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Abstract— This paper proposes a genetic algorithm (GA)1

combined with ray tracer to generate a cell-free topology of2

massive MIMO (mMIMO) for the optimal focusing performance3

serving multiple users. The realistic hardware impairment, for4

instance the non-ideal power amplifier, is taken into account of5

the system modeling and topology optimization. To the best of our6

knowledge, this is the first attempt to apply GA in optimizing7

the hardware-impaired multi-user cell-free mMIMO. Although8

the demonstrated numerical analysis is for indoor scenario, the9

proposed approach is transferable for generic scenarios. In GA,10

the base station (BS) antennas’ placement is encoded with an11

adjusted binary matrix representation, which is straightforward12

for the subsequent genetic operations. The explored candidates13

by GA can evolve beyond the parents, where the fitness of14

individuals is evaluated dynamically via a ray tracer radio15

channel simulator. Compared to the traditional GA, our proposed16

GA can find better solutions with a faster convergence speed.17

The algorithm provides near-optimal results in experiments,18

applicable to generic environment with multiple mobile users19

and different signal-to-interference-plus-noise ratios.20

Index Terms— Cell-free massive MIMO, multi-user, focusing21

performance, radio propagation channel, ray tracer, genetic22

algorithm, antenna deployment, 5G, 6G.23

I. INTRODUCTION24

WE ARE in the era of beyond-5G and towards-6G [1],25

[2], where the mobile communication networks with26

even lower latency, higher spectral efficiency, and higher27

reliability are under research and development, to satisfy the28

immensely increased wireless data consumption via diverse29

applications and devices. The massive multiple-input multiple-30

output (mMIMO) radio system is one of the key features in31

the next generation evolution. A mMIMO system is the system32

with unconventionally many active antenna elements with a33

total number of M that can serve K user equipment (UE)34

(M � K) in the same time-frequency resources [3]. The35
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ratio between M and K depends on the requirements of 36

system performance, the propagation environment, etc. For 37

sub-6 GHz, massive multi-antenna base station (BS) with 38

64 or 128 antennas appeared as commercial products. For 39

millimeter-wave (mmWave) frequencies, systems equipping 40

more than 128 antennas are foreseen. In perspective of 41

functionality, a mMIMO system can simultaneously transmit 42

multiple independent streams where each experiences unique 43

and independent propagation. Therefore, the spectral efficiency 44

increases as a spatial multiplexing gain. It can also trans- 45

mit coherent signals to antennas so that the signals add up 46

coherently towards the target user then the signal-to-noise 47

ratio (SNR) increases as a beamforming gain [4]. A mMIMO 48

system is a solution for multi-user (MU) scenarios exploiting 49

simultaneously the spatial multiplexing gain and the adaptive 50

beamforming gain. 51

One of the important properties of the mMIMO system 52

is the spatial resolution, depending on the aperture size, 53

allocated radiating elements, allocated band, signal processing, 54

and the BS-UE topology [5]. Typical types of topology include 55

the co-located, the distributed, and the cell-free [6]–[8]. For 56

the co-located topology, the BS array aperture is configured 57

with the closely spaced (either with a uniform spacing of half- 58

wavelength, or non-uniform spacing) antennas with specific 59

geometry, and there is low requirement for the backhaul 60

network. For the split topology, also called the distributed 61

array, the BS array aperture is split and distributed in separated 62

locations, and a cooperative backhaul network is necessary. 63

For the cell-free topology, also known as “radio stripes”, each 64

user is essentially surrounded by the BS antennas, which 65

differs from the traditional commercial network deployment 66

that each BS is surrounded by users. It requires large-scale 67

cooperative backhaul network. In this paper, our interest lies 68

in the cell-free topology for MU-mMIMO. 69

The effectiveness and efficiency of a MU-mMIMO sys- 70

tem are evaluated by its focusing performance to the active 71

users. Given an explicit mMIMO topology, the intrinsic chal- 72

lenge posing between the BS and UE is the dispersive and 73

directive radio propagation channel. The knowledge of the 74

site-specific mMIMO radio channel, namely, the multipath, 75

physical mechanism, delay spread, angular spread, coherent 76

bandwidth, coherent time, etc., is crucial in order to evaluate 77

the focusing performances of BS over the spread of mobile 78

UE. The focusing performance incorporates the radio channel 79
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condition with the tuning of precoding techniques, which80

