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Abstract. Causal structure discovery in complex dynamical systems is
an important challenge for many scientific domains. Although data from
(interventional) experiments is usually limited, large amounts of obser-
vational time series data sets are usually available. Current methods that
learn causal structure from time series often assume linear relationships.
Hence, they may fail in realistic settings that contain nonlinear relations
between the variables. We propose Neural Additive Vector Autoregres-
sion (NAVAR) models, a neural approach to causal structure learning
that can discover nonlinear relationships. We train deep neural networks
that extract the (additive) Granger causal influences from the time evo-
lution in multi-variate time series. The method achieves state-of-the-art
results on various benchmark data sets for causal discovery, while pro-
viding clear interpretations of the mapped causal relations.
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1 Introduction

Discovering mechanisms and causal structures is an important challenge for
many scientific domains. Randomized control trials may not always be feasi-
ble, practical or ethical, such as in the domain of climate sciences and genetics.
Therefore, when no interventional data is available, we are forced to rely on
observational data only.

In dynamical systems, the arrow of time simplifies the analysis of possible
causal interactions in the sense that we can assume that only preceding signals
are a potential cause of the current observations. A common approach is to test
time-lagged causal associations in the framework of Granger causality [10]. These
methods often model the time-dependence via linear causal relationships, with
Vector AutoRegression (VAR) models as the most common approach.

Even though there is extensive literature on nonlinear causal discovery (e.g.
[17,31]) relatively few others (e.g. [14,32]) have harnessed the power of deep
learning for causal discovery in time series. These methods operate within the
Granger causality framework and use deep neural networks to model the time
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dependencies and interactions between the variables. In principle, deep learning
approaches make it possible to model causal relationships, even when they are
nonlinear. While these methods have a high degree of expressiveness, this flexi-
bility comes at a cost: interpretation of the causal relations learned by black-box
methods is hindered, while this is essentially the goal of causal structure learn-
ing. To overcome this, these methods learn to set certain input weights to zero,
which they interpret as an absence of Granger Causality.

In this work, we propose the Neural Additive Vector Autoregression
(NAVAR) model to resolve this problem. NAVAR assumes an additive struc-
ture, where the predictions depend linearly on independent nonlinear functions
of the individual input variables. We model these nonlinear functions using neu-
ral networks. In comparison to other works using Granger causality for causal
discovery in time series, our work differs in the following ways:

1. Compared to common linear methods, our method can easily capture (highly)
nonlinear relations.

2. While being able to model nonlinear relations, NAVAR maintains a clear
interpretation of the causal dependencies between pairs of variables. In con-
trast to other deep learning methods that resort to feature importance meth-
ods, NAVAR uses the interpretational power of additive models to discover
Granger causal relationships.

3. By using an additive model of learned transformations of the input variables,
our model allows not only for the discovery of causal relationships between
pairs of time series but also inspection of the functional form of these causal
dependencies. Thanks to the additive structure, we can inspect the direct
contribution of every input variable to every output variable.

4. The additive structure allows us to score and rank causal relations. Since we
can compute the direct contribution of each input variable to each output
variable independently, the variability of these contributions can be used as
evidence for the existence of a causal link.

The rest of this paper is structured as follows: Sect. 2 introduces the Granger
causality framework and VAR models. In Sect. 3 we generalize this notion to
the additive nonlinear case and introduce NAVAR models that can estimate
Granger causality using neural networks. In Sect. 4 we evaluate the performance
of NAVAR on various benchmarks and compare it to existing methods. Finally, in
Sect. 5 we discuss related work and in Sect. 6 we conclude and discuss directions
for future work.

