel. The results from the experiments
from [18] also show that the UE (u-blox module) in a private network consumes less power
than the commercially deployed one. However, these works focus on evaluating the power
consumption for fixed data rate and mostly uplink data without considering the firmware
update process.

There are many platforms such as Mender [19], ARM Pelion [20], Balena [21], Par-
ticle [22], and AWS IoT-FreeRTOS [23] that offer firmware update functionality for IoT
devices. These platforms focus on providing reliable, secure and robust solutions with
features such as update failure management, rollback, reduced downtime, secure commu-
nication, authenticity and integrity. All of these platforms mainly use Wi-Fi and cellular
networks. Considering the power consumption of these technologies, they are not suitable
for low-power IoT devices deployed with a non-chargeable battery. Therefore, the platforms
use a powered-gateway device in-middle and low-power short-range communication tech-
nology such as BLE and IEEE 802.15.4 to save power at the end devices. Although we
use similar characteristics to these platforms to provide a reliable, secure and robust solu-
tion, we instead exclusively consider low-power NB-IoT as a long-range communication
technology. Therefore, our solution can be useful for devices with non-chargeable batter-
ies deployed in hard-to-reach areas, where the deployment of an additional short-range
mains-powered gateway might not be feasible. ARM Pelion also provides the NB-IoT com-
munication support by enabling differential updates, but they did not evaluate the impact
on the device battery life on performing the firmware updates. Although the concept of
conditional updates is implemented by ARM Pelion which enables the device to accept the
updates based on pre-defined conditions, such as at minimum battery level, we evaluate
the power consumption of the system for different firmware sizes.

There are a few solutions available online [24–26]. The first one [24] uses 6LoWPAN
to transfer the firmware but also needs a gateway to download it from the server. The
device memory is partitioned into two sections. The executing image resides in the first
section, and the second section is used to temporarily store the image being downloaded.
However, if an issue occurs during the firmware download such as missing segments or
bad checksum, there is no way for the failure recovery. Other solutions [25,26] consider
LoRa as a firmware transfer medium and provide a solution without having any dedicated
local gateway. However, with the limitations on the data rate and the maximum number of
messages, it can take up to 9 hours to transfer 100 kB firmware. Therefore, we aim to avoid
these bottlenecks of installing a gateway or having limitations on the number of messages
to be transmitted by proposing a reliable solution using public NB-IoT networks.
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3. System Architecture
3.1. System Overview

In this section, the system architecture is described. We define the system with end-
nodes, and the NB-IoT network is used as a communication interface between them, as
shown in Figure 1. The following end-nodes are considered:

• Sensor: It is a device connected to the NB-IoT network and senses various data such
as temperature, humidity, and GPS position. It sends the sensed data periodically to
a server via the NB-IoT network. The sensor needs to update its functionalities and
becomes a target for the wireless firmware update over NB-IoT.

• Server: It is a self-deployed server connected to the Internet or a cloud service. It is
used to maintain the database of the system and store the sensors’ identities and mea-
surements. In addition to that, the server manages firmware versions and handles the
sensors’ firmware update process. The update process can be triggered automatically
by the server application or manually by the administrator using a web interface. Be-
fore transferring the firmware update file, the server notifies all the registered sensors
about the upcoming files via NB-IoT.

Figure 1. Network architecture.

The update image can be a partial update, differential binary patching, or full firmware
image replacement at once. There could be two modes of firmware update, as below:

• Push firmware update: Whenever a new firmware version is available, the server
starts the update process.

• Pull firmware update: In this case, the sensor or the user at the sensor-side can initiate
the update process. Practically, the sensors have a dedicated button that needs to be
long pressed at bootup to start the firmware update.
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The firmware update operations should fulfill the following requirements.

• Notification about the update: The availability of a new firmware version should be
notified to all the eligible sensors, which is done by the server.

• Version control at server-side: The server should manage all the firmware versions so
that the firmware rollback is possible.

• Authenticity of update file source: The sensors should accept the firmware updates only
from authenticated servers.

• Reliability in transfer: Packet loss or file corruption can affect firmware update opera-
tions and can fail the process. Therefore, the file transfer protocol should be reliable,
which is generally controlled by the destination-feedback mechanism.

• Integrity of the firmware-image: The complete transfer of the firmware should be verified
in a way so that a corrupted file can be rejected.

• Backward compatibility: The sensors should be able to revert the firmware version to
the last running one. To support backward compatibility, the sensor needs to have a
large flash memory, which could affect the cost of its deployment.