typically include the maximum ratio transmission (MRT),81

the regularized zero forcing (ZF) and the minimum mean82

squared error (MMSE) [9]. Nevertheless, the impacts of 1) the83

mMIMO topology, 2) the MU effect including mobility, and 3)84

the propagation environment and mechanism, on the system85

focusing performance, should be understood as a whole in86

practical settings including the system imperfection or hard-87

ware impairment. Furthermore, these performance analysis88

incorporating practical factors should be able to offer hints89

for the optimal deployment. The mMIMO topology should90

be optimized in a smart way given the generic MU mobility,91

practical system imperfection and impairment, as well as92

realistic propagation channel condition.93

In this paper, we propose to use a genetic algorithm (GA)94

combined with a ray tracing (RT) channel simulator to gen-95

erate the optimal cell-free mMIMO topology serving MU in96

mobility. To conduct a realistic investigation, we incorporate97

the effect of the non-ideal hardware (HW) in the system model98

and GA, which has not yet been discussed in relevant earlier99

works. The 3D RT tool used in this paper can simulate various100

indoor and outdoor scenarios and has been validated in various101

literature [10]–[15]. We focus on the indoor scenario mainly102

due to the fact that we can better demonstrate the distributions103

of BS and UE antennas in a confined environment.104

GA belongs to the broader class of the evolutionary105

algorithms (EA) inspired by the biological evolution: it106

encodes candidate solutions using chromosomes and pro-107

vides a fitness function determining their qualities [16].108

Over iterations, crossover and mutation are performed to109

generate new chromosomes, and selection is effectuated to110

preserve good chromosomes. So far, GA has been applied111

in MIMO technologies particularly for: the antenna array112

configuration design for MIMO BS [17] and MIMO UE [18],113

the array antenna selection [19], the MIMO Orthogonal114

Frequency Division Modulation (OFDM) resource alloca-115

tion [20], the mmWave sparse channel estimation [21],116

and the network-level stochastic multi-objective optimization117

tasks [22]. GA is also used in [23] for a comparison with a118

gravitational search algorithm (GSA) to achieve the selection119

of the optimal transmit antennas maximizing both capacity120

and energy efficiency, but the implementation details are not121

given. Our earlier work [4] has proposed a GA for optimizing122

the cell-free mMIMO topology in a confined room, without123

considering the realistic MU mobility/dynamics nor the radio124

frequency (RF) hardware impairments.125

In practice, different components of a transceiver distort the126

desired radio signal. The non-ideal power amplifier, the IQ127

imbalance in mixers and the phase noise are a few examples128

of non-ideal effects in transceivers. The effects of non-ideal129

hardware can be partially compensated using signal processing130

algorithms. Nevertheless, there will always be a residual131

impairment distorting the transmitted/received signal [24],132

[25]. To achieve a realistic system level performance analysis,133

these residual impairments should be taken into account. High134

level models of hardware impairments has been widely used in135

the literature for calculating capacity bounds and performance136

evaluation. A common method to model hardware impairments137

is using an additive distortion term with a power proportional 138

to the input signal power [24], [26]. A higher power of the 139

distortion noise corresponds to a hardware with lower cost and 140

lower quality. Measurements have shown that this tractable 141

model provides an accurate description for the residual hard- 142

ware impairments in RF transceivers [25]. This model can also 143

be analytically motivated using a Bussgang decomposition as 144

shown in [27] and has been extensively used to obtain the 145

capacity bounds for MIMO and mMIMO systems. 146

Deploying a large number of access points in cell-free 147

mMIMO leads to a considerable hardware cost. Therefore, 148

it is interesting to investigate the effect of low quality (and low 149

cost) hardware on the achievable performance. This has moti- 150

vated recent research on the performance of cell-free mMIMO 151

in the presence of hardware impairments [28]–[33] where the 152

additive distortion noise model is used. In [28], the capacity 153

bounds assuming maximum ratio combining/transmission are 154

calculated for hardware impairments and a power control algo- 155

rithm is proposed. The uplink capacity of cell-free mMIMO 156

with four types of receiver cooperation and RF impairment 157

is investigated in [29]. Furthermore, the effect of residual RF 158

impairments on cell-free mMIMO has been studied while con- 159

sidering channel impairments [30], limited front-haul capac- 160

ity [31], low resolution analogue digital conversions [32] and 161

secrecy performance [33]. Similar to [24], [26], [28], in this 162

work, the additive distortion noise is used to model the effect 163

of residual hardware impairment on the achievable rates while 164

optimizing topology using GA. 165

The contributions of this paper are threefolds: 166

• A system model incorporating non-ideal hardware is 167

applied for cell-free mMIMO topology optimization in 168

indoor scenarios. Simulation results show that the opti- 169

mized deployment differs with the ideal and non-ideal 170

hardware conditions. A genetic algorithm is proposed 171

to optimize the cell-free mMIMO topology. Apart from 172

the problem specific encoding, we introduce customized 173

designs (warm-start strategy, selection policy, and elitism) 174

to accelerate the convergence speed and to prevent the 175

premature convergence. 176

• Using a ray tracer simulator, experiments from static to 177

mobile UEs are performed with both ideal and non-ideal 178

HW. Simulations mimicking the reality show the general 179

applicability of the proposed algorithm and the corre- 180

sponding workflow. The results also show the distinct 181

optimization results for ideal and non-ideal hardware con- 182

ditions, as well as the converged focusing performance 183

with the increase of the ratio between the number of BS 184

antennas and the number of UEs. 185

The remainder of this paper is organized as follows. 186

Section II introduces the system model. Section III introduces 187

the customized GA for this MU-mMIMO topology optimiza- 188

tion problem. Section IV analyzes the numerical examples, 189

and Section V concludes the paper. 190

II. SYSTEM MODEL AND FOCUSING PERFORMANCE 191

A. Cell-Free mMIMO Topology for Indoor Scenarios 192

There are two development directions for the mobile com- 193

munication networks: one towards the higher mmWave or 194
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THz frequency bands, hence larger available bandwidth and195