2 Granger Causality and the VAR Model

Let X1:T = {X
(1)
1:T ,X

(2)
1:T , ..,X

(N)
1:T } be a multivariate time series with N variables

and T time steps. Our goal is to discover the causal relations between this set
of time series. (Pairwise) Granger causality is one of the classical frameworks to
discover causal relationships between time series. In this framework, we model
the time series as:

X
(i)
t = gi(X(1)

<t , ...,X
(N)
<t ) + ηi

t (1)
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where X
(i)
<t = X

(i)
1:t−1 denotes the past of X(i), and ηt is an independent noise

vector. A variable X(i) is said to Granger cause another variable X(j) if the past
of the set of all (input) variables {X

(1)
<t , ...,X

(i)
<t , ...,X

(N)
<t } allows for better pre-

dictions for X
(j)
t compared to the same set where the past of X(i) is not included:

{X
(1)
<t , ...,X

(i−1)
<t ,X

(i+1)
<t , ...,X

(N)
<t }. Granger causality approaches assume causal

sufficiency. We refer to the directed graph with the variables X(i) as vertices,
and links representing Granger causality between two variables as the Granger
causal graph.

In the VAR framework, the time series X
(j)
t is assumed to be a linear com-

bination of all past values (up to some maximum lag K) and independent noise
term. This means that every value X

(j)
t can be modeled as:

X
(j)
t = βj +

N∑

i=1

K∑

k=1

[Ak]ijX(i)
t−k + ηj

t (2)

Where Ak is a N × N time-invariant matrix which identifies the interaction
between the variables, β is a N -dimensional bias vector, and ηt is an independent
noise vector with zero mean. A common approach to infer which pairs of variables
are not Granger causal is to identify i and j for which [Ak]ij = 0 for all time
lags k = 1, ...,K.

3 NAVAR: Neural Additive Vector AutoRegression

The idea underlying the linear VAR model is simple and it can be surprisingly
effective. For instance, in the NeurIPS 2019 Causality for Climate competition,
the winners used four variations based on the standard linear VAR model [34].
However, a limitation of the VAR model is that it can only model linear interac-
tions. Guided by the success and reliability of VAR models for Granger-causal
discovery, in this work, we generalize the VAR model to allow for nonlinear
additive relationships between variables:

X
(j)
t = βj +

N∑

i=1

f ij(X(i)
t−K:t−1) + ηj

t (3)

Here, f ij is a nonlinear function describing the relationship between the past
K values of X(i) on the current value of X(j). Note that the VAR model is
the special case where f ij is linear. We can identify Granger causality in the
following way: if variable X(i) is not a Granger cause of another variable X(j)

then f ij is invariant to the values of X
(i)
t−K:t−1. In other words, if f ij is a constant

function of all values X
(i)
t−K:t−1, then X(i) is not a Granger cause of X(j).

The choice of this additive model is built on the following assumption. In
many practical applications, the functional dependence of a variable X

(i)
t on

the history of a variable X
(i)
<t is complex, with e.g. nonlinear functions across

multiple time lags. However, dependencies on multiple time series can usually
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be well approximated by additive models. Therefore, we introduce an additive
structure for the contributions stemming from the different variables, but do not
impose an additive restriction to contributions from different time lags.

We choose to use deep neural networks (DNN) to model the nonlinear
function f ij . In our method, dubbed Neural Additive Vector AutoRegression
(NAVAR), we train separate models on the past of each variable to predict its
contribution to the value of all variables at the next time step. In particular, at
every time step t, we pass the past values of a variable X(i) to a neural network
f with N output nodes to compute its contribution to all other variables X(j):

ci→j
t = [fθi

(X(i)
t−K:t−1)]

j (4)

The function [fθi
]j is the jth output of the neural network f with parameters θi.

A graphical overview of the method can be found in Fig. 1. In principle, one can
choose a wide variety of neural networks for f , e.g. Multi-Layered Perceptrons
(MLP), Recurrent Neural Networks (RNN), and Convolutional Neural Networks
(CNN). In our experiments, we consider MLPs and LSTMs [9] to demonstrate
the concept, since the additive structure is key to its success. In the LSTM ver-
sion of our model, single time steps of a variable are sequentially passed to the
networks, and thus the networks predict the contributions based only on Xt−1

and its recurrent hidden states (in contrast to K inputs to the MLP). Therefore,
the size of the LSTM network does not increase for larger lags and is thus par-
ticularly scalable to longer lags. Although these backbones already outperform

Fig. 1. Graphical representation of the NAVAR model with MLPs. For every time step
t and every variable X(i), we compute a nonlinear combination of its past X

(i)
t−K:t−1

(with a maximum time lag K) as the contribution to every other variable. To compute

the estimate of X
(j)
t , all contributions ci→j

t are summed.
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the state of the art, we envision that more complex backbone architectures for
f could potentially further increase performance.

