
Enabling the rescheduling of containerized

workloads in an ad hoc cross-organizational

collaboration

Laurens Van Hoye1*, Tim Wauters1†, Filip De Turck1†

and Bruno Volckaert1†

1IDLab, Ghent University - imec, Technologiepark-Zwijnaarde
126, Ghent, 9052, Belgium.

*Corresponding author(s). E-mail(s): laurens.vanhoye@ugent.be;
Contributing authors: tim.wauters@ugent.be;

filip.deturck@ugent.be; bruno.volckaert@ugent.be;
†These authors contributed equally to this work.

Abstract

A group of organizations wishing to collaborate urgently, for example
in case of a crisis, need to have a way to quickly deploy applications
which enable them to speed up a potentially crisis-resolving decision-
making process. A cross-organizational Kubernetes cluster, which is
orchestrated by a central operator, allows to initiate these deploy-
ments in an ad hoc way. Performance issues may however arise at
runtime, for example, a video pipeline belonging to a CCTV camera
may produce a too low number of frames per second. The ad hoc cross-
organizational collaboration case is especially prone to such issues as
the set of candidate nodes and the environment in which they run
may not be fully known to the operator. This article therefore moti-
vates and describes the usage of a probe swarm architecture, which
allows the operator to quickly generate an overview of the resource
capabilities of a set of nodes, by executing code fragments locally.
The obtained measurements can then enable the operator to decide
on rescheduling operations. Evaluation of an illustrative probe swarm
intervention shows that the performance of an example application
could improve with factor five, ten or hundred when the pod would be
rescheduled. This indicates that the proposed probe swarm architecture

1

This version of the article has been accepted for publication, after peer review (when applicable) and is
subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/s10922-022-09699-9

http://dx.doi.org/10.1007/s10922-022-09699-9
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 Van Hoye et al.

may complement other performance bottleneck detection techniques to
improve performance of applications that need to be deployed urgently.

Keywords: Cluster, Kubernetes, operator, probes, scheduler, swarm, urgent

1 Ad hoc pod rescheduling in a
cross-organizational cluster

The case studied in this article is that of an ad hoc cross-organizational collab-
oration, more specifically a set of organizations need to collaborate urgently
in the case of a time-critical situation. For example, in case of an explosion on
a chemical site, the company, local government, police and firefighters need to
share information. Another case is that of an equipment builder connecting to
the pipelines of manufacturers to quickly analyze and solve machine interrup-
tions. In all cases, a central operator has the control over a cross-organizational
cluster, as shown in Figure 1, which allows the deployment of software com-
ponents into the different network domains to be orchestrated. The central
operator thus has the role of cluster administrator. It is responsible for deploy-
ing data pipelines in the cross-organizational cluster and is thus fully aware
of the data flows and dependencies that exist. It may or may not be part of a
data pipeline itself, i.e. it is either one of the collaborating organizations or a
facilitating third party respectively, depending on the use case discussed. One
particular use case, which is practically relevant, is that of an emergency con-
trol room, in which the operator is an experienced crisis manager, managing
a dashboard which is the endpoint of each data pipeline in the cluster. The
article is written with this scenario in mind. The cluster itself, being a Kuber-
netes cluster [1], uses the concept of pods to distinguish groups of containerized
workloads. An important observation is that, contrary to a regular Kubernetes
cluster, the operator does not have a comprehensive overview of the types of
nodes that are part of the cluster in such a cross-organizational setup. This set
of heterogeneous nodes is composed of different hardware specifications, differ-
ent network interconnections and different container runtime configurations.
Furthermore, unknown background loads may be present on the worker nodes
of the different organizations involved in the collaboration. The usefulness of
labels indicating static hardware properties (e.g. a node having a high speed
storage system like SSDs instead of slower speed physical hard disk drives)
may be gone, as different organizations will likely use different key-value pairs
as labels. This uncertainty is especially true when the set of nodes may change
over time, due to (nodes of) organizations which join or leave the collabora-
tion. An unknowing operator is more likely to select scheduling decisions that
lead to performance issues, something which should be avoided, especially in
case of an urgent problem-solving process. A few examples of cases in which a
performance degradation may be noticed are:

Van Hoye et al. 3

Fig. 1 The operator, having a central overview of all cross-organizational workloads, needs
assistance in the rescheduling of misplaced pods.

� A pod running a data-intensive job which suffers from a low-capacity or
saturated network link.

� A pod running a storage-intensive job which suffers from slow storage mount
options.

� A pod running a job which suffers from the absence of GPU-acceleration.

These kinds of performance issues are all due to scheduling decisions based
on limited context information from the environment on which to schedule.
The probe swarm architecture presented in this article enables the rollback
of these situations by providing insight in the performance capabilities of the
different nodes, allowing the operator to decide on urgent pod rescheduling
decisions. Note that providing only node-related insight to support a reschedul-
ing review by the operator may prove to be insufficient, as performance issues
may have other causes as well, like badly written software, deadlocks, input /
output delay, slow human-software interactions, etc. The ultimate goal of the
rescheduling of pods is to shorten the execution time required to finish several
jobs. Good scheduling decisions may impact the way a critical case is solved.
The time dimension is thus of uttermost important in these ad hoc collabora-
tion cases. In this regard, it is also important to note that the goal is not to
optimize scheduling decisions, as this would require quite a lot of pod move-
ments, causing unnecessary delays. Providing support for scheduling decisions
in a (partially) unknown resource environment, based on time measurements,
is the goal of the research presented in this article. The outline is as follows,
Section 2 presents work related to the scheduling of workloads and advances
for Kubernetes, Section 3 then presents shortcomings in Kubernetes for the
scheduling of pods in a cross-organizational setup (first contribution), while
Section 4 discusses the composition of a probe swarm to solve the aforemen-
tioned problem (second contribution). The evaluation of an illustrative probe
swarm intervention is discussed in Section 5 (third contribution), after which
the article is finalized with a conclusion and directions for future work in
Section 6.

4 Van Hoye et al.

2 Related Work

The contribution presented in this article is part of the FUSE research project
[2]. The goal of this project is to enable organizations to collaborate in an
ad hoc way by constructing a cross-organizational service mesh. Goethals
et al. [3] show which software components are needed to initiate such a
cross-domain federation in an ad hoc way. The proposed federation allows
cross-organizational deployments to be realized in a few minutes at most. More
extensive research is available on the federation of scientific computing envi-
ronments. Although these types of federations have a less ad hoc character,
there are similar challenges to overcome, like the enforcement of diverse local
organizational policies. Wickboldt et al. [4] discuss a platform which shortens
the time an experienced operator and inexperienced end-users, such as compa-
nies, need to provision ad hoc cross-domain network circuits, mainly through
the application of easy-to-use visual editors. This scenario closely resembles
the case discussed in this article, especially because of the mix of manual and
automatic decisions that is inevitably present within ad hoc processes.

Two other topics are already addressed by the authors in previous work.
Both consider trust issues that arise when different organizations need to col-
laborate and thus share data. First, a logging mechanism is needed to allow
an honest organization to protect itself against potentially malicious partners
and to gain trust in the collaboration at hand [5]. Second, it should be possible
for an organization to perform checks and balances with respect to container
deployments that are suggested for its domain by a potentially malicious exter-
nal operator [6]. There was still a need to further research solutions to enable
these ad hoc cross-organizational collaborations as they have some important
characteristics: they are applied in critical situations and should allow the
involved organizations to quickly find a solution for an urgency. The scheduling
of workloads in such a context is another topic that exhibits specific properties
and is therefore discussed in this article.

