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Abstract—Many applications use Transmission Control Pro-
tocol (TCP) to achieve end-to-end reliable, ordered, and error-
free data transfer in the network. The decisions are entirely
based on the partial end-to-end information obtained from
the acknowledgment packets. With several applications moving
towards the wireless domain or wired-wireless domain, there has
been advancements in the field of application-network interaction
and innovations to obtain real-time network monitoring infor-
mation on a per-hop basis. This paves a way for extensibility
and customization of transport protocols. In this paper, we
use detailed real-time in-band network telemetry information to
adjust the data transfer at the sender side by modifying the
congestion control algorithms in real time. This new technique
is tested for different network scenarios and the obtained results
indicate that a more network-aware TCP design can greatly
increase performance under lossy conditions. The implemented
technique illustrates how tighter interactions between higher-
layer protocols and the network, in combination with real-time
telemetry, can facilitate the way for novel, more adaptive protocol
designs.

Index Terms—INT, eBPF, wireless networks

I. INTRODUCTION

The transport layer of the OSI model provides a logical
host-to-host communication service. TCP and UDP are the two
popularly used transport layer protocols, with TCP differing
from UDP because of the ordered, reliable, error-free data
transfer, flow control, and congestion control mechanisms.
These mechanisms operate based on partial end-to-end in-
formation available from the acknowledgment (ACK) packets
received from the other end. Existing congestion control
algorithms have been particularly designed for wired networks.
With several applications moving towards wireless media, it
is crucial to design a suitable congestion control algorithm
that takes into account the wireless network conditions such
as lossy medium, mobility, thick walls, etc. There have been
techniques such as split connection approach [1], protocol
conversion, link-level approach [2], [3], TCP protocol boosters
[4], and several other explicit congestion control mechanisms
that address the issue of congestion in wireless media, but
with the disadvantage of requiring additional functionality in
the intermediate nodes.

Recently there has been progress in the area of application-
network interactions [5] for easy extensibility and on-the-
fly customization of higher-layer protocols, as well as in the
area of network monitoring and verification. In-band Network
Telemetry (INT), initially implemented for wired networks,
has been extended to wireless networks by designing an

architecture and logic to generate and process INT-enabled
packets for WiFi-based networks [6]. This design has a low
overhead and is capable of collecting real-time information
on end-to-end, per-hop and per-flow basis. Considering this,
there is a great opportunity for optimizing the behavior of
transport protocols by exploiting the in-depth insights that can
be acquired from INT in their decision-making. To validate
this opportunity, this paper focuses on the TCP congestion
control mechanism behaviour, by adjusting the congestion
window size, a key variable limiting the data transfer, based
on the real-time network information obtained from INT.

To achieve this, it is necessary to first understand the relation
between congestion control algorithm behavior and different
monitored INT parameters for wireless networks. The recent
technology, extended Berkeley Packet Filter (eBPF), provides
an option to run mini-programs in a safe virtual machine
in the Linux kernel with low overhead and can be used to
monitor TCP sockets in real-time. As such, we integrate eBPF
with INT to collect real-time data for both TCP behavior and
network parameters. From this, we can derive a relationship
between INT parameters and TCP parameter changes, e.g.
TCP congestion window size. Such derived relation is used to
modify in real-time the congestion window size for optimizing
the transport layer behavior for different network scenarios.

The rest of the paper is structured as follows, section II
provides information about existing works in the area of
INT and eBPF. A brief introduction on congestion control
and a few algorithms along with the problems in wireless
networks is provided in section III. Section IV gives a detailed
description of the problem statement. Section V and VI present
the methodologies and implementations used to address the
problem statements along with the obtained results and its
discussion. Finally, the paper is concluded in section VII.

II. RELATED WORK

This section discusses about different research works in the
area of In-band Network Telemetry and eBPF.

