
����������
�������

Citation: Halili, R.; BinLam, N.;

Yusuf, M.; Tanghe, E.; Joseph, W.;

Weyn, M.; Berkvens, R. Vehicle

Localization Using Doppler Shift and

Time of Arrival Measurements in a

Tunnel Environment. Sensors 2022, 22,

847. https://doi.org/10.3390/

s22030847

Academic Editors: Raffaele Bruno,

Leopoldo Angrisani, Nikos Fotiou,

Ismail Butun

Received: 23 December 2021

Accepted: 17 January 2022

Published: 22 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Vehicle Localization Using Doppler Shift and Time of Arrival
Measurements in a Tunnel Environment

Rreze Halili 1 , Noori BniLam 1 , Marwan Yusuf 2 , Emmeric Tanghe 2 , Wout Joseph 2 , Maarten Weyn 1

and Rafael Berkvens 1,*
1 IMEC-IDLab, University of Antwerp, Sint-Pietersvliet 7, 2000 Antwerp, Belgium;

rreze.halili@uantwerpen.be (R.H.); noori.bnilam@uantwerpen.be (N.B.);
maarten.weyn@uantwerpen.be (M.W.)

2 IMEC-WAVES, Ghent University, Technologiepark-Zwijnaarde 126, 9052 Gent, Belgium;
marwan.yusuf@ugent.be (M.Y.); emmeric.tanghe@ugent.be (E.T.); wout.joseph@ugent.be (W.J.)

* Correspondence: rafael.berkvens@uantwerpen.be

Abstract: Most applications and services of Cooperative Intelligent Transport Systems (C-ITS) rely
on accurate and continuous vehicle location information. The traditional localization method based
on the Global Navigation Satellite System (GNSS) is the most commonly used. However, it does
not provide reliable, continuous, and accurate positioning in all scenarios, such as tunnels. There-
fore, in this work, we present an algorithm that exploits the existing Vehicle-to-Infrastructure (V2I)
communication channel that operates within the LTE-V frequency band to acquire in-tunnel vehicle
location information. We propose a novel solution for vehicle localization based on Doppler shift
and Time of Arrival measurements. Measurements performed in the Beveren tunnel in Antwerp,
Belgium, are used to obtain results. A comparison between estimated positions using Extended
Kalman Filter (EKF) on Doppler shift measurements and individual Kalman Filter (KF) on Doppler
shift and Time of Arrival measurements is carried out to analyze the filtering methods performance.
Findings show that the EKF performs better than KF, reducing the average estimation error by 10 m,
while the algorithm accuracy depends on the relevant RF channel propagation conditions and other
in-tunnel-related environment knowledge included in the estimation. The proposed solution can be
used for monitoring the position and speed of vehicles driving in tunnel environments.

Keywords: RF; localization; GNSS; tunnel; C-ITS

1. Introduction

The Global Navigation Satellite System (GNSS) is the most widely used technology for
vehicle positioning or localization. However, GNSS requires an unobstructed line of sight
to satellites, which makes it impossible to use in obstructed areas, such as tunnels, urban
canyons, and other indoor environments [1]. To overcome these obstructions, a number of
studies have considered the use of communication technologies opportunity signals as an
alternative or a complement to GNSS regarding localization.

As concluded in our previous work [2], the localization accuracy obtained when using
vehicular communication technologies depends on the bandwidth, received signal-to-
noise ratio (SNR), frequency, maximum transmitted power, geometric position of ground
stations, etc. This can be a challenging situation since these technologies are designed to
provide quality communication links and not accurate localization. In addition, when the
environment is indoors, such as a tunnel, this becomes even more complex since the signal
propagation analysis used for communication in a tunnel are not straightforward.

1.1. Propagation in Tunnel Environments

Radio wave propagation in a tunnel strongly depends on the frequency [3]. From one
point of view, above a certain frequency, a tunnel-like environment can behave as a waveguide,
guiding the radio signal with the tunnel-defined structure and extending the communication
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range since the attenuation is much lower compared to free space, outdoor, or other indoor
environments [1]. On the other hand, the signal might suffer from strong periodic spatial
fading phenomena and have multipath propagation when it is obstructed and blocked from
the line-of-sight (LOS) transmission. In this situation, the transmission distance is reduced.

There has been a huge effort in terms of accurate mathematical modeling and mea-
suring campaigns to predict radio wave propagation in tunnels to ensure the good quality
of communication links and increase the channel capacity. These are useful for vehicular
networks, train applications, and even service and surveillance missions in both military
and civilian contexts [4–8]. Deterministic channel models for tunnels include waveguide
models, ray tracing models, and numerical methods for solving Maxwell’s equations in
tunnel environments [9]. These methods suffer from large computational complexity and
incomplete description of the propagation environment (scatterers, mobility, traffic, etc.).
On the other hand, analytical stochastic models that are obtained from measurements in
real traffic conditions describe the specific environment with less computational cost [9].
As the propagation is influenced by many factors (e.g., tunnel geometry, obstacles, nodes
setup, traffic), measurements in practical scenarios are required to characterize and model
the propagation in tunnels [10].

1.2. Localization In-Tunnel Environments

When it comes to the localization topic, propagation path losses and fadings, specif-
ically generation and detection of the known-geometry fading structures are useful for
elaboration of coverage maps, localization, and navigation inside tunnels [11–14]. An
appropriate choice of the antenna positions and periodic patterns, regarding fading over
distance, can enable one-dimensional localization by detecting the changes in the slope
of the received signal fadings, precisely by having the number of maxima and minima
encountered on the received signal wavelength [10–12,14]. However, the traffic condition
disturbs the propagating modes, making the pseudo-periods less clear than in empty
tunnels [10], and this causes localization errors. The presence of traffic, the number and
size of vehicles increase the signal attenuation and fluctuations too, especially close to
vehicles [15]. According to [16], in a typical situation when the distance is greater than 100
m, the localization accuracy will be degraded.