higher transmission data rates; the other towards the mas-196

sive or even ultra mMIMO deployments for more consistent197

data rates. The cell-free mMIMO topology aims at providing198

an almost-uniformly good service quality for users every-199

where [6] without the coverage dead zones, as well as an200

extreme spatial multiplexing using the physically large array201

apertures. Ideally, there is no division of cells, but just the202

spread out of access points: a massive number of distributed203

BS antennas. In this topology, each user is served by all204

the antennas in its occupancy area of influence, so that the205

user-centric clustering is formed to reinforce channel harden-206

ing [8], [34]. The cell-free topology requires a lot of backhaul207

signaling and massive deployment hence low-cost hardware is208

favorable. The cell-free mMIMO is feasible to implement not209

only outdoor but also in large indoor environments, e.g., the210

warehouse, factory, hospital, shopping mall, parking lot.211

B. mMIMO System Model Incorporating Non-Ideal212

Hardware213

Assume that the input signal, x = CN (0, p), passes through214

a nonlinear memoryless function g(x). Then, the output y =215

g(x) can be modeled as follows [27]:216

y =
√

αx + η, (1)217

where α is a value 0 < α < 1 determining the portion218

of the power of x which is transferred to the output with-219

out distortion, while η is the additive distortion which is220

uncorrelated with x. It has been shown that the residual221

radio frequency impairments can be modelled using (1); in222

this case, it is assumed that η ∼ CN (0, (1 − α)p) where223

p is the input power. For a wireless transceiver 1 − α is224

equal to the square of the Error Vector Magnitude (EVM):225

EVM=
√

1 − α [26], [28]. The EVM is a common measure226

for evaluating the quality of transceivers, and according to the227

3GPP Release 15 for BS and UE, an EVM in the range of228

[0.08, 0.175] is acceptable depending on the target modulation229

scheme, e.g., 256-Quadrature Amplitude Modulation (QAM)230

to Quadrature Phase Shift Keying (QPSK). This range of EVM231

corresponds to 0.97 < α < 0.99, where a larger α means232

that more expensive hardware is required. In massive MIMO233

applications, α values lower than 0.99 are more interesting as234

they decrease the cost of hardware [24], [28].235

We use the above mentioned model for a transmitter t and236

receiver r, and use αt and αr to denote the quality factors237

in the transmitter and receiver, respectively. In this work238

the optimization is performed considering the downlink (DL)239

efficiency. Thus, for the access points (APs), the transmitter240

nonlinearity αt is considered, whereas for UE, the receiver241

nonlinearity is of interest so αr is used for the UEs. It is242

assumed that all UEs and all APs have the same quality;243

therefore, the same values are considered for αr for all UEs244

and the same αt for all APs.245

To derive the system model in the presence of hardware246

impairments, assume that s = [s1, . . . , sK ]T is the desired247

signal for K users. Then, s� ∈ CK×1 upon power allocation248

is obtained as follows: 249

s� =
√

Ps = [
√

p1s1, . . . ,
√

pKsK ]T , (2) 250

where pk (k = 1, . . . , K) is downlink power allocated to 251

user k. Using a precoding matrix W ∈ CM×K the desired 252

transmitted signal is derived as follows: 253

x = Ws�, (3) 254

where x = [x1, . . . , xM ]T ∈ CM×1, and for each AP xm ∼ 255

CN (0, σ2
m) and σ2

m is achieved as follows (|si|2 = 1): 256

σ2
m =

K∑
i=1

|wm,i|2pi. (4) 257

When x is passed through a non-ideal transmitter, the trans- 258

mitted signal is: 259

xTX =
√

αtx + ηt, (5) 260

where αt is the aforementioned HW quality factor for APs 261

and ηt = [ηt
1, . . . , η

t
M ]T is the vector of additive dis- 262

tortion at the transmitter of M APs. For the mth AP, 263

ηt
m ∼ CN (

0, (1 − αt)σ2
m

)
. 264

The transmitted signal xTX is received by each user with 265

a non-ideal receiver. Thus, the received signal per UE can be 266

modelled adopting (1): 267

yk =
√

αrhkxTX + ηr
k + nk, (6) 268

where αr is the aforementioned HW quality factor for UEs, 269

hk = [hk,1, . . . , hk,M ] ∈ C1×M includes the channel coef- 270

ficients from M APs to the kth user (the kth row of the 271

channel matrix H ∈ CK×M ), and nk ∼ CN (0, σ2) is the 272

additive white Gaussian noise (AWGN) noise. ηr
k ∼ CN 273

(0, (1 − αr)PRX
k ) is the additive distortion at the receiver of 274

the kth UE where PRX
k is the power of the received signal 275

(hkxTX ) at the kth user. Based on (2)-(5), hkxTX can be 276

written as follows: 277

hkxTX =
K∑

i=1

√
αthkwi

√
pisi + hkηt, (7) 278

where wi is the ith column of the precoding matrix W. Since 279

ηt
m ∼ CN (0, (1 − αt)σ2

m), PRX
k can be achieved as follows: 280

PRX
k =

K∑
i=1

αt|hkwi|2pi +
M∑

m=1

|hk,m|2(1 − αt)σ2
m. 281

The expression for yk can be further modified by substitut- 282

ing xTX from (5) into (6) to write: 283

yk =
√

αrαthkx +
√

αrhkηt + ηr
k + nk. (8) 284

Separating the desired signal at the kth user, the following 285

expression can be achieved: 286

yk =
√

αrαthkwks�k +
√

αrαt

K∑
i=1,i�=k

hkwis
�
i (9) 287

+
√

αrhkηt + ηr
k + nk. (10) 288

The first and the second terms are the desired signal for the 289

kth user and the interference from other users, respectively. 290
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Therefore, the power of the desired signal at the kth user291

(PS,k) and the power of the interference from other users292

(PI,k) can be derived as follows.293

PS,k = αrαt|hkwk|2pk, (11)294

PI,k =
K∑

i=1,i�=k

αrαt|hkwi|2pi, (12)295

The third and the fourth terms in (10) are distortion terms296

resulting from RF impairments. Replacing values of ηt and ηr
k297

(see explanations for (5) and (6)), the overall power of these298

two terms, denoted by NHW
k , and can be derived following299

the three steps below:300

Step 1:301

NHW
k =

M∑
m=1

αr|hk,m|2(1 − αt)σ2
m + (1 − αr)PRX

k , (13)302

Step 2:303

NHW
k =

M∑
m=1

αr|hk,m|2(1 − αt)σ2
m304

+ (1 − αr)
K∑

i=1

αt|hkwi|2pi305

+ (1 − αr)
M∑

m=1

|hk,m|2(1 − αt)σ2
m, (14)306

Step 3:307

NHW
k = (1 − αr)

K∑
i=1

αt|hkwi|2pi308

+
M∑

m=1

|hk,m|2(1 − αt)σ2
m. (15)309

Replacing σ2
m with its value from (4), we have:310

NHW
k = (1 − αr)

K∑
i=1

αt|hkwi|2pi311

+
M∑

m=1

|hk,m|2(1 − αt)
K∑

i=1

|wm,i|2pi, (16)312

which finally leads to the following expression:313

NHW
k = (1 − αr)