A. In-band Network Telemetry

Continuous network monitoring is one of the key features of
future private professional networks. Active and passive moni-
toring methods are the often used monitoring techniques where
probe packets [7] and network device polling [8] are used re-
spectively for collecting network information. Cisco Net-Flow
[9], IP Flow Information Export (IPFIX) [10], Simple Network



Management Protocol (SNMP) [11] are few examples of
protocols that use active and passive monitoring techniques.
Since these monitoring methods introduce additional traffic in
the network or collect information at fewer network nodes,
we opt for a new technique called INT. Even though INT
was initially introduced for wired networks using P4 [12],
lately it has gained wide attention for monitoring Software-
defined networks (SDN) applications. Several researchers have
implemented and tested INT for SDN networks and industrial
wireless sensor networks [13], [14]. INT-enabled node archi-
tecture for SDN-based networks is presented in [6] and the
accuracy of the monitoring technique has been validated in
terms of monitoring overhead, and network (re)configuration.
In this work, we use the INT technique mentioned in [6] as
a base implementation and further integrate our techniques to
achieve the goal.

B. extended Berkeley Packet Filter

extended Berkeley Packet Filter is a pioneering innovation
that can run programs in the Linux kernel without changing
the kernel source code or loading the kernel modules or
affecting other applications and systems [15]. It has been
mainly used for system monitoring purposes, but it can also
be used for tracing, security, and networking applications. In-
network programmability based on IPv6 segment routing using
eBPF is presented in [16]. An extensible Linux TCP stack,
with new eBPF callbacks to support user-defined TCP options
is implemented in [17]. In combination with P4, eBPF has
been used to implement INT in OpenVSwitch (OVS) [13].

The new congestion control designs introduced in this paper
are based on INT and eBPF, both with very low overheads,
whereas the existing explicit congestion control techniques re-
quire additional bits in each packet, are moderately expensive
in routers, and require modification of all the intermediate
routers and switches. Also, INT gives real-time network up-
dates, hence faster adaption to the network changes.

III. CONGESTION CONTROL ALGORITHMS

TCP flows include a series of data packets sent from a
sender to a receiver, along with corresponding series of ac-
knowledgments flowing in the reverse direction. At any given
time, a sender may send a certain number of packets (known as
the congestion window, or cwnd) before an acknowledgment.
Thus, the size of the cwnd controls the rate of data sent for
a flow. Using TCP congestion control procedures, a source
increases or decreases a flow’s cwnd based on the network
events. The triggering factor for congestion control algorithms
is the packet loss event, which can occur due to timeout or 3
duplicate acknowledgements (DUP-ACKs). Every congestion
control mechanism has four phases (figure 1), slow start,
congestion avoidance, fast retransmit, and fast recovery. Each
algorithm is in the slow start phase after a connection is
initialized or after a timeout. In this phase, for every packet
acknowledged the cwnd increases by one MSS (Maximum
Segment Size), hence the rate of increase is very rapid and
cwnd doubles for every round trip time (RTT). When the cwnd

Fig. 1. Different phases of congestion control mechanisms

is more than the slow start threshold (ssthresh), the algorithm
enters the congestion avoidance phase. Every time a packet
loss event is detected by 3 DUP-ACKs, the TCP performs
fast retransmit, where it retransmits the missing packet and
enters the fast recovery phase. Congestion control mechanisms
are different by their behavior or actions taken during each
congestion phase.

There are several congestion control algorithms of which
TCP Reno and TCP CUBIC are widely used. TCP Reno
was initially introduced in 1990 BSD release, after which
several versions have been introduced. Currently, New Reno
[18] is the recent modification which is available in the Linux
kernel. The predecessors of Reno had only a slow start,
congestion avoidance and fast retransmit, and fast recovery
was introduced in Reno. The New Reno improves retransmis-
sion during the fast recovery phase. It introduces a specific
algorithm to use partial acknowledgments and uses TCP
Selective Acknowledgement (SACK) option. TCP CUBIC was
first implemented in 2006 and since then it has been used
as a default algorithm in Linux machines [19]. The CUBIC
algorithm is real-time dependent and modifies the cwnd based
on the elapsed time from the last congestion event. Due to the
window adjustment mechanism (concave and then convex),
the algorithm stability is improved while maintaining high
network utilization [20].

