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Abstract: In this study, we investigated the relationships between training load, perceived wellness
and match performance in professional volleyball by applying the machine learning techniques
XGBoost, random forest regression and subgroup discovery. Physical load data were obtained by
manually logging all physical activities and using wearable sensors. Daily wellness of players was
monitored using questionnaires. Match performance was derived from annotated actions by a video
scout during matches. We identified conditions of predictor variables that related to attack and pass
performance (p < 0.05). Better attack performance is related to heavy weights of lower-body strength
training exercises in the preceding four weeks. However, worse attack performance is linked to large
variations in weights of full-body strength training exercises, excessively heavy upper-body strength
training, low jump heights and small variations in the number of high jumps in the four weeks prior
to competition. Lower passing performance was associated with small variations in the number of
high jumps in the preceding week and an excessive amount of high jumps performed, on average,
in the two weeks prior to competition. Differences in findings with respect to passing and attack
performance suggest that elite volleyball players can improve their performance if training schedules
are adapted to the position of a player.

Keywords: performance optimization; training load monitoring; volleyball; machine learning

1. Introduction

Professional athletes aim for optimal performance in competition. Their performance
depends on various factors, such as physical preparation and tactical decisions during the
match. Which aspects have the largest impact on the performance depends on the sport
that is considered. In volleyball, many studies have been conducted to investigate the
relationship between a single performance indicator and match success [1]. For example,
it is found that spiking and the number of block points are good indicators of match suc-
cess [2] and that the effectiveness and type of attacks are important performance indicators
for winning teams [3–6]. The main advantage of the aforementioned studies is that the
outcomes can be used to optimize tactical preparation before competition [7].

In addition to tactical preparation, it is also important to physically prepare athletes
by finetuning their training schemes. Scientific literature about the connection between
physical preparation and match performance is scarce. In particular, the multivariate
dependence of performance in competition on variables of training load has not been
studied to date. Here, we aim to fill this gap in the literature by using a selection of machine
learning regression techniques that have two important properties. First, we employ an
explorative approach in which a variety of predictors is considered (while minimizing the
risk of overfitting). As there is little scientific evidence as to exactly which predictors are
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important, this is a prerequisite for our technique of choice. For example, this is enables
us to investigate the influence of predictors related to an athlete’s wellness, in addition to
usually considered training load variables. This is potentially relevant because the mood or
stress levels of an athlete before a match could impact their performance during the game.
Second, our approach allows for potential non-linear relationships and possible interactions
between predictors, which are important in the context of assessing injuries [8,9] and we
expect to play a role here as well.

The aim of this study is to identify relationships between training load, wellness
and match performance in elite volleyball players. As there are several positions on a
volleyball team, different skills need to be optimized for different players. Because vertical
jump height is an important indicator for attack effectiveness [10] and attacks blocked are
important for winning or losing a match [11], we hypothesize that predictors related to high
jumps are important for the performance of our action types. Finally, we will demonstrate
that our results provide valuable insights for coaches that can be incorporated in training
schedules.

2. Materials and Methods
2.1. Subjects

Twenty-five elite male volleyball players volunteered to participate in this study
(mean ± SD age: 27.0 ± 3.0 years, weight: 91.2 ± 6.4 kg, height: 2.00 ± 0.10 m). All subjects
competed on the international level, represented the same country and provided written
informed consent. Only seventeen players competed in matches and had sufficient physical
load data; therefore, eight of the players were excluded from our analyses.

Although data of only 17 players were included, data for multiple matches per player
were analyzed. Performance was evaluated per action type, and only the most relevant
actions for the player’s position were considered. A total of 122, 87, 58 and 35 data
points were included for attacks, passes, blocks and services, respectively. Later, we will
demonstrate that this number of records provides sufficient power to obtain statistically
significant results from our machine learning analyses.

2.2. Experimental Design

Players were followed during their time on the national team during the 2018 interna-
tional volleyball season. Over the course of 24 weeks, all training sessions and matches, as
well as daily wellness, were monitored. The season consisted of two phases separated by
3 weeks of holidays during which the players had no training activities and no data were
collected. The first period started with a 5-week preparation phase and was followed by
3 weeks of competition. After the holiday break, the players resumed training sessions for
10 weeks and finished this part with 3 weeks of competition.