In addition, different localization algorithms and technologies are considered. Laser,
simultaneous localization, and mapping (SLAM) and Global Positioning System (GPS)
are commonly adopted for the localization of vehicles, and when GPS is not available in
tunnels, studies [17–19] make use of an environment static map to improve the SLAM
matching confidence. Inertial navigation systems (INS) are self-contained dead reckoning,
which use accelerometers and different sensors to provide dynamic information through
measurements from inertial measurement units (IMU). However, errors, scale factors, and
nonlinearity in sensor readings cause errors accumulating with time [20,21]. To bound
the accumulation of errors, INS is coupled with GNSS signals [20], yet in GNSS-denied
environments, accuracy improvement is possible for very short GNSS signal outages.
According to [22], when traveling at 100 km/h, the dead-reckoning system can estimate
the vehicle’s location for less than 30 s with an error bound of 10 m. Radar technology,
camera systems, laser scanners, and odometer sensors are also mentioned in different
studies [23]. However, because of noise and errors in sensors data, limited performance in
environments with low visibility, high cost, line of sight requirements between anchors and
agents, environmental pollution with radar signal, cumulative errors, etc., the accuracy of
the estimated position degrades the longer the estimation runs [4,21,24].

Therefore, Vehicular-to-Everything (V2X) communication technology is also exploited
to mitigate the positioning error when the GNSS signals are missing. Cellular network
technologies (UMTS, LTE, 5G) and wireless local network technologies (WiFi/WLAN,
Bluetooth, Ultra Wide Band (UWB), Zigbee, RFID, Dedicated Short Range Communication
(DSRC)) are considered. The provided accuracy depends on the number of base stations
and their positions, the bandwidth dedicated for localization, propagation conditions, etc.
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While coverage, deployment cost, and latency are other impact factors when choosing
between these cellular and wireless networks [25]. In addition, advanced positioning
techniques, such as proximity, triangulation of the received signals, and fingerprinting,
together with different filtering techniques, are used to improve in-tunnel localization
accuracy.

The performance limits of localization in outdoor urban and highway with LTE
networks are simulated in [26], using different bandwidth ranges from 20 to 100 MHz. The
study indicates that the bandwidth significantly enhances the positioning performance of
each network deployment. Similarly, the hybridization of GNSS and simulated LTE signals
to analyze localization performance in an urban scenario is performed in [27]. Different
studies require the synchronization and coverage of a number of LOS transmitter nodes
and consider the difference between Time of Arrival (ToA) measurements to perform the
receiver node position estimation using multilateration or trilateration [28–30].

Opportunistic use of vehicular ad-hoc networks (VANETs) has been proposed by many
studies as the smart solution to realize connections between vehicles and road infrastruc-
ture components required for many services, including accurate positioning. Kalman filter
(KF) and Extended Kalman filter (EKF) fed by measured Received Signal Strength (RSS),
ToA, Time Difference of Arrival (TDoA) [22,31], and Angle of Arrival (AoA) [32], have
been investigated to improve positioning performance. A combination between vehicles
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication, sensors, and
map information with the use of Unscented Kalman filter (UKF) for heading estimation
and a particle filter fed by V2V signal strength measurements is investigated in [33] to im-
prove localization performance. Particularly, ref. [34] presents a driverless experiment and
addresses the use of IEEE 802.11p V2V communication to provide inter-vehicle cooperation
in order to ensure a safe distance between vehicles.

RSS, ToA, TDoA, AoA, and their combination are considered in different studies [35–38].
According to [35], the combination of TDoA and AoA provides higher positioning accuracy
than RSS, but the cost is very high; thus, RSS is seen as a good candidate to meet the
requirements of precision considering the hardware cost. In [39], it has been noticed that
accuracy can be improved when modeling the localization uncertainty propagation, and
considering this result in motion planning can increase reliability.

1.3. Contribution

Adding more components to a tunnel for the purpose of vehicle localization, using
different technologies from the current solutions used for communication, and adding more
processing units to vehicles, causes more expenses and increases the system’s complexity.
Moreover, this approach adds the need for compatibility between different standards and
technologies and causes different delays, dependencies, problems, and uncertainties [40,41].
Thus, in this work, we use our previous studies and analysis on the non-stationary V2I
channel in the frequency band of LTE-V [10] to address vehicle localization in tunnels and
to show preliminary results on this matter.

The provided solution uses existing V2I communication architecture, so it uses one
single transmitter. First, we give attention to our result of the measurement campaign in
the Bervend tunnel in Belgium. Then, we focus on the use of the developed algorithm that
combines the GNSS initial position with the Doppler shift and ToA measurements to have
accurate vehicle location estimation and speed. To the best of the authors’ knowledge, most
of the consulted studies and most of the localization solutions are based on simulations.
In addition to this, most of the solutions need a dense network topology, rely on both
V2I and V2V communication, and sometimes require dedicated positioning protocols or
positioning reference signals [16,22,27,31,32]. Therefore, to have vehicle’s location and
speed information in a tunnel environment, we propose, I. a novel solution algorithm that
makes use of Doppler shift measurements obtained in the LTE-V frequency band from one
single transmitter; II. the proposed solution algorithm can also combine Doppler shift and
ToA measurements received from the same transmitter; III. the proposed solution algorithm
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performs physical layer signal processing of the existing C-ITS communication signals to
monitor the vehicle’s position and speed. To further improve the algorithm performance,
we use EKF and/or KF to mitigate the channel propagation effects. The results indicate
that the proposed algorithm accuracy depends on the channel propagation knowledge,
considered parameters, and motion model. The proposed solution can reduce the C-ITS
infrastructure cost and communication, as it can have an impact on the safety, reliability,
and efficiency of C-ITS applications and services.

The rest of the paper is organized as follows. We present the existing problem and
the proposed solution in Section 2. Section 3 provides measurements in real traffic con-
ditions and methodology, followed by two different filtering approaches presented in
Sections 4 and 5. Results, analysis, and performance evaluation of the algorithm in terms
of accuracy are presented in Section 6, followed by Section 7, concluding the paper.

2. Problem Formulation and Proposed Solution

The main objective of the C-ITS services is to enable new and enhanced automotive
use cases for improving road safety, reliability, efficiency, and make them environmen-
tally acceptable.