Problems in wireless networks: In general wireless networks
face several problems with connectivity, security, network
expansion, interference, etc., and network congestion being
one of them. Network congestion occurs when a buffer is
overflown in an intermediate node due to multiple devices
using the same network path, or misconfiguration, or a large
amount of data transfer. Network congestion causes queuing
delay, packet loss, or blocking of new connections, thus re-
ducing the network quality. Apart from this, wireless networks
also face packet losses due to wireless medium characteristics
(interference, long distance between device, mobility, thick
walls etc). The TCP protocol is designed to tackle packet
losses due to network congestion only and is thus relevant
to wired networks. Since the same mechanisms are used in



wireless networks, these mechanisms generalize each packet
loss as a consequence of network congestion, thus reducing
the packet transfer rate for every packet loss and resulting in
poorer data transfer in wireless networks.

IV. PROBLEM STATEMENT

The advancement in the field of application-network inter-
action [21] and the innovations to obtain real-time network
information on a per-hop basis paves a way for extensibility
and customization of transport layer network protocols. Also,
as discussed in section III, the existing congestion control
algorithms are more suitable for wired networks, and there
is a requirement for a better congestion control mechanism
for wireless scenarios. We focus on adapting the existing
congestion control mechanisms of TCP to the wireless net-
work conditions based on the real-time network information
obtained from the INT. To achieve this, we try to answer the
following questions,

1) Is there a relationship between the parameters obtained
from INT and the congestion window size of TCP?

2) If so, can we use the INT information to modify the
congestion window size in real-time?

3) Does the new technique improve the performance of the
TCP for wireless network conditions?

V. TCP AND INT PARAMETERS RELATION

In this section, we derive the relation between the INT and
TCP parameters related to congestion control algorithm.

A. Collecting the data points for analysis

To find the relation between the INT data and the congestion
window size, it is essential to measure both INT and conges-
tion window size for each packet. For wireless networks, the
INT header is encapsulated as an IPv6 option [6]. To collect
the INT data and congestion window size at the same time,
we integrate the real-time TCP data traced by eBPF in the
INT end-to-end option, as shown in Figure 2. Other network
parameters, such as queue filling, timestamping, packet losses
and wireless link parameters (RSSI, data rate, MCS) are still
included as hop-by-hop option in INT data, but are not shown
in Figure 2. We also add a TCP flag (which is set to 1 when the
data traced using eBPF is included in the extension header) to
indicate the presence of real-time TCP data to the sink. All the
alignment in the INT extension is done as 4 bytes as required.

B. Implementation

As it is difficult to directly code in eBPF, a tool called BPF
Compiler Collection (BCC) provides front-ends in Python and
Lua to write BPF programs with kernel instrumentation in C,
including a C wrapper around LLVM 1 The INT and INT-
enabled node architecture is implemented in the Click modular
router framework in [6]. We integrate the INT-enabled node
architecture with the BCC library to trace the TCP data in
real-time using eBPF. The INT source node adds the real-
time congestion window size as an end-to-end parameter inside

1BCC - Tools for BPF-based Linux IO: https://github.com/iovisor/bcc

Fig. 2. Integration of eBPF traced data with INT as IPv6 extension header

Fig. 3. Multi-AP network setup in Mininet-wifi

the INT data structure, along with the INT header. The data
is collected for different network scenarios and the results
obtained are explained in the next subsection.

C. Test Setup and Results

The proposed design and implementation are validated on
a multi-AP network setup in Mininet-wifi2 with two access
points (AP1 and AP2) and two host devices (STA1 and
STA2) as shown in Figure 3. Each interface is assigned
an IPv6 address with each of the nodes running the INT-
enabled architecture for network monitoring. In this section,
we discuss the relationship between the INT parameters and
the congestion window size.

To collect sufficient amounts of data, INT along with eBPF
traced TCP data is collected for each packet, for a fixed
amount of data bytes in iperf3. The data was collected for
different network conditions by introducing intentional loss
in a wireless link and delay with bounded queue capacity
in the intermediate nodes for the CUBIC algorithm. The
recorded data points were analyzed over time to understand
the correlation between the two parameters. The key outcomes
are summarized in the graphs in Figure 4 and Figure 5.