• Hindrance to the user data communication: The firmware update files should be trans-
ferred so that they do not block the main data communication processes.

• Automated process: The complete process of updating should be automated such as the
sensors should be able to boot automatically to the new firmware; it should check the
integrity, negotiate the timing of the update, and much more.

• Secure Channel: The communication between the server and the sensor should be
secure. A secure handshake should be performed to negotiate security parameters,
and transmitted data should be encrypted. Furthermore, the firmware can be signed
for additional security.

As mentioned before, the sensor device must manage its main function, which is
reporting various sensors’ data to the server via the NB-IoT network while the firmware
update process is running. There are two approaches to performing it. The first approach
is referred to as background firmware update. The software running at the sensor handles
both the data reporting and the firmware update in parallel. The background update
approach is favourable for large firmware updates. The second approach is a foreground
firmware update, in which two different software agents or threads are separately respon-
sible for the data reporting and the firmware update. In our architecture, we used the
second approach: the two agents are the application and the bootloader. The application is
responsible for collecting data and reporting them to the server via the NB-IoT network,
whereas the bootloader is a program that handles the firmware update operations. This
way we separate responsibilities between the two agents which results in easy maintenance
of the code and less code change in the application.

Both of them are stored in the sensor flash memory. The flash memory layout is
shown in Figure 2. We defined a memory range named Mailbox, which enables data
sharing between these two agents. When the sensor application receives a firmware update
notification from the server, it stores the notification parameters in the mailbox and jumps
to the bootloader. Whenever the bootloader finds a firmware update request in the mailbox,
it starts the firmware update process. The complete procedure is explained in the next
sections. Our focus in this article is on the firmware update process rather than on data
communication.
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Figure 2. Internal and external flash memory layout.

3.2. System Prototype

In this section, we describe the prototype designed to implement the required func-
tionalities. Our aim is to show a proof of concept that NB-IoT can be used for the firmware
update of IoT devices. Therefore, a prototype is presented without considering optimiza-
tion and encryption. Our solution is modular and open to including additional features.
Figures 3 and 4 show the sensor components, which are described below:

• STM32 Nucleo: The development board STM32 Nucleo L496ZG is used to build the
prototype. It runs both the sensor application and the bootloader for data reporting
and firmware updates. It has many peripherals, and internal flash memory of one
megabyte (MB) that can host both the application and the bootloader firmware [27].

• NB-IoT module: It is the communication module used to receive the firmware update
file from the server using the NB-IoT network. It can also be used to exchange user
data between the device and the server. We have used a SARA-N210 [28] based
module as an NB-IoT device that is connected to the STM32 Nucleo board via UART
and controlled via AT commands. The operator issues SIM cards for the sensors to
access the network. Each SIM card has a unique International Mobile Equipment
Identity (IMEI) that is used to identify the devices.

• Octa Extension board: A custom board plugged in the STM32 Nucleo GPIO socket
that provides different connectors where various sensors and modules can be added.

• Flash memory: This is an extended external non-volatile memory and is used to store
sensor application data and the downloaded firmware segments when performing the
firmware update. It also hosts the mailbox to share data between the application and
the bootloader. We have used S25FL256 flash memory [29] of 32 MB. It is soldered to
the Octa Extension board and controlled via SPI from the STM32 Nucleo board.

• Sensor modules: There can be many sensor modules plugged into the Octa extension
board and controlled by the STM32 Nucleo board using SPI, I2C, or UART. These
modules are used to gather data such as GPS coordinates, temperature, and humidity.
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Figure 3. Device Setup prototype.

Figure 4. Sensor device components.

3.3. Flash Memory Layout

This section describes the storage layout of the bootloader and application entities, and
the management of the flash memories to perform the firmware update operations. The
memory layout can be visualized as shown in Figure 2. Since the STM32 Nucleo L496ZG
flash size is 1 MB, we have split it into two equal sections (512 KB) to use it for the sensor
application firmware and to load the bootloader. The locations of the entities are defined in
their linker script. The starting addresses of the bootloader and the sensor are provided to
both the programs, i.e., bootloader and application, so the CPU can jump from bootloader
to application or vice versa. It is required to have at least the bootloader running on the
sensor, which can download the application if it is not flashed. Upon booting up the sensor,
the bootloader detects the non-existence of the application and can initiate the firmware
update process.
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We chose to use the external flash to store firmware update-related data, in addition to
other usage needed by the application. The external flash is divided into three sections as
follows:

• Application usage: This section is dedicated to the sensor usage such as storing data
or future usage to implement new additional features.