A multitude of papers present ideas on how the default Kubernetes sched-
uler should advance. It is possible to build further on the concept of resource
requests, either manually by allowing an operator to classify an application
based on its resource usage [7], or automatically by means of extending the
Kubernetes Vertical Pod Autoscaling feature [8]. An improved scheduler is
often required when the heterogeneity of a cluster, for example in the case of
fog computing, plays an important role in the performance of an application.
Most papers propose solutions which try to make the scheduler aware of a dis-
tinct aspect. The focus could be on the minimization of the overall cost of a
Kubernetes deployment in a cloud environment [9]. Similarly, the focus could
be on reducing the end-to-end latency between applications while maintain-
ing bandwidth requirements [10] [11], and their placement in geo-distributed
environments [12]. Another emerging aspect is that of energy efficiency [13]
[14], a strategy applied by a specific set of schedulers among the wider group
of topology-aware [15] and hardware-aware schedulers. Examples of the latter
are a GPU-aware scheduler making use of historic pod executions to speed

Van Hoye et al. 5

up calculations [16] and an Intel SGX-aware scheduler [17]. Another crucial
aspect focuses on the real-time utilization of node resources to schedule work-
loads [18]. This load-awareness is especially important in multi-tenancy cases
[19], as interference effects such as cache misses and CPU context switches may
lead to performance degradation. There are also papers which try to combine
several of those aspects and propose a weighted multi-criteria decision strategy
with the goal to optimize workload placement [20] [21]. The scale at which a
scheduling algorithm needs to operate is another distinctive characteristic. A
category of papers focuses on scheduling algorithms which are backed by queu-
ing theory fundamentals [22]. Those are crucial in very large dedicated data
center setups, but are thus less applicable in this ad hoc case. Finally, there
is a paper which proposes an architecture that applies measurement probes
at the different worker nodes [23], a similar approach as is presented in this
article. Bayer et al. suggest the usage of both resource monitoring probes and
application-specific probes, the latter to perform security checks or to monitor
energy consumption. This scheduling strategy, focusing on local observations,
comes closest to the one presented here. However, as with other cited related
work, no other research takes into account the cross-organizational aspect and
its potential consequences. The fact that the management of nodes is dis-
tributed among different organizations is specific for the Kubernetes clusters
deployed in the cross-organizational collaboration case. Furthermore, where
other scheduling approaches try to steer decisions based on generically applica-
ble metrics, which are perfect for automated scheduling decisions, it is required
here to gather higher-level metrics. These should indicate consequences for
the collaboration in a more easy to interpret way for the operator such that
a performance issue can be solved quickly. To the best of our knowledge, no
other work has been conducted addressing specific concerns related to ad hoc
workload scheduling, which are discussed in the next section, introduced by a
cross-organizational setup.

3 Necessity of probes in a cross-organizational
context

The probing concept presented in this article assists an operator in making
rescheduling decisions when the cluster layout is largely unknown. The goal
of this assistance is to allow collaboration applications to operate efficiently,
thus without severe bottlenecks increasing execution time and downgrading
quality of service. Before the probes are detailed and discussed, it is necessary
to identify why they should be used in the first place. The remainder of this
section therefore illustrates why a vanilla Kubernetes cluster is not sufficiently
capable to achieve the proposed goal. The necessity of probes may be explained
from different perspectives:

� Requirements from the perspective of the operator

6 Van Hoye et al.

Fig. 2 Overview of node capacity as interpreted by vanilla Kubernetes [26].

� The collaborations considered in this article are of the ad hoc type. The
corresponding Kubernetes clusters are thus composed dynamically. This
means that the operator is either not or only in a limited way able to
reuse any previous knowledge related to cluster layout. For example, a
new heterogeneous cross-organizational hardware setup does not have any
Kubernetes labels attached that are meaningful for the operator. Further-
more, the operator does not have the time to thoroughly study which
resources are offered by the different organizations. Ad hoc cluster man-
agement is thus needed for this case, which brings additional difficulties
to making proper rescheduling decisions.

� The implementation of the default Kubernetes pod scheduler uses a node
filter function, implemented in the NodeResourcesFit plugin, which checks
pod resource requests against the availability of resources on worker nodes
[24]. For example, when a pod requests a CPU time allocation of 1.5 / 4
physical or virtual CPUs, the scheduler will consider 2.5 CPUs to be allo-
catable for future pods. Figure 2 shows how capacities are represented:
except for strictly required daemons, the remaining capacity is consid-
ered to be available for pods. The resource availability checks present
in the plugin thus only consider the resource requests of pods, not their
actual consumption, and most importantly, the load of processes which
are not under the supervision of the Kubelet are neglected in the schedul-
ing process [25]. This predictability in container resource consumption and
consequently performance, something which is an important aspect in a
container orchestrator like Kubernetes, may thus be broken in an ad hoc
cross-organizational setup due to the possible presence of severe external
background loads and their corresponding unknown effects.

� Only a very limited set of static node properties is available. It is limited to
general properties such as the instruction set architecture, kernel version,
operating system, Kubernetes version and container runtime version [27].
This set could easily be extended with other properties such as CPU man-
ufacturer, clock speed, hypervisor if the worker node runs as a VM, disk
manufacturer, etc. Furthermore, the metrics endpoint of each Kubelet,

Van Hoye et al. 7

/metrics/resource, could be used to gather resources metrics of a node
over time. A combination of these static and dynamic data could already
provide more insight to the operator and solve some ad hoc scheduling
questions. There are however two major concerns. The first concern is that
it may remain difficult to derive, in an ad hoc way, node performance dif-
ferences from such an extensive data set. For example, quickly comparing
the performance of CPUs from different manufacturers and from differ-
ent release years, each with their own set of cores, caches, multithreading
settings, clock speed values, current workload, physical vs. virtual cores,
etc. is almost impossible. The same observation holds for other hardware
components such as memory and disk. Furthermore, organizations should
be able to dynamically join or leave the collaboration at any point in time,
increasing the complexity even further. The second concern is that, due to
the fact that the nodes are under management of different organizations,
additional node information may not always be available. Organizations
may not always approve the sharing of potentially sensitive node informa-
tion with external entities. Organizations may also decide to only share a
restricted view on local node settings. Finally, the sharing of metrics may
be limited keeping in mind the associated bandwidth cost. In all cases,
it cannot merely be assumed that the operator is able to query every
wished-for data.

� When pods need to communicate according to a cross-organizational flow,
e.g. when they constitute a service but are deployed using an anti-affinity
rule on an organizational level, it may also be needed to evaluate the
performance of the links between the hosting nodes. Severe network bot-
tlenecks may be prevented or discovered this way, allowing the operator
to pick another scheduling approach.

� Requirements from the perspective of the hosting organization

� A hosting organization may impose additional and/or further restricting
resource constraints on the containers received from the operator. These
local constraints should definitely be taken into consideration for this
particular use case, as hosting organizations will highly likely want to
protect themselves against potentially malfunctioning or malicious opera-
tors claiming most of the available resources. It is important to note that
these possible additional resource restrictions are completely unknown to
the operator. The theoretically infinite set of static and dynamic data, as
suggested above, thus not necessarily forms a sufficient base anymore to
allow the operator to schedule properly.