The resulting prediction for X(j) at time t is the sum of all its incoming
contributions:

X̂
(j)
t = βj +

N∑

i=1

ci→j
t (5)

We choose this additive structure of neural networks as it is a natural exten-
sion of the VAR framework with nonlinearities (see Eq. 3) and it allows us to
uncover the causal links from X(i) to X(j) by inspecting the direct contributions
ci→j
t . Granger causality requires us to estimate the predictions for X

(j)
t when

the past of X(i) is not included, which in our framework can be directly obtained
by ignoring the corresponding contribution ci→j

t in Eq. (5). This is a key feature
of our method that allows it to be scalable: we avoid the necessity to perform
multiple fits of a neural network, such as a fit including and excluding the past of
variable X(i), when testing the predictive power due to X(i) (see the discussion
in Related Work).

The regression networks are trained using the MSE loss function. We intro-
duce an l1 penalty to the contributions ci→j

t in order to promote sparsity in the
resulting causal link structure. Assuming that large causal networks will have a
similar number of causes per variable compared to smaller networks, we choose
to penalize the sum of the absolute value of received contributions per variable
instead of the mean contribution size. This results in the following loss function
for the predictions at a time step t:

Lt(β, θ) =
1
N

N∑

j=1

(
βj +

N∑

i=1

[fθi
(X(i)

t−K:t−1)]
j − X

(j)
t

)2

+
λ

N

N∑

i,j=1

∣∣∣[fθi
(X(i)

t−K:t−1)]
j
∣∣∣

(6)

Furthermore, we add a weight decay term to the loss with coefficient μ.
In order to make the contributions comparable, every individual time series

is normalized such that it has mean zero and standard deviation one before
training. After training the networks, we deduce the causal links from the vari-
ability of the contributions in Eq. (4). The rationale to reconstruct the Granger
causal graph is that if a certain variable has a large causal influence on another
variable, then it will send a large variety of contributions over the course of time.
However, if a variable X(i) is not a Granger cause of another variable X(j) then
f ij is a constant function, because X(j) is invariant to the values of X

(i)
t−K:t−1.

To score a potential causal link X(i) → X(j) with the trained neural network,
we therefore compute the standard deviation of the set of contributions ci→j

t for
all t ∈ {K + 1, T}:

score(i → j) = σ({ci→j
K+1, c

i→j
K+2, ..., c

i→j
T }) (7)



Neural Additive Vector Autoregression for Causal Discovery in Time Series 451

In all of our experiments, we use the ReLU activation function and the Adam
optimizer [15] to train our networks. Our implementation of NAVAR and code to
reproduce the experiments can be found at: https://github.com/bartbussmann/
NAVAR.

4 Experiments

4.1 Interpretable Contributions

First, we investigate the ability of our model to learn interpretable nonlinear
causal dependencies on a toy dataset. We construct the dataset with three vari-
ables (N = 3) and 4000 time steps (T = 4000) based on the following SCM:

X
(1)
t = cos(X(2)

t−1) + tanh(X(3)
t−1) + η1

t

X
(2)
t = 0.35 · X

(2)
t−1 + X

(3)
t−1 + η2

t

X
(3)
t =

∣∣∣0.5 · X
(1)
t−1

∣∣∣ + sin(2X(2)
t−1) + η3

t

where ηi
t ∼ N (0, 1) for i = 1, 2, 3.

We train a NAVAR (MLP) model on this dataset and investigate the learned
contributions between pairs of variables. In Fig. 2 we find that the model has
learned contributions that are similar to the ground truth causal relationship.
Furthermore, we find that for the pairs of variables that are not Granger causal,
the learned contribution function has very little variability. This illustrates that
our rationale for using the standard deviation of the learned contributions as
measure for Granger causal influence is appropriate.