From the graph in Figure 4 it can be seen that after every
loss event, there is a reduction in the congestion window
size. These loss events are detected by INT and are due to
the lossy wireless medium. The higher the number of losses,
the higher the reduction in the window size. Hence they are
inversely proportional to each other. The second graph in
Figure 5 shows the queue filling or packets in the queue in

2https://mn-wifi.readthedocs.io/en/latest/



Fig. 4. Relation between packet losses detected by INT and cwnd

Fig. 5. Relation between the no. of packets in queue and cwnd

an intermediate node with bounded queue capacity and the
congestion window size at the source over time. When buffer
space is available in the intermediate node, the congestion
window starts increasing slowly. The buffer space gets filled
and the number of packets in the queue keeps increasing. The
congestion control algorithm, being unaware of the situation in
intermediate nodes, keeps increasing the congestion window
size unless there is a packet loss due to the buffer overflow. In
the Figure 5 between the points 12 s and 16 s, we can clearly
see how increasing the congestion window size affects the
buffer space in intermediate node. Therefore, the congestion
window size increase can be related to the available queue
capacity left in the intermediate nodes, that can easily be
tracked by INT data. Similarly, an increase in the congestion
window size increases the packet arrival rate at intermediate
nodes, that can as well be easily tracked by the INT data.

To answer the questions 1 and 2 from section IV, there

is a clear relation between the congestion window size and
the parameters such as available queue space and packet
loss events that are obtained from INT data. As such, these
parameters can be used to predict and modify the congestion
window size.

VI. INT-BASED ADAPTIVE TCP
Based on the previous section’s insights regarding the

relation between INT and TCP parameters, in this section, we
propose and validate the adaptive congestion control algorithm
for TCP based on INT monitored parameters.

A. Modifying the congestion control algorithm based on INT

The INT implementation in [6] collects intermediate node
characteristics such as available queue capacity, processing
delay, packet arrival rate, flow count, and Tx/Rx timestamping
values, along with wireless link information (such as data
rate, RSSI, SNR, the channel used, etc.) and end-to-end flow
characteristics such as flow latency, flow jitter, and flow packet
loss ratio. Since INT collects the detailed information of
the intermediate nodes, it can easily differentiate between
the packet losses due to buffer overflow and lossy wireless
medium based on the flow packet loss ratio and the available
queue capacity. The conventional congestion control algorithm
reduces the window size irrespective of the reason for the
packet loss. Whenever the packet loss is due to the lossy
medium, we design two different techniques to maintain the
throughput,

1) To keep the congestion window size constant: We im-
plement a new function where on every packet loss due
to the lossy medium, the congestion window size is kept
constant.

2) To reduce the percentage of multiplicative decrease
of the window size: On packet loss, CUBIC Linux
decreases the window size multiplicatively by a factor
of β, where β is a window decrease constant set to 0.7
[19]. In our design, for every packet loss which is not
due to network congestion, the β value of 0.95 is used.

The available queue capacity, packet arrival rate, and flow
count information of intermediate nodes indicate the business
of the network and the buffer capacity of the node. This
information is useful to decide the amount of data transfer
at the sender side to avoid congestion in the node. From
the result in Figure 5 it is evident that congestion window
size is directly proportional to available queue capacity (avail-
able queue capacity) and inversely proportional to the packet
arrival rate (arrival rate) and number of flows (flow count) in
the intermediate node. On every ACK packet, if the congestion
window size is less than the ssthresh, the conventional conges-
tion control algorithm increases the window size in steps of
one. In our design, we utilize the information obtained from
INT and increase the window size based on that. We calculate
the congestion window size based on the following formula,

cwnd = cwnd+
(available queue capacity ∗ increment)

(arrival rate ∗ flow count)
(1)



TABLE I
Behavior of new congestion control algorithms on packet loss due to lossy

medium

β Congestion window size (cwnd) at loss
event

CUBIC New L1 - cwnd is kept constant
CUBIC New L2 0.95 cwnd is decreased

where increment is a variable that decides the factor by which
congestion window size is increased after every ACK.

B. Implementation

To modify the congestion window size of Linux in real-
time, we use the Congestion control plane (CCP) library [22].
CCP is an API by MIT which offers a separate plane for
congestion control algorithms, thus enabling the option to
write our congestion control methods. The CUBIC algorithm
used in Linux is implemented in Python using CCP, which
subscribes to a central broker to receive the real-time INT
information. Each of the above-mentioned designs is integrated
into the existing CUBIC algorithm separately and tested to
compare the throughput with the original algorithm.