The players participated in 6.1 ± 2.4 training sessions per week and trained for
13.8 ± 5.0 h per week. We excluded the holiday period without training activities. In total,
the players competed in 31 matches, including 17 friendly matches.

2.3. Data Collection

In this study, we used several data sources. In Table 1, we briefly describe the most
important groups of variables that are considered in this study. In the following sections,
we will discuss each of these categories in more detail.

2.4. Match Performance

During every match, an experienced video scout annotated the actions of all players
on the field using the volleyball-specific software program “Data Volley 4” (Data Project,
Salerno (SA), Italy). This software is used by almost all international teams and allows
coaches and analysts to convert volleyball actions performed on the court (attack, block,
attack reception, freeball, pass, serve and set) into statistical data [1]. Attack reception
is sometimes also referred to as defense. Based on rules and definitions [12], a rating is
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assigned to each action based on the execution. The video scouts use six distinct ratings (‘=’,
‘/’, ‘−’, ‘!’, ‘+’, ‘#’), which range from the best (‘#’ for actions that result in winning a point)
to worst (‘=’ if the action leads to losing a point) possible rating. There is an exception
for the serve, where ‘/’ is used for the second-highest rating. For this study, the same
experienced video scout was responsible for the attribution of a rating for the volleyball
performance of all actions during the matches. Results were double-checked to ensure that
the annotation was consistent.

Table 1. Overview of most relevant groups of variables.

Variable Description

Match performance Ratings of volleyball actions from 0 (worst) to 10 (best).

Jump load Number of jumps and corresponding jump heights during matches
and volleyball-specific training sessions.

Strength training Weights of the executed exercises during strength training sessions in
absolute kilograms or with respect to the 1-RM.

Perceived training load Rating of perceived exertion (RPE) of all volleyball-specific and
strength training sessions using the CR10-scale.

Wellness Measures for perceived wellness on a 10-point Likert scale.

As an additional evaluation of the actions in a match, the Dutch Volleyball federation
cooperated with the company ilionx to transform these ratings into importance scores for
each action type based on historic data on international male volleyball matches between
2013 and 2019. For each action type and rating, the number of occurrences that led
to winning a point was determined. After dividing this value by the total number of
occurrences, every rating of each action type is transformed into a value between 0 and 10
based on the probability that this action will result in winning a rally. The final result of
this scoring system is shown in Figure 1 and was used to generate a numeric performance
target from the action ratings.
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Figure 1. Overview of the rating of the volleyball actions. We distinguish seven action types and six
ratings. Each combination of action type and rating is transformed into a score between the worst (0)
and best (10) performance using the probability of winning a rally after performing an action with a
certain rating based on data of male volleyball matches from 2013 to 2019.

In our analyses, we focus on the actions that are most relevant for the position of a
player. Offensive actions are the serve for a setter and the attack for outside hitters, middle
blockers and opposites. Defensively, we consider the blocks for middle hitters, as well as
passes for the libero and opposites.
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2.5. Perceived Wellness

Every morning before breakfast (except for during the holiday break), players an-
swered questions about their perceived wellness. Data were obtained with respect to
fatigue, sleep quality, number of hours slept and mood. The answers ranged from 1 (very
bad) to 10 (excellent) using a 10-point Likert scale [13,14]. At the beginning of this study,
the players were already familiar with this questionnaire.

2.6. Training Load

For the matches and volleyball-specific training sessions, physical training load was
recorded similarly. Here, the main focus is on jump characteristics. We collected the jump
heights and total number of jumps using a G-VERT (Mayfonk Inc., Fort Lauderdale, FL,
USA). The sensor is attached to the trunk using an elastic band, close to the center of
mass [15,16]. The G-VERT measures 99% of all jumps higher than 15 cm, is in accordance
with similar systems and has a high interdevice reliability [15,17].