� These locally enabled resource constraints may be the same for each con-
tainer that is proposed by the operator, but they may also be different.
The Docker container runtime is one example of a runtime which allows
resource settings to be configured per container [28]. This dynamic aspect
makes it impossible for the operator to know under which conditions
the container will run. Examples of such dynamic configurations are: (1)

8 Van Hoye et al.

enabling/disabling swap memory when a container process reaches the
memory limit, or (2) configuring that three external containers are allowed
to consume half of CPU capacity at maximum, according to a specific
partitioning like 1

4 , 1
6 and 1

12 . It is clear that these examples negatively
affect the predictability of container performance, an important reason
why Kubernetes did not support swapping to disk until version 1.23, the
most recent one at the time of writing [29].

These observations lead to the conclusion that it is necessary for the ad hoc
cross-collaboration case to evaluate constraints locally. Probes, which are dis-
cussed in the next section, pave the way for an operator to gather more insights
supporting a rescheduling decision under these circumstances. Note that prob-
ing may not necessarily be required during the entire collaboration duration.
When the availability of node resources is identified, and when the cluster
operates in a more or less steady and predictable way, most uncertainties are
solved.

4 Probe swarms enabling pod rescheduling

This section first discusses probes in general and what they could look like in
a few examples. Afterwards, a possible probe swarm architecture with corre-
sponding steps is proposed, providing an idea how probing could be integrated
in vanilla Kubernetes.

4.1 Probes as performance indicators

A probe, in its most general definition, is a software function or a collection of
functions, thus consuming (a combination of) resources such as CPU, memory,
disk, GPU, network bandwidth etc. They are short-lived and finite as there
are only a few tens of seconds at maximum between the probe pod starting up
and tearing down. It is thus a code fragment which needs to be processed by a
selection of worker nodes, allowing an operator to obtain an overview of execu-
tion times and thus relative performance differences between nodes. As is clear
from this definition, a probe can be selected from an infinite pool of possible
functions. Two types of probes can be identified at both ends of the spectrum.
The first type of probes, the generic probes, could be applied independently
of the workload that needs to be scheduled. These probes allow to dynami-
cally pressurize target resources, as there may be a CPU-intensive probe, a
memory-intensive probe, a disk-intensive probe, etc. The output produced by
the probe execution is useless for the collaboration, i.e. only the corresponding
execution time is important. An example of such a generic probe can be found
in the class of algorithms calculating the n-th digit of Pi. One well-known use
case of these algorithms is to benchmark compute infrastructure. A relevant
implementation is for example the calculator TachusPi [30], which is able to
calculate billions of digits using only commodity hardware. The second type
of probes are exact copies of the considered workload. The containers of a pod

Van Hoye et al. 9

could simply be duplicated to other nodes in the cluster. Both types of probes
have clear disadvantages. The generic probes will likely provide relative per-
formance differences between nodes if the operator can find an appropriate
parameter set. However, it may remain difficult for the operator to interpret
these results with regard to their impact to the collaboration at hand. A more
insightful measurement may thus be handy. The copy probes on the other
hand, do resemble the original pods, but their initialization may not be ad
hoc and their execution may also severely impact the probed nodes and the
processes that are running there. A third option is to consider application-
specific probes which are somewhere in the spectrum discussed above. They
could respectively allow for a more insightful and more efficient probing solu-
tion when the two discussed types of probes are not considered appropriate.
Put generally, it would be possible to use derived probes, i.e. representative
functions, based on the considered workload. Each workload boils down to an
application, being a main function, which could be further decomposed into
(much) smaller functions, each which could be used as a probe. Decomposing
an application on code level seems impossible for this case, as both reverse
engineering a binary and analysing the different functions takes time. It is
however possible to select probes, which conceptually match several parts of
the workload, from a well-prepared cross-organizational probe catalogue. The
granularity of decomposition may differ per case. Theoretically, one could cre-
ate a service mesh of configurable and linkable probes reflecting a multitude of
applications. In reality however, due to time limitations caused by the ad hoc
character of the collaboration, a line needs to be drawn between a portfolio
of either more general or more specific probes. A balance between reusability
and efficiency in time needs to be found.

Two application-specific probes are proposed in this article. Other exam-
ples are possible, but these serve to illustrate the idea behind the deployment
of reusable probes, that is allowing the evaluation of a certain algorithm
which may resemble a pool of possible workloads. This way, different resource
consumption patterns can easily be tested on the different nodes.

� Video processing probe: The processing of video streams is a frequently
reoccurring application in a cross-organizational collaboration. Different
camera feeds may be shared in a cross-organizational collaboration, for
example to allow the monitoring of an industrial site via static cameras
and drones in case of an emergency situation. A screen sharing session is
another application which may be used to produce a video stream. For these
use cases, different video probes could be defined, e.g. a probe which pre-
processes a data source and encodes it according to a video coding standard,
and a probe which decodes the stream and does post-processing. These
probes could then be parametrized in a such a way that different codecs
could be applied, such as H.264/AVC and H.265/HEVC. As these video
probes will be CPU-intensive, it might also be possible to evaluate whether
a node supports parallelization through multithreading. Even more, it might

10 Van Hoye et al.

be possible to shift some calculations to the GPU and check which per-
formance improvements may be observed from GPU-enabled nodes in the
cluster. Note that, contrary to the generic probes, the measured execution
time of the probe provides additional insight in resource capabilities. For
example, it might be interesting to know how long it takes to encode a video
stream of ten seconds, using following command:

./encoder.exe --source cam01 --codec h.264 --time 10 --width 640 --

height 480 --output encoded.h264

� Data structure probe: Another frequently reoccurring application is a
data storage solution which allows a collection of data to be stored. This
data could for example be generated by a video source, a case which would
allow for a probing pipeline connecting a video probe with a data structure
probe. The collection may be a simple data dump, but mostly a more effi-
cient processing solution is needed. When the collection needs to be stored
according to a a specific structure, a data structure needs to be used. Well-
studied data structures are for example arrays, linked lists, (binary) search
trees and (binary) heaps. They only differ in their implementation of data
operations, such as an insertion, deletion, lookup, traversal, sorting, etc. and
corresponding asymptotic behaviors. This means that one data structure
could easily be swapped for another as long as an interface of functions is
implemented. Which structure needs to be chosen depends on which require-
ments need to be fulfilled, for example the performance of a lookup operation
may be more important to that of an addition operation. The performance
of these base operations may indicate how suitable a node is to assign and
deploy a data storage solution. Again, the absolute execution time of the
probe may be of interest here, for example to know how much data could
be processed by a single node. Note that both the volatile storage in mem-
ory and the persistent storage on disk could be analysed by this specific
probe. For the latter case, a tree could for example be written to a file, as
is illustrated for a binary search tree (BST) by the C code in Listing 1.

// Depth -first traversal to iterate tree with non -empty root
void traversalTree(node* root , funcptr func , meta* meta) {

if(root ->left) { traversalTree(root ->left , func , meta); }
func(root , meta);
if(root ->right) { traversalTree(root ->right , func , meta); }

}

// Probe function: write tree to disk
void storeTree(node* root , meta* meta) {

meta ->output = fopen("tree.txt", "w");
...
// displayNode serializes a tree node
traversalTree(root , displayNode , meta);
fclose(meta ->output);

}

Listing 1 A data structure probe should allow to evaluate disk performance of a node as
illustrated in this sample.