One of the most important use cases is considered driving inside of a tunnel envi-
ronment. As explained above, by the time a vehicle enters a tunnel, the GNSS data are
not available anymore, so the vehicle can not be localized. Since vehicle positioning is the
central enabler for C-ITS services and applications, it is important to identify and develop
new techniques to address this problem.

As an answer to this, we analyzed the potential use of communication between
vehicles and the tunnel infrastructure concretely, we used our previous analysis on the
V2I communication channel in the frequency band of the LTE-V radio interface [42] and
designed an in-tunnel localization algorithm that makes use of the existing C-ITS infras-
tructure, at the same time it can be used by C-ITS for location estimation. Therefore, V2I RF
signals are used for the location estimation of the vehicle.

C-ITS uses different technologies to enable communication between vehicles driving
on the road (Vehicle-to-Vehicle, V2V), vehicles with traffic signals and roadside infras-
tructure (Vehicle-to-Infrastructure, V2I and I2V), as well as with other road users. This
communication is used to share required awareness information related to each other’s
position, dynamics, and attributes [43]. The exchanged cooperative awareness information
is periodically transmitted as the Cooperative Awareness Message (CAM). According to
the standard, the CAM message format contains a header and a body. The CAM includes
information about the version, message identifier, generation time, ITS station ID and
type (mobile, public authority, private, etc.), reference position information (latitude, longi-
tude, elevation, and heading), and other accompanying CAM parameters, which can be
optionally included [43].

In addition to this, C-ITS defines the Decentralized Environmental Notification Mes-
sage (DENM) [44]. The periodic transmission of DENM messages over a specified area can
be used to provide notification information about the relevant environment or traffic events,
or road traffic conditions. This message, similar to CAM, contains a header and a body.
The DENM collects information about the version, message identifier and generation time,
the event type (e.g., vehicle breakdown, emergency situation, traffic jam), geographical
position of the event, destination area indicating the geographical area where the DENM
should be transmitted, transmission frequency of the DENM, etc. DENMs are disseminated
to a longer distance than CAMs.

Currently, all related information to geographical vehicle positions and areas of interest
are obtained using GNSS and IMU, which, as indicated above, are not available and accurate
in tunnel environments. In this regard, we see the use of existing communication between
V2I as a potential solution.

The construction, management, and processing of CAMs and DENMs are performed
by the Cooperative Awareness basic service (CA basic service) and are easily extendable for
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the support of other types of C-ITS services and future C-ITS applications [43]. Therefore,
we see these messages as potential candidates for the tunnel use case. In this work, we
assume to use DENM to notify vehicles about the presence of a tunnel on the road and
CAM to have communication between vehicles. Vehicles as the first C-ITS stations are
referred to as On-board Units (OBU), and road infrastructure within the tunnel as the
second C-ITS station is referred to as Road Side Unit (RSU). This existing communication is
used to know the position of the vehicles, their behavior, and to monitor their speed.

Vehicle Localization Algorithm Assumptions and Workflow

The main idea of the proposed localization algorithm is to combine the input parame-
ters obtained using RF measurements and GNSS data to have the initial vehicle position in
the area in front of the tunnel where the required GNSS signal strength is available. Then,
when the vehicle continues towards the tunnel, the localization algorithm relies on RF
measurements to continue providing position information in the areas where the GNSS
signal is not available anymore.

When the vehicle receives the first DENM notification indicating the presence of a
tunnel on the road, the vehicle system initiates the use of the localization algorithm, which
is used in a tunnel scenario. The localization algorithm runs within the vehicle and is based
on the following assumptions:

• The vehicle is moving in the defined lanes and has the OBU installed.
• When it enters the tunnel, there is no GNSS coverage, and the only communication

technology in place is the technology provided by the RSU.
• The position of the RSU, its IP address, together with the ID, are continuously updated

in the network. The network broadcasts this information to all vehicles driving in the
tunnel’s surrounding area using DENM notifications, indicating the tunnel’s presence
on the road.

• The received data by the application is authentic and includes security-related requirements.

The workflow of the steps that are considered for in-tunnel scenario location estimation
is presented in Algorithm 1. As seen in Algorithm 1:

1. If the OBU system receives a DEMN notification pointing towards a tunnel environ-
ment, the OBU system initiates the tunnel localization application, which starts to
collect and analyze the input data.

2. The tunnel localization application extracts the IP address, the ID, and the geo-location
of the RSU placed within the tunnel in which it will have to hand over and continue
V2I communication.

3. While the vehicle moves forward into the area covered by the network or RSU used in
the tunnel environment, the vehicle requests to join the network covered by the RSU
placed within the tunnel, which is assumed to cover the area at the entering zone of
the tunnel.

4. The vehicle sends a CAM notification to share its ID and the initialization of the
in-tunnel localization algorithm.

5. After successfully joining this network, the vehicle uses the localization application
timer. For every timestamp defined on the application, it obtains the RF signals
parameters and its current geo-location provided by GNSS.

6. Here the localization algorithm initiates the KF, explained in Sections 4 and 5. The
position obtained using the GNSS and RF propagation signals is used to know the
initial position of the vehicle.

7. The current position of the vehicle is saved in the algorithm database.
8. In the next received frame from the RSU (depending on the input frequency), the

vehicle receives a signal from which it extracts the RF channel information and
measures the required RF parameters explained in Section 3. The RF parameters
together with the initial position are used for position estimation, and this new
position is saved again in the database.
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9. This algorithm continues to estimate and update the position of the vehicle until the
vehicle arrives at the end of the tunnel and moves into the area outside the tunnel.

10. As soon as the vehicle passes the indoor tunnel environment and can rely on the GNSS
coverage for positioning, the status of the event changes, the localization algorithm
stops the timer and estimations, as it can send a CAM message notifying the RSU that
the vehicle passed the tunnel and the event is canceled.

Algorithm 1: Vehicle localization algorithm workflow used in tunnels environ-
ments.