Next, we investigate how to interpret the contributions when the underlying
data contains nonlinear interactions across multiple time lags. To this end, we

Fig. 2. The learned contributions between pairs of variables in our synthetic dataset.
The learned contribution functions closely reflect the true causal influence, showing the
power of NAVAR models in both Granger causal discovery and interpretability. The
causality score from Eq. (7) is given for each potential link. The scores of true causal
relationships are presented in boldface.

https://github.com/bartbussmann/NAVAR
https://github.com/bartbussmann/NAVAR
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Fig. 3. Left Panel: NAVAR discovers coupled nonlinearities within time series across
multiple lags. Contributions are shown for different K to study the time lag (by masking
the input of the fitted model at higher lags). The diagonal represents learned contribu-
tions that perfectly predict the target variable. At lags with true causal relationships,
the standard deviation of the contribution increases and the mean squared error (dis-
tance to the diagonal) decreases. Right panel: change in causal score from Eq. (7) when
including K lags, with respect to the case of including K−1 lags. For cY →X , we observe
a high causal score contribution at K = 3, 4, 5, while for cX→Y we observe high scores
at K = 2, 4, both in agreement with the underlying SCM in Eq. (8).

construct a second synthetic dataset with two variables (N = 2) and 4000 time
steps (T = 4000) based on the following structural causal model:

Xt = cos(Yt−3 + Yt−4 + Yt−5) + η1
t

Yt = Xt−2 · Xt−4 + η2
t (8)

where ηi
t ∼ N (0, 0.1) for i = 1, 2

We train a NAVAR (MLP) model with a maximum lag K = 8. Although
we do not enforce interpretable additive contributions of individual time lags
and thus cannot extract the isolated causal influence of individual time lags,
we can still investigate the effect of leaving time lags out. Therefore, we mask
the input of the fitted model from a certain maximum time lag. In Fig. 3 three
observations can be made: (1) after adding a lag with a true causal link the
standard deviation of the contribution increases significantly, which motivated
the use of our score function; (2) for time lags with a true causal link the mean
squared error decreases; (3) for time lags without a true causal relationship
neither of these change significantly, showing that the model did not pick up on
spurious contributions (i.e. correlations). We point out that the above analysis
is made feasible due to the additive structure which allows us to study pairs
of variables in isolation from other contributions, and the sparsity penalty that
forces the model to consider mostly direct causes.

4.2 CauseMe - Earth Sciences Data

We evaluate our algorithm on various datasets on the CauseMe platform [18].
The CauseMe platform provides benchmark datasets to assess and compare the
performance of causal discovery methods. The available benchmarks contain
both datasets generated from synthetic models mimicking real challenges, as
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well as real-world data sets in the earth sciences where the causal structure
is known with high confidence. The datasets vary in dimensionality, complex-
ity, and sophistication, and come with various challenges that are common in
real datasets, such as autocorrelation, nonlinearities, chaotic dynamics, extreme
events, nonstationarity, and measurement errors [28]. On the platform, users
have registered over 80 methods for Granger cause discovery.

We compare our methods with four baseline methods implemented by the
platform, namely: VAR [30], Adaptive LASSO [36], PCMCI [27], and FullCI
[29]. The VAR and Adaptive Lasso methods are both linear regression methods,
where the latter consists of computing several Lasso regressions with iterative
feature re-weighting. PCMCI and FullCI are constraint-based methods and per-
form conditional independence tests. Both of these algorithms come with three
different independence tests, namely the linear ParCorr test and the nonlinear
GPDC and CMI tests. For these methods, we report the results of the best scor-
ing independence test. Furthermore, we compare NAVAR with SLARAC and
SELVAR [34], the two algorithms that won the NeurIPS 2019 Causality for Cli-
mate competition. SLARAC fits a VAR model on bootstrap samples of the data,
each time choosing a random number of lags to include, whereas SELVAR selects
edges employing a hill-climbing procedure based on the leave-one-out residual
sum of squares of a VAR model.