K∑
i=1

αt|hkwi|2pi314

+ (1 − αt)
M∑

m=1

K∑
i=1

|hk,mwm,i|2pi. (17)315

From (10), (11), (12) and (17) and considering nk power316

equal to σ2, the Signal to Interference and Noise Ratio (SINR)317

for the kth user shown by SINRk is generated by:318

SINRk =
αrαt|hkwk|2pk

K∑
i=1,i�=k

αrαt|hkwi|2pi + NHW
k + σ2

, (18)319

Till now, the system model with non-ideal effect has been320

completed. As was mentioned earlier in Section II.B and in321

TABLE I

HARDWARE QUALITY FACTOR SPECIFICATION IN SYSTEM
MODEL UNDER DIFFERENT CONDITIONS

the Introduction, to model different hardware quality in the 322

transmitter (AP) and the receiver (UE), we can change the 323

values of αt and αr, respectively. TABLE I shows a few 324

examples of possible combinations of αt and αr. The quality 325

factors are related to the actual hardware performance based on 326

EVM. EVM for transceivers can include distortions resulting 327

from a variety of sources such as power amplifier non-linearity 328

and IQ imbalance. EVM is usually a figure of the residual 329

distortion after the application of compensation methods (e.g., 330

equalization, digital pre-distortion and so on [26]. The allow- 331

able range of EVM is determined by communication standards 332

and the permitted value also depends on the used modulation 333

schemes. The manufacturers should comply with these EVM 334

values and ensure that their designed transceivers match the 335

standard. Although the minimum value allowed by the current 336

standard is 0.97 [35], it can be helpful to investigate how 337

the focusing performance change for further decrease of the 338

quality factors (lower quality hardware). This provides insights 339

and measures for future technologies. That’s why in [31], [32], 340

[36] the α values are set to lower than 0.97 (which is the 341

minimum value required for a QPSK system in [35]). For 342

different parts of a system, e.g., power amplifier and receiver, 343

the measurement setup for EVM may differ. In this work, 344

we stick to a general use of EVM as a measure for hardware 345

quality and hardware impairment model, simular to what was 346

presented in [24]. We give examples of different values in 347

TABLE I and how they can be interpreted. To demonstrate the 348

performance of the optimization algorithm in a more realistic 349

scenario, its performance for a pair of hardware non-ideality 350

coefficients is presented. More information on EVM, and how 351

it can be characterized for a system and examples of using it to 352

demonstrate hardware quality can be found in [35], [37]–[41]. 353

For a meaningful realistic applications and for the complete- 354

ness of simulation results, the non-ideal scenario (both UE and 355

AP have the worst hardware quality allowed by 3GPP that 356

αt = αr = 0.97) is investigated in Section IV and compared 357

with the ideal scenario. 358

C. Ideal mMIMO System Model 359

The ideal mMIMO system model without considering the 360

non-ideal HW follows our earlier work in [4] - a specific case 361

for condition No. 1 in Table I. The results will be demonstrated 362
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Fig. 1. Flowchart of the CGA.

in Section IV for comparison with the system performance363

with HW impairment.364

III. GENETIC ALGORITHM CUSTOMIZED FOR365

MU-MMIMO TOPOLOGY OPTIMIZATION366

In this paper, optimizing the cell-free mMIMO topology is367

considered as a combinatorial optimization problem, whose368

objective is to find combinations of BS antenna locations369

providing near-optimal focusing performances for a number370

of mobile UEs. Since BSs can be deployed anywhere in a371

confined environment, the design space of the problem is enor-372

mous and not tractable with exhaustive search. Because the373

focusing performance is correlated with setups of UE and BS374

(also the radio propagation environment), the objective space375

of the problem is unknown before planning. The GA is suitable376

for such fuzzy optimization problem because of its potential to377

optimize over iterations. With elitism selection [42], GA has378

an important characteristic that the final individuals in each379

generation would have equal or better fitness values than the380

starting individuals. Different from exact algorithms like math-381

ematical programming, the proposed solution by GA is sub-382

optimal (near-optimal) because the search progress could trap383

in local optima (the premature convergence). The advantage384

of applying GA is its ability to quickly find an acceptable385

solution. There are also some designs trying to prevent the386

premature convergence, including the warm-start [43] strategy387

to improve the quality or to increase the diversity of the initial388

population. Although the design of GA is problem-specific,389

in this section we present a customizable GA (CGA) with390

general applicability.391

A. Encoding and the Fitness Function392

In cell-free mMIMO, each UE is surrounded by enough BS393

antennas to ensure the uniformly good service quality. The394

focusing performance of a BS-UE typology is evaluated using395

the sum-rate capacity (an upper bound), i.e., substituting the396

SINR equation (18) for the systems with HW impairment, or,397

the SINR equation (7) in [4] for the ideal systems, to the398

capacity equation (9) in [4]. In the CGA, BS-UE typologies399

are encoded into mutable individuals (chromosomes) with400

customized representations of their locations.401

Examples of encoding for different simulation scenarios402

are provided in Section IV. Multi-dimensional binary matrices403

are used to represent BS locations in the 3D coordinate404

system modeling the confined environment [4]. An applicable405

encoding should be time-efficient and easy to decode. With406

such encoding, a BS-UE topology can easily convert into 407

an individual in the CGA and vice versa. The fitness of 408

an individual is defined as the focusing performance of the 409

encoded BS-UE topology derived using the RT simulator. 410

B. Procedures of CGA 411

The flowchart of the CGA is shown in Fig. 1. Compared 412

with the traditional genetic algorithm (TGA), the CGA has 413

significant differences in the procedures. In this paper we 414

introduce a replacement strategy as the warm-start strategy in 415

its initialization stage: first the randomly generated individuals 416

are ranked by their fitness values, afterwards the last Q% indi- 417

viduals are replaced by the best individual. Q is a customizable 418

parameter since there is a threshold of individual variety and 419

superiority. During the selection procedure, two individuals 420

are further selected as parents for the following reproduction 421

operations using the roulette-wheel selection [44]. The imple- 422

mentation details are given with the numerical experiments in 423

Section IV.A. 424

In the reproduction stage, the crossover and mutation 425

operations are carried out to generate offsprings. During 426

the experiments in Section IV, single-point crossover [45] is 427

applied to the parents with the binary matrix encoding by 428

swapping parts of their genes, followed by a bit-flip muta- 429

tion [46] on a random position. Figure 2 shows how parents 430

are crossed over and mutated to generate new offsprings: the 431

crossover gene is at index 3, therefore each of the offsprings 432

will be a combination of the parents. The mutation positions 433

of the offsprings are marked using color blue. 434

In the TGA without the elitism, the reproduction operations 435

update the current generation by replacing the parent individ- 436

uals with offspring individuals. The proposed CGA includes 437

an elitism stage where the microbial elitism [47] strategy is 438

used: the elitists are chosen between the (two selected) parents 439

and the (two generated) offsprings, and preserved for the next 440

generation. 441

Compared to the TGA, the CGA has the following benefits: 442

the elitism stage prevents the destruction of the most fitting 443

individuals during the evolution [48]. It also reduces the 444

number of individuals chosen for the reproduction opera- 445

tions, since in the TGA many parent individuals are required 446

to increase the possibility for generating better offsprings. 447

The warm-start strategy also brings more high-quality indi- 448

viduals at the beginning of each iteration. These strate- 449

gies can add selective pressure and improve convergence 450

speed [49]. 451
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Fig. 2. Example of the reproduction operations.