• Downloaded firmware: This area is used by the bootloader to store the downloaded
firmware from the server during the firmware update process and before moving it to
the internal flash. The firmware is sent from the server in segments, so the bootloader
stores each one in this area using a buffering mechanism allowing it to be stored in
contiguous blocks.

• Mailbox: As already explained, it is used to share data between the application and
the bootloader regarding firmware update requests and application status. When a
firmware update notification is received from the server, the sensor application updates
this area that contains various fields such as application status which represents the
current state of the application as defined in Table 1, firmware length, packet number to
know the next expected segment counter, firmware checksum to validate its integrity,
and token which is used to establish a firmware update session between the bootloader
and the server. A token is generated by the server dedicated to a sensor and sent with
the firmware update notification. Furthermore, some memory areas are reserved for
future use.

Table 1. Mailbox sensor application status field.

Status Signification

OK The application firmware is updated and valid. The
CPU should now jump to the sensor application.

Firmware update request A firmware update notification is received from
the server and the bootloader should perform the
firmware update process.

Firmware downloaded New firmware is downloaded by the bootloader
from the server and not yet flashed in the inter-
nal flash memory. The bootloader should copy the
downloaded firmware into the internal flash mem-
ory.

Error The firmware is corrupted for some reason. The boot-
loader should again perform a firmware update to
recover the corrupted sensor application firmware.

3.4. Firmware Update Procedure and Application Data

This section discusses the firmware update procedure in detail. The activity diagram
is presented in Figure 5, which describes the concept of the firmware update mechanism.
We have divided the overall procedure into six steps, as explained below in which the
first four steps (S1–S4) represent firmware updates and the last two steps (S5, S6) focus on
application data transfer.
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Figure 5. Firmware update concept.

(S1) The CPU starts the execution from the bootloader address at the start of the boot
up process. It begins by initializing the system and the required modules. It loads the
mailbox data from the external flash and checks the application status field. If the status
is OK, the CPU jumps to the application address and performs the actions from step S5.
However, if the status is Firmware update request or a long press on the update button is
detected, the bootloader executes the firmware update operation and starts executing step
S2. On the other hand, if the application status field is Firmware Downloaded, which means
that the firmware file is downloaded successfully from the server and written to the external
flash but not yet written into the internal flash, the bootloader executes the instructions
starting from step S4.

(S2) The bootloader initializes the NB-IoT module and connects to the NB-IoT network.
It accesses the token that is sent from the server in the firmware update notification. This
token is stored in the mailbox associated with the IMEI of the sensor. In the current session,
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the device uses this token to establish a firmware update session from the server. In the
case of pull firmware update mode, the sensor uses the saved token from its last firmware
update session. The server checks the identity of the sensor and uses it to validate the
session request. However, for a new sensor device that would not have any token, it can
initiate the request using its IMEI number. Upon receiving the request, the server checks
its database to verify if any established previous bootstrap firmware update session exists
from the requested IMEI number. It generates a new token and confirms the firmware
update request. Then, the bootloader starts downloading the firmware from the server by
following the instructions in step S3. Otherwise, it sets the application status to Error(x)
to reset the Firmware update request. If the failure occurs while establishing the NB-IoT
connection x is 1, if it fails during receiving the new token x is set to 2, and to 3 if the server
is unable to verify the token. The server updates its database with the firmware update
operation status, to track each sensor.

(S3) The bootloader retrieves the number of firmware segments from the mailbox that
were already received from the server before it starts the reception process. The device
can check its energy level and request the server to send the firmware segments one by
one. The server responds each time with the requested segment file and its checksum. The
bootloader verifies if the checksum received matches with the calculated checksum. If the
checksum matches, the received segment is written to the Downloaded Firmware slot of the
external flash. This operation uses buffering to guarantee that segments are written in
contiguous blocks of the flash memory. If all the segments are downloaded, the bootloader
executes the instructions in step S4. If the checksum does not match, the bootloader re-
requests the same segment from the server. The mismatching of the checksum indicates
that the downloaded segment is corrupted or downloaded incompletely. The device also
maintains a number of maximum retry attempts to request the same segment to avoid
infinite requests from the bootloader. After reaching the maximum number of attempts, the
bootloader closes the firmware update session with the server. It sets the application status
to Error(4) to reset the firmware update request. The server updates its database with the
failure reason.