Every experiment (e.g. Climate, with N = 40, T = 250) consists of 200
datasets. For every experiment, we tune our hyperparameters (hidden units,
batch size, learning rate, contribution penalty coefficient λ, and weight decay μ)
on the first five datasets, of which we use the first 80% for training and the final
20% for validation. The optimal hyperparameters are tabulated in Appendix
A1. We set the maximum lag parameter K based on information provided by

Table 1. Average AUROC on various datasets of the CauseMe platform. Performance
of the baseline methods Adaptive LASSO, PCMCI, and FullCI are not available for
the hybrid and real-world datasets. For each dataset, we provide the total number of
time steps T and the number of variables N . Datasets with purely linear dynamics are
indicated by an asterisk. Models with the highest AUROC are indicated in boldface.

Nonlinear VAR Climate* Weather River

N = 3 N = 5 N = 10 N = 20 N = 40 N = 10 N = 12

T = 300 T = 300 T = 300 T = 300 T = 250 T = 2000 T = 4600

NAVAR (MLP) 0.86 0.86 0.89 0.89 0.80 0.89 0.94

NAVAR (LSTM) 0.85 0.84 0.84 0.81 0.80 0.89 0.94

SELVAR 0.88 0.86 0.86 0.85 0.81 0.90 0.87

SLARAC 0.74 0.76 0.78 0.78 0.95 0.95 0.93

VAR 0.72 0.69 0.68 0.66 0.80 0.79 0.71

Ad. LASSO 0.82 0.79 0.79 0.78 – – –

PCMCI 0.85 0.82 0.83 0.82 – – –

FullCI 0.83 0.81 0.81 0.82 – – –

1 Appendices and code can be found at https://github.com/bartbussmann/NAVAR.

https://github.com/bartbussmann/NAVAR
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CauseMe, and train on every dataset for 5000 epochs. The AUROC scores are
calculated by the CauseMe platform, where self-links are ignored.

We run our method on the synthetic nonlinear VAR dataset, the hybrid cli-
mate and weather dataset, and the real-world river run-off dataset. The results
in Table 1 show that NAVAR (MLP) models outperform the other methods on
most of the nonlinear VAR datasets. Interestingly, where the performance of
most methods declines as the number of variables N increases, the performance
of NAVAR (MLP) does not decrease. Noting the relative poor performance of
SLARAC on the nonlinear VAR dataset compared to its performance on the
linear climate dataset, we conclude that this algorithm is very well suited for dis-
covering exactly linear relationships. Although NAVAR models might be slightly
too flexible for linear datasets, it outperforms the other methods on the real-
world river run-off dataset. This strengthens our intuition that many real-world
processes can be modeled by an additive combination of nonlinear functions.

4.3 DREAM3 - Gene Expression Data

Next, we evaluate our algorithm on the DREAM3 dataset, a simulated gene
expression dataset [26]. The benchmark consists of five different datasets of
E.Coli and yeast gene networks, each consisting of N = 100 variables. For every
dataset, 46 time series are available, but every time series consists of only T = 21
time steps. We compare NAVAR to other neural approaches to Granger causality,
namely componentwise-MLP (cMLP) and componentwise-LSTM (cLSTM) [32],
Temporal Causal Discovery Framework (TCDF) [19], and (economy) Statistical
Recurrent Units ((e)SRU) [14] (see Related Work).

Similar to the models in [14], we assume a maximum lag of 2 for the MLP
models and use 10 hidden units per layer. We calculate the AUROC by increasing
a threshold over the causal score, where self-links are ignored in the calculation.

Table 2. Average AUROC on the DREAM3 gene expression dataset. Neural methods
are indicated with an asterisk, and their scores are obtained from [14]. Models with
the highest AUROC are indicated in boldface.