Using the Bachmann–Landau notation (Big O notation),452

the time complexity of the CGA in the worst case can be453

calculated using the equation: O(CGA) = P ∗O(fitness) +454

I ∗ (O(Initialization) + O(Reproduction) + O(Elitism)),455

where P is the population size, I is the number of iterations456

(generations). The complexity of different stages depends457

on the implementations. In the experiments we use the458

quicksort [50] for the stages where a sorting algorithm is459

required, therefore O(Initialization) is O(P 2). The repro-460

duction (crossover and mutation) are triggered by the crossover461

rate pc and mutation rate pm. Their complexity depends462

on the encoding since the operations are performed on the463

chromosomes. In the elitism stage, the fitness of at most two464

new offspring need to be calculated. Using a RT simulator,465

time consumption for the fitness of an individual (O(fitness))466

is comparatively much larger than other operations. Hence,467

O(CGA) is deduced to O(fitness).468

IV. NUMERICAL EXPERIMENTS469

In this section, the applicability and superiority of our470

proposed method over traditional approaches are demonstrated471

by numerical simulations and analysis in a confined environ-472

ment (indoor but propagation condition transferable to outdoor473

scenarios), where the experimental results under different474

scenarios are compared. The following environment setups475

are applied for all scenarios: a confined room is represented476

using a cube with length, width and height as 5 meters. The477

frequency-dependent dielectric and conductivity properties of478

walls, ceiling and dryground follow the ITU-R recommenda-479

tions [51]. There is no scattering from dryground, which is480

also impenetrable. The walls and ceiling are reflective and481

lossy bricks.482

In the mMIMO system, the target frequency is 5.9 GHz483

with 200 MHz bandwidth. The base station antennas are484

half-wavelength vertical dipoles and each user is one single485

vertical dipole antenna as well. The line-of-sight (LOS) and the486

first order specular reflections (SRs) are captured in RT for the487

radio channel between base station antennas and user antennas.488

In all experiments multiple users (of number K) are randomly489

situated on the horizontal plane of z = 1.6 meters mimicking490

the human height. The BSs are assumed to be deployed on491

walls, whose number (M in total) and locations are decided by492

different approaches depicted in this section. To evaluate the493

focusing performance, we assume a constant SNR of 30 dB.494

We also use MMSE and equal power allocation, since the495

Fig. 3. Workflow of different experiments.

optimum power allocation and optimal precoding techniques 496

are not the focus here in our paper. 497

Parameter settings of our proposed method are case-specific 498

and will be presented with the numerical experiments in 499

the next subsections. These settings ensure our methods to 500

find an acceptable sub-optimal solution. All experiments are 501

performed using Matlab R2017b on a normal PC with the 502

Intel i7-7700 CPU. Workflows for different experiments are 503

summarized in Fig. 3 to evaluate our proposed algorithm with 504

different scenarios: the static UEs scenario follows the green 505

routine; the mobile UEs scenario follows the blue routine (with 506

shared steps in the static UEs scenario); the reality scenario 507

follows the red routine. 508

A. Simulation With Static UEs 509

In the basic scenario shown in Fig. 4a, a snapshot of K = 5 510

UEs is denoted as ue5_0 (Note that ueK_i denotes the ith 511

snapshot of K UE locations) and their positions stay fixed 512

during simulation. There are M = 20 BSs to deploy on the 513

walls. It is worth mentioning that the M value is set small 514

due to the rather simple environment and UE settings. As an 515

empirical choice and easy to implement as a start, the baseline 516

deployment is denoted as bs20_0 (Note that bsM_j denotes jth 517

topology of M BSs locations), where on each wall there are 518

5 BSs evenly located in the center as a row. 519

To propose a candidate topology for ue5_0 using the CGA, 520

we keep part of the symmetrical assumption that the BSs 521

are equally distributed on four walls (each wall has 5 BSs 522

in this case) but their locations are random. Therefore, the 523

encoding in CGA (and decoding is vise versa) is implemented 524

as follows: each BS antenna location in the 3D Cartesian 525

coordinate is represented using a binary matrix L, having 526

2 dimensions (2 rows) representing a 2D location on a plane 527

(wall). The locating precision is determined by the length of 528

L (number of columns). As an example, in this experiment 529

L has 2 rows and 6 columns, with the locating precision of 530
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Fig. 4. Locations of UEs and BSs in experiments with static UEs: (a) a static UE snapshot ue5_0 and the baseline deployment bs20_0; (b) a static UE
snapshot ue5_0 and the candidate deployment bs20_1 found by the CGA with the ideal scenario; (c) a static UE snapshot ue5_0 and the candidate deployment
bs20_1n found by the CGA with the non-ideal scenario; (d) a different static UE snapshot ue5_1 and the candidate deployment bs20_2 found by the CGA
with the ideal scenario.