(S4) This step starts when all the firmware segments are downloaded, i.e., the complete
firmware image is received. The successful completeness is verified by comparing the
checksum for the complete firmware file with the received value from the server. The
bootloader writes the downloaded firmware to the internal flash memory in the application
section on successful verification. It also closes the firmware update session with success
status, sets the application status field back to OK. Otherwise, if the checksum does not
match, the bootloader closes the firmware update session with the server with the wrong
firmware reason. It sets the application status to Error(5) to reset the firmware update
request. Enhancement concerning the processing of this case is left for future work. The
server updates its database with the firmware update operation status to know which
sensors successfully updated their firmware, and which ones failed.

(S5) The application initializes the system, the sensors and the NB-IoT module, and
connects to the NB-IoT network. Then it sends an identification message to the server
containing the IMEI of the sensor, IP address of the NB-IoT module, Application software
version, and timestamp. After that, step S6 is executed.

(S6) The application starts gathering the sensors’ values periodically at the default
period and sends them to the server, which stores them in its database. When a firmware
update is triggered, the server sends a firmware update notification to the sensor containing
the size of the firmware, number of packets, checksum, and a token. In this case, the
application writes this information in the mailbox and sets the application status field to
Firmware update, then jumps to the bootloader to restart step S1.

The exchanged messages between the sensor and the server in normal operations and
during the firmware update are shown in Figure 6. This process can be divided into three
steps as described below.
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• The user powers on the sensor. Its bootloader starts the application after checking the
OK status of the application in the mailbox. The application initializes the system,
the sensors and the NB-IoT module, and connects to the NB-IoT network. It sends an
identification message to the server containing the IMEI of the sensor, the IP address
of the NB-IoT module, the application software version, and the timestamp. Later, it
starts recording the sensors’ data and sends it periodically to the server.

• The second step is enabling firmware updates. When it is enabled by the user, the
server sends a firmware update notification to the sensor containing the size of the
firmware, number of packets, checksum, and a token. As shown in Figure 7, the
application writes this information in the mailbox and sets the application status field
to the firmware update, then jumps to the bootloader.

• The final step is the bootloader operations. The bootloader initializes the system
and required modules, loads the mailbox data from the external flash and checks the
application status field. The status is firmware update request, the bootloader executes
the firmware update operation as described in S3 and S4. These steps are detailed
in Figure 8 that include firmware segments download, writing segments in external
flash memory, writing firmware in internal flash memory, and finally notifying the
successful update operation and jumping to a new application.

Figure 6. Firmware update mechanism.
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Figure 7. Firmware update notification operations.

Figure 8. Bootloader firmware update operations.

3.5. Server-Sensor Messages Format

The communication between the sensor and server is established using UDP sockets.
The server can be configured to listen on a particular UDP port. We define some specific
command formats for each message exchanged over the NB-IoT channel. They are pre-
sented in Table 2. The firmware is segmented into the maximum packet size of 1280 bytes
so that to avoid IP fragmentation.
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Table 2. NB-IoT Messages Format.

Entities Message Type Message Format

Application to server
Sensor identity Sensor#<IMEI>#<IP>#<Software

Version>#<Timestamp>

Measurement Measurement#<IMEI>#<sensors
values>#<Timestamp>

Server to application Firmware update notification FirmwareUpdate#<CRC>#<Length>#<Packets
number>#<Token>

Bootloader to server

Request Firmware update RequestFirmwareUpdate#<Token>

Get Firmware segment GetSegment#<Index>

Notify Firmware update status FirmwareUpdateStatus#<Status>

Server to bootloader
Confirm/reject Firmware update request FirmwareUpdateConfirm or

FirmwareUpdateReject#<Reason>

Send Firmware segment <Segment message
Id><Length><Index><Data><CRC>

3.6. Software Architecture

In this section, we describe the software stacks of each entity of the system. As
mentioned before, these consist of the sensor running the application and the bootloader,
and the server.

3.6.1. Sensor

The software architecture of the sensor application and bootloader running on the
STM32 Nucleo is described in Figure 9. It consists of C/C++ files using different object-
oriented classes and is divided into different layers. The following are the key software
components involved in making the sensor and its firmware update functional.

Figure 9. Application and bootloader software architecture.