Model E.Coli 1 E.Coli 2 Yeast 1 Yeast 2 Yeast 3

NAVAR (MLP)* 0.696 0.649 0.681 0.601 0.594

NAVAR (LSTM)* 0.715 0.682 0.695 0.599 0.597

cMLP* 0.644 0.568 0.585 0.506 0.528

cLSTM* 0.629 0.609 0.579 0.519 0.555

TCDF* 0.614 0.647 0.581 0.556 0.557

SRU* 0.657 0.666 0.617 0.575 0.550

eSRU* 0.660 0.629 0.627 0.557 0.550

SELVAR 0.551 0.536 0.556 0.516 0.534

SLARAC 0.580 0.509 0.526 0.503 0.494
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The hyperparameters are tuned using a 80/20% training/validation split, where
we train on the first 80% of timesteps, and select the hyperparameters with lowest
mean squared error on the final 20% time steps. The selected hyperparameters
are reported in Appendix A. The hyperparameters of the other neural models
are tuned in tantamount manner and can be found in [14, Appendix G]. We
report the average AUROC over 100 different runs of the NAVAR model.

The results in Table 2 show that using deep learning to extract causal struc-
ture in time series is a non-trivial task. Our method, however, obtains the best
result on all datasets. Since both the MLP and LSTM backbone outperform the
other methods, we believe this is due to the imposed structure of our architecture,
where the direct contributions of a variable form a more reliable indicator for
causality than the methods that rely entirely on induced sparseness in the weight
matrices, such as in cMLP, cLSTM, and (e)SRU. Furthermore, using permuta-
tion importance with neural networks, as in the TCDF model, is known to gen-
erate misleading conclusions [11]. The large difference in performance between
NAVAR (MLP) and NAVAR (LSTM) on the E.Coli datasets, demonstrate the
benefits of exploring different backbones for different applications.

The linear methods are consistently outperformed by all neural methods on
this dataset, which clearly indicates the importance of nonlinearity in causal
structure discovery. On top of that, we also immediately obtain interpretable
predictions, as shown in Fig. 4, where we show an example of the learned causal
contributions in the E.Coli 1 gene network. The model captures that the mNRA
levels of gene 0 are mostly influenced by the past mNRA levels of this gene
itself. However, at the end of the time series, as the levels of gene 0 go down,
the influence from gene 1 and 14 pushes the gene 0 levels further down.

Fig. 4. Example of three learned contributions to gene 0 of E.Coli 1 of the DREAM3
dataset. The original data (blue) are normalized. The final prediction is computed by
summing the contributions from all genes. (Color figure online)
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5 Related Work

5.1 Neural Methods to Causal Structure Learning

Recently, there has been a rise in interest in applying deep learning to causal
structure learning, especially within the framework of Structural Causal Models
(SCM) [21,24]. Research in larger graphs was limited due to a combinatorially
intractable search space of possible causal graphs. A key ingredient to the solu-
tion was presented by Zheng et al. [35], who formulated structure learning as
a continuous optimization problem. One of the key advantages of using neural
networks is that one can combine the structure learning objective and the pre-
diction objective into a single optimization problem. Other methods that explore
this avenue are [16], which extends the [35] method to nonlinear functions mod-
eled by neural networks, while still imposing acyclicity in the causal network.
Here, causal links are approximated by neural network paths. Bengio et al. [4]
and Ke et al. [13] use a meta-learning transfer objective to identify causal struc-
tures from interventional data. The structural learning objective is optimized
by varying mask variables that represent the presence/missing of a causal link.
Kalainathan et al. [12] explore the use of generative models and adversarial
learning to reconstruct the causal graph.

5.2 Causal Structure Learning for Time Series Data

Since there is a direct connection between differential equations and structural
causal models [5], the functioning of many complex dynamical systems can be
understood in terms of causal relationships. Therefore, there has been consid-
erable research devoted to discovering causal relationships in time series. Dis-
covering causal relationships in these temporal settings is more straightforward
than in iid data, in the sense that we can use the time-order to establish the
directionality of a causal relationship. Approaches that leverage this assump-
tion exist in many variations, such as non-parametric [3,7], model-based [17,22],
constraint-based [29], and information theoretic [20] approaches.