5/(26) = 0.15625 meters. The vector [000000] indicates that531

the BS is 0.15625 meters to the boundary. As an example,532

the location of the BS antenna in the center of wall y = 0 is533

encoded with L[1] = [011111] and L[2] = [011111] indicating534

the relevant x-axis and z-axis values. A population is an array535

containing P instances of L, whose orders map the walls (e.g.536

P [1..5] on wall x = 0, P [6..10] on wall y = 0).537

We compare the CGA and a traditional GA (TGA from [52])538

with the same input ue5_0 and the same parameter settings.539

In both algorithms, the population size P is 4; the crossover540

rate pc is 0.85; the mutation rate pm is 0.15; the maximal541

iteration number I is 10. The Q for the replacement (warm-542

start) strategy in the initialization of the CGA is set to 50. For543

normal usage and for comparability with a standard GA, the544

50% rate is recommended [47]. A common issue of the TGAs545

is that the algorithms are often trapped in the local optima,546

since the population tend to be too homogeneous during the547

evolution. To avoid such premature convergence, a fluctuating548

selection policy adapted from the roulette wheel selection is549

applied in the CGA: the probability pi of an individual i to550

be selected in iteration k is defined using (19):551

pi =
fi∑N

j=1 fj

, (19)552

where fi = |minj∈RFj + (maxj∈RFj −minj∈RFj) · I−k
I−1 − 553

Fi|+�, R is the set of all individuals in the current population, 554

Fj is the fitness of individual j (focusing performance of 555

the topology represented by j), and � is a low positive 556

value set as 0.01 to ensure a no-zero probability. With such 557

selection policy, in the early generations (when k is small) the 558

individuals with larger fitness values have a lower probability 559

to be selected as parents than they should, and the individuals 560

with lower fitness values have an increased probability to be 561

chosen. In the final generations (when k is close to I), the indi- 562

viduals with higher fitness values have an increased selection 563

probability to ensure the convergence of the algorithm. 564

The search trend of the two algorithms (distinguished by 565

solid and hollow shapes) is provided in Fig. 5: Fig. 5a is with 566

ideal UEs and BSs, while Fig. 5b is with non-ideal UEs and 567

BSs (both αr and αt are the worst case of the 3GPP Release 568

as 0.97). In these plots, the mean (marked with blue squares) 569

and best (marked with green circles) fitness of individuals in 570

each iteration are tracked. 571

For both ideal and non-ideal scenarios, in the first gen- 572

eration, the CGA has the better initial population than the 573

TGA (having better mean and best fitness values) owing to 574

the enabled warm-start strategy. In the following generations, 575

the mean curves of both algorithms are rising since parents 576
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TABLE II

VALIDATION OF BS TYPOLOGIES PROPOSED BY THE CGA WITH ue5_0 AS
INPUT UNDER THE IDEAL AND NON-IDEAL SCENARIO

are replaced by better offspring over iterations. The best577

individual in the final iteration is proposed by each algorithm578

as the solution to the BS-UE topology problem. For the ideal579

scenario, the CGA can find an individual (the decoded BS580

deployment is denoted as bs20_1 and visualized in Fig. 4b)581

with better fitness than the best individual found by TGA582

after 10 iterations, also requiring fewer iterations to converge583

(the mean and best curves of CGA remain unchanged since584

iteration 6 in Fig. 5a). The convergence of TGA is uncertain585

at iteration 10 since the mean curve is still approaching the586

best curve. For the non-ideal scenario where the fitness is587

generally lower than the ideal scenario, similar search trends588

are detected: the CGA has a faster convergence speed than the589

TGA and proposes a candidate with better fitness.590

The proposed BS deployment by the CGA with the591

non-ideal scenario is denoted as bs20_1n and visualized in592

Fig. 4c, where the positions of BSs differ significantly from593

those of bs20_1. Summarized in Table II, the bold scenario594

names indicate where the CGA is used to generate the595

corresponding BS deployment, their performances are further596

evaluated with the ideal and non-ideal environment. The597

performance of the BS deployment bs20_1 (2.04 bit/s/Hz)598

can not outperform that of bs20_1n (3.32 bit/s/Hz) under the599

non-ideal scenario; the performance of the BS deployment600

bs20_1n (2.78 bit/s/Hz) can not outperform that of bs20_1601

(4.56 bit/s/Hz) under the ideal scenario as well. Such phe-602

nomenon suggests that the CGA can find the best BS deploy-603

ment for both scenarios, and such candidate deployment for604

one scenario is not transferable to the other. Therefore, the605

non-ideal scenario should be considered separately from the606

ideal scenario, and all the following experiments perform607

the comparisons between the two scenarios.608

The sum-rate capacities of BS typologies in different exper-609

iments are summarized in Table III. In the previous basic610

simulation scenario, the deployment found by the CGA bs20_1611

has better performance (4.56 versus 1.99 bit/s/Hz) than the612

baseline deployment bs20_0. The search trend plots (in Fig. 5)613

also indicate that the CGA can find a converged and optimized614

solution with our parameter settings for both ideal and non-615

ideal scenarios. Such solution bs20_1 for the specific UE616

snapshot ue5_0 is further tested with 5 random UE snapshots,617

noted as ue5_[2..6]. The BS deployment bs20_1 can provide618

better performances than the baseline deployment bs20_0 for619

all testing UE snapshots, shown in Fig. 6. This phenomenon620

indicates that an optimized BS deployment found by the CGA621

for one UE snapshot can provide relatively good performances622

for others. It also implies that there might be an optimized BS623

deployment for all UE snapshots.624

Fig. 5. Search trend of the customized genetic algorithm (CGA) and
the traditional genetic algorithm (TGA) for (a) the ideal and (b) non-ideal
scenario.

Fig. 6. Performances of the baseline deployment bs20_0 and the candidate
deployment bs20_1 proposed by the CGA with 5 random UE snapshots for
both the ideal and non-ideal scenario.

The positions of UEs and BSs are further investigated: in 625

Fig. 4b, there is no obvious correlation between UEs and BSs 626

locations in the room. On each wall, the BSs locations are 627

neither related to each other. By applying the CGA with a 628

static UE snapshot (e.g. ue5_0), an optimized BS deployment 629

(e.g. bs20_1) is found for this snapshot, but might not be the 630

best for other snapshots. As an example, for the snapshot 631

ue5_2 the optimized BS deployment found by the CGA is 632

bs20_2. Therefore, the simulation scenario with static UEs is 633

not sufficient for the generic BS topology problem “K mobile 634

UEs with M BSs”. 635
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TABLE III