Van Hoye et al. 11

Fig. 3 The architecture needed to deploy the proposed probe swarm.

These probes focus specifically on the resource availability of nodes, but
they could also be extended to allow for the evaluation of specific network
links. In general, a network probe should allow for communication between
two pods hosted at different nodes in the cluster. The integration of such
a network probe would allow for more end-to-end based probing tests, for
example a video stream could first be pre-processed and encoded at Node X,
after which it is sent to Node Y, which then decodes and post-processes the
data. This way, it is possible to test whether the throughput of a network link
supports the bit rate of a corresponding video stream when it is encoded using
a certain parameter set, and whether certain quality of service metrics such
as the number of frames per second or signal-to-noise ratio can attain certain
wished-for levels.

4.2 Probe swarm architecture

This section will present the flow of a probe swarm architecture, more specifi-
cally the steps needed to integrate a probing solution into vanilla Kubernetes.
Figure 3 shows the different components. Of particular interest are the purple
colored components, because they represent the additional elements that are
needed to achieve the proposed goal. The cross-organizational collaboration
shown in the figure, illustrates the processing of three camera streams into two
relevant results for the case at hand, which are displayed on a dashboard under
supervision of the central operator. The steps discussed below assume the case
of a pod rescheduling situation caused by performance issues of a node in the
cluster.

1. The operator runs a monitoring pod in its own domain, which allows to
obtain a complete overview of the cross-organizational collaboration and
the corresponding Kubernetes cluster. This boils down to an overview of

12 Van Hoye et al.

all nodes and deployed pods, corresponding resource consumption metrics,
data flows between the individual organizations based on a logging solution
(e.g. like the one proposed by the authors [5]), and alerts by an alerting sys-
tem. When an application needed for the cross-organizational collaboration
shows issues related to quality of service, an operator may decide to resched-
ule the corresponding pod. This manual decision may further be supported
by automated bottleneck detection techniques, but the exact rescheduling
trigger does not immediately matter. In this example, a scheduling issue is
present at Node V, being one of the yellow nodes of Organization Y, which
will serve as an illustration in the remainder of this section.

2. The operator thus needs to find a solution to move the load of Node V. The
Processing pod, responsible for analysing the video stream, may put a too
heavy load on this particular node. The operator therefore marks this pod
as a candidate to be rescheduled, causing the corresponding YAML file to
be sent to the Kubernetes scheduler to be inserted in the pod scheduling
queue. Note that there is a dependency between the Processing pod and the
Post-processing pod. The operator will first wait for an alternative node to
be found for the Processing pod, after which the Post-processing pod can
easily be moved to this new destination node. Although this rescheduling
may not be necessary from a load perspective, it may be desirable to prevent
cross-domain interactions due to accompanying network latencies.

3. Each pending pod is then processed according to a scheduling profile [31].
Such a profile consists of a number of scheduling stages which each have
their extension point. Plugins implement either a single or multiple of
these extension points. This step represents the pass of the Processing pod
through the plugins belonging to the stages before the filtering stage.

4. The filtering stage is constituted of plugins which check for either soft or
hard requirements, for example affinity/anti-affinity rules, pod spreading
rules, pod resource requests, etc. The suggested probing solution is in fact an
additional filtering step, as only nodes with suited performance capabilities
should be considered for pod placement. A new scheduling profile should
thus be defined consisting of the stages and plugins as used in the default
scheduling profile, extended with a custom plugin as the last filtering step.
This custom scheduling profile is then available for those pods that require
a probe swarm intervention. The Kubernetes Scheduling Framework [32]
allows custom plugins, implementing an extension point interface, to be
compiled into the scheduler.

5. The custom plugin needs to invoke the monitoring backend of the oper-
ator using a webhook. This causes the considered pod and corresponding
filtered set of nodes to be registered in the monitoring system and conse-
quently to be presented to the operator. As the plugins in the filtering stage
may evaluate nodes concurrently [32], multiple invocations per pod may be
expected.

6. The response to the webhook invocation may be either a (1) request regis-
tered, response pending notification or (2) a further, by the probing solution,

Van Hoye et al. 13

filtered set of nodes. In the first case, the pod is marked as unschedulable
by the custom plugin. This causes the scheduling cycle to be aborted, after
which the pod is returned to the scheduling queue waiting for a consecu-
tive cycle to be initiated [32]. Steps 3-6 are thus repeated by the scheduler
as long as required. The final attempt is when the second case occurs, i.e.
when the scheduling process is able to continue to step 13 with the nodes
that passed the probing selection.

7. The operator then investigates the set of proposed nodes. A manual assess-
ment of the filtered set of nodes takes place. There are two possibilities for
the pod to be rescheduled:

(a) The operator tries to reschedule the pod within an organization, so called
intra-organization rescheduling. This approach may have advantages.
The pod was already allowed to be deployed in the domain, meaning that
a switch between nodes in the same domain would not take additional
verification time. Furthermore, nodes of the same organization may be
most nearby in the network, guaranteeing a more predictable continu-
ation of operation of the pod. Applying this to the discussed example,
the operator may first consider Node VI of the same Organization Y.
As this node has already offloaded the Processing pod to Node VII of
Organization Z, it is clear that this node should be skipped from probe
evaluation.

(b) The operator tries to reschedule across organizations, so called inter-
organization rescheduling. This means, again applied to the example,
that the operator should select Node III of the operator and Node VII
of Organization Z, assuming these nodes were indeed part of the filtered
set up to this point, together with the reference Node V, to be evaluated
by the probes.

This manual intervention may thus cause the set of potential nodes to
become smaller. It is important to note that node selection is focused on
finding an appropriate pod as quickly as possible. The goal is not to search
any further for a better scheduling decision, as it would become an optimi-
sation case for the entire cluster, which does not fit the ad hoc and rapidly
changing scenario discussed here. This also means that it is not needed to
run probes at each node, only at the selected nodes.

8. The types of probes and parameter sets selected by the operator need to
be pushed to the aggregator component. A series of commands which need
to be executed by the selected nodes are thus communicated in an asyn-
chronous way. Multiple different configurations may be tested over time,
enabling the operator to do some live probing.

9. The aggregator is responsible for the deployment of the probes, which are
pods themselves. The kubectl create command thus needs to be executed.
The default scheduling profile is applied to these pods, as probes should
be deployed without the intervention of a probe swarm. A probe pod con-
sists of a container which has all binaries required to probe available, and
has a process running which keeps the container alive. The aggregator is

14 Van Hoye et al.

then able to push commands, representing the probe executions, to such a
container and to obtain time measurements. The kubectl exec command
could for example be used by the aggregator to enable this. It is of utter-
most importance to note that a probe, once selected by the operator via
step 8, needs to be executed multiple times with a specified frequency, like
every ten seconds. This is needed to filter outliers from the time measure-
ments. This is the reason to keep the probe alive, as otherwise it would be
needed to deploy it multiple times, causing an unnecessary overhead for the
hosting node. The Processing pod in the example, may represent any video
processing step. Which kind of probe is selected by the operator, will thus
differ per case. It may range from the deployment of a generic probe to the
deployment of a more specific probe executing a computer vision algorithm.
The latter is a perfect example of a class of algorithms which could easily
be prepared in a probe catalogue. For example, when the processing of the
encoded video stream focuses on QR code detection, a probe may easily
simulate this as follows:

./cv.exe --lib opencv --module objdetect --class qrcodedetector --

function detect --input encoded.h264

10. It is possible to deploy multiple probe instances at a node. These probes may
be of the same type, for example multiple video encoders. Such a probing
intervention would allow to evaluate how many video streams could concur-
rently be encoded on a single node. The probes may also be of a different
type, for example a video probe and a data structure probe. These differ-
ent types may even be linked dynamically, for example when it is needed to
process video first and to store it afterwards. These interactions allow for
more complex probing solutions. Such dynamic links should be prepared as
well, to allow the operator to quickly link different probes together.