Strength training sessions were also monitored in terms of the number of repetitions
and sets. After completing an exercise, the players manually logged the number of rep-
etitions and the applied weight in absolute kilograms. Therefore, possible changes with
respect to the original strength training schemes were taken into account. Moreover, we
accounted for interathlete differences by considering the applied weight as a percentage of
the individual’s one-repetition maximum (1-RM).

The players used the CR10-scale [18] to assign a rating of perceived exertion (RPE)
to all volleyball-specific and strength training sessions. By multiplying the duration of
a session by its RPE score, we determined the session training loads. Based on these
values, we obtained the training loads (summation of session training loads), monotony
(day-to-day variation in training load) and training strain (overall training stress) [19].

2.7. Data Analysis

In every match, we determined the performance per action type of a player by aver-
aging all ratings for this action type. For example, for an outside hitter, we recorded the
average rating of all his attacks during a specific game.

In addition to quantifying match performance, we also needed to construct predictors
that could potentially explain the variations in match performance. Because the literature
provides little indication as to which characteristics of the variables are important for the
match performance per action type, we needed to construct a broad collection of predictors.
First, we constructed binary indicator variables for each player position by applying one-
hot encoding. The construction of the predictor variables based on the perceived wellness
or the internal and external training loads was more extensive, as follows.

We expected that the match performance would depend on the current physical
condition of a player. As this physical condition is affected by all activities on preceding
days, we performed multiple steps to construct the relevant predictor variables based on
the perceived wellness and aspects of training load. Here, we followed the guidelines
described in a previous study on overuse injury monitoring in elite volleyball players [20]
and considered predictors that aggregate training load and wellness variables over specific
time windows. First, we considered a variable that is measured over time (e.g., daily
number of jumps). Then, we selected a certain time interval of interest prior to a match,
such as one week, for which we considered this variable. Finally, we applied an aggregate
function to construct a predictor variable. For example, one predictor variable is the average
number of jumps per day in the week prior to a match.

In this study, we considered short-, mid- and long-term effects using time windows of
the preceding 7, 14 or 28 days, respectively. Moreover, we considered the following 4 aggre-
gate functions for all variables: first quartile, mean, third quartile and standard deviation.
Additionally, the sum was considered for jump counts and weights of strength training
exercises in absolute kilograms. Considering all combinations of these aggregate functions
and window sizes, we derived multiple predictors from relatively few collected variables.
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We constructed a total of 72 potential predictors from the number of jumps and jump
height (as recorded by the G-VERT sensor). For jump counts we examine all jumps, as
well as low (<50 cm), average (between 50 and 65 cm) and high (higher than 65 cm) jumps,
separately. Moreover, we divided all strength training exercises into full-body, lower-body
and upper-body exercises by considering whether the recruited muscles involved the full body,
lower body or upper body, respectively. For example, a leg press is considered a lower-
body exercise. We constructed 81 predictors that characterize the weight of the exercises
either in absolute kilograms or in percentage of 1-RM. We constructed 48 predictors based
on perceived wellness entries. We also determined 27 predictors for the training load,
monotony and strain [19] and 9 predictors that specify the number of training sessions in
different time windows. This resulted in a total of 237 predictors related to internal and
external training load and wellness.

2.8. Machine Learning

In this study, we considered techniques that model all performance scores, in addition
to discovering important predictors that distinguish between good and bad volleyball
performance. Because the size of our data sets was small compared to the number of
predictors, we had to limit the number of predictors included in our model to minimize
the risk of overfitting. Therefore, applied machine learning regression techniques model
volleyball performance by selecting only the most important predictors. Figure 2 shows a
flow chart of our entire methodology.
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Figure 2. Flow chart of the analysis process for both the machine learning models and subgroup
discovery analysis. Machine learning models were trained with hyperparameter tuning using 10-fold
cross validation, whereas model performance was evaluated using the unseen test set. This analysis
was repeated separately for offensive and defensive actions. Subgroup discovery results were
evaluated with respect to the 5% false discovery probability (see Statistical Analysis). This analysis
was repeated separately for attack, serve, block and pass actions.
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2.9. Defensive and Offensive Performance Modeling

We started by applying the machine learning techniques called random forest [21]
and XGBoost [22]. These techniques have multiple advantages, such as the flexibility to
deal with different data types and the typically high accuracy of the models. Although
we monitored all players on a team during the full 2018 international season, data were
insufficient when constructing separate models per action type. Therefore, we categorized
actions as offensive (serve and attack) and defensive (pass and block) actions. Then, we
created models separately for all offensive and defensive performance scores.