• Application: The main program of the sensor application. It initializes the system, the
sensors and the NB-IoT module, and connects to the NB-IoT network. Then it starts
gathering data from the sensors and sends them periodically to the server via the
NB-IoT network.
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• Bootloader: The main program of the sensor bootloader. It initializes the system
and reads the application status in the mailbox. If the status is OK, it jumps to
the application. If not, it initializes the NB-IoT module and connects to the NB-IoT
network. Then it starts performing the firmware update operations.

• HAL: STM32 standard hardware abstraction layer assuring the portability of the
software applications between different STM32 boards.

• SARA-N210 NB-IoT driver: A C++ driver class that configures and manages the com-
munication over NB-IoT of the SARA-N210 NB-IoT module via AT commands using
the serial port. It uses the standard STM32 serial driver.

• S25FL256 flash memory driver: A C++ driver class that initializes the S25FL256 external
flash memory and manages the read and write operations via SPI. It uses the standard
STM32 SPI driver.

• Various sensors drivers: The temperature, GPS, humidity and other sensors drivers are
used to initialize the sensors and read their values.

• STM32 drivers: Standard STM32 peripherals drivers such as I2C, SPI, UART, etc...

3.6.2. Server

The software architecture of the server that is hosted on a dedicated machine or cloud
machine publicly accessible via the Internet is described in Figure 10. The configuration
and libraries required to configure the server are mentioned below.

Figure 10. Server software architecture.

• socket: The standard Python low-level networking interface library.
• mysql connector: It is used as a standardized database driver for MySQL database.
• mysql server: A database server that hosts the databases and manages all the clients’

requests.
• database: It stores sensors’ information in three tables. The first one is Sensors which

stores the IMEI, the IP address, the software version, the last firmware update status
and the timestamps of a sensor. The second one is Measurement table which stores
IMEI, power, timestamps of the measurements and the values of the different sensors.
The third one is Firmware table which contains the path of the recent firmware and an
enable field of the download.

• Application: The script that stores all the sensor’s measurements in the database and
handles firmware update operations of the sensors. It listens on UDP sockets and
parses received messages from the sensors. It puts sensors’ identities and measure-
ments, respectively, in the sensors and measurements database tables. It also triggers
the firmware update of the sensors and handles the exchange with the sensors’ boot-
loaders during the process. It runs as a daemon to be active on booting up the server.
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4. Experimental Validation
4.1. Evaluation Criteria

Experiments were conducted for different sizes of firmware, ranging from 2 to 1000 KB
which is sufficient for many IoT devices [30,31]. We use the NB-IoT network of Orange
in Belgium to evaluate our architecture design, and measure power consumption and
transmission latency. As mentioned in Section 3.4, the firmware update steps are divided
into four parts, (a) network connection setup and getting a firmware update notification,
(b) requesting a firmware update, (c) receiving firmware segments, and (d) firmware
installation and update notification.

4.1.1. Power Consumption

The power consumption of the complete setup is measured using the off-the-shelf
Nordic-Power Profiler Kit-II (PPK-II), which has a resolution of 0.1 µA [32]. We install the
application and the bootloader using USB and later power it using PPK-II with 5V, the
same as the battery power supply. The power consumption is measured for all the steps as
shown in Figure 11. As shown in Figure 11a, the first step for the NB-IoT device is to turn
on and connect to the network, which consumes the maximum time and power. Next, it
sends its identity and first sensor data. The server can decide to send the notification to
update the firmware by checking the current received version. The NB-IoT device updates
its mailbox accordingly. All these steps take around 31.01 s and consume 217.44 mW power.
After this step, the device jumps to the bootloader and therefore needs to re-establish the
network connection as shown in Figure 11b. The device receives a different IP address
on each reboot. However, now checking its mailbox, it will request the server to send the
firmware update. The firmware is sent in segments according to the configured maximum
packet size (1280 bytes). Then, the server confirms it, mentioning the number of segments.
Both these steps take a long time due to the network connectivity task and therefore also
consume a large amount of power, as shown in Table 3. Now, the next step is to receive
all the segments, check the CRC, and save them in external flash. This activity for one FW
segment consumes 44.85 mW. The last step is to check the downloaded firmware CRC,
flash it into internal memory, update the mailbox, jump to the application and start sending
the sensor data. It takes more than a minute to safely switch to the application. However,
at this time the NB-IoT radio is in an e-DRX or Idle state. In this state, it periodically does
paging and consumes an average of 9.62 mW power.

Table 3. Power consumption of device at Vop = 5 V.

State
Average Time Power Con.

Current Con. (s) (mW)
(mA)

Initialize, send sensor data
and enable FW update 43.488 31.01 217.44

Initialize and Request FW
update 38.193 34.02 190.96

Request, receive and save
one FW segment 9.044 5.18 44.85

Complete FW CRC and Flash
activities 3.134 29.01 15.67

Jump to application (Idle
state) 1.924 69.74 9.62

Tx FW update notification 10.311 4.30 51.55
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Figure 11. Power consumption of Firmware Update process.

Now, consolidating all the steps, we measure the device energy consumption as shown
in Figure 12. A smaller firmware size results in fewer segments that need to be transferred
and therefore consumes less energy. The energy consumption increases thirteenfold when
the size of the firmware increases from 2 to 1000 KB. However, it does not vary that much,
for the size up to 16 KB, which is also reflected in the battery consumption. As expected,
if the battery is small, firmware updates have a relatively large impact. Specifically, a
firmware update of 1000 KB, consumes around 11% of the total energy stored in a 100mAh
battery. However, NB-IoT devices are typically powered by batteries with a capacity of
1500 mAh or more [33,34]. It can be observed that using these battery sizes the impact of
performing a firmware update is less than 0.75%.

It is observed that NB-IoT consumes around 38 J to transfer 120 kB firmware, while
the LoRa network consumption varies between 3 J and 250 J depending on the considered
data rate [35]. Moreover, LoRa network firmware update transmissions observe packet
losses up to 10%. The NB-IoT experiments are performed by placing the device in a room
with good signal strength where the RSSI value is between −85 and −80 dBm. No packet
losses are observed.

4.1.2. Transmission Latency

The total firmware transmission latency includes the latency of all the states in Ta-
ble 3. As stated, the request, receiving, validation and saving of a segment consumes
5.18 s. However, requesting and receiving one firmware segment via the NB-IoT network
consumes only 1.34 s. The verification and saving it into flash memory consumes 6.98 µs
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and 3.12 s, respectively. The remaining time (0.71 s) is consumed by the MCU to perform
all the mentioned activities.

Figure 13 shows the overall firmware update time for various firmware sizes. It can be
observed to be linear from 178.44 s to 4337.98 s by increasing the firmware size from 2 kB to
1000 kB, whereas for a LoRa network, these update timings vary exponentially. According
to the simulations [36,37], using a class C LoRa device at DR5, the update time can vary
from 180 seconds to 9 hours by increasing the firmware size from 5 to 200 kB. It means for
smaller firmware, both the technology takes similar time. However, with the increase in
firmware size, NB-IoT takes much less time than LoRa.
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Figure 12. Bootloader firmware update operations.
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5. Discussion

The experiments performed in this work target the firmware update requirements such
as version control, integrity, error-free transmission, operability check and reduced user
interaction. However, at this moment it lacks authenticity which can be easily implemented
by using digital signatures and confidentiality, which can be introduced by encrypting the
transmitted update segments. The encryption can triple the latency of each segment [13]
and so would affect the battery life.

We use the Orange network in Belgium and Sara N210 NB-IoT module. The results
might vary for other operators, as different operators have different algorithms for channel
scheduling and link quality adaptation, and so experiences different timings for network ac-
quisition or data transfer. Moreover, different NB-IoT modules, such as Nordic nRF9160 [38]
and Quectel BC95-G [39], have slightly different amount of power consumption for dif-
ferent radio states. Therefore, this can affect the presented results about battery life but
slightly. When the device is placed such that it receives poor signal strength, the network
adapts and assigns lower Modulation Coding Scheme (MCS) values to the UE which results
in an increase in latency. The latency of each segment can increase to more than 10 s when
the device is placed where the RSSI value is around −110 dBm [40]. Moreover, devices with
poor signal strength experience more packet loss and re-transmissions can be observed.
However, our experiments tried to avoid packet re-transmissions by placing the device at a
location with high signal strength.

6. Conclusions

In this paper, we present the framework and implementation for firmware updates
on energy-constrained NB-IoT devices. Our design is modular, portable, efficient and can
support many features such as differential updates. The implementation is optimized
for segment retransmission only when any segment of the firmware update is lost or
corrupted in the transmission process (rather than retransmission of the complete firmware).
Moreover, we measure the power consumed by the NB-IoT device to perform the firmware
update. It can be observed that IoT devices powered by batteries with a capacity of
1500 mAh or more can be updated at a cost of less than 0.75% of their total energy.
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