11. The time measurements are collected by the aggregator, and aggregated for
each probe. Aggregation takes place on a rolling basis, i.e. every measure-
ment cycle, the x-th percentile may for example be calculated and passed
to the operator. It should be possible for the operator to specify any custom
aggregation.

12. Based on both absolute measurements, in case more specific probes are
used, and relative differences in probe executions, the operator is able to
obtain on overview of the resource capabilities of the different nodes. A
weighted evaluation of probe results may be part of this assessment. The
operator then manually selects one or multiple nodes, which constitute the
new filtered set of nodes. This set of nodes is then passed as a response
to the webhook discussed in step 5-6, to allow the scheduling process to
progress.

13. The nodes are then further processed by the remaining scheduling stages.
Ranking the nodes based on different scoring criteria is the main goal of
this final evaluation. For example, nodes which already have the required
container image, may be favored. Finally, the most favored node is chosen

Van Hoye et al. 15

Fig. 4 An example use case to which the proposed probe swarm is applied.

and binding between pod and node takes place. This flow thus allows an
operator to manually intervene a scheduling operation, based on the deploy-
ment of probes, which inform the operator about the potentially unknown
underlying deployment cluster.

5 Evaluation

The case discussed in previous section can be simplified a bit, obtaining a
situation as shown in Figure 4. It defines a cross-organizational collaboration
between organizations X, Y, Z which is orchestrated by a central operator. An
evaluation is presented in this section to illustrate the potential of the proposed
probe mesh and to show to which performance improvements it could lead.
The goal for the operator is to reschedule one of the dark blue collaboration
pods. More specifically, the App-2 pod, which is deployed at Organization Y
initially, needs to be moved to another node, due to the reason explained in
the next paragraph.

The Kubernetes cluster used for this evaluation consists of homogeneous
nodes: each node is a virtual machine (VM) running Ubuntu 18.04 LTS and
is equipped with four vCPUs of an Intel Xeon E5645 2.4 GHz processor and
4 GiB of RAM. There are no hardware differences between the nodes, and no
additional background loads are deployed. To realize performance differences
between nodes, local resource limits are set, as explained in Section 3. These
limits, for now focusing on CPU and memory usage, are enforced by a hosting
organization, and are thus unknown to the operator. This way, a heterogeneous
cluster is realized, from the perspective of the operator. The local limits used
in this example are shown in the Figure. Organization Y, hosting Node IV,

16 Van Hoye et al.

applies a restrictive CPU limit to the containers in the collaboration pod,
as only one hundredth of a core may be consumed. This hurts performance
significantly, implying the need for a rescheduling. The set of candidate nodes
consists of Node II, III and V. Node VI is excluded from this set, as it already
hosts the App-1 pod, and for example an anti-affinity rule may require to put
both pods on different nodes to achieve certain crash fault-tolerance.

It is assumed that the collaboration pods considered here represent a stor-
age solution. A data structure probe, as suggested in Section 4, is thus selected
by the operator for this evaluation scenario. Assume further that the perfor-
mance of data lookups is crucial for the considered application. Therefore, a
balanced BST tree may be selected as data structure type, as it is known for
its relatively short lookup times. To obtain an idea of the relative performance
differences between nodes and to obtain an idea of the time it takes to store
a certain amount of data given the chosen data structure, it is sufficient to
create, and to free afterwards, such a balanced BST tree and to perform time
measurements. The following code fragment, written in C, shows how such a
probing solution could be defined.

// Node representation
typedef struct _node {

int id; char* data; struct _node* left , right;
} node;

// Probe part I
// Create a balanced BST with ’max’ nodes , each with ’bytes’ data
void createTree(node** root , int min , int max , int bytes) {

int id = (min + max) / 2;
// Insert a leaf by following path from the root
insertNode(root , id, bytes);
if (min == max) { return; }
if (id > min) { createTree(root , min , id - 1, bytes); }
createTree(root , id + 1, max , bytes);

}

// Probe part II
// Free dynamic memory occupied by all tree nodes
void freeTree(node* root);

Listing 2 A tree probe to capture the performance differences between nodes in the cluster.

The size of a tree node is equal to 32 bytes when the GCC compiler is used
on a 64 bit machine: 4 bytes for the ID integer plus 4 padding bytes, 8 bytes
for the data pointer, and 8 bytes for both the left and right child pointer.
The ID field ranges from 1 to N and is used to sort the items in the BST,
while the data field contains a string of D random alphanumerical characters.
Using this code, the operator could launch multiple short-lived tree probes
and experiment with different tree sizes, to obtain an overview of the perfor-
mance differences between the nodes in the candidate set. A strategy could
for example be to gradually intensify the probing experiment, by tuning the
dominant parameters N and D, to prevent a probe from having a too signifi-
cant impact on the performance of a node. The results of such an evaluation
are presented in Table 1. The experiments are executed using containers with
Ubuntu 18.04 image running a sleep process to keep the container alive. The

Van Hoye et al. 17

probe executable file and corresponding time measurements are then initiated
using the following command:

time -f %e ./tree.exe --type bst --balanced true --nodes N --data D

The table shows the sorted execution times of five probe cycles of the tree
probe at the different candidate nodes for six configurations of N and the size
of a single tree node S = 32 + D in bytes. Only the configurations for which
at least 100 MB needs to be allocated, based on the analysis of dynamic mem-
ory allocations, are evaluated. The reason for this is that smaller cases tend to
only show negligible performance differences, while larger cases are too large
for a 4 GiB RAM capacity. The obtained time measurements clearly match
with the ratios of the local CPU limits: compared with reference Node IV,
Node II executes about ten times quicker, Node III executes about five times
quicker, and Node V executes about hundred times quicker. This result is to
be expected from the evaluation setup presented here, but such an insight
is important for the operator in an unknown setup. Significant performance
increases may thus be gained when the App-2 pod would be rescheduled. The
deployment of the probe swarm furthermore shows that different candidate
nodes may be recommended for the different probe configurations. This thus
proves the need for probes, as it may be completely unclear for the opera-
tor which nodes will perform well under an unknown set of local settings. It
becomes clear that some probe pods are not able to finish their execution, as
their corresponding probe containers exceed the memory limits as defined by
the local administrator of the hosting organization. This causes them to be
terminated, more specifically to be out of memory (OOM) killed. The evalu-
ation also confirms that parameter settings should be increased gradually, as
suggested above. The probe executions for memory sizes larger than 100 MB
may already take around one minute or more for the probe to finish. A pos-
sibility to solve this issue partially, is to stop a running probe at a Node X
when its execution time significantly surpasses the one of an already finished
probe at a Node Y. When no probe finishes quickly, it is needed to specify an
upper limit on execution time. Finally, it is clear that when N increases, more
overhead is present. The N = 106, S = 32 B + 1 kB configuration needs more
time to execute and results in an extra OOM killed container, although the
data structure allocates roughly the same amount of dynamic memory as in
the N = 104, S = 32 B + 100 kB case.