PERFORMANCES OF BS TYPOLOGIES IN DIFFERENT EXPERIMENTS

B. Hypothesis Test With Multiple Static UEs636

The previous section shows that the CGA can be applied637

to a static UE snapshot (ueK_i) to obtain its optimized BS638

antenna deployment (bsM_j), with both ideal and non-ideal639

scenarios. The corresponding performance (fitness) is denoted640

as RT (ueK_i, bsM_j). Since the mobile UEs scenario can641

be simulated with multiple static UEs snapshots (e.g. the642

Monte Carlo simulation, which is too time-consuming to643

apply in this case), hypothesis tests can be performed to644

compare the performances of BS deployments with mobile645

UEs. As an example, two BS topology deployments (denoted646

as bs1 and bs2) are achieved by the CGA with two static647

UE snapshots, their performances can further be verified648

with multiple snapshots imitating the mobile UE scenario,649

by conducting a two-sample t-test shown in Equation (20). The650

ith (i ∈ {1, 2}) population mean, sample size, sample mean,651

and sample standard deviation are denoted using μi, Ni, xi,652

and si. In such hypothesis test N1 = N2 = N , indicating653

bs1 and bs2 are verified using the same number of snapshots:654

H0 : μ1 ≥ μ2655

Hα : μ1 < μ2656

t =
x1 − x2√

s2
1

N1
+ s2

2
N2

. (20)657

With a reasonable sample size N [53], by comparing the658

t − statistics and by considering the p − values, we can659

accept or reject the null hypothesis H0 that bs1 can pro-660

vide better performances for mobile UEs than bs2. As a661

demonstration, we evaluate such hypothesis test on bs20_1 and662

bs20_2, generated by CGA with ue5_0 and ue5_1 (ue5_1 and663

bs20_2 are visualized in Fig. 4d). From Table III, although664

RT (ue5_0, bs20_1) is better (4.56 versus 4.42 bit/s/Hz) than665

RT (ue5_1, bs20_2), with different static UE snapshots, bs20_1666

might not have better performance than bs20_2 with mobile667

UEs.668

In this experiment, different two-sample t-tests with dif-669

ferent sample sizes (N ) are conducted, for the simplification670

we only consider the ideal scenario. The Lilliefors test [54]671

is first applied to check the normality of all samples, as a672

prerequisite to a valid t-test. The normal probability plot [55] is673

used to visualize the chosen samples, plotting each data point674

and reference lines representing the theoretical normal distri-675

bution. In Fig. 7 the data points appear along the reference676

Fig. 7. Normal probability plots for (N = 5, N = 10, and N = 20)
samples in the t-tests: the solid line connects the first and third quartiles, the
dashed line extends the solid line to the ends.

TABLE IV

T-TEST RESULTS FOR bs20_1 AND bs20_2 PERFORMANCES WITH

(N = 5, N = 10, AND N = 20) STATIC UE SNAPSHOTS

(SAMPLES) SIMULATING MOBILE UES

lines, showing that the chosen samples approximate normal 677

distributions. In Table IV the t-test results are summarized. 678

With an increasing sample size N , all tests have negative 679

t − statistics and significant p − value (< 0.05), indicating 680

that the null hypotheses are rejected. Therefore, bs20_1 has 681

worse performance than bs20_2 with mobile UEs. 682

With such verification method, a straightforward work- 683

flow for the generic BS deployment problem with mobile 684

UEs is proposed as follows: start with several random static 685

UE snapshots and generate the corresponding candidate BS 686

deployments using the CGA. Further the performances of these 687

BS deployments are verified with N static UE snapshots using 688

hypothesis tests. The deployment having the best performance 689

with mobile UEs is chosen as the final solution. This workflow 690

has the following drawbacks: there are concerns that the 691

starting UE snapshots are not adequately and randomly chosen, 692

resulting in the neglect of candidate BS deployments for the 693

further verification. Also, this method is time-intensive since it 694

requires multiple executions of the CGA to generate candidate 695

BS deployments, and multiple calls for the RT simulator to 696

conduct the verification. 697

C. Simulation With Mobile UEs 698

Considering that random UE snapshots are chosen as inputs 699

of the CGA and also samples for hypothesis tests, we can 700

simplify the above mentioned workflow by integrating mobile 701

UEs and verification processes into the CGA. However, the 702

hypothesis tests were too complicated to be conducted among 703
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the individuals for the rank of fitness in each iteration. Instead,704

we can barely compare the average performance of the indi-705

viduals with mobile UEs according to the previous experiment.706

Suppose the CGA is started with N static UE snapshots707

(ueK_i), the average performance of a BS deployment (bsM_j)708

with these snapshots can be calculated using Equation (21):709

avgj =
∑N

i=1 RT (ueK_i, bsM_j)
n

. (21)710

In the initialization stage, the algorithm (denoted as711

M_CGA) generates N snapshots of K static UEs (denoted712

as m_ueK_N in Table III). Over iterations, the fitness of an713

individual (encoding a BS deployment) is set as its average714

performance with such group of static UE snapshots. Table III715

provides the results of this method with N = 5 and N = 10716

(Note that K = 5 in all experiments), where bs20_4 has better717

average performance (3.12 versus 2.73 bit/s/Hz) than bs20_3718

with mobile UEs. Compared to the previous workflow, this719

integration method requires one execution of the M_CGA,720

but still multiple calls for the RT simulator. Each individual721

is verified with the same N static UE snapshots, requiring a722

relatively large sample size N for a convincing result. Also,723

the verification process of the preserved individual from the724

previous iteration is redundant in the subsequent iteration.725

To avoid the aforementioned drawback, the algorithm726

(denoted as EM_CGA) applies another “extra-mobile” opti-727

mization strategy to generate N different snapshots of static728

UEs (denoted as em_ueK_N in Table III) in each iteration729

and rank the individuals by their average performances with730

such group of mobile UEs. With this strategy the preserved731

individuals are verified with different samples over iterations.732

Table III shows the performance of bs20_5 by applying this733

strategy with N = 5.734

For the mobile user scenarios in Table III, although the735

performances of bs20_3, bs20_4, and bs20_5 are different, their736

locations are close to each other, visualized in Fig. 8a. On each737

wall the BSs positions of the three deployments are gathered738

into clusters varying over space. The heatmap plot in Fig. 8b,739

where each wall is equally divided into blocks of size 1×1 m,740

counts the number of BS in each block and provides an741

intuitive view of the clusters. Fig. 8c is the heatmap of UEs on742

the user plane (z = 1.6). In total there are 65 UE scenarios,743

5 for bs20_3 (m_ue5_5), 10 for bs20_4 (m_ue10_5), and 50 for744

bs20_5 (em_ue5_5). Although there are fewer UEs in blocks745

against the walls because the UEs have a minimal separation746

distance from wall, in Fig. 8c all UEs are almost-equally747

distributed on the horizontal plane.748

Note that the previous experiments are with the ideal749

scenario, we further verify the applicability of the pro-750

posed algorithm with the non-ideal scenario (αt = 0.97,751

αr = 0.97) with three “extra-mobile” experimental cases.752

Summarized in Table III, the corresponding candidate deploy-753

ments bs20_6n, bs20_7n, and bs20_8n are proposed by EM_CGA754

with their average performances. For these three deployments,755

the heatmaps of BSs on each wall are presented in Fig. 9a.756

Compared to the heatmaps with the ideal scenario in Fig. 8b,757

the BSs clusters are more obvious. The heatmap of UEs (in758

total there are 150 UE scenarios verified during iterations to759

Fig. 8. Locations of bs20_3 found by the CGA with m_ue5_5, bs20_4 found
by the M_CGA with m_ue5_10, and bs20_5 found by the EM_CGA with
em_ue5_5 with corresponding heatmaps of BSs on the walls and UEs on the
user plane (with the ideal scenario).