Despite the broad range of research in Granger causality in time series,
only limited research has applied the representational power of deep learning
to this task. A possible reason for this is that the main challenge in causal struc-
ture learning is that the final product is the interpretation of the dependencies
between the variables, which are directly related to the causal connections. How-
ever, interpretation is known to be the Achilles heel of black-box tools such as
deep learning.

Other works that do use neural networks, such as [1,8,33], first focused on a
brute force approach to estimate feature importance, where the Granger causal
link i → j is estimated by the predictive power of a model for X

(j)
t that includes

the past of all variables, compared to a similar model where the past of the
variable X(i) is excluded from the input. However, such an approach is not
scalable when the number of variables increases.
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The Temporal Causal Discovery Framework (TCDF) [19] uses a attention-
based (causal) convolutional neural network. They consider attention scores and
introduce permutation importance to identify causal links in an additional causal
validation step. Most similar to our work, Tank et al. [32] proposed a neu-
ral Granger causal model by using sparse component-wise MLPs (cMLP) and
LSTMs (cLSTM). This approach induces sparsity on the causal links by using
a hierarchical group regularization. Khanna and Tan [14] use (economical) Sta-
tistical Recurrent Units to model the Granger causal dependencies, in a similar
vein to the cLSTMs of [32]. Both methods use proximal gradient descent with
line search to obtain interpretable results. Proximal optimization is necessary to
induce exact zeros in the weight matrices of the first layer. Exact zeros are then
interpreted as a missing Granger causal link.

In contrast, we do not limit the input features of our model, but instead,
enforce interpretability directly into the architecture of our neural network by
restricting the function class to produce additive features. This helps in extract-
ing the correct causal relationships between variables, as we can directly regular-
ize the causal summary graph instead of individual input features. Since every
prediction is a sum of scalar contributions from the other variables, disentan-
gling the effect of the different inputs becomes trivial and causal influence can
be deduced intuitively.

5.3 Neural Networks as Generalised Additive Models

In this work, we restrict the structure of the network in order to find the Granger
causes of each time series. In particular, our model can be viewed as a Generalized
Additive Model (GAM). In the general case, a GAM takes the form:

g(E[y]) = β + f1(x1) + f2(x2) + .. + fn(xn) (9)

One of the main advantages of using GAMs is that the models are consid-
erably more interpretable than many black-box methods since the individual
contributions are disentangled and evident. The benefit of assuming additive
models was studied in [6,23], but not in the context of neural networks or time
series.

The use of deep learning to represent the functions fi in Eq. (9) was
first explored in [25] under the name Generalized Additive Neural Networks
(GANNs). For a long time after, this avenue has not been explored further.
Interestingly, however, in parallel to this work Agarwal et al. [2] explored the
power of Neural Additive Models (NAM) as a predictive model for tabular data
with mixed data types. Agarwal et al. [2] introduced exp-centered hidden units
(ExU) to allow neural networks to easily approximate ‘jumpy functions’, which
is necessary when considering tabular data.

6 Discussion

We presented a neural additive extension to the autoregression framework for
(Granger) causal discovery in time series, which we call NAVAR models. The
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choice of this architecture was guided by the success of VAR models in this
context as well as by generalised additive methods as a natural extension to
linear methods. We showed that neural additive models have the power to dis-
cover nonlinear relationships between time series, while they can still provide an
intuitive interpretation of the learned causal interactions. Despite the fact that
NAVAR does not account for higher-order interaction terms, benchmarks over
a variety of datasets show that NAVAR models are more reliable than existing
methods in uncovering the causal structure.

There are many interesting directions for future research. We have shown
that NAVAR models already work with MLPs and LSTMs as backbone, but
we can easily imagine more complex architectures, such as (dilated) CNNs and
Transformers. Furthermore, it could be interesting to investigate bayesian neu-
ral networks in order to evaluate the uncertainty of a found causal model.
Finally, important future work could be improvements to the model that explic-
itly account for unobserved confounders, non-stationarity, and contemporaneous
causes.
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