The five probe measurements executed at each node, as presented in Table
1, are close to each other. This means that additional probe executions or cycles
would not lead to significantly different conclusions, as no varying deployment
conditions are considered. In a real scenario however, as already mentioned in
step 9 of Section 4.2, it may be that dynamic factors such as background loads
are present, causing probing results to vary and insights in the performance of
nodes to change. It is therefore crucial that multiple probe cycles are evaluated
over time. It is possible to illustrate this using a hypothetical scenario in which
a probe swarm is deployed on four nodes and the results of ten probe cycles

18 Van Hoye et al.

Table 1 Time measurements in seconds of tree probe executions at Nodes II, III, IV and
V for different configurations of N and S, which represent the number of tree nodes and
size of a tree node in orders of bytes respectively.

S: (32 + 10) B S: 32 B + 1 kB S: 32 B + 100 kB S: 32 B + 1 MB

N :
102

4.2 kB
�

RAM
capacity

103.2 kB
�

RAM
capacity

10.0 MB
�

RAM
capacity

100.0 MB

II: 3.9 4.1
4.1 4.2 4.3 s

III: 8.0 8.1
8.2 8.2 8.3 s

IV: 41.1 41.4
41.5 41.7 42.1 s

→ V: 0.4 0.4
0.4 0.4 0.4 s

N :
103

42 kB
�

RAM
capacity

1.0 MB
�

RAM
capacity

100.0 MB

II: 4.3 4.3
4.4 4.6 4.7 s

III: 8.4 8.4
8.5 8.5 8.7 s

IV: 42.5 42.7
42.8 43.1 44.5 s

→ V: 0.4 0.4
0.4 0.4 0.5 s

1.0 GB

→ II: 39.9 40.0
40.7 41.6 42.4 s

III: 80.4 80.8
81.8 82.1 84.2 s

IV: 414.4 417.2
418.6 428.6
429.7 s

V: OOM

N :
104

420 kB
�

RAM
capacity

10.3 MB
�

RAM
capacity

1.0 GB

→ II: 42.3 42.4
42.6 42.9 43.3 s

III: 85.5 85.6
87.4 87.4 87.6 s

IV: 443.0 444.8
444.8 445.4
446.7 s

V: OOM

10.0 GB
�

RAM
capacity

N :
105

4.2 MB
�

RAM
capacity

103.2 MB

II: 5.8 5.8
5.9 6.6 6.6 s

III: 11.8 12.2
12.2 12.5 12.7 s

IV: 61.6 62.0
62.2 62.5 62.6 s

→ V: 0.6 0.6
0.6 0.6 0.7 s

10.0 GB
�

RAM
capacity

100.0 GB
�

RAM
capacity

N :
106

42 MB
�

RAM
capacity

1.0 GB

II: OOM

→ III: 135.5
136.4 136.8

136.8 137.0 s

IV: 728.9 735.0
737.6 739.2
740.2 s

V: OOM

100.0 GB
�

RAM
capacity

1.0 TB
�

RAM
capacity

Van Hoye et al. 19

Fig. 5 The analysis of all probe cycles, suggesting the selection of Node B.

are gathered. The probe swarm measurements could and should be analyzed
in multiple ways depending on the situation at hand. Figures 5, 6 and 7 show
a possible evaluation under the assumption that it is needed to find the node
which is most likely to perform best. This results in a binary evaluation per
probe cycle, i.e. a node has the lowest probe execution time or not. Based on
this evaluation, it is possible to calculate for each node its share in fastest
probe executions. The three illustrations should be interpreted as follows:

� Figure 5: The default scenario is that of a weighted evaluation of all cycles,
for example using equal weights as shown here. Node C is not a candidate
node as it never has the fastest probe execution. A reason could be that this
node is lagging behind clearly, for example when a single probe execution
takes longer than the time between two consecutive probe cycles, causing it
to be excluded from further evaluation to speed up the evaluation process.
Given the observations after ten cycles, the operator may decide to choose
Node B as it has the highest chance of being the most performing one.
This result depends on a number of parameters such as the duration of
probing, the number of probing cycles and the weight distribution. The
number of required probing cycles could depend on the expected duration of
the application to be scheduled. When a longer-running job is considered, it
would be better to consider more probe cycles, as it provides a more reliable
historic view on node performance.

� Figure 6: Contrary, for shorter-running jobs, it is less valuable to take older
probe cycles into account, as the more recent node performance measure-
ments are more relevant. Only evaluating the latest three cycles is thus
another possibility. The operator would then select Node D in this example,
as this one shows promising results during the latest probe cycles.

� Figure 7: Additional criteria could be applied to the evaluation of the probe
cycles. It could be chosen, for example, that a node at cycle x is consid-
ered fastest only if it lowers execution time with > 30% compared with the

20 Van Hoye et al.

Fig. 6 The analysis of the latest three probe cycles, suggesting the selection of Node D.

Fig. 7 The analysis of all probe cycles, but with an extra condition, again suggesting the
selection of Node B.

fastest node up until cycle x−1. This way it is prevented that marginal per-
formance changes have a significant impact on the decision of the operator.
This would mean for the example that, although Node D suddenly shows
promising results during the latest probe cycles, its performance results are
only slightly better than those of Node B. It is therefore conceivable to just
ignore them, causing the operator to be more confident about the selection
of Node B.

This example makes clear that different data analyses are possible and that
there is not necessarily a single correct solution. Which scheduling decision
should be taken and which result it will bring depends on many factors. The
operator could for instance follow the strategy to pick the node which is most

Van Hoye et al. 21

likely to perform best based on probe input. However, this may be an expensive
node to schedule, in case costs are considered relevant in the collaboration.
Furthermore, it may not necessarily be needed to pick the top-performing node.
Imagine a video pipeline, for which the video processing probe is used. If it is
only required to be able to process 25 frames per second, it is unnecessary to
select any node for which probe evaluation shows a higher potential capacity,
assuming the nodes considered show a comparable stability over time. The
key message of this article is that probes are needed in a cross-organizational
setup to fuel these types of analyses. Without them, an operator would only
be able to perform limited analyses, and as such only gain limited insight in
the performance differences between nodes in the cluster.

6 Conclusion

Probes are needed in a cross-organizational cluster to allow an operator to
make ad hoc decisions on the placement of pods. There are simply too many
uncertain factors from the perspective of this operator, as the worker nodes
are managed by other organizations. Background loads may thus be present,
the state of underlying hardware may be (partially) unknown, and local per-
formance limits may be applied. These unique conditions in a dynamically
composed cluster require the intervention of a probe swarm. As discussed, dif-
ferent types of probes are possible, ranging from generic probes to copy probes,
and application-specific probes. The latter are perfectly suited to simulate
performance differences between nodes when typical cross-organizational appli-
cations are considered. A possible integration of these probes into the vanilla
Kubernetes scheduling pipeline is presented, allowing for proper rescheduling
of misplaced pods. This rescheduling is especially important for the case at
hand, as an ad hoc collaboration should not be delayed due to resource bot-
tlenecks. Finally, a set of probes based on a BST are deployed and evaluated
when local resource limits are applied to the container of the probe pod. It
shows that these limits, which are unknown to the scheduling operator, can
have a significant impact on the execution time and thus performance of the
proposed application-specific probe: rescheduling the pod may improve per-
formance with a factor five, ten or even hundred. Future work should focus on
bottleneck discovery of microservice applications, being it cross-organizational
services or not. There may be plenty of reasons for an application to under-
perform. Automatic mechanisms are thus required to trace application state,
for example using a (distributed) tracing framework like OpenTelemetry [33].
This may be a complex task to solve when a multitude of services interact with
each other. Based on gathered observations, it may be easier for an operator to
pinpoint reasons behind an application stall. One of these reasons may be the
misplacement of an application within the cluster, triggering the deployment
of a probe swarm in the case of a cross-organizational setup.