Before we applied these machine learning techniques, for validation purposes, we
applied stratified sampling on the target value and action types to make sure that the model
was valid for low- and high-performance scores per action type and divided the data sets
into a training and test set containing 70% and 30% of the data, respectively.

The training set was used to fit the machine learning models. Before training, our
model, we first removed the features with near-zero variance. Then, we used 10-fold cross
validation to tune the parameters (e.g., the number of trees) of the models. Subsequently,
we constructed the model on the entire training set for the optimal parameter values and
predicted either the offensive or defensive volleyball performance based on the predictor
values for each data point in the test set. We then compared these predictions with the
actual values and determined the predictive performance by calculating the mean absolute
error (MAE) between predicted and actual values.

To assess whether the models had any predictive power, we also produced a naïve
baseline model for both offensive and defensive performance. These models included no
predictors and predicted the performance by taking the average of all performances in the
training set. Therefore, the baseline models set an upper bound on the MAE, and only if the
machine learning models had a significantly smaller MAE did the predictors explain part
of the variance in the volleyball performance. We selected this measure over other options,
such as the root mean squared error (RMSE), due to advantages in terms of interpretability.
As the dependent variable (the offensive or defensive performance) is a numeric value
between 0 and 10, the MAE corresponds to the absolute difference between the predicted
and actual performance on a scale from 0 to 10. We also created an action model that uses
only the action type as a predictor variable. In this case, the performance of a data point in
the test set was compared to the average performance for the corresponding action type in
the training set.

2.10. Predictors of Match Performance

To unravel the predictors that make a distinction between good and bad performance
scores, we applied a third machine learning technique called subgroup discovery. This
method has shown its potential in several sport settings by providing interpretable results
that can easily be transferred to sport practice [23–25]. Moreover, the method is able to deal
with small data sets.

In short, the method aims to find specific subsets of the data for which the dependent
variable (in this case, volleyball performance) differs significantly from what is observed in
the entire data collection. Here, the subgroup consists of all instances that satisfy a certain
condition on the predictor variable(s), e.g., a threshold with respect to the number of jumps.
With an automated search, the method investigates the effects of a multitude of conditions
on the predictor variables. The significance of the results were assessed by running the
algorithm on many randomized versions of the data. We determined the probability that
an observed difference in terms of performance was a true finding or a false discovery
by testing many hypotheses. A more detailed description of this method can be found
in Ref. [20].

2.11. Subgroup Discovery Implementation

We applied subgroup discovery separately for all four action types. To avoid obtaining
excessively specific results, we only considered subgroups with sizes between 10% and 90%
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of the size of the entire data collection. We considered the z-score to specify the difference
between the subgroup and the entire data collection. Therefore, a positive or negative sign
of the quality measure was considered to specify better or worse than average performance,
respectively [26]. Finally, only subgroups that are described by a condition on a single
predictor were investigated.

2.12. Statistical Analysis

The accuracy of our machine learning models for all defensive and offensive perfor-
mance scores was determined by comparing the volleyball performance predictions of
the models with the actual values for the test sets as represented by the mean and 95%
confidence intervals (95% CI). The accuracies of the prediction models and the baseline
models were compared using a paired sample t-test.

The significance of the subgroup discovery experimental results was assessed by
performing a thousand runs on swap-randomized versions of the data and determining
the probability that an observed difference in performance was a true finding or a false
discovery by testing many hypotheses. We considered the results of our subgroup discovery
experiments to be significant if the probability was less than 5% that the observed difference
was a false discovery.

Finally, effect sizes were determined using Cohen’s d with corresponding 95% con-
fidence intervals. We considered the effect sizes to be negligible (|d| < 0.20), small
(0.20 ≤ |d| < 0.50), medium (0.50 ≤ |d| < 0.80) or large (|d| > 0.80) [27].

3. Results
3.1. Volleyball Performance

The distributions of overall match performance of the offensive and defensive actions
are displayed in Figure 3. For the defensive actions, the block scores were 2.7 ± 1.5, and
the pass scores were 8.6 ± 0.9. Thus, the average probability of scoring a point is higher for
passes than for blocks. Moreover, the variation in the block scores is larger than for passes.
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Figure 3. Distribution of scores for the considered volleyball actions. Defensively, the scores for pass
actions are usually higher than the scores for block actions. Higher offensive scores are observed for
attacks than for services.

For the offensive actions, we reported attack scores of 6.8 ± 1.7 and service scores of
3.3 ± 0.9. In this case, the average probability of winning a point is higher for attacks than
for services. Considering the variation with respect to the average scores, we found that
the variation of attacks and services is comparable.

We also examined potential increases or decreases in performance over time using
the Spearman’s rank correlation coefficient between match performance and match index
within the season. The correlation coefficients were −0.02 (p = 0.19) and −0.19 (p = 0.02)
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for defensive and offensive performance, respectively. Thus, we observed no trend in the
defensive performance throughout the season and a significant but negligible decrease in
offensive performance over time.

3.2. Predicting Defensive and Offensive Match Performance Using Machine Learning Models

The accuracies of our machine learning models for all offensive and defensive per-
formance scores are shown in Table 2. For both the offensive and defensive actions, we
observed that machine learning models significantly outperformed the naïve baseline
model. In total, the MAE was reduced by 36–47% and the 59–74% for offensive and defen-
sive performance, respectively. Random forest was the best-performing model for offensive
actions, and defensive actions were most accurately modeled by the XGBoost model. The
hyperparameters of the random forest and XGBoost models are listed in Table 3. We
found that even simple models that only distinguish between action types significantly
outperformed the baseline model, as the average probability of winning a point differed
depending on the action type.

Table 2. Accuracy of the machine learning models for all offensive and defensive performance scores.
Offensive performance is most accurately predicted by the random forest model, and XGBoost model
is the best model for defensive actions. Models that only use action type as predictors are only slightly
less accurate than our best machine learning models, suggesting that adding predictors related to
external and internal training load does not result in large improvements in the prediction of offensive
and defensive performance.

Action Type Model MAE
(95% CI) Difference in MAE p-Value Cohen’s d

(95% CI) Effect Size

Offense

Random Forest 0.91
(0.62–1.19) −46.8% p < 0.001 0.79

(0.47–1.18) Medium

XGBoost 1.09
(0.78–1.41) −36.3% p < 0.01 0.58

(0.23–0.99) Medium

Action Model 1.04
(0.75–1.32) −39.2% p < 0.001 0.66

(0.35–1.04) Medium

Baseline 1.71
(1.38–2.05)

Defense

Random Forest 1.15
(0.79–1.51) −59.4% p < 0.001 1.47

(1.10–1.98) Large

XGBoost 0.75
(0.50–1.00) −73.5% p < 0.001 2.09

(1.63–2.78) Large

Action Model 0.79
(0.58–1.00) −72.1% p < 0.001 2.14

(1.63–2.88) Large

Baseline 2.83
(2.47–3.20)

Table 3. Values of the hyperparameters for the random forest and XGBoost models for offense and
defensive performances.

Model Hyperparameter Offense Defense

Random Forest

ntrees 500 500
mtry 10 10

min.node.size
splitrule

5
variance

5
variance

XGBoost

nrounds 50 50
max_depth 1 1

eta 0.3 0.3
gamma 0 0

colsample_bytree
min_child_weight

subsample

0.6
1

0.625

0.8
1
1
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3.3. Important Predictors of Match Performance Using Subgroup Discovery

The subgroups of our data collection with statistically differing performance for each
action type are shown in Table 4. For block actions and services, we obtained no statistically
significant results due to the limited sample size of 58 and 35, respectively. Furthermore,
we obtained a single result for better attack performance and multiple subgroups for worse
attack and passing scores.

Table 4. Important features per action type revealed by the subgroup discovery analyses. We
collected sufficient data to obtain significant results only for passes and attacks. The size of the
subgroup is given as a percentage with respect to the size of the entire data collection for the
corresponding action type. The description of the subgroups signals a condition on a predictor
variable for which the performance scores are significantly different from all performance scores for
the action type. A positive (negative) sign of the z-score corresponds to a better (worse) performance,
with corresponding effect sizes determined by the absolute value of Cohen’s d.

Action Type Description
Subgroup

Z-Score
Sign Size p-Value Cohen’s d

(95% CI)
Effect
Size

Passes

Jumps_above65_
std7 ≥ 9.75 - 17.2% p = 0.01 1.03

(0.48–1.62) Large

Jumps_above65_
avg14 ≥ 11.6 - 10.3% p = 0.01 1.33

(0.64–2.08) Large

Blocks No significant results

Serve No significant results

Attacks

LowerWeight_
firstquantile28 ≥ 90 + 15.6% p = 0.01 0.83

(0.35–1.34) Large

JumpHeight_
thirdquantile28 ≤ 59 - 12.3% p = 0.001 1.01

(0.47–1.58) Large

FullbodyWeight_
std28 ≥ 17.6 - 23.0% p = 0.001 0.76

(0.35–1.19) Medium

WeightPrct_
Upperbody_
avg28 ≥ 0.90

- 28.7% p = 0.001 0.67
(0.30–1.07) Medium

Jumps_above65_
std28 ≤ 2.24 - 10.7% p = 0.02 0.99

(0.42–1.59) Large

WeightPrct_
Upperbody_

firstquantile28 ≥ 0.87
- 32.0% p = 0.03 0.56

(0.20–0.94) Medium

Subgroup discovery analysis showed that variables related to strength training and
jump load prior to the match are important predictors for attack performance. Specifically,
the attack performance is better if the weights of 75% of all lower-body strength training
exercises in the preceding 4 weeks are larger than 90 kg. Lower attack performance scores
were associated with excessive strength training weights in the preceding 4 weeks. In
particular, average weights of the upper-body exercises more than 0.9 percent greater
than the 1-RM and a variation larger than 17.6 kg for the full-body exercises were related
to worse scores for attacks. Moreover, we found that lower jump heights or insufficient
variation in the number of high jumps (>65 cm) in the previous 4 weeks were related to
lower attack performance.

For passes, variables related to high jumps were most important. Specifically, the
performance was worse if the variation in the number of high jumps was larger than
9.75 jumps in the previous week or the average number of high jumps in the preceding
two weeks was larger than 11.6.
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4. Discussion

The aim of this study was to identify connections between training load, perceived
wellness and volleyball performance. Here, we will discuss the results and mention the
practical implications of our study.

4.1. Important Predictors

We found that the weights of lower-body strength training exercises in the 4 weeks
prior to a match serve as a predictor for better attack performance. This could be explained
by the fact that increased lower-body strength makes it easier for a player to achieve the
acceleration necessary to jump high. Consequently, during the action, the player can
focus more on other important aspects of attack performance, such as the appropriate
ball placement, which could increase the chances of a successful attack. Furthermore,
we found that lower jump height in the last 4 weeks is an important predictor of worse
attacking performance. This is in agreement with the results of a previous study in which a
positive correlation was found between vertical jump height and attack efficiency [10]. We
also found that characteristics of strength training in the previous 4 weeks are relevant. In
particular, the performance scores were worse if upper-body strength training weights were
excessively heavy. A potential explanation could be that players lack precision and control
of the ball if there is too much focus on increasing strength of upper body musculature.

For passes, predictors related to jumps were most relevant in our study population.
High average jump heights in the week prior to a match were related to worse pass
performance scores, which is the opposite relationship as that observed for attacks. Here, a
heavy jump load prior to the match could have reduced the freshness of a player, potentially
reducing their pass performance.

Previous studies on game performance in basketball demonstrate the importance of
monitoring contextual factors in addition to the training load [28,29]. We also considered
predictors related to perceived wellness and found that these predictors are not significantly
related to performance in professional volleyball players.

In previous studies, no consistent dependencies were observed between external
training load and match performance across different team sports [30]. In volleyball, most
studies in this area focus on the physical performance of the players [31,32]. Only a few
studies have used machine learning to investigate actual performance [33], with the main
focus usually on technical and tactical aspects [34,35]. To the best of our knowledge, our
study is the first to be conducted on elite volleyball players to investigate match perfor-
mance using machine learning to examine the relationships between match performance
and predictors based on training load and perceived wellness prior to competition.

4.2. Limitations

This study provides novel insights into the dependencies between volleyball perfor-
mance and predictors based on training load and perceived wellness; however, this study is
subject to some limitations. Most importantly, the aforementioned small number of matches
prevented us from performing more detailed analyses to predict match performance.

To model the dependencies between all performance scores, training load and per-
ceived wellness variables, we analyzed offensive and defensive actions separately. The
result was that the best machine learning models performed almost just as well as a model
based on average scores of the action types, mainly as a consequence of the observed
difference in scores per action type, which was also previously observed in women’s vol-
leyball [36]. This was also confirmed after determining the feature importance of predictors
in the machine learning models [37]. For defensive performance, the player position is the
dominating feature. When explaining the variance in offensive performance, jump load
predictors are the most important predictor variables, but these also differ between the
training programs per player position [38]. As we expect that the variables considered
in this study and their interactions would be relevant for prediction of volleyball match
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performance, it would be interesting to collect more data points with respect to match
performance for separate predictive modeling for each action type.

As previously shown in the context of overuse injury monitoring [20], we expect that
personalization of training schedules has added value in terms of optimizing volleyball
performance. Therefore, another interesting avenue for future research would be to perform
player-specific analyses.

Finally, in our analyses, we solely focused on match performance. However, it could
be worthwhile to also consider the match importance or the level of the opponent. For
example, in future research, a weight factor can be introduced to distinguish friendly
matches from matches during tournaments.

4.3. Practical Implication

Until now, it has been unknown which predictors might influence offensive and
defensive volleyball performance. The added value of our machine learning approach
is that it points to important predictors that may offer new directions for coaches and
researchers to examine in terms of optimizing volleyball performance. In this study, the
predictors related to training load explained differences in the attack and pass performance,
but there were insufficient data to obtain statistically significant insights with respect to
blocks and services. Therefore, our findings mainly have practical implications for players
that focus on passing or attacks.

For example, we observe that lower-body and upper-body strength training in the
4 weeks prior to competition is an important predictor of worse attack performances.
Therefore, coaches could slightly vary training schemes for offensive players to incorporate
sufficiently heavy lower-body and less heavy upper-body strength training in this specific
time period and observe whether and how this affects volleyball match performance.
Moreover, based on our findings, it might be worthwhile to experiment with training
schemes that restrict the variation in the number of high jumps in the week before a match
or the average number of high jumps in the two weeks prior to a match for players focused
on passing.

5. Conclusions

We used a machine learning approach to determine the dependencies between volley-
ball match performance and predictors related to training load and perceived wellness. We
found that high weights of lower-body strength training in the four weeks prior to competi-
tion are related to better attack performance. Moreover, we identified important predictors
related to worse performances in attacks and pass actions. In particular, excessively heavy
upper-body strength training, large variations in weights of full-body strength training
exercises, low jump heights and small variations in the number of large jumps in the four
weeks prior to competition signal worse attack performances. Moreover, large variations in
the number of high jumps (>65 cm) in the last week or an excessive number of high jumps
in the previous two weeks indicate lower pass performances. Our findings can be used to
personalize and finetune training schemes for individual players, thereby improving their
performance in elite volleyball.
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