produce the three deployments) on the user plane are provided 760

in Fig. 9b, showing that they are almost equally distributed. 761

In summary, the experiments in this section support the 762

expectation that there might be an optimized M BS deploy- 763

ment for K mobile UEs in the confined environment, and 764
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Fig. 9. Heatmap of BSs on each wall and UEs on the user plane for bs20_6n,
bs20_7n, and bs20_8n. Each BS deployment is proposed by EM_CGA with
em_ue5_5 (with the non-ideal scenario).

such deployment is not related to the UE locations. Also, the765

proposed algorithm (M_CGA and EM_CGA belong to the big766

class of CGA) is able to find that topology in both ideal and767

non-ideal scenarios.768

D. Simulation Mimicking the Reality769

The previous experiments do not ideally approach the real770

BS deployment problem: although the number of UEs K can771

be estimated before an event, the required number of BSs M772

for those UEs is unknown. Neither there is evidence that the773

equally distributed BS on the walls could improve the system774

performance. Therefore, we do not hold such symmetrical775

assumption in the experiments mimicking the reality.776

The encoding of the CGA is adapted for this experiment.777

The length of the binary matrix L is expanded with 2 bits778

representing the relative position on the walls (e.g. [00] for779

wall x = 0, [01] for wall y = 0). A population is still an780

array containing P instances of L but the fixed order mapping781

to walls is not used. The crossover and mutation operations782

Fig. 10. Focusing performances of BS deployments with different BS/UE
ratios (and the linear regression fit curves before and after the best BS/UE
ration 4.2) under the ideal and non-ideal hardware conditions.

Fig. 11. Search trend of EM_CGA with BS/UE ratio as 4.2 (K = 5,
M = 21).

can change the encoded location of a BS to different walls. 783

In realistic applications, the ratio of the BS numbers to the UE 784

numbers (BS/UE ratio) is more meaningful than the absolute 785

values for the scalability. The number of BSs M is changed 786

to a range [15, 25], while the number of UEs K and other 787

parameter settings remain same. Therefore the BS/UE ratio 788

is in the range [3, 5]. The EM_CGA is applied to tackle this 789

problem with both the ideal and the non-ideal scenarios. 790

Figure 10 summarizes the focusing performances of differ- 791

ent BSs deployments with variant BS/UE ratios. The best aver- 792

age focusing performance for K = 5 mobile UEs is achieved 793

with the BS/UE ratio of 4.2 (M = 21) for both scenarios 794

(3.12 bit/s/Hz for the ideal scenario and 3.16 bit/s/Hz for 795

the non-ideal scenario). Since the data points are near-optimal 796

values found by the algorithm, small fluctuating behavior is 797

reasonable and we focus on the trend. The linear regression 798

fit (in a least-squares sense) curves are also provided in 799

Figure 10: the focusing performance is enhancing when the 800

BS/UE ratio is increasing since each UE is served with more 801

BSs. However, in both scenarios if the BS/UE ratio is relatively 802

large (larger than 4.2), the focusing performance can not 803

continue to improve when more BSs are deployed. 804

The search trends of the EM_CGA for the BS/UE ratio as 805

4.2 (k = 5, M = 21) under both scenarios are presented in 806

Fig. 11. Over iterations the algorithm finds candidates with 807

better average performance (with an increasing mean curve). 808

Authorized licensed use limited to: University of Gent. Downloaded on December 01,2022 at 10:29:28 UTC from IEEE Xplore.  Restrictions apply. 



SHEN et al.: OPTIMIZING FOCUSING PERFORMANCE OF NON-IDEAL CELL-FREE mMIMO USING GE 8843

The candidate with the best average performance in the final809

generation is proposed as the solution. For the ideal scenario,810

the algorithm stays converged since iteration 2. For the non-811

ideal scenario, the algorithm starts from candidates with low812

average performances but finally reaches candidates with good813

performances.814

In summary, the simulations in this section demonstrate815

the general applicability of our proposed algorithm for an816

optimized solution to the BS deployment problem in both ideal817

and non-ideal scenarios.818

V. CONCLUSION819

This paper proposed a customized genetic algorithm com-820

bined with ray tracer channel simulator for optimizing the821

cell-free mMIMO topology for multiple users. The novelty of822

the algorithm is the special design of the warm-start strategy,823

the selection policy, and the elitism stage, which help to find824

better candidate solutions with a faster convergence speed in825

the simulations. The mMIMO system model incorporates the826

effect of hardware impairment in practice, and the non-ideal827

BSs/UEs are formulated for the focusing performance.828

Simulation experiments with both ideal and non-ideal hard-829

wares have been performed for indoor scenarios of a fixed830

number of BSs serving multiple static and mobile UEs, as well831

as an unknown number of BSs mimicking real topology832

optimization problems. The simulation results indicate that833

there exists an optimized placement of BSs not correlated834

with the UEs positions in the confined indoor environment.835

In the near-optimal BS deployment solution proposed by our836

algorithm, on each wall of the room the BSs are not evenly dis-837

tributed, which is very interesting. It is also observed that the838

best ratio between the number of BSs and the number of UEs839

is 4.2, above which the focusing performance does not increase840

any more. Moreover, the deployment result for the non-ideal841

hardware differs from that of the ideal hardware, indicating842

that we have to take into account the hardware/device quality843

for the topology optimization in practice.844

As an exciting future development of this work, we will845

investigate the premature convergence issue in the applications846

of GA turning near-optimal to optimal solutions for cell-free847

mMIMO. We will also investigate the more general applicable848

approach requiring as fewer problem specific characteristics as849

possible.850
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