Acknowledgments. The work described in this paper, was partly funded
by the FUSE research project [2], in which a Flexible federated Unified Service

22 Van Hoye et al.

Environment was investigated. The project was realized in collaboration with
imec. Industry project partners were Barco, Axians and e-BO Enterprises,
with project support from VLAIO (Flanders Innovation & Entrepreneurship).

References

[1] Kubernetes. https://kubernetes.io. Accessed March 1 2022.

[2] FUSE: Flexible federated Unified Service Environment. https://www.
imec-int.com/en/what-we-offer/research-portfolio/fuse. Accessed March
1 2022

[3] Goethals, T., Kerkhove, D., Van Hoye, L., Sebrechts, M., De Turck, F.,
Volckaert, B.: Fuse: A microservice approach to cross-domain federation
using docker containers. In: Proceedings - 9th International Conference on
Cloud Computing and Services Science (CLOSER), pp. 90–99. SciTePress,
Heraklion, Greece (2019). https://doi.org/10.5220/0007706000900099

[4] Wickboldt, J.A., Guerreiro, M.Q., Granville, L.Z., Gaspary, L.P., Schwarz,
M.F., Guok, C., Chaniotakis, V., Lake, A., MacAuley, J.: Meican: Simpli-
fying dcn life-cycle management from end-user and operator perspectives
in inter-domain environments. IEEE Communications Magazine 56(1),
179–187 (2018). https://doi.org/10.1109/MCOM.2017.1601205

[5] Van Hoye, L., Wauters, T., De Turck, F., Volckaert, B.: Trustful ad
hoc cross-organizational data exchanges based on the hyperledger fabric
framework. Int J Network Mgmt 30(6), 2131 (2020). https://doi.org/10.
1002/nem.2131

[6] Van Hoye, L., Wauters, T., De Turck, F., Volckaert, B.: A secure
cross-organizational container deployment approach to enable ad hoc col-
laborations. Int J Network Mgmt, 2194 (2021). https://doi.org/10.1002/
nem.2194

[7] Medel, V., Tolón, C., Arronategui, U., Tolosana-Calasanz, R., Bañares,
J.Á., Rana, O.F.: Client-side scheduling based on application charac-
terization on kubernetes. In: Proceedings - 14th International Confer-
ence on Economics of Grids, Clouds, Systems and Services (GECON),
pp. 162–176. Springer, Biarritz, France (2017). https://doi.org/10.1007/
978-3-319-68066-8 13

[8] Rattihalli, G., Govindaraju, M., Lu, H., Tiwari, D.: Exploring poten-
tial for non-disruptive vertical auto scaling and resource estimation in
kubernetes. In: Proceedings - IEEE 12th International Conference on
Cloud Computing (CLOUD), pp. 33–40. IEEE, Milan, Italy (2019). https:
//doi.org/10.1109/CLOUD.2019.00018

https://kubernetes.io
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://doi.org/10.5220/0007706000900099
https://doi.org/10.1109/MCOM.2017.1601205
https://doi.org/10.1002/nem.2131
https://doi.org/10.1002/nem.2131
https://doi.org/10.1002/nem.2194
https://doi.org/10.1002/nem.2194
https://doi.org/10.1007/978-3-319-68066-8_13
https://doi.org/10.1007/978-3-319-68066-8_13
https://doi.org/10.1109/CLOUD.2019.00018
https://doi.org/10.1109/CLOUD.2019.00018

Van Hoye et al. 23

[9] Zhong, Z., Buyya, R.: A cost-efficient container orchestration strategy
in kubernetes-based cloud computing infrastructures with heterogeneous
resources. ACM Trans. Internet Technol. 20(2), 1–24 (2020). https://doi.
org/10.1145/3378447

[10] Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Resource provisioning
in fog computing: From theory to practice. Sensors 19(10), 2238 (2019).
https://doi.org/10.3390/s19102238

[11] Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Towards delay-
aware container-based service function chaining in fog computing. In:
Proceedings - IEEE/IFIP Network Operations and Management Sympo-
sium (NOMS), pp. 1–9. IEEE, Budapest, Hungary (2020). https://doi.
org/10.1109/NOMS47738.2020.9110376

[12] Rossi, F., Cardellini, V., Lo Presti, F., Nardelli, M.: Geo-distributed
efficient deployment of containers with kubernetes. Computer Communi-
cations 159, 161–174 (2020). https://doi.org/10.1016/j.comcom.2020.04.
061

[13] Townend, P., Clement, S., Burdett, D., Yang, R., Shaw, J., Slater, B.,
Xu, J.: Invited paper: Improving data center efficiency through holistic
scheduling in kubernetes. In: Proceedings - IEEE International Confer-
ence on Service-Oriented System Engineering (SOSE), pp. 156–15610.
IEEE, San Francisco, CA, USA (2019). https://doi.org/10.1109/SOSE.
2019.00030

[14] Rocha, I., Göttel, C., Felber, P., Pasin, M., Rouvoy, R., Schiavoni,
V.: Heats: Heterogeneity-and energy-aware task-based scheduling. In:
Proceedings - 27th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), pp. 400–405. IEEE,
Pavia, Italy (2019). https://doi.org/10.1109/EMPDP.2019.8671554

[15] Topology Aware Scheduling. https://github.com/
kubernetes-sigs/scheduler-plugins/tree/master/kep/
119-node-resource-topology-aware-scheduling. Accessed March 1 2022.

[16] El Haj Ahmed, G., Gil-Castiñeira, F., Costa-Montenegro, E.: Kubcg: A
dynamic kubernetes scheduler for heterogeneous clusters. Software: Prac-
tice and Experience 51(2), 213–234 (2021). https://doi.org/10.1002/spe.
2898

[17] Vaucher, S., Pires, R., Felber, P., Pasin, M., Schiavoni, V., Fetzer, C.: Sgx-
aware container orchestration for heterogeneous clusters. In: Proceedings
- IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), pp. 730–741. IEEE, Vienna, Austria (2018). https://doi.org/
10.1109/ICDCS.2018.00076

https://doi.org/10.1145/3378447
https://doi.org/10.1145/3378447
https://doi.org/10.3390/s19102238
https://doi.org/10.1109/NOMS47738.2020.9110376
https://doi.org/10.1109/NOMS47738.2020.9110376
https://doi.org/10.1016/j.comcom.2020.04.061
https://doi.org/10.1016/j.comcom.2020.04.061
https://doi.org/10.1109/SOSE.2019.00030
https://doi.org/10.1109/SOSE.2019.00030
https://doi.org/10.1109/EMPDP.2019.8671554
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/119-node-resource-topology-aware-scheduling
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/119-node-resource-topology-aware-scheduling
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/119-node-resource-topology-aware-scheduling
https://doi.org/10.1002/spe.2898
https://doi.org/10.1002/spe.2898
https://doi.org/10.1109/ICDCS.2018.00076
https://doi.org/10.1109/ICDCS.2018.00076

24 Van Hoye et al.

[18] KEP - Trimaran: Real Load Aware Scheduling. https://
github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/
61-Trimaran-real-load-aware-scheduling. Accessed March 1 2022.

[19] Tzenetopoulos, A., Masouros, D., Xydis, S., Soudris, D.: Interference-
aware orchestration in kubernetes. In: Proceedings - International Confer-
ence on High Performance Computing, pp. 321–330. Springer, Frankfurt,
Germany (2020). https://doi.org/10.1007/978-3-030-59851-8 21

[20] Menouer, T.: Kcss: Kubernetes container scheduling strategy.
J Supercomput 77, 4267–4293 (2021). https://doi.org/10.1007/
s11227-020-03427-3

[21] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for
data-intensive serverless edge computing. Future Generation Computer
Systems 114, 259–271 (2021). https://doi.org/10.1016/j.future.2020.07.
017

[22] Delgado, P., Didona, D., Dinu, F., Zwaenepoel, W.: Job-aware scheduling
in eagle: Divide and stick to your probes. In: Proceedings - Seventh ACM
Symposium on Cloud Computing, pp. 497–509. Association for Comput-
ing Machinery, Santa Clara, CA, USA (2016). https://doi.org/10.1145/
2987550.2987563

[23] Bayer, T., Moedel, L., Reich, C.: A fog-cloud computing infrastructure
for condition monitoring and distributing industry 4.0 services. In: Pro-
ceedings - 9th International Conference on Cloud Computing and Services
Science (CLOSER), pp. 233–240. SciTePress, Heraklion, Greece (2019).
https://doi.org/10.5220/0007584802330240

[24] Kubernetes 1.19.16 - noderesources/fit.go. https://github.com/
kubernetes/kubernetes/blob/v1.19.16/pkg/scheduler/framework/
plugins/noderesources/fit.go#L230. Accessed March 1 2022.

[25] Nodes - Resource capacity tracking. https://kubernetes.io/docs/
concepts/architecture/nodes/#node-capacity. Accessed March 1 2022.

[26] Reserve Compute Resources for System Daemons - Node Allo-
catable. https://kubernetes.io/docs/tasks/administer-cluster/
reserve-compute-resources/#node-allocatable. Accessed March 1 2022.

[27] Nodes - Info. https://kubernetes.io/docs/concepts/architecture/nodes/
#info. Accessed March 1 2022.

[28] Docker - Runtime options with Memory, CPUs, and GPUs. https://
docs.docker.com/config/containers/resource constraints. Accessed March
1 2022.

https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/61-Trimaran-real-load-aware-scheduling
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/61-Trimaran-real-load-aware-scheduling
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/61-Trimaran-real-load-aware-scheduling
https://doi.org/10.1007/978-3-030-59851-8_21
https://doi.org/10.1007/s11227-020-03427-3
https://doi.org/10.1007/s11227-020-03427-3
https://doi.org/10.1016/j.future.2020.07.017
https://doi.org/10.1016/j.future.2020.07.017
https://doi.org/10.1145/2987550.2987563
https://doi.org/10.1145/2987550.2987563
https://doi.org/10.5220/0007584802330240
https://github.com/kubernetes/kubernetes/blob/v1.19.16/pkg/scheduler/framework/plugins/noderesources/fit.go#L230
https://github.com/kubernetes/kubernetes/blob/v1.19.16/pkg/scheduler/framework/plugins/noderesources/fit.go#L230
https://github.com/kubernetes/kubernetes/blob/v1.19.16/pkg/scheduler/framework/plugins/noderesources/fit.go#L230
https://kubernetes.io/docs/concepts/architecture/nodes/#node-capacity
https://kubernetes.io/docs/concepts/architecture/nodes/#node-capacity
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable
https://kubernetes.io/docs/concepts/architecture/nodes/#info
https://kubernetes.io/docs/concepts/architecture/nodes/#info
https://docs.docker.com/config/containers/resource_constraints
https://docs.docker.com/config/containers/resource_constraints

Van Hoye et al. 25

[29] Hashman, E.: New in Kubernetes v1.22: alpha support for
using swap memory. https://kubernetes.io/blog/2021/08/09/
run-nodes-with-swap-alpha (2021). Accessed March 1 2022.

[30] Bellard, F.: TachusPI Documentation. https://bellard.org/pi/pi2700e9/
readme.html (2009). Accessed March 1 2022.

[31] Scheduler Configuration. https://kubernetes.io/docs/reference/
scheduling/config. Accessed March 1 2022.

[32] Scheduling Framework. https://kubernetes.io/docs/concepts/
scheduling-eviction/scheduling-framework. Accessed March 1 2022.

[33] OpenTelemetry. https://opentelemetry.io. Accessed March 1 2022.

Laurens Van Hoye is a PhD student in the Internet Technology and Data
Science Lab (IDLab) of Ghent University, Belgium and imec. He graduated
as a Master of Science in Computer Science Engineering in 2017 from the
same university. His PhD, which is supervised by Prof. Filip De Turck and
Prof. Bruno Volckaert, focuses on cloud-based research topics, such as dis-
tributed and decentralized systems, containerization and orchestration, and
authentication and authorization services.

Tim Wauters obtained his M.Sc. and PhD degrees in electro-technical engi-
neering from Ghent University in 2001 and 2007 respectively. He has been
working as a post-doctoral fellow of the F.W.O.-V. in the Department of Infor-
mation Technology (INTEC) at Ghent University, and is now also active as
a senior researcher at imec. His main research interests focus on design and
management of networked services, covering multimedia distribution, cyber-
security, big data and smart cities. His work has been published in more than
150 scientific publications.

Bruno Volckaert is professor cloud and advanced software engineering in
the Department of Information Technology (INTEC) at Ghent University
in collaboration with imec. His current research deals with scalable, reliable
and high performance distributed software systems for a.o. Smart Cities and
industry4.0, SOLID, scalable cybersecurity detection and mitigation architec-
tures and autonomous optimization of cloud-edge-fog-based applications. He
is author or co-author of more than 180 peer-reviewed papers published in
international journals and conference proceedings.

Filip De Turck leads the Network and Service Management Research Group,
Department of Information Technology, Ghent University–imec, Belgium. He
(co) authored over 450 peer reviewed articles. His research interests include
network and service management and the design of efficient virtualized net-
works. He serves as the Chair for the IEEE Technical Committee on Network

https://kubernetes.io/blog/2021/08/09/run-nodes-with-swap-alpha
https://kubernetes.io/blog/2021/08/09/run-nodes-with-swap-alpha
https://bellard.org/pi/pi2700e9/readme.html
https://bellard.org/pi/pi2700e9/readme.html
https://kubernetes.io/docs/reference/scheduling/config
https://kubernetes.io/docs/reference/scheduling/config
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework
https://opentelemetry.io

26 Van Hoye et al.

Operations and Management (CNOM) and a TPC for many network and
service management conferences.

	Ad hoc pod rescheduling in a cross-organizational cluster
	Related Work
	Necessity of probes in a cross-organizational context
	Probe swarms enabling pod rescheduling
	Probes as performance indicators
	Probe swarm architecture

	Evaluation
	Conclusion
	Acknowledgments