C. Results and discussion

The proposed design and implementation are validated on
the same setup as shown in Figure 3. In this subsection, we
firstly present the overall end-to-end performance of the new
congestion control algorithm design based on INT data under
wireless network loss conditions. Lastly, we discuss the pro-
gression of congestion window size, especially during the slow
start phase, by comparing it between our proposed enhanced
congestion control algorithm and the CUBIC algorithm.

1) End-to-end performance of the new designs: In sub-
section VI-A, we presented two different techniques to ob-
tain congestion window size for a wireless medium when
the packet losses are not due to network congestion. These
techniques were tested separately on the emulated setup and
the end-to-end performance was measured to compare them
with the original CUBIC algorithm. Figure 6 indicates the
throughput comparison between the existing TCP CUBIC in
Linux and the new designs. CUBIC New L1 and CUBIC
New L2 are the algorithms designed to address the issue of
packet losses in wireless networks due to reasons other than
network congestion, whose parameters are shown in Table I.
The throughput values were measured for wireless medium
with different loss percentages. From the graph, it can be
seen that the new algorithms are capable of maintaining better
throughput values even with the higher link loss percentages.
In the case of a wireless link with a 20% packet loss ratio, the
new designs using the real-time INT data achieve seven times
higher throughput than the default Linux TCP congestion
mechanism. Even for the scenario without any wireless link
loss, CUBIC New L2 performs 12% better than the existing
CUBIC algorithm.

Fig. 6. Comparison of original CUBIC algorithm with the new algorithms

2) Progression of congestion window size: Using the design
in equation 1, we increase the congestion window size based
on the information obtained from the intermediate nodes
using INT. The graph in Figure 7 indicates the evolution of
the congestion window over time for increment values of 1
(CUBIC New 1), 2 (CUBIC New 2), and 3 (CUBIC New 2)
and compared with the original CUBIC algorithm (CUBIC
Linux) implemented in Linux.

From the graph Figure 7, it can be noticed that for the
algorithms with increment values 2 and 3, the congestion
window size reaches ssthresh way before the original CUBIC
algorithm. All the newer algorithms quickly reach the optimal
value based on the intermediate node conditions and maintain
the same congestion window size throughout the data transfer
(especially the algorithm with increment = 1). For wireless
network scenario, we prefer the algorithms with increment
values 2 and 3. They transfer the data consistently over time,
with better throughput and lower packet retransmissions.

To answer the question from section IV, the designed
algorithms were tested for different network conditions and
the results were compared with the original CUBIC algorithm.
When the intentional loss was introduced in the network, the
designed algorithms not only maintained the throughput, but
also achieved higher throughput than the original one. The
algorithm designed using equation 1 showed consistency in
the data transfer rates and lower packet retransmissions.

Finally to summarise all the answers, from the conducted
tests, we were able to correlate between the data obtained from
INT and the congestion window size of TCP. Using the recent
revolution in the Linux kernel called eBPF, we could modify
the congestion window size in real-time. The newly designed
techniques were tested for different network scenarios. There
was an improvement in the overall network performance as
compared to the original CUBIC algorithm, especially for a
wireless network with a lossy medium.



Fig. 7. Progression of congestion window over time for different algorithms

VII. CONCLUSION AND FUTURE WORK

The current TCP behavior is mainly based on the partial
information obtained from the TCP acknowledgments, which
leads to suboptimal decisions, particularly in wireless settings.
In this paper, we utilized the innovation of network monitoring
and verification in designing newer algorithms for congestion
control in wireless networks. With this we could achieve up
to seven times better throughput than the existing algorithm
under 20% wireless link loss condition. This low overhead
design helps the sender to adapt to the changes in the network,
thus improving the overall network performance. It provides
flexibility to change the data transfer parameters in real-time,
allowing designing new transport protocols which can adjust
based on the application requirements, resulting in tighter
interaction between the protocol and the network. The designs
presented in this work are just a step towards achieving tighter
application-network interactions. TCP fairness, Flow control,
Fast convergence are the areas that are to be explored in the
future.
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