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Dankwoord
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Verder wil ik jullie beide bedanken voor het vele nalezen van de verschil-
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presentaties en de kalmerende babbels wanneer ik uitdagende leesverslagen
ontvangen had.

Furthermore, I would like to thank the members of the examination
board. Prof. Luca Catarinucci, prof. Nobby Stevens, prof. Hendrik Rogier,
prof. Sam Lemey and prof. em. Daniël De Zutter. Thank you for evaluating
my work and providing me with your valuable remarks, this increased the
readability and comprehensibility of the complete work.

Verder zou ik Hendrik Rogier willen bedanken voor zijn feedback en aca-
demische raad die ik de voorbije jaren heb gekregen. U feedback was soms
moordend voor mijn papers, maar resulteerde steeds in prachtige teksten.
Bedankt hiervoor! Next we have Adnan Shahid. Thank you for the colla-
boration on the fall detection paper. It was very pleasant working together
with you. It’s a pity we could not collaborate on more projects. Vervolgens
is er Sam Lemey. Sam, je bent een top kerel! Steeds joviaal, vriendelijk,
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paraat om te helpen of om dingen te bespreken werk gerelateerd of niet.
Ik hoop dat iedereen beseft wat een meerwaarde je bent voor deze groep.
Volgende in de rij is Matthias de Schepper. De man die zijn volk leert pro-
grammeren, ontwerpen, solderen en voornamelijk debuggen. We zijn met
enkele weken verschil gestart aan de UGent, maar werkten bijna vanaf het
begin samen. Ik kan de uren niet noemen dat we samen hebben zitten sol-
deren, programmeren, verhuizen of brainstormen over hoe bepaalde zaken
aan te pakken in het labo. Later werden deze brainstorms aangevuld door
Dimitri Van Cauwelaert. Eerst was ik zijn student en later zijn collega.
Desalniettemin, zoals we Dimitri graag hebben als hoogleraar is het een nog
betere collega. Altijd paraat voor een leuke babbel, staat u bij met raad
en daad en geniet even hard van een drankje NA de werkuren als ik. “You
can take a man from his roots, but you can never take the Oilsjters blood
out of the man”. Heren, bedankt om de lange labo dagen op te vrolijken
en te ondersteunen waar nodig. En dan, the one and only, Stefaan Lam-
brecht. Ik heb vier jaar naast u labo mogen geven en heb hier hartelijk
van genoten. Het was leerrijk om te luisteren naar uw jaren aan ervaring
als hoogleraar, sportman en ondernemer. Finaal zou ik de spotlight willen
zetten op de vrouw die ons iedere dag opnieuw een net bureau en proper
labo bezorgt. Sabrina, bedankt! Het waren aangename babbels die we ’s
ochtends hadden.

And then, office 210.031 better known as “the cool office”. First of all, we
have Olivier Caytan. I have never met a person who knows so much about
the world wars, likes to talk about politics and has such an enormous passion
for his Mazda RX7. Nevertheless, I have enjoyed all of these conversations
and I still dream of the moments when we both were laughing at Quinten’s
expense the few times he was in the office. Secondly, we have Kamil Yavuz
Kapusuz also known as “our Turkish Delight”. On my first day, they told
me you were a handsome, very muscled playboy. When you returned from
your conference, I saw they didn’t lie. All jokes a side, you are an extremely
smart person, a person with an enormous work ethic, but most of all a very
kind person that I enjoyed talking to on our early morning sips. I think it
is time to do another barbecue, no? From all the colleagues that left us,
I would like to express my gratitude to Thomas Deckmyn, also known as
“Uncle Harley” and currently CEO and founder of Koboi consulting. At
the beginning, there was nothing. But at the end there was a friendship,
shared passion for alcohol and good food. Let’s see what the future will
bring! And then, my brother from another mother, my fingerbud, the ying
to my yang, Quinten Van den Brande also known as “Uncle Scooter”. Our
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the people that read this book, I would like to point out that our dynamic
duo are the president and vice-president of the Sons of Maxwell motorcycle
gang.

To the colleagues that are currently still present in the office, I would like
to thank you for the fun moments during and after office hours. A special
thank you to the best office representative we’ve ever had, Samuel Rimbaut.
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What the result of these investigations will be, the future will
tell. But whatever they may be, and to whatever this principle
may lead, I shall be sufficiently recompensed if later it will be

admitted that I have contributed a share, however small, to the
advancement of science.