Result: Vehicle location estimation
Start;
k_1, step 1;
while Vehicle receives the DENM message notification indicating the tunnel

environment. do
Listen for C-ITS message notifications;
Select the appropriate required RSU and hand over to continue V2I

communication; Send the required CAM notification to share the vehicle’s ID
and the initialization of the in-tunnel localization algorithm;

if GNSS signal is available then
Consider GNSS and LTE-V RF received signals;

else
Consider LTE-V RF received signal and the previous step
location information saved on the algorithm database;

end
Perform filtering and processing;
Predict the vehicle position—Equations (8) and (9);
Update and correct the prediction with real measurements—Equations (10)–(12);
Output the estimates—Equation (11);
Save the obtained result in the algorithm database;

end

3. Measurements and Methodology

In this section, we present the channel measurements performed in a tunnel envi-
ronment, followed by the analysis of the considered parameters for positioning using a
vehicular communication system.

3.1. Measurement Setup and Scenario

As presented in our previous work [10], we performed channel measurements in the
Beveren tunnel in Antwerp, Belgium. The measurement road segment starts at position R2
and continues until the end of the tunnel, marked with a teardrop-shaped location symbol.
It covers the entire Beveren tunnel (see Figure 1). The tunnel has double-way roads with
two rectangular tubes with a height of 5 m and a width of 10 m. Concrete blocks are placed
on all sides of the tunnel together with lights and pipes.

The transmitter Tx considered as the C-ITS station was placed within the tunnel to
ensure the V2I communication with the receiver Rx placed on the rooftop of a van carrying
the Rx inside. The measurements were performed using the MIMOSA radio channel
sounder [45], with an 80 MHz transmission bandwidth centered around a carrier frequency
of 1.35 GHz. The carrier frequency lies conveniently within the operating band of the LTE-
V standard [42] radio interface that supports V2I communications (named Uu-interface),
which operates in the licensed 2 GHz band (880–2690 MHz) [10]. The channel sounder
used for measurements provides samples of the continuous channel transfer function
(CTF); that is, time-varying and frequency selective h(t; f ). It identifies 819 frequency
bins over B = 80 MHz measured bandwidth for each snapshot, with a repetition time of
ts = 975.3 µs.
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Figure 1. The Beveren tunnel in Antwerp, Belgium. The vehicle travels from point R2 with a
speed of 90 km/h toward the end of the tunnel, marked with a teardrop-shaped location symbol.
©2021 Google.

For this measurement campaign, a single wideband omnidirectional antenna was
used at both Tx and Rx for the sounding signal, while we added 6 patch antennas at Rx
just for synchronization and detection enhancement. The data from the Tx antenna was
modulated onto the carrier using orthogonal frequency division multiplexing (OFDM).
Table 1 summarizes the technical configuration of the MIMOSA channel sounder used for
this measurement campaign [10].

Table 1. MIMOSA Channel Sounder Configuration.

Parameter Setting

Bandwidth 80 MHz
Center frequency 1.35 GHz

Tx and Rx polarization V (omni), V/H (patch)
Tx and Rx gain 2 dBi (omni), 7.4 dBi (patch)

Tx and Rx HPBW (patch) 120◦

OFDM symbol duration 81.92 µs
Minimum snapshot acquisition time 327.68 µs

Total recording time per trip 54 s

As shown in our previous work and Figure 1, the vehicle speed through the tunnel
was 90 km/h heading toward the Tx, then continuing on the second part of the tunnel,
moving away from the transmitter. The total trip time was 54 s. The measurements were
obtained using a snapshot repetition time of ts = 975.3 µs. We captured a number of
samples in the frequency domain with a maximum Doppler shift of 1/2ts = 512 Hz and a
minimum resolvable delay resolution of 12.5 ns. Following the approach presented in [46],
we performed various runs, and the required parameters were stored every 0.8 m over the
total considered segment.

3.2. Rf Propagation Analysis in Tunnels

Taking into consideration the fact that radio wave propagation in tunnel environments
is different compared to outdoor and other indoor environments, tunnels are considered a
complex environment for propagation analysis.

Tunnels behave as waveguides, which results in a longer communication range, but
the observed fading is higher and non-stationary. There are no feasible analytical models to
be used for electromagnetic wave propagation. Even in cases when the tunnel has very well-
defined and simple geometries (rectangular or circular cross-section), there are no available



Sensors 2022, 22, 847 8 of 20

solutions. Modal Theory and the Geometrical Optics Theory are the two most common
approaches. In Modal Theory, tunnels are modeled as oversized imperfect waveguides
with rectangular or circular geometry. The received field is the sum of the fields consisting
of a fundamental mode and several higher-order modes [47,48]. However, considering the
complexity and lack of flexibility of these approaches, they are not suitable for localization.
Thus, we investigate the chances of using different RF propagation parameters to check if
we can obtain acceptable localization results.

Therefore, we have used the information about varying statistical behavior for local
regions defined by M = 32 samples in time and N = 819 samples in frequency and
approximated as locally stationary. The approach is presented in the previous work [10].
As shown in [10], we constantly use the recorded Channel Transfer Function (CTF) to have
the discrete CTF as H[m; q] = H(ts ∗m; fs ∗ q) and incorporate the concept of windowing
on a defined frequency resolution fs = B/Q, and time index ts. The orthonormal 2-D
tapering windows are computed from K and L orthogonal tapers in the time and frequency
domains to have the discrete version of the local scattering function (LSF) multitaper-based
estimator proposed in [49]. This process provides multiple independent spectral estimates
from the measurements by estimating the spectrum of each individual taper. Averaging
over timely tapered spectra gives the total estimated power spectrum, which is used to
have the Doppler shift information.

3.2.1. Doppler Shift

Doppler effect reflects the frequency shift of a radio wave due to the relative motion
between the involved nodes (transmitter and receiver). This shift is directly proportional to
the velocity and direction of the motion of the nodes with respect to the direction of arrival
of the received wave [50,51]. If the node is moving in the direction of the transmitter node
or away from it, the shift is positive or negative. The same approach is used to compute
the user velocity by using the speed of satellites derived from the information contained in
broadcast or precise ephemeris [52]. Moreover, radar and sonar technologies use the same
signal characteristic for velocity estimation [53,54].

In our case, we use the Doppler shift caused by the downlink signal between the
transmitter within the tunnel and receiver to estimate the speed of the receiver placed on
the vehicle. As explained above, we use the LSF estimate per stationarity region to have
the Doppler shift. Then, in order to decrease the ambiguity, noise, propagation losses, and
other propagation effects, we use EKF and KF to improve the accuracy of the parameters.

3.2.2. Time of Arrival, TOA

ToA obtained using RF signals is used to estimate the time interval needed for a signal to
travel from one node to another [37]. The hardware in use, bandwidth, clocks synchronization,
multipath conditions, and complexity of the surrounding radio propagation environment has
a huge impact on the accuracy level, especially in harsh environments [55–57].

Vehicle position tracking using ToA of the LTE propagation signals has been analyzed
in many studies [28,29,55–58]. Most of the studies use a number of LOS transmitter nodes
and consider the difference between ToA measurements to perform the receiver node
position estimation using multilateration or trilateration.

We use the CTF mentioned above to compute the corresponding discrete channel
impulse response CIR. Then, ToA is obtained by considering the interval around the
maximum of the CIR [28,59]. Since, in our case, we use a single transmitter or RSU,
we apply the difference between successive ToA measurements, the difference between
successive distances between Tx and Rx to have information about the traveling distance
of the vehicle.

4. Extended Kalman Filter-Based In-Tunnel Tracking

The Doppler shift depends on the geometry between the transmitter and receiver, velocity
vectors, and is exposed to noise and multipath interference. As a result, the representative
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equation that expresses the relation between the observed frequencies and velocities is highly
nonlinear. To mitigate the effects of the channel and improve the positioning accuracy
provided by the Doppler shift measurements, we use Extended Kalman Filter (EKF).

EKF is an extension of the KF to nonlinear filtering problems [60], while the KF is
the closed-form solution to the Bayesian filtering equations for the filtering model, where
the dynamic and measurement models are linear Gaussian [60]. Both filtering approaches
are usually applied to model the systems that are characteristic of multiple inputs and
output parameters, considering both stationary and non-stationary situations [61]. The
filter consists of the initialization, prediction, and correction steps, for every input value,
and it uses linear stochastic difference equations to estimate values of interest [62].

In our case study, the position and the velocity of the vehicle in Cartesian coordinates
are represented by p = [x, y]T and v = [vx, vy]T , respectively. The vehicle drives towards the
transmitter placed in T = [xt, yt]T , and maintains a distance known as‖p− T‖ . The state of
the vehicle is given using position and velocity s = [pT , vT ]T .

The system equation that describes the motion model of the vehicle in time is given in
Equation (1). sk is a four-dimensional state variable s = [x, y, vx, vy]T , F is the state transition
matrix (see Equation (2)), and wk−1 is the process noise with a zero mean and Q covaraince
(see Equation (3)). The spectral density of the process noise is q = 0.5.

sk = Fsk−1 + wk−1. (1)

F =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

. (2)

Q = q


dt3/3 0 dt2/2 0

0 dt3/3 0 dt2/2
dt2/2 0 dt 0

0 dt2/2 0 dt

. (3)

In order to control the behavior of the motion model, we use Doppler shift measure-
ment data obtained on the current time step k. Here we add the measurement equation,
which relates the Doppler shift measurement zk to the state sk. zk is the measurement value
corrupted by additive zero-mean noise rk with Rk covariance caused by the environment
(see Equation (4)).

zk = hk(sk) + rk. (4)

In the measurement model, hk(sk) depends on the signal wavelength λ, the carrier
frequency f , the speed of light within the tunnel medium, the vehicle velocity, and the
position of the transmitter T[xt, yt] (see Equation (5)).

hk(sk) = vk
f
c
(s− T)
‖s− T‖ . (5)

The measurement model is nonlinear; thus, we use EKF, which uses first-order lin-
earization to turn a nonlinear problem into a linear one. According to [53], first-order
linearization of the nonlinear Doppler function is assumed to be sufficient when it is pos-
sible to have some assumptions for the considered scenarios. In the tunnel scenario, this
equation depends on the tunnel’s known physical limitations, the speed limit of the vehi-
cles, an accurate initialization of variables, and covariance matrices information about the
possible range of the required variables. Therefore, the measurement equation is linearized
around the current target state sk using Taylor series expansion (see Equation (6)).

zk = hk(sk) + rk ≈ hk(šk) +
∂hk
∂sk

(sk − šk) + rk. (6)
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We neglect the second-order terms, so the standard KF equations can be applied for
recursive state estimation. We use the Jacobian matrix Hk, which is the partial deviate of
the first term in Equation (6), and it shows how fast each output of the function is changing
along with each input value (see Equation (7)).

Hk =
∂h(šk)

∂sk
. (7)

As stated above, the first step of the KF is the prediction phase, which predicts the
current location of the vehicle based on the previous step and the process input. In our
case, the initial value s0, with a prior mean m0, and covariance P0, are provided by the
GNSS. Then the prediction step predicts the current location and velocity šk based on the
previous step ŝk−1 and F (see Equation (8)). The predicted covariance matrix P̌k depends on
the former value of covariance P̂k−1, F, and Qk−1 (see Equations (2) and (9)). In this work,
the check symbol (ˇ) above every parameter is used to indicate the prediction step results,
while the hat symbol (ˆ) shows the update/correction step results.

šk = Fŝk−1. (8)

P̌k = FP̂k−1FT + Qk−1. (9)

For the update step, we consider the measurements and follow Equations (10)–(12).
The Kalman gain K expressed in Equation (10) determines to what extent the prediction
šk should be corrected at time step k to have the estimated value ŝk, Equation (11). This
estimation/prediction error is the difference between the predicted value and the actual
measurement. Depending on the value of covariance measurement noise Rk, this gain gives
weight to the predicted or the measured value. A large value of Rk results in a small K,
which means that the predicted value does not reflect the measured one. On the contrary, if
Rk is small, it means that the measurements for the specific area are approximated with an
insignificant error value. Matrix Hk is expressed in Equation (7).

Note that Rk is often assigned as a constant based on the measurements’ accuracy.
However, in order to increase the accuracy, [63] suggests tuning the covariance by con-
sidering the difference between actual measurement and its estimated value using the
information available at step k, Equations (13) and (14). While in [64], the use of the pa-
rameter a is introduced, which puts weights on previous estimates of R, and it causes less
fluctuation of Rk.

We have considered constant and dynamic covariance values Rk for the analyses
performed in this work. In this work, the constant value of R is determined based on field
measurements performed in the tunnel. In addition to this, we consider different values of
R to analyze the impact the measurement variance has on the localization accuracy.

Kk = P̌k HT
k (Hk P̌k HT + Rk)

−1. (10)

ŝk = šk + Kk(yk − hk(šk)). (11)

P̂k = (I − Kk Hk)P̌k. (12)

ek = yk − hk(ŝk). (13)

Rk = E(ekeT
k ) + Hk P̌k HT

k . (14)

Rk = aRk−1 + (1− a)(ekeT
k + Hk P̌k HT

k ). (15)

5. Kalman Filter-Based In-Tunnel Tracking

To further investigate the positioning accuracy in a tunnel environment, we examine a
case in which we combined Doppler shift measurements and ToA measurements obtained
from the same transmitter.
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As shown above, in Section 3.2.2, ToA measurement or signal travel time indicates
the distance between the Tx (or RSU) and Rx (or OBU). Thus, we perform the difference
between two successive ToA measurements in a known and pre-defined time sample to
obtain the movement information of the Rx.

The speed obtained from Doppler shift measurements and distance obtained from
ToA measurements are estimated as two independent parameters and are used to have
the movement and heading of the vehicle or Rx while it moves through the tunnel. In
order to improve the algorithm performance and to limit the measurement ranges, we use
Kalman Filter (KF) fed by ToA measurements and KF fed by Doppler shift measurements,
respectively. The obtained results give us information on whether using a less complex
method that uses KF gives us comparable or better results than the above-presented method,
which uses EKF fed by Doppler shift measurements.

As in the previous case, for the motion model, we use the GNSS data to have the
initial distance d0 between Tx and Rx and the speed v0 of the vehicle (Rx). This information
is used to obtain the first error estimation and perform calibration when using travel
time measurements. In addition to this, the shape of the tunnel, the in-tunnel waveguide
signal propagation feature, and the defined angle range between Rx and Tx can be used to
improve the accuracy.

xk = xk−1 + ∆r sin φk−1

yk = yk−1 + ∆r cos φk−1
. (16)

In Equation (16), the position of the vehicle expressed using xk and yk depends on
the previous position xk−1 and yk−1, the traveled distance or range ∆r for the defined time
interval t, and the vehicle dynamic heading φk−1. The geometric range ∆r is equal to the
difference between two successive distances (dk−1 and dk) obtained from ToA measure-
ments. The vehicle dynamic heading φ is approximately equal to its tangent to the trajectory
curve when moving on the road [65]. Considering the fact that the dynamic heading of the
vehicle cannot be changed abruptly as it moves on a road, since it has some limits, and
adding here the fact that these heading limits become even more relevant within a tunnel
environment, the heading of the vehicle can be determined using the historical trajectory
curve. Therefore, in our case, we use the past estimated positions xk−1 and yk−1 of the
vehicle to determine the upcoming heading for time or step k. The relationship between
attitude and delta position and the followed approach is found in [65].

To have an accurate travel distance ∆r that is the difference between two successive
ToAs multiplied with the speed of light, we consider KF. In this case, the state vector šk
(17) is the distance between the transmitter and receiver. F is the state transition constant,
which relates the present state šk of the distance to its previous state ŝk−1. Since the distance
parameter is a one-dimensional value, F is equal to 1.

šk = Fŝk−1 ± Buk−1. (17)

Parameter B in Equation (17) associates the control input parameter u to the distance
value or state, thus B is the time interval considered for the next estimation, and u is the
speed parameter. The sign in Equation (17) is “+” when the Rx is approaching the Tx
so the Doppler shift is positive, and is “−” when the Doppler shift is negative. Further
explanations about the inclusion of the Doppler shift in this model are given below.

In order to include the impact of noises and traffic changes, we consider the process
noise covariance Q (Q = 0.5), thereby obtaining the covariance matrix P̌k, (see Equation (18)).

P̌k = FP̂k−1FT + Q. (18)

ToA real data measurements zk are considered for the correction step, Equations (19)–(21).
H is the transformation constant that relates the predicted state or distance šk to measurements,
and it is reciprocal of the speed of light H = (1/c). The obtained measurements include noise
or uncertainty with a covariance value of R, which is determined based on the measurements
performed in the tunnel. The Kalman gain K, expressed in Equation (19), has the same role
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as presented above and determines to what extent the predictions should be corrected in the
time step k.

Kk = Pk HT(HP̌k HT + R)−1. (19)

ŝk = šk + K(zk − Hšk). (20)

P̂k = (I − Kk H)P̌k. (21)

The control input u in Equation (17) is the speed of the vehicle v, which, as previously
mentioned, is estimated independently from the above ToA filtering process. For this
parameter, we use KF fed by Doppler shift measurements. In this case, we ignore the
nonlinearity considered in Section 4. To reduce redundancy in equations, we refer to the
above general expressions of KF to explain the filtering and processing steps we followed
for vehicle speed estimation.

We use the state vector šk (17) to present the speed of the vehicle, while F is equal to 1
and relates the present state šk of the speed to its previous state ŝk−1. Parameter B is equal
to zero. Similarly, the impact of noises and traffic changes are presented using process
noise covariance Q and covariance matrix P̌k (see Equation (18)). We assume a constant Q
(Q = 0.5) and initiate a P0 value characteristic for the speed parameter.

We consider Doppler shift measurements for the correction step, Equations (19)–(21).
H is the transformation constant (H = ( f /c)), which relates the predicted state of the speed
šk with the measurements, while the covariance R is determined based on the Doppler shift
measurements performed in the tunnel. The Kalman gain K, expressed in Equation (19),
has the same role as presented above.

At the time t0, the vehicle speed and distance are initiated using GNSS (v0 and d0).
Then, for the next step, we use KF fed by Doppler shift measurements to estimate the speed
parameter v. Further, this estimated speed value is included in the Equation (17) as the
control input of the motion model to have the distance d, which is observed and filtered
using KF fed by ToA measurements.

To compare the estimation accuracy of the speed values obtained using KF fed by
Doppler shift measurements (presented in this section) and the speed values obtained
using EKF fed by Doppler shift measurements (presented in Section 4), we investigate the
third case when we use KF on ToA measurements for the heading estimation and EKF on
Doppler shift measurements for speed estimation.

6. Results and Analysis

The main purpose of this work was to evaluate and analyze the performance of the
in-tunnel vehicle localization algorithm in terms of the provided accuracy. We use the
estimation error to obtain the required information about the accuracy. The estimation
error is defined as the difference between the true trajectory followed by the vehicle and the
resulting trajectory obtained using three different approaches. When the location estimate
is performed using EKF fed by Doppler shift measurements (as described in Section 4),
we consider this as the first approach and we referred to it as EKF DS. When using KF on
individual Doppler shift and ToA measurements (as described in Section 5), we consider
this as the second approach, and we refer to it as KF DS and ToA. The third approach is
considered as the combination of the previous two, and we referred to it as EKF DS and
KF ToA.

For the performance analysis, we examine the minimum, maximum, average, and
standard deviation of the estimation error. Furthermore, we use the Root Mean Square Error
(RMSE) to include information for the most significant estimation errors or higher deviations
from the observed values. By considering these indicators, we have a complete picture of the
estimation error distribution while the vehicle is driving inside the tunnel. In addition to this,
we consider different values of measurement noise covariance to observe and monitor the
algorithm dependency on the V2I channel measurements and the considered motion model.
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The V2I channel measurements performed in the Beveren tunnel in Antwerp are
shown in Figure 2. Figure 2 shows the Power Delay Profile (PDP) and Doppler Power
Profile (DPP). These results are obtained when integrating the LSF over the Doppler and
delay domains [10]. As noticed in the figure, the delay decreases as Rx approaches Tx with a
positive Doppler shift, then after crossing the Tx position, the delay starts increasing again,
and the Doppler shift becomes negative. In both figures, several multipath components
from fixed scatterers can be observed where the received power is higher (the part where
Doppler shifts is between +/−100) and the components resulting from moving scatterers
in the same movement direction have different Doppler shifts that are more consistent,
depending on their relative speed and position [10].
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Figure 2. Time-varying (a) Power Delay Profile (PDP) and (b) Doppler Power Profile (DPP) for the
scenario of crossing Tx at the known position with a constant speed of 90 km/h [10].

The maximum measured Doppler shift is used to obtain the speed of the vehicle and
then, as indicated above, to know the position of the vehicle. Moreover, ToA is used to
know the distance between Tx and Rx and then use the difference between successive
distances to know the road segment passed by the vehicle.

Figure 3 shows the difference between the estimated positions and the true positions of
the vehicle while traveling in the tunnel environment. In Figure 3a the true trajectory results
are compared with the ones obtained using EKF DS, KF DS and ToA, and the combination
of EKF DS and KF ToA, on the xy-plane. These xy-plane values are a transform of the
geodetic coordinates specified by latitudes, longitudes, and height to the local north, east,
and down Cartesian coordinates specified by xNorth, yEast, and zDown.

The calculated distance between Rx and Tx is shown in Figure 3b. The results in
Figure 3b are related to Figure 2. While the vehicle approaches the transmitter near the
second 37, the distance between Tx and Rx becomes shorter, and the number of scatters
and noise is lower too, so we find higher accuracy for the speed and velocity estimation. In
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this part, the Doppler shift provides better results for the required parameters, similar to
how the ToA estimation provides better accuracy. Therefore, the error tends to decrease
(see Figure 3c); however, the cumulative error of the vehicle moving toward the Tx has an
impact on the resulted estimation error in this part of the journey. When the vehicle Rx
passes the Tx and continues its drive toward the exit of the tunnel, the distance between Rx
and Tx increases, while the estimation error tends to decrease; however, the cumulative
error on the continually existing Tx–Rx driving distance has its impact.
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Figure 3. (a) True and estimated vehicle trajectory, (b) Distance between transmitter and receiver, and
(c) Estimation error, when using Extended Kalman Filter on Doppler measurements (EKF DS), Kalman
Filter on individual time and Doppler measurements (KF DS and ToA), and the combination of two
previous approaches (EKF DS and KF ToA), while the vehicle is driving in the tunnel environment.
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The estimation error is shown in Figure 3c. As we can see at the entrance of the tunnel,
the vehicle position is known and is considered as the initial position, so the error is a
minimum of 0 m for all three approaches used in the comparison study. Moving towards
the tunnel, the error increases because of several multipath components from scatterers,
NLOS conditions, traffic density, and accumulated error on existing Tx-Rx driving distance,
reaching the maximum value of 35.88 m when EKF DS is used, 51.39 m when KF DS and
ToA are used, and 38.06 m when EKF DS and KF ToA are used.

Comparing the results obtained when using EKF DS, KF DS, and ToA, and their
combination as EKF DS and KF ToA shows that the EKF DS provides better accuracy. The
EKF DS estimation errors values vary between 0 and 35.88 m. The mean value is 20.30 m
and the standard deviation is 11.04 m. While for the case when KF is used on ToA and
Doppler shift measurements (KF DS and ToA), the estimation error values vary between 0
(minimum value) and 51.39 m (maximum estimation error value). Its mean value is 30.46 m
and the standard deviation is 13.27 m. In the third case (EKF DS and KF ToA), the error
values vary between 0 and 38.06 m , while 21.04 m is the average value with a standard
deviation of 12.66 m. Similar results were observed when comparing the RMSE for the
three cases. When using EKF DS, the RMSE value is 23.11 m, while when using EKF DS
and KF ToA the RMSE value is 24.55 m. The highest RMSE value is obtained when using
KF DS and ToA, 33.22 m.

The results indicate that the EKF used on the measured Doppler shift within the
tunnel can follow the movement of the vehicle better compared to KF when using Doppler
shift and ToA individually. Numerical observations indicate that the estimation error
obtained using EKF DS on average is 10 m lower than KF DS and ToA. The combination
of EKF DS and KF ToA can improve the obtained accuracy by around 8 m on average.
As expected, the positioning errors are higher if the positions are obtained using Doppler
shift or ToA measurements without filtering methods. Thus, the obtained findings are not
presented here. The identified problems are related to the RF multipath propagation, which
is certainly a major source of positioning errors; the losses and NLOS conditions are caused
by the surrounding environment.

On the proposed localization algorithm, multipath propagation and losses caused by
the surrounding environment are modeled and considered on the location estimation. As
indicated in Sections 4 and 5, measurement trust-ability is defined using the covariance
parameter R. Therefore, we have considered three different values of R useful for velocity
estimation by using Doppler shift measurements. Moreover, we considered the dynamic R,
as shown in Equation (15), to have the EKF on Doppler shift measurements.

Figure 4 shows the results of the Cumulative Distribution Function (CDF) of the
estimation errors considering different noise covariance values expressed by standard
deviation σi. The results imply that smaller noise covariance R3 (σ3 = 10.37 Hz) indicates
a better channel environment, so the measurement error is lower, while the estimation
error is higher since the motion model gives more trust to the measurement data. In such a
situation, the value of the obtained error depends directly on the value of the measurement
error. On the other hand, a higher value of R (σ1 = 103.70 Hz), (σ2 = 32.79 Hz) indicates
that the measurements are distorted due to the multipath propagation effects. As a result,
the algorithm using EKF and KF will trust the motion model more and the measurements
less, so the estimation error is lower, see Figure 4 for all filtering approaches presented in
this study.

When using EKF DS (see Figure 4a), 90% of the obtained errors are under 50.15 m
when σ3 is used, 58.19 m for σ2, and 34.51 m for σ1, respectively. When dynamic R is used,
so the σ(t) depends on time, 90% of the estimation errors are under or equal to 55.98 m. In
the second scenario, when using KF on DF and ToA, 90% of estimation errors are under
47.96 m for σ3, 47.81 m when σ2 is used, and 47.08 m when σ1 is used (see Figure 4b). The
same results were obtained when using EKF DS and KF on ToA. While increasing the σi
values, the estimation error decreases from 53.59 m for σ3, to 53.75 m for σ2, and 37.42 for
σ1. When using dynamic R, 90% of errors are under 55.53 m (see Figure 4c).
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(a)

(b)

(c)

Figure 4. CDF of the location estimation errors for different filtering approaches (a) EKF DS, (b) KF
DS and ToA, and (c) EKF DS and KF ToA, while using various standard deviation values σi.

In terms of the achievable accuracy, our work differs from the previous studies in some
key ways. Most of the studies [12,16,37] use a coverage range lower than 70 m, indicating
the need for a higher number of transceivers depending on the technology and localization
method, implying the need for LOS and presenting higher errors for respective distances
between Tx and Rx. Therefore, we suggest combining the existing IMU vehicle system
with C-ITS communication signals and improving in-tunnel environment RF propagation
knowledge, so we can obtain the location estimation in tunnel environments where the
GNSS signals are not reachable. The preliminary results indicate that the position estimation
can be achieved without adding more hardware, which increases the C-ITS costs and causes
the above-mentioned challenges.
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The proposed algorithm solution can also be used for safety purposes since the C-ITS
can monitor the behaviors of the vehicles in a tunnel environment as a complementary
solution to the cameras or as the primary solution if cameras are not found. In addition to
this, this solution can be used to indicate and monitor the vehicle’s speed when entering
and driving through the tunnel and check if the drivers respect the required limits. This
solution can reduce the radar application costs and solve the problem of not having
radars everywhere inside tunnels and on highways. As a result, using the existing V2I
communication infrastructure would reduce the cost and the need for different devices and
technologies. This would have an impact on the efficiency and environment too.

7. Conclusions

In this work, we proposed a novel positioning algorithm based on Doppler shift and
Time of Arrival measurements obtained using the existing V2I communication signals
in tunnel environments, where GNSS signals are not available. The main objective is to
contribute to the enhancement of vehicle localization solutions as location information is
the central enabler for C-ITS services and applications.

The proposed positioning method employs the combination of the initial GNSS po-
sition and velocity of the vehicle driving into the tunnel and then uses the Doppler shift
and Time of Arrival measurements to track the vehicle inside the tunnel. To improve the
positioning accuracy, EKF and KF are introduced to mitigate the RF effects of path losses,
channel noise, ambiguity, NLOS impacts, and multipath interference.

The results indicate that the EKF used on the measured Doppler shift (EKF DS) within
the tunnel can follow the movement of the vehicle better compared to KF fed by Doppler
shift and Time of Arrival measurements individually (KF DF and ToA). EKF DS provides an
average estimation error 10 m lower than KF DS and ToA. Their combination, EKF DS and
KF ToA, can improve the obtained accuracy results by around 8 m on average. As expected,
the results are even worse if the position is obtained using Doppler shift or Time of Arrival
measurements without filtering. The results show that an accurate value of measurement
covariance can significantly improve the positioning accuracy since it provides a real picture
of performed measurements as compared to a default covariance value.

In addition, the knowledge about RF propagation caused by the in-tunnel surrounding
environment, the tunnel structure and dimensions, and traffic conditions on a timely/daily
interval, and other known limits related to traffic, can further enhance the positioning accuracy.

The position and speed information provided by the proposed solution can monitor the
vehicle behavior within the tunnel. Unlike existing positioning methods, the proposed one
does not add more components and costs to the existing C-ITS infrastructure. As a result,
the solution can further improve the safety, efficiency, and environmental requirements in
traffic and transportation.

Future work will include angle of arrival analysis as a way to improve the current
results. Furthermore, modeling in-tunnel propagation losses and fading considering NLOS
identification can further improve the obtained results regarding speed, time, and position.
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