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Abstract—This paper proposes a genetic algorithm (GA)
combined with ray tracer to generate a cell-free topology of
massive MIMO (mMIMO) for the optimal focusing performance
serving multiple users. The realistic hardware impairment, for
instance the non-ideal power amplifier, is taken into account of
the system modeling and topology optimization. To the best of our
knowledge, this is the first attempt to apply GA in optimizing
the hardware-impaired multi-user cell-free mMIMO. Although
the demonstrated numerical analysis is for indoor scenario, the
proposed approach is transferable for generic scenarios. In GA,
the base station (BS) antennas’ placement is encoded with an
adjusted binary matrix representation, which is straightforward
for the subsequent genetic operations. The explored candidates
by GA can evolve beyond the parents, where the fitness of
individuals is evaluated dynamically via a ray tracer radio
channel simulator. Compared to the traditional GA, our proposed
GA can find better solutions with a faster convergence speed.
The algorithm provides near-optimal results in experiments,
applicable to generic environment with multiple mobile users
and different signal-to-interference-plus-noise ratios.

Index Terms— Cell-free massive MIMQO, multi-user, focusing
performance, radio propagation channel, ray tracer, genetic
algorithm, antenna deployment, 5G, 6G.

I. INTRODUCTION

E ARE in the era of beyond-5G and towards-6G [1],
W[2], where the mobile communication networks with
even lower latency, higher spectral efficiency, and higher
reliability are under research and development, to satisfy the
immensely increased wireless data consumption via diverse
applications and devices. The massive multiple-input multiple-
output (mMIMO) radio system is one of the key features in
the next generation evolution. A mMIMO system is the system
with unconventionally many active antenna elements with a
total number of M that can serve K user equipment (UE)
(M > K) in the same time-frequency resources [3]. The
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ratio between M and K depends on the requirements of
system performance, the propagation environment, etc. For
sub-6 GHz, massive multi-antenna base station (BS) with
64 or 128 antennas appeared as commercial products. For
millimeter-wave (mmWave) frequencies, systems equipping
more than 128 antennas are foreseen. In perspective of
functionality, a mMIMO system can simultaneously transmit
multiple independent streams where each experiences unique
and independent propagation. Therefore, the spectral efficiency
increases as a spatial multiplexing gain. It can also trans-
mit coherent signals to antennas so that the signals add up
coherently towards the target user then the signal-to-noise
ratio (SNR) increases as a beamforming gain [4]. A mMIMO
system is a solution for multi-user (MU) scenarios exploiting
simultaneously the spatial multiplexing gain and the adaptive
beamforming gain.

One of the important properties of the mMIMO system
is the spatial resolution, depending on the aperture size,
allocated radiating elements, allocated band, signal processing,
and the BS-UE topology [5]. Typical types of topology include
the co-located, the distributed, and the cell-free [6]-[8]. For
the co-located topology, the BS array aperture is configured
with the closely spaced (either with a uniform spacing of half-
wavelength, or non-uniform spacing) antennas with specific
geometry, and there is low requirement for the backhaul
network. For the split topology, also called the distributed
array, the BS array aperture is split and distributed in separated
locations, and a cooperative backhaul network is necessary.
For the cell-free topology, also known as “radio stripes”, each
user is essentially surrounded by the BS antennas, which
differs from the traditional commercial network deployment
that each BS is surrounded by users. It requires large-scale
cooperative backhaul network. In this paper, our interest lies
in the cell-free topology for MU-mMIMO.

The effectiveness and efficiency of a MU-mMIMO sys-
tem are evaluated by its focusing performance to the active
users. Given an explicit mMIMO topology, the intrinsic chal-
lenge posing between the BS and UE is the dispersive and
directive radio propagation channel. The knowledge of the
site-specific mMIMO radio channel, namely, the multipath,
physical mechanism, delay spread, angular spread, coherent
bandwidth, coherent time, etc., is crucial in order to evaluate
the focusing performances of BS over the spread of mobile
UE. The focusing performance incorporates the radio channel
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condition with the tuning of precoding techniques, which
typically include the maximum ratio transmission (MRT),
the regularized zero forcing (ZF) and the minimum mean
squared error (MMSE) [9]. Nevertheless, the impacts of 1) the
mMIMO topology, 2) the MU effect including mobility, and 3)
the propagation environment and mechanism, on the system
focusing performance, should be understood as a whole in
practical settings including the system imperfection or hard-
ware impairment. Furthermore, these performance analysis
incorporating practical factors should be able to offer hints
for the optimal deployment. The mMIMO topology should
be optimized in a smart way given the generic MU mobility,
practical system imperfection and impairment, as well as
realistic propagation channel condition.

In this paper, we propose to use a genetic algorithm (GA)
combined with a ray tracing (RT) channel simulator to gen-
erate the optimal cell-free mMIMO topology serving MU in
mobility. To conduct a realistic investigation, we incorporate
the effect of the non-ideal hardware (HW) in the system model
and GA, which has not yet been discussed in relevant earlier
works. The 3D RT tool used in this paper can simulate various
indoor and outdoor scenarios and has been validated in various
literature [10]-[15]. We focus on the indoor scenario mainly
due to the fact that we can better demonstrate the distributions
of BS and UE antennas in a confined environment.

GA belongs to the broader class of the evolutionary
algorithms (EA) inspired by the biological evolution: it
encodes candidate solutions using chromosomes and pro-
vides a fitness function determining their qualities [16].
Over iterations, crossover and mutation are performed to
generate new chromosomes, and selection is effectuated to
preserve good chromosomes. So far, GA has been applied
in MIMO technologies particularly for: the antenna array
configuration design for MIMO BS [17] and MIMO UE [18],
the array antenna selection [19], the MIMO Orthogonal
Frequency Division Modulation (OFDM) resource alloca-
tion [20], the mmWave sparse channel estimation [21],
and the network-level stochastic multi-objective optimization
tasks [22]. GA is also used in [23] for a comparison with a
gravitational search algorithm (GSA) to achieve the selection
of the optimal transmit antennas maximizing both capacity
and energy efficiency, but the implementation details are not
given. Our earlier work [4] has proposed a GA for optimizing
the cell-free mMIMO topology in a confined room, without
considering the realistic MU mobility/dynamics nor the radio
frequency (RF) hardware impairments.

In practice, different components of a transceiver distort the
desired radio signal. The non-ideal power amplifier, the 1Q
imbalance in mixers and the phase noise are a few examples
of non-ideal effects in transceivers. The effects of non-ideal
hardware can be partially compensated using signal processing
algorithms. Nevertheless, there will always be a residual
impairment distorting the transmitted/received signal [24],
[25]. To achieve a realistic system level performance analysis,
these residual impairments should be taken into account. High
level models of hardware impairments has been widely used in
the literature for calculating capacity bounds and performance
evaluation. A common method to model hardware impairments
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is using an additive distortion term with a power proportional
to the input signal power [24], [26]. A higher power of the
distortion noise corresponds to a hardware with lower cost and
lower quality. Measurements have shown that this tractable
model provides an accurate description for the residual hard-
ware impairments in RF transceivers [25]. This model can also
be analytically motivated using a Bussgang decomposition as
shown in [27] and has been extensively used to obtain the
capacity bounds for MIMO and mMIMO systems.

Deploying a large number of access points in cell-free
mMIMO leads to a considerable hardware cost. Therefore,
it is interesting to investigate the effect of low quality (and low
cost) hardware on the achievable performance. This has moti-
vated recent research on the performance of cell-free mMIMO
in the presence of hardware impairments [28]—-[33] where the
additive distortion noise model is used. In [28], the capacity
bounds assuming maximum ratio combining/transmission are
calculated for hardware impairments and a power control algo-
rithm is proposed. The uplink capacity of cell-free mMIMO
with four types of receiver cooperation and RF impairment
is investigated in [29]. Furthermore, the effect of residual RF
impairments on cell-free mMIMO has been studied while con-
sidering channel impairments [30], limited front-haul capac-
ity [31], low resolution analogue digital conversions [32] and
secrecy performance [33]. Similar to [24], [26], [28], in this
work, the additive distortion noise is used to model the effect
of residual hardware impairment on the achievable rates while
optimizing topology using GA.

The contributions of this paper are threefolds:

e A system model incorporating non-ideal hardware is
applied for cell-free mMIMO topology optimization in
indoor scenarios. Simulation results show that the opti-
mized deployment differs with the ideal and non-ideal
hardware conditions. A genetic algorithm is proposed
to optimize the cell-free mMIMO topology. Apart from
the problem specific encoding, we introduce customized
designs (warm-start strategy, selection policy, and elitism)
to accelerate the convergence speed and to prevent the
premature convergence.

o Using a ray tracer simulator, experiments from static to
mobile UEs are performed with both ideal and non-ideal
HW. Simulations mimicking the reality show the general
applicability of the proposed algorithm and the corre-
sponding workflow. The results also show the distinct
optimization results for ideal and non-ideal hardware con-
ditions, as well as the converged focusing performance
with the increase of the ratio between the number of BS
antennas and the number of UEs.

The remainder of this paper is organized as follows.
Section II introduces the system model. Section III introduces
the customized GA for this MU-mMIMO topology optimiza-
tion problem. Section IV analyzes the numerical examples,
and Section V concludes the paper.

II. SYSTEM MODEL AND FOCUSING PERFORMANCE

A. Cell-Free mMIMO Topology for Indoor Scenarios

There are two development directions for the mobile com-
munication networks: one towards the higher mmWave or
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THz frequency bands, hence larger available bandwidth and
higher transmission data rates; the other towards the mas-
sive or even ultra mMIMO deployments for more consistent
data rates. The cell-free mMIMO topology aims at providing
an almost-uniformly good service quality for users every-
where [6] without the coverage dead zones, as well as an
extreme spatial multiplexing using the physically large array
apertures. Ideally, there is no division of cells, but just the
spread out of access points: a massive number of distributed
BS antennas. In this topology, each user is served by all
the antennas in its occupancy area of influence, so that the
user-centric clustering is formed to reinforce channel harden-
ing [8], [34]. The cell-free topology requires a lot of backhaul
signaling and massive deployment hence low-cost hardware is
favorable. The cell-free mMIMO is feasible to implement not
only outdoor but also in large indoor environments, e.g., the
warehouse, factory, hospital, shopping mall, parking lot.

B. mMIMO System Model Incorporating Non-Ideal
Hardware

Assume that the input signal, x = CN (0, p), passes through
a nonlinear memoryless function g(x). Then, the output y =
g(z) can be modeled as follows [27]:

y = Vaz +1, (1)

where o is a value 0 < a < 1 determining the portion
of the power of z which is transferred to the output with-
out distortion, while 7 is the additive distortion which is
uncorrelated with z. It has been shown that the residual
radio frequency impairments can be modelled using (1); in
this case, it is assumed that n ~ CA(0,(1 — a)p) where
p is the input power. For a wireless transceiver 1 — « is
equal to the square of the Error Vector Magnitude (EVM):
EVM= /1 — « [26], [28]. The EVM is a common measure
for evaluating the quality of transceivers, and according to the
3GPP Release 15 for BS and UE, an EVM in the range of
[0.08,0.175] is acceptable depending on the target modulation
scheme, e.g., 256-Quadrature Amplitude Modulation (QAM)
to Quadrature Phase Shift Keying (QPSK). This range of EVM
corresponds to 0.97 < o < 0.99, where a larger o means
that more expensive hardware is required. In massive MIMO
applications, « values lower than 0.99 are more interesting as
they decrease the cost of hardware [24], [28].

We use the above mentioned model for a transmitter ¢ and
receiver 7, and use oy and «, to denote the quality factors
in the transmitter and receiver, respectively. In this work
the optimization is performed considering the downlink (DL)
efficiency. Thus, for the access points (APs), the transmitter
nonlinearity o is considered, whereas for UE, the receiver
nonlinearity is of interest so «, is used for the UEs. It is
assumed that all UEs and all APs have the same quality;
therefore, the same values are considered for «,. for all UEs
and the same «; for all APs.

To derive the system model in the presence of hardware
impairments, assume that s = [s1,...,sx]7 is the desired
signal for K users. Then, s’ € CX*! upon power allocation
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is obtained as follows:

' =VPs = [ypisi,...,vprsx]", @)

where pr (k = 1,...,K) is downlink power allocated to
user k. Using a precoding matrix W € CM*K the desired
transmitted signal is derived as follows:

x = Ws/, 3)

where X = [71,...,77]T € CM*! and for each AP x,, ~
CN(0,02,) and o2, is achieved as follows (|s;|? = 1):
K
0'7277, = Z |wm,i|2pi- )
i=1
When x is passed through a non-ideal transmitter, the trans-
mitted signal is:

xrx = /ax +n', ®)

where «; is the aforementioned HW quality factor for APs
and n' = [ni,...,n%]7 is the vector of additive dis-
tortion at the transmitter of M APs. For the m!™ AP,
nh, ~ CN (0, (1 = ay)o2).

The transmitted signal x7x is received by each user with
a non-ideal receiver. Thus, the received signal per UE can be
modelled adopting (1):

Yk = Vorhpxex +np + ng, (6)

where «, is the aforementioned HW quality factor for UEs,
hy = [hea,-.-, hev] € C*M includes the channel coef-
ficients from M APs to the k" user (the k'" row of the
channel matrix H € CE>*M) and ny ~ CN(0,0?) is the
additive white Gaussian noise (AWGN) noise. n;, ~ CN
(0, (1 — ) P*X) is the additive distortion at the receiver of
the k' UE where PR¥ is the power of the received signal
(hyx7y) at the kY user. Based on (2)-(5), hyxyx can be
written as follows:

K
hyxrx = Z Varhwiy/pisi +hen', @)
i=1

where w; is the i!" column of the precoding matrix W. Since
nt, ~ CN(0, (1 — ay)o?,), PEX can be achieved as follows:

K M
P = Zatlhkwi|2pi + Z hem (1 =)oy,
=1 m=1

The expression for y;, can be further modified by substitut-
ing xpx from (5) into (6) to write:

Uk = Varadhpx + arhgn' + ), + ng. (8)

Separating the desired signal at the k" user, the following
expression can be achieved:

K
Yk — \/O[TatthkS;C + V Qg Z hkwl‘s’/t (9)

i=1,i#k
+ Varhen' + nj + ni.

The first and the second terms are the desired signal for the
k" user and the interference from other users, respectively.

(10)
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Therefore, the power of the desired signal at the k*" user
(Ps,;) and the power of the interference from other users
(Pr,1;) can be derived as follows.

Ps i = arai|hpwi|*pr, (11)
K
Pre= > oroufhew’p;, (12)
i=1,i#k

The third and the fourth terms in (10) are distortion terms
resulting from RF impairments. Replacing values of n* and 7},
(see explanations for (5) and (6)), the overall power of these
two terms, denoted by N"W, and can be derived following
the three steps below:

Step 1:
M
NI =37 i (1 = anop, + (1= a) P, (13)
m=1
Step 2:
M
NI =" arlhm P (1 = ar)or,
m=1 B
+(1—ar) Y onfhews’p;
i=1
M
(=) Y kP (L= ar)ol,, (14
m=1
Step 3:
K
NIW = (1= ap) Y oufhew;*p;
=1 "
+ ) hemP 1= ar)oZ,. (15)
m=1

Replacing 2, with its value from (4), we have:

K
NIW = (1= a,) Y onlhyew;[*p;
i=1

M K
+ Z |hk,m|2(1 - Oét) Z |wm,i|2p1l7 (16)
m=1 i=1

which finally leads to the following expression:

K
NIW =1 - ar)zat|hkwi|2pi

i=1

M K
+(1— o) Z Z | Wi i

m=1 i=1

a7

From (10), (11), (12) and (17) and considering nj power
equal to o2, the Signal to Interference and Noise Ratio (SINR)
for the k' user shown by SIN Ry, is generated by:

oo [hpwi 2 py,
K b
> arag|hpwi|?p; + NEW + o2
i=1,i#k

SINRy, =

(18)

Till now, the system model with non-ideal effect has been
completed. As was mentioned earlier in Section II.LB and in
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TABLE I

HARDWARE QUALITY FACTOR SPECIFICATION IN SYSTEM
MODEL UNDER DIFFERENT CONDITIONS

Comments
Both ideal

Index oy o

0.97
0.95
1 0.95

UE & AP worst case of 3gpp

Only one side is non-ideal

UE is ideal and different AP quality

0.97
09 | 097
0.8 | 097

UE 3GPP wors case & different AP quality

S| 0| 0| | O | B L | =
=
o
—_

the Introduction, to model different hardware quality in the
transmitter (AP) and the receiver (UE), we can change the
values of «; and «,., respectively. TABLE I shows a few
examples of possible combinations of «; and «,.. The quality
factors are related to the actual hardware performance based on
EVM. EVM for transceivers can include distortions resulting
from a variety of sources such as power amplifier non-linearity
and IQ imbalance. EVM is usually a figure of the residual
distortion after the application of compensation methods (e.g.,
equalization, digital pre-distortion and so on [26]. The allow-
able range of EVM is determined by communication standards
and the permitted value also depends on the used modulation
schemes. The manufacturers should comply with these EVM
values and ensure that their designed transceivers match the
standard. Although the minimum value allowed by the current
standard is 0.97 [35], it can be helpful to investigate how
the focusing performance change for further decrease of the
quality factors (lower quality hardware). This provides insights
and measures for future technologies. That’s why in [31], [32],
[36] the « values are set to lower than 0.97 (which is the
minimum value required for a QPSK system in [35]). For
different parts of a system, e.g., power amplifier and receiver,
the measurement setup for EVM may differ. In this work,
we stick to a general use of EVM as a measure for hardware
quality and hardware impairment model, simular to what was
presented in [24]. We give examples of different values in
TABLE I and how they can be interpreted. To demonstrate the
performance of the optimization algorithm in a more realistic
scenario, its performance for a pair of hardware non-ideality
coefficients is presented. More information on EVM, and how
it can be characterized for a system and examples of using it to
demonstrate hardware quality can be found in [35], [37]-[41].

For a meaningful realistic applications and for the complete-
ness of simulation results, the non-ideal scenario (both UE and
AP have the worst hardware quality allowed by 3GPP that
oy = a, = 0.97) is investigated in Section IV and compared
with the ideal scenario.

C. Ideal mMIMO System Model

The ideal mMIMO system model without considering the
non-ideal HW follows our earlier work in [4] - a specific case
for condition No. 1 in Table I. The results will be demonstrated
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Fig. 1. Flowchart of the CGA.

in Section IV for comparison with the system performance
with HW impairment.

III. GENETIC ALGORITHM CUSTOMIZED FOR
MU-MMIMO ToPOLOGY OPTIMIZATION

In this paper, optimizing the cell-free mMIMO topology is
considered as a combinatorial optimization problem, whose
objective is to find combinations of BS antenna locations
providing near-optimal focusing performances for a number
of mobile UEs. Since BSs can be deployed anywhere in a
confined environment, the design space of the problem is enor-
mous and not tractable with exhaustive search. Because the
focusing performance is correlated with setups of UE and BS
(also the radio propagation environment), the objective space
of the problem is unknown before planning. The GA is suitable
for such fuzzy optimization problem because of its potential to
optimize over iterations. With elitism selection [42], GA has
an important characteristic that the final individuals in each
generation would have equal or better fitness values than the
starting individuals. Different from exact algorithms like math-
ematical programming, the proposed solution by GA is sub-
optimal (near-optimal) because the search progress could trap
in local optima (the premature convergence). The advantage
of applying GA is its ability to quickly find an acceptable
solution. There are also some designs trying to prevent the
premature convergence, including the warm-start [43] strategy
to improve the quality or to increase the diversity of the initial
population. Although the design of GA is problem-specific,
in this section we present a customizable GA (CGA) with
general applicability.

A. Encoding and the Fitness Function

In cell-free mMIMO, each UE is surrounded by enough BS
antennas to ensure the uniformly good service quality. The
focusing performance of a BS-UE typology is evaluated using
the sum-rate capacity (an upper bound), i.e., substituting the
SINR equation (18) for the systems with HW impairment, or,
the SINR equation (7) in [4] for the ideal systems, to the
capacity equation (9) in [4]. In the CGA, BS-UE typologies
are encoded into mutable individuals (chromosomes) with
customized representations of their locations.

Examples of encoding for different simulation scenarios
are provided in Section IV. Multi-dimensional binary matrices
are used to represent BS locations in the 3D coordinate
system modeling the confined environment [4]. An applicable
encoding should be time-efficient and easy to decode. With

such encoding, a BS-UE topology can easily convert into
an individual in the CGA and vice versa. The fitness of
an individual is defined as the focusing performance of the
encoded BS-UE topology derived using the RT simulator.

B. Procedures of CGA

The flowchart of the CGA is shown in Fig. 1. Compared
with the traditional genetic algorithm (TGA), the CGA has
significant differences in the procedures. In this paper we
introduce a replacement strategy as the warm-start strategy in
its initialization stage: first the randomly generated individuals
are ranked by their fitness values, afterwards the last Q% indi-
viduals are replaced by the best individual. @) is a customizable
parameter since there is a threshold of individual variety and
superiority. During the selection procedure, two individuals
are further selected as parents for the following reproduction
operations using the roulette-wheel selection [44]. The imple-
mentation details are given with the numerical experiments in
Section IV.A.

In the reproduction stage, the crossover and mutation
operations are carried out to generate offsprings. During
the experiments in Section IV, single-point crossover [45] is
applied to the parents with the binary matrix encoding by
swapping parts of their genes, followed by a bit-flip muta-
tion [46] on a random position. Figure 2 shows how parents
are crossed over and mutated to generate new offsprings: the
crossover gene is at index 3, therefore each of the offsprings
will be a combination of the parents. The mutation positions
of the offsprings are marked using color blue.

In the TGA without the elitism, the reproduction operations
update the current generation by replacing the parent individ-
uals with offspring individuals. The proposed CGA includes
an elitism stage where the microbial elitism [47] strategy is
used: the elitists are chosen between the (two selected) parents
and the (two generated) offsprings, and preserved for the next
generation.

Compared to the TGA, the CGA has the following benefits:
the elitism stage prevents the destruction of the most fitting
individuals during the evolution [48]. It also reduces the
number of individuals chosen for the reproduction opera-
tions, since in the TGA many parent individuals are required
to increase the possibility for generating better offsprings.
The warm-start strategy also brings more high-quality indi-
viduals at the beginning of each iteration. These strate-
gies can add selective pressure and improve convergence
speed [49].
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Parent m 1 1 1 1 1 1 1 1 1

Parent d 0 0 0 0 0 0 0 0 0

Offspring 1 1 1 1 0 0 0 1 0 0

Offspring 2 0 0 0 1 1 1 1 0 1

Fig. 2. Example of the reproduction operations.

Using the Bachmann-Landau notation (Big O notation),
the time complexity of the CGA in the worst case can be
calculated using the equation: O(CGA) = P x O(fitness) +
I % (O(Initialization) + O(Reproduction) + O(Elitism)),
where P is the population size, I is the number of iterations
(generations). The complexity of different stages depends
on the implementations. In the experiments we use the
quicksort [50] for the stages where a sorting algorithm is
required, therefore O(Initialization) is O(P?). The repro-
duction (crossover and mutation) are triggered by the crossover
rate pc and mutation rate pm. Their complexity depends
on the encoding since the operations are performed on the
chromosomes. In the elitism stage, the fitness of at most two
new offspring need to be calculated. Using a RT simulator,
time consumption for the fitness of an individual (O( fitness))
is comparatively much larger than other operations. Hence,

O(CGA) is deduced to O( fitness).

IV. NUMERICAL EXPERIMENTS

In this section, the applicability and superiority of our
proposed method over traditional approaches are demonstrated
by numerical simulations and analysis in a confined environ-
ment (indoor but propagation condition transferable to outdoor
scenarios), where the experimental results under different
scenarios are compared. The following environment setups
are applied for all scenarios: a confined room is represented
using a cube with length, width and height as 5 meters. The
frequency-dependent dielectric and conductivity properties of
walls, ceiling and dryground follow the ITU-R recommenda-
tions [51]. There is no scattering from dryground, which is
also impenetrable. The walls and ceiling are reflective and
lossy bricks.

In the mMIMO system, the target frequency is 5.9 GHz
with 200 MHz bandwidth. The base station antennas are
half-wavelength vertical dipoles and each user is one single
vertical dipole antenna as well. The line-of-sight (LOS) and the
first order specular reflections (SRs) are captured in RT for the
radio channel between base station antennas and user antennas.
In all experiments multiple users (of number K') are randomly
situated on the horizontal plane of z = 1.6 meters mimicking
the human height. The BSs are assumed to be deployed on
walls, whose number (M in total) and locations are decided by
different approaches depicted in this section. To evaluate the
focusing performance, we assume a constant SNR of 30 dB.
We also use MMSE and equal power allocation, since the
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Fig. 3.  Workflow of different experiments.
optimum power allocation and optimal precoding techniques
are not the focus here in our paper.

Parameter settings of our proposed method are case-specific
and will be presented with the numerical experiments in
the next subsections. These settings ensure our methods to
find an acceptable sub-optimal solution. All experiments are
performed using Matlab R2017b on a normal PC with the
Intel i7-7700 CPU. Workflows for different experiments are
summarized in Fig. 3 to evaluate our proposed algorithm with
different scenarios: the static UEs scenario follows the green
routine; the mobile UEs scenario follows the blue routine (with
shared steps in the static UEs scenario); the reality scenario
follows the red routine.

A. Simulation With Static UEs

In the basic scenario shown in Fig. 4a, a snapshot of K =5
UEs is denoted as wes ¢ (Note that uex ; denotes the ith
snapshot of K UE locations) and their positions stay fixed
during simulation. There are M = 20 BSs to deploy on the
walls. It is worth mentioning that the M value is set small
due to the rather simple environment and UE settings. As an
empirical choice and easy to implement as a start, the baseline
deployment is denoted as bsag_o (Note that bsys_; denotes jth
topology of M BSs locations), where on each wall there are
5 BSs evenly located in the center as a row.

To propose a candidate topology for ues o using the CGA,
we keep part of the symmetrical assumption that the BSs
are equally distributed on four walls (each wall has 5 BSs
in this case) but their locations are random. Therefore, the
encoding in CGA (and decoding is vise versa) is implemented
as follows: each BS antenna location in the 3D Cartesian
coordinate is represented using a binary matrix L, having
2 dimensions (2 rows) representing a 2D location on a plane
(wall). The locating precision is determined by the length of
L (number of columns). As an example, in this experiment
L has 2 rows and 6 columns, with the locating precision of
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(c¢) Locations of ues_o and bs20_1r-

Fig. 4.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 10, OCTOBER 2022

(d) Locations of ues_1 and bsz2g_s.

Locations of UEs and BSs in experiments with static UEs: (a) a static UE snapshot ues ¢ and the baseline deployment bs2g o; (b) a static UE

snapshot ues o and the candidate deployment bs2g 1 found by the CGA with the ideal scenario; (c¢) a static UE snapshot ues o and the candidate deployment
bs20_1n found by the CGA with the non-ideal scenario; (d) a different static UE snapshot ues 1 and the candidate deployment bs2g 2 found by the CGA

with the ideal scenario.

5/(2%) = 0.15625 meters. The vector [000000] indicates that
the BS is 0.15625 meters to the boundary. As an example,
the location of the BS antenna in the center of wall y =0 is
encoded with L[1] = [011111] and L[2] = [011111] indicating
the relevant x-axis and z-axis values. A population is an array
containing P instances of L, whose orders map the walls (e.g.
P[1..5] on wall z =0, P[6..10] on wall y = 0).

We compare the CGA and a traditional GA (TGA from [52])
with the same input wes o and the same parameter settings.
In both algorithms, the population size P is 4; the crossover
rate pc is 0.85; the mutation rate pm is 0.15; the maximal
iteration number I is 10. The @) for the replacement (warm-
start) strategy in the initialization of the CGA is set to 50. For
normal usage and for comparability with a standard GA, the
50% rate is recommended [47]. A common issue of the TGAs
is that the algorithms are often trapped in the local optima,
since the population tend to be too homogeneous during the
evolution. To avoid such premature convergence, a fluctuating
selection policy adapted from the roulette wheel selection is
applied in the CGA: the probability p; of an individual ¢ to
be selected in iteration £ is defined using (19):

fi

Pi= =N

; 19)
Z;‘V:I fi

where f; = |minjerF; + (maxjerF; — minjerF;) - % —

Fi|+e€, R is the set of all individuals in the current population,
F; is the fitness of individual j (focusing performance of
the topology represented by j), and e is a low positive
value set as 0.01 to ensure a no-zero probability. With such
selection policy, in the early generations (when k is small) the
individuals with larger fitness values have a lower probability
to be selected as parents than they should, and the individuals
with lower fitness values have an increased probability to be
chosen. In the final generations (when k is close to I), the indi-
viduals with higher fitness values have an increased selection
probability to ensure the convergence of the algorithm.

The search trend of the two algorithms (distinguished by
solid and hollow shapes) is provided in Fig. 5: Fig. 5a is with
ideal UEs and BSs, while Fig. 5b is with non-ideal UEs and
BSs (both «, and «ay are the worst case of the 3GPP Release
as 0.97). In these plots, the mean (marked with blue squares)
and best (marked with green circles) fitness of individuals in
each iteration are tracked.

For both ideal and non-ideal scenarios, in the first gen-
eration, the CGA has the better initial population than the
TGA (having better mean and best fitness values) owing to
the enabled warm-start strategy. In the following generations,
the mean curves of both algorithms are rising since parents
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TABLE II

VALIDATION OF BS TYPOLOGIES PROPOSED BY THE CGA WITH ues g AS
INPUT UNDER THE IDEAL AND NON-IDEAL SCENARIO

BS Scenario Fitness (bit/s/Hz)
b Ideal 456
5201 Non-Ideal  2.04
bs Ideal 278
20_In Non-Ideal 3.32

are replaced by better offspring over iterations. The best
individual in the final iteration is proposed by each algorithm
as the solution to the BS-UE topology problem. For the ideal
scenario, the CGA can find an individual (the decoded BS
deployment is denoted as bsgg 1 and visualized in Fig. 4b)
with better fitness than the best individual found by TGA
after 10 iterations, also requiring fewer iterations to converge
(the mean and best curves of CGA remain unchanged since
iteration 6 in Fig. 5a). The convergence of TGA is uncertain
at iteration 10 since the mean curve is still approaching the
best curve. For the non-ideal scenario where the fitness is
generally lower than the ideal scenario, similar search trends
are detected: the CGA has a faster convergence speed than the
TGA and proposes a candidate with better fitness.

The proposed BS deployment by the CGA with the
non-ideal scenario is denoted as bssg 1, and visualized in
Fig. 4c, where the positions of BSs differ significantly from
those of bsyp 1. Summarized in Table II, the bold scenario
names indicate where the CGA is used to generate the
corresponding BS deployment, their performances are further
evaluated with the ideal and non-ideal environment. The
performance of the BS deployment bsyy ; (2.04 bit/s/Hz)
can not outperform that of bssg 1, (3.32 bit/s/Hz) under the
non-ideal scenario; the performance of the BS deployment
bsoo_1n (2.78 bit/s/Hz) can not outperform that of bsag 1
(4.56 bit/s/Hz) under the ideal scenario as well. Such phe-
nomenon suggests that the CGA can find the best BS deploy-
ment for both scenarios, and such candidate deployment for
one scenario is not transferable to the other. Therefore, the
non-ideal scenario should be considered separately from the
ideal scenario, and all the following experiments perform
the comparisons between the two scenarios.

The sum-rate capacities of BS typologies in different exper-
iments are summarized in Table III. In the previous basic
simulation scenario, the deployment found by the CGA bsag 1
has better performance (4.56 versus 1.99 bit/s/Hz) than the
baseline deployment bsyg . The search trend plots (in Fig. 5)
also indicate that the CGA can find a converged and optimized
solution with our parameter settings for both ideal and non-
ideal scenarios. Such solution bsgy 1 for the specific UE
snapshot ues g is further tested with 5 random UE snapshots,
noted as ues_[3.¢). The BS deployment bsag 1 can provide
better performances than the baseline deployment bso o for
all testing UE snapshots, shown in Fig. 6. This phenomenon
indicates that an optimized BS deployment found by the CGA
for one UE snapshot can provide relatively good performances
for others. It also implies that there might be an optimized BS
deployment for all UE snapshots.
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Fig. 5. Search trend of the customized genetic algorithm (CGA) and
the traditional genetic algorithm (TGA) for (a) the ideal and (b) non-ideal
scenario.
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Fig. 6. Performances of the baseline deployment bs2p o and the candidate
deployment bs2g 1 proposed by the CGA with 5 random UE snapshots for
both the ideal and non-ideal scenario.

The positions of UEs and BSs are further investigated: in
Fig. 4b, there is no obvious correlation between UEs and BSs
locations in the room. On each wall, the BSs locations are
neither related to each other. By applying the CGA with a
static UE snapshot (e.g. ues o), an optimized BS deployment
(e.g. bsyp 1) is found for this snapshot, but might not be the
best for other snapshots. As an example, for the snapshot
ues_o the optimized BS deployment found by the CGA is
bsao_2. Therefore, the simulation scenario with static UEs is
not sufficient for the generic BS topology problem “K mobile
UEs with M BSs”.
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TABLE III
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PERFORMANCES OF BS TYPOLOGIES IN DIFFERENT EXPERIMENTS

Scenario UEs BSs Fitness (bit/s/Hz)
Static ues_o bs20_0 1.99
Static ues_o b820_1 4.56

Ideal Static ues_1 b820_2 4.42
Mobile m_ues_s bs20_3 2.73 (avg)
Mobile m_ues_10  bs20_4 3.12 (avg)
Extra-mobile  em_ues 5  bsag 5 2.52 (avg)
Extra-mobile em_ues_5  bsao_6n  2.64 (avg)

Non-ideal — Extra-mobile em_ues_5 bs2o_7n  2.50 (avg)
Extra-mobile em_ues 5  bszg_sn  2.40 (avg)

B. Hypothesis Test With Multiple Static UEs

The previous section shows that the CGA can be applied

N=20 N=10 N=5

0.98 : ;

0.95 *,‘ ‘; ——-Samples for bSZOJ

0.90 i /| --Samples forbs,, ,
>075) . g [ '
= // / / f / //
go%1 ) [ [
& 0.25|/ / /] r

010" : {o

0.05 I

0.02¢ j

253354 25335 253354
Fitness (b|t/57Hz)

Fig. 7. Normal probability plots for (N = 5, N = 10, and N = 20)
samples in the t-tests: the solid line connects the first and third quartiles, the
dashed line extends the solid line to the ends.

to a static UE snapshot (ueg ;) to obtain its optimized BS
antenna deployment (bsys_j), with both ideal and non-ideal
scenarios. The corresponding performance (fitness) is denoted
as RT(uek ;,bspr ;). Since the mobile UEs scenario can
be simulated with multiple static UEs snapshots (e.g. the
Monte Carlo simulation, which is too time-consuming to
apply in this case), hypothesis tests can be performed to
compare the performances of BS deployments with mobile
UEs. As an example, two BS topology deployments (denoted
as bs; and bsy) are achieved by the CGA with two static
UE snapshots, their performances can further be verified
with multiple snapshots imitating the mobile UE scenario,
by conducting a two-sample t-test shown in Equation (20). The
it" (i € {1,2}) population mean, sample size, sample mean,
and sample standard deviation are denoted using pu;, N;, T;,
and s;. In such hypothesis test Ny = Ny = N, indicating
bsy and bsy are verified using the same number of snapshots:

Ho : 1 > po

Ha:MI < 2
T1 — T2
TN,

With a reasonable sample size N [53], by comparing the
t — statistics and by considering the p — values, we can
accept or reject the null hypothesis Hy that bs; can pro-
vide better performances for mobile UEs than bss. As a
demonstration, we evaluate such hypothesis test on bsag 1 and
bsao_2, generated by CGA with ues ¢ and ues ;1 (ues_; and
bsog o are visualized in Fig. 4d). From Table III, although
RT (ues o,bsa 1) is better (4.56 versus 4.42 bit/s/Hz) than
RT (ues 1,bsag 2), with different static UE snapshots, bsag 1
might not have better performance than bsgg 2 with mobile
UEs.

In this experiment, different two-sample t-tests with dif-
ferent sample sizes (/V) are conducted, for the simplification
we only consider the ideal scenario. The Lilliefors test [54]
is first applied to check the normality of all samples, as a
prerequisite to a valid t-test. The normal probability plot [55] is
used to visualize the chosen samples, plotting each data point
and reference lines representing the theoretical normal distri-
bution. In Fig. 7 the data points appear along the reference

TABLE IV

T-TEST RESULTS FOR bs2p_1 AND bsag_2 PERFORMANCES WITH
(N =5, N =10, AND N = 20) STATIC UE SNAPSHOTS
(SAMPLES) SIMULATING MOBILE UES

Class Attributes N=5 N =10 N =20
bs T 2.73 2.60 2.45
20-1 s1 0.27 0.40 0.28
bs Ty 3.59 3.22 3.58
202 so 0.68 0.51 0.82
Statistics —2.62 —3.00 —5.80
p—wvalue 3.06x 1072 7.60x 1073 1.08 x 106

lines, showing that the chosen samples approximate normal
distributions. In Table IV the t-test results are summarized.
With an increasing sample size /N, all tests have negative
t — statistics and significant p — value (< 0.05), indicating
that the null hypotheses are rejected. Therefore, bsog 1 has
worse performance than bsgg o with mobile UEs.

With such verification method, a straightforward work-
flow for the generic BS deployment problem with mobile
UEs is proposed as follows: start with several random static
UE snapshots and generate the corresponding candidate BS
deployments using the CGA. Further the performances of these
BS deployments are verified with NV static UE snapshots using
hypothesis tests. The deployment having the best performance
with mobile UEs is chosen as the final solution. This workflow
has the following drawbacks: there are concerns that the
starting UE snapshots are not adequately and randomly chosen,
resulting in the neglect of candidate BS deployments for the
further verification. Also, this method is time-intensive since it
requires multiple executions of the CGA to generate candidate
BS deployments, and multiple calls for the RT simulator to
conduct the verification.

C. Simulation With Mobile UEs

Considering that random UE snapshots are chosen as inputs
of the CGA and also samples for hypothesis tests, we can
simplify the above mentioned workflow by integrating mobile
UEs and verification processes into the CGA. However, the
hypothesis tests were too complicated to be conducted among

Authorized licensed use limited to: University of Gent. Downloaded on December 01,2022 at 10:29:28 UTC from IEEE Xplore. Restrictions apply.



SHEN et al.: OPTIMIZING FOCUSING PERFORMANCE OF NON-IDEAL CELL-FREE mMIMO USING GE

the individuals for the rank of fitness in each iteration. Instead,
we can barely compare the average performance of the indi-
viduals with mobile UEs according to the previous experiment.
Suppose the CGA is started with N static UE snapshots
(ueg _;), the average performance of a BS deployment (bsys_;)
with these snapshots can be calculated using Equation (21):
Zi\;l RT(ueK_i, bSM_])

avg; = .
J n

21

In the initialization stage, the algorithm (denoted as
M_CGA) generates N snapshots of K static UEs (denoted
as m_uey n in Table III). Over iterations, the fitness of an
individual (encoding a BS deployment) is set as its average
performance with such group of static UE snapshots. Table III
provides the results of this method with N =5 and N = 10
(Note that K = 5 in all experiments), where bsag 4 has better
average performance (3.12 versus 2.73 bit/s/Hz) than bsoq 3
with mobile UEs. Compared to the previous workflow, this
integration method requires one execution of the M_CGA,
but still multiple calls for the RT simulator. Each individual
is verified with the same N static UE snapshots, requiring a
relatively large sample size N for a convincing result. Also,
the verification process of the preserved individual from the
previous iteration is redundant in the subsequent iteration.

To avoid the aforementioned drawback, the algorithm
(denoted as EM_CGA) applies another “extra-mobile” opti-
mization strategy to generate N different snapshots of static
UEs (denoted as em_uex n in Table III) in each iteration
and rank the individuals by their average performances with
such group of mobile UEs. With this strategy the preserved
individuals are verified with different samples over iterations.
Table III shows the performance of bsgy 5 by applying this
strategy with N = 5.

For the mobile user scenarios in Table III, although the
performances of bsag 3, bsag 4, and bsag 5 are different, their
locations are close to each other, visualized in Fig. 8a. On each
wall the BSs positions of the three deployments are gathered
into clusters varying over space. The heatmap plot in Fig. 8b,
where each wall is equally divided into blocks of size 1 x 1 m,
counts the number of BS in each block and provides an
intuitive view of the clusters. Fig. 8c is the heatmap of UEs on
the user plane (z = 1.6). In total there are 65 UE scenarios,
5 for b820_3 (m_ue5_5), 10 for b820_4 (m_u610_5), and 50 for
bs20_5 (em_ues_s). Although there are fewer UEs in blocks
against the walls because the UEs have a minimal separation
distance from wall, in Fig. 8c all UEs are almost-equally
distributed on the horizontal plane.

Note that the previous experiments are with the ideal
scenario, we further verify the applicability of the pro-
posed algorithm with the non-ideal scenario (o = 0.97,
ar = 0.97) with three “extra-mobile” experimental cases.
Summarized in Table III, the corresponding candidate deploy-
ments bs2o_6n, bS20_7n, and bsag s, are proposed by EM_CGA
with their average performances. For these three deployments,
the heatmaps of BSs on each wall are presented in Fig. 9a.
Compared to the heatmaps with the ideal scenario in Fig. 8b,
the BSs clusters are more obvious. The heatmap of UEs (in
total there are 150 UE scenarios verified during iterations to
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(a) Locations of bs20_s, bs20_4, and bszg_s with mobile UEs.
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(c) Heatmap of UEs on the user plane for bs2g_3, bs20_4, and bsag_s.

Fig. 8. Locations of bs20_3 found by the CGA with m_ues_5, bs20_4 found
by the M_CGA with m_ues 10, and bs20_5 found by the EM_CGA with
em_ues_s with corresponding heatmaps of BSs on the walls and UEs on the
user plane (with the ideal scenario).

produce the three deployments) on the user plane are provided
in Fig. 9b, showing that they are almost equally distributed.
In summary, the experiments in this section support the
expectation that there might be an optimized M BS deploy-
ment for X mobile UEs in the confined environment, and
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Fig. 9. Heatmap of BSs on each wall and UEs on the user plane for bs20 6n,,
bs20_7n, and bs2o_gy. Each BS deployment is proposed by EM_CGA with
em_ues 5 (with the non-ideal scenario).

such deployment is not related to the UE locations. Also, the
proposed algorithm (M_CGA and EM_CGA belong to the big
class of CGA) is able to find that topology in both ideal and
non-ideal scenarios.

D. Simulation Mimicking the Reality

The previous experiments do not ideally approach the real
BS deployment problem: although the number of UEs K can
be estimated before an event, the required number of BSs M
for those UEs is unknown. Neither there is evidence that the
equally distributed BS on the walls could improve the system
performance. Therefore, we do not hold such symmetrical
assumption in the experiments mimicking the reality.

The encoding of the CGA is adapted for this experiment.
The length of the binary matrix L is expanded with 2 bits
representing the relative position on the walls (e.g. [00] for
wall z = 0, [01] for wall y = 0). A population is still an
array containing P instances of L but the fixed order mapping
to walls is not used. The crossover and mutation operations
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Fig. 11.  Search trend of EM_CGA with BS/UE ratio as 4.2 (K = 5,
M = 21).

can change the encoded location of a BS to different walls.
In realistic applications, the ratio of the BS numbers to the UE
numbers (BS/UE ratio) is more meaningful than the absolute
values for the scalability. The number of BSs M is changed
to a range [15,25], while the number of UEs K and other
parameter settings remain same. Therefore the BS/UE ratio
is in the range [3,5]. The EM_CGA is applied to tackle this
problem with both the ideal and the non-ideal scenarios.

Figure 10 summarizes the focusing performances of differ-
ent BSs deployments with variant BS/UE ratios. The best aver-
age focusing performance for K = 5 mobile UEs is achieved
with the BS/UE ratio of 4.2 (M = 21) for both scenarios
(3.12 bit/s/Hz for the ideal scenario and 3.16 bit/s/Hz for
the non-ideal scenario). Since the data points are near-optimal
values found by the algorithm, small fluctuating behavior is
reasonable and we focus on the trend. The linear regression
fit (in a least-squares sense) curves are also provided in
Figure 10: the focusing performance is enhancing when the
BS/UE ratio is increasing since each UE is served with more
BSs. However, in both scenarios if the BS/UE ratio is relatively
large (larger than 4.2), the focusing performance can not
continue to improve when more BSs are deployed.

The search trends of the EM_CGA for the BS/UE ratio as
4.2 (k = 5, M = 21) under both scenarios are presented in
Fig. 11. Over iterations the algorithm finds candidates with
better average performance (with an increasing mean curve).

Authorized licensed use limited to: University of Gent. Downloaded on December 01,2022 at 10:29:28 UTC from IEEE Xplore. Restrictions apply.



SHEN et al.: OPTIMIZING FOCUSING PERFORMANCE OF NON-IDEAL CELL-FREE mMIMO USING GE

The candidate with the best average performance in the final
generation is proposed as the solution. For the ideal scenario,
the algorithm stays converged since iteration 2. For the non-
ideal scenario, the algorithm starts from candidates with low
average performances but finally reaches candidates with good
performances.

In summary, the simulations in this section demonstrate
the general applicability of our proposed algorithm for an
optimized solution to the BS deployment problem in both ideal
and non-ideal scenarios.

V. CONCLUSION

This paper proposed a customized genetic algorithm com-
bined with ray tracer channel simulator for optimizing the
cell-free mMIMO topology for multiple users. The novelty of
the algorithm is the special design of the warm-start strategy,
the selection policy, and the elitism stage, which help to find
better candidate solutions with a faster convergence speed in
the simulations. The mMIMO system model incorporates the
effect of hardware impairment in practice, and the non-ideal
BSs/UEs are formulated for the focusing performance.

Simulation experiments with both ideal and non-ideal hard-
wares have been performed for indoor scenarios of a fixed
number of BSs serving multiple static and mobile UEs, as well
as an unknown number of BSs mimicking real topology
optimization problems. The simulation results indicate that
there exists an optimized placement of BSs not correlated
with the UEs positions in the confined indoor environment.
In the near-optimal BS deployment solution proposed by our
algorithm, on each wall of the room the BSs are not evenly dis-
tributed, which is very interesting. It is also observed that the
best ratio between the number of BSs and the number of UEs
is 4.2, above which the focusing performance does not increase
any more. Moreover, the deployment result for the non-ideal
hardware differs from that of the ideal hardware, indicating
that we have to take into account the hardware/device quality
for the topology optimization in practice.

As an exciting future development of this work, we will
investigate the premature convergence issue in the applications
of GA turning near-optimal to optimal solutions for cell-free
mMIMO. We will also investigate the more general applicable
approach requiring as fewer problem specific characteristics as
possible.
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