– Nikola Tesla, 1888
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Samenvatting

Wearables en smart devices hebben steeds meer invloed op ons dagelijks
leven. Van intelligente wekkers in de ochtend tot ultramoderne wondbe-
waking, al deze sensoren spelen een zeer belangrijke rol in onze dagelijkse
beslissingen. Sportliefhebbers gebruiken fitnesstrackers om hun resultaten
dagelijks te verbeteren, terwijl medische professionals deze sensoren gebrui-
ken om het genezingsproces van hun patiënt te volgen of, in het ergste ge-
val, het zorgpersoneel te waarschuwen wanneer de toestand van hun patiënt
verergert. De meeste van deze Internet of Things (IoT)-applicaties werken
met een goedkope, energiezuinige sensor die deel uitmaakt van een draad-
loos sensornetwerk (Engels: Wireless Sensor Network (WSN)). Om al deze
sensoren aan te sluiten, is een energiezuinig, betaalbaar communicatiepro-
tocol (Engels: Communication Protocol (CP)) vereist met een behoorlijke
datadoorvoer en een beperkte vertraging. De literatuur biedt voldoende
oplossingen, maar de meeste hebben een aantal nadelen. Dit proefschrift
richt zich op het gebruik van Bluetooth Low Energy (BLE) als voornaamste
CP voor drie uiteenlopende onderwerpen waar een WSN wordt gebruikt.

Hoofdstuk 2 beschrijft het eerste onderwerp dat betrekking heeft op
dodehoekdetectie bij vrachtwagens. Jaarlijks gebeuren er op de Belgische
wegen meerdere dodelijke ongevallen door de dodehoekproblematiek. Een
van de belangrijkste oorzaken van deze ongevallen is het gebrek aan com-
municatie tussen vrachtwagenchauffeurs en zwakke weggebruikers (Engels:
vulnerable road users (VRUs)). Dit, in combinatie met de toenemende
werkdruk van vrachtwagenchauffeurs, vergroot de kans op dodelijke onge-
vallen nog meer. De literatuur biedt meerdere oplossingen om deze onge-
vallen te voorkomen. Van radar tot camera gebaseerde systemen gecom-
bineerd met eenvoudige voorwaarden of met een machine learning (ML)
algoritme. Al deze systemen hebben verschillende voor- en nadelen. Toch
worden ze nog steeds niet gëınstalleerd op echte vrachtwagens vanwege de
kosten, de moeilijke installatie of het lage detectiepercentage. Daarom richt
Hoofdstuk 2 zich op de ontwikkeling van een goedkoop en energiezuinig
dodehoekdetectie- en waarschuwingssysteem voor voertuigen. Dit systeem
bestaat uit vijf detectienodes (Engels: Detection Nodes (DNs)) die aan de
linkerkant van de vrachtwagen en oplegger zijn gemonteerd. Deze adverteren
voortdurend hun aanwezigheid en communiceren met de centrale node (En-
gels: Central Node (CN)) in de cabine van de vrachtwagen. De VRU draagt
een onopvallende wearable met daarin enkele LEDs, een vibratiemotor en
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een luide zoemer. Wanneer ze in de buurt van de vrachtwagen komen, ont-
vangen ze deze advertentiepakketten en een energiezuinig, zelfontwikkeld,
op voorwaarden gebaseerd algoritme, dat gebruik maakt van ontvangen sig-
naal sterkte indicator (Engels: Received Signal Strength Indicator (RSSI))-
waarden, zal voorspellen of de VRU te dicht bij de vrachtwagen staat. Als
dit het geval is, wordt er een alarm ingesteld en worden de LEDs, trilmotor
en zoemer geactiveerd. Tegelijkertijd wordt het alarm doorgestuurd naar de
CN in de cabine van de vrachtwagenchauffeur. Zo worden VRU en vracht-
wagenchauffeur gewaarschuwd voor een mogelijk dodehoekongeval en delen
ze dezelfde verantwoordelijkheid. Met beperkte non-verbale communicatie
kunnen beide partijen de nodige maatregelen nemen voor een veilig vervolg
van hun reis. In dit hoofdstuk wordt nader ingegaan op de ontwikkeling van
de hardware voor de verschillende nodes, maar ook op voorwaarden geba-
seerd algoritme. Op basis van simulaties werd het algoritme gedefinieerd en
getest in real-life metingen.

Het volgende onderwerp beschrijft een valdetectiesysteem voor ouderen
en is te vinden in Hoofdstuk 3. De literatuur biedt meerdere oplossingen aan
op basis van camera, radar of trillingen gemeten via wearables of smart de-
vices. Sommige van deze metingen worden gecontroleerd door een op voor-
waarden gebaseerd algoritme of maken gebruik van een ML-algoritme dat
is gëımplementeerd op een smart device of in een cloudtoepassing. Hoofd-
stuk 3 stelt een onopvallende wearable voor die oudere mensen om hun
middel kunnen dragen en waarschuwt een verzorger wanneer een val wordt
gedetecteerd. Het maakt gebruik van een kleine, energiezuinige accelerome-
ter die continu de bewegingen van ouderen scant. Op basis van een ener-
giezuinig, op voorwaarden gebaseerd, algoritme wordt een waarschuwing
ingesteld wanneer een val wordt gedetecteerd. Dit hoofdstuk behandelt de
uitgevoerde simulaties om de verschillende drempels in dit zelfontwikkelde
algoritme te bepalen. Vervolgens is een convolutional neural network (CNN)
algoritme ontwikkeld om het op voorwaarden gebaseerde algoritme mee te
vergelijken. Dit is gebaseerd op drie open-source databases met accelerome-
ter data van 85 mensen die 18 835 algemene dagelijkse levensverrichtingen
(Engels: activities of daily livings (ADLs)) of valactiviteiten uitvoeren. Na
een uitgebreide training, testen en validatie van beide algoritmen werden
vergelijkbare resultaten behaald. Tot slot is er een energieanalyse voor de
wearable gemaakt op basis van een realistisch scenario van een bejaarde.
Dit resulteerde in een zeer energiezuinig systeem, terwijl toch een hoge de-
tectiegraad werd behaald in vergelijking met andere oplossingen die in de
literatuur worden voorgesteld.

Het derde en laatste onderwerp betreft integriteit van treinen (Engels:
Train Integrity (TI)) in Hoofdstuk 4. Jaarlijks wordt er door bedrijven veel
geld gëınvesteerd om handmatig de staat van locomotieven en treinwagons
te controleren. Het inzetten van een WSN rond deze locomotieven of trein-
wagons, zal de jaarlijkse kosten aanzienlijk verlagen. De literatuur biedt
beperkte oplossingen, variërend van elementaire WSNs tot sensoren met
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gëıntegreerde energiewinningstechnieken (Engels: energy harvester (EH)).
Hoofdstuk 4 stelt enkele manieren voor om metingen met een WSN ener-
giezuinig en betrouwbaar te maken. De eerste metingen zijn gebaseerd op
de trillingen gemeten aan verschillende treinwagons. Een accelerometer is
bevestigd aan een treinwagon en meet continu de versnellingen bij starten,
rijden en stoppen. Op basis van deze metingen zijn enkele ingebouwde in-
terrupts gebruikt om te detecteren of de trein rijdt of stilstaat. Op deze
manier kan de WSNs gewekt of in slaapstand gezet worden. Vervolgens
worden enkele radiofrequente metingen (Engels: Radio Frequency (RF))
voorgesteld. Twee verschillende planair gëınverteerde F-antennes (Engels:
planar inverted-F antennas (PIFAs)) worden op vooraf gedefinieerde plekken
op een treinwagon geplaatst. Een Tx-node verzendt 300 advertentiepakket-
ten op verschillende Tx-niveaus, variërend van 0 dBm tot 10 dBm in stappen
van 1 dBm. De Rx-node wordt op verschillende posities rondom de treinwa-
gon geplaatst en zal continu naar deze advertentiepakketten scannen. De
resultaten van deze metingen worden gëıllustreerd en besproken.

Appendix A richt zich op de miniaturisering van de DN, voorgesteld in
Hoofdstuk 2, zodat deze in het zijlicht van de vrachtwagen of oplegger past.
Eerst wordt de ontwikkeling van de meerlaagse printplaat (Engels: Printed
Circuit Board (PCB)) uitgewerkt. Er werd een Grounded Co-Planar Wave-
guide (GCPW) gebruikt om de RF transceiver impedantie af te stemmen op
de SubMiniature version A (SMA)-connector, wat resulteerde in een kleine,
universele DN. Er werd een SMA-connector gebruikt om verschillende an-
tennetopologieën te testen. Deze bijlage stelt ook een geminiaturiseerde
PIFA voor. Eerst wordt het enkele antenne element gesimuleerd, gevolgd
door de antenne die op verschillende posities en verschillende oriëntaties op
een trailer is gemonteerd.

Terwijl in Hoofdstuk 3 een wearable werd voorgesteld die detecteert wan-
neer een bejaarde is gevallen, beschrijft Appendix B de rest van het systeem.
Het complete systeem bestaat uit vier verschillende soorten nodes. De eer-
ste node is de wearable voor de patiënt die eerder werd voorgesteld. De
volgende is de DN, deze is op een centrale positie in de kamer gemonteerd
en scant continue op alarmpakketten die door de wearable van de patiënt
worden verzonden. Bij ontvangst voegt deze node de benodigde gegevens
zoals kamernummer, verdieping of locatie van waaruit de waarschuwing is
verzonden toe, en stuurt deze naar de netwerknode (Engels: Network No-
des (NNs)) in de gang. Het doel van deze NNs is om de dichtstbijzijnde
verzorgers node (Engels: Caretaker Node (CTN)) te zoeken en het waar-
schuwingspakket te verzenden. De CTN is voorzien van een LCD-display
en laat de verzorger weten welke patiënt is gevallen, maar ook waar de
val heeft plaatsgevonden. Dit hoofdstuk stelt de ontwikkelde hardware en
software voor van de DN, NN en CTN. Tenslotte worden enkele metingen
voorgesteld die aantonen dat deze proof-of-concept werkt.
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Wearables and smart devices have become increasingly influential in our
daily lives. Ranging from intelligent alarm clocks in the morning to state-
of-the-art wound monitoring, all these sensors play a very important role in
our day-to-day decisions. Sports enthusiasts use fitness trackers to improve
their results on a daily basis, while medical professionals use these sensors
to monitor their patient’s healing process or, in a worst case scenario, alert
the healthcare staff when the patient’s conditions are bad. Most of these
Internet of Things (IoT) applications rely on a low-cost, low-power sensor
that is part of a Wireless Sensor Network (WSN). To connect all these sen-
sors, a low-power, low-cost and low-latency Communication Protocol (CP)
with a decent data throughput is required. Literature provides sufficient
solutions, but most of these have several disadvantages. This dissertation
focuses on the use of Bluetooth Low Energy (BLE) as main CP for three
divergent topics where a WSN is enrolled.

Chapter 2 describes the first topic concerning blind spot detection for
vehicles. Annually, several lethal accidents occur on Belgian roads due to
blind spot accidents. One of the main causes for these accidents is the lack
of communication between truck drivers and vulnerable road users (VRUs).
This in combination with the increasing workload of truck drivers, increases
the possibility of lethal accidents even more. Literature provides multiple
solutions to prevent these accidents from happening, focusing on solutions
ranging from radar-based to camera-based systems combined with a rule-
based or machine learning (ML) algorithm. All of these systems have dif-
ferent advantages and disadvantages. Nevertheless, they still do not get
installed on real-life trucks, due to cost, difficult implementation or low de-
tection rate. Therefore, Chapter 2 focuses on the development of a low-cost
and low-power blind spot detection and warning system for vehicles. This
system consists of five Detection Nodes (DNs) that are mounted along the
left side of the truck and trailer. These will continuously advertise their pres-
ence and communicate with the Central Node (CN) inside the truck cabin.
The VRU is wearing an unobtrusive wearable containing some LEDs, vibra-
tion motor and loud buzzer. When they come in the vicinity of the truck,
they will receive these advertisement packages. A low-power self-developed
rule-based algorithm, utilizing Received Signal Strength Indicator (RSSI)
values, will then predict if the VRU is too close to the truck. If so, an alert
is set and the LEDs, vibration motor and buzzer are activated. At the same
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time, the alert is transferred to the CN inside the cabin of the truck driver.
In this way VRU and truck driver are alerted for a potential blind spot
accident and share the same responsibility. With some small non-verbal
communication, both parties can take the required measures. In this chap-
ter, we will take a closer look at the development of the hardware for the
different nodes, but also at the rule-based algorithm. Based on simulations,
the algorithm was defined and tested in a real-life measurements.

The next topic describes a fall detection system for the elderly, described
in detail in Chapter 3. Literature provides multiple solutions based on cam-
era, radar or vibrations measured via wearables or smart devices. Some of
these measurements are monitored by a basic rule-based algorithm or utilize
a ML algorithm implemented on a smart device or cloud application. Chap-
ter 3 proposes an unobtrusive wearable that elderly people can wear around
their waist and that alerts a caretaker when a fall is detected. It utilizes
a small, low-power accelerometer that continuously scans the movement of
the elderly. Based on a low-power rule-based algorithm, an alert is set when
an elderly falls. This chapter provides the required simulation for the dif-
ferent thresholds in this self-developed algorithm. Next, a convolutional
neural network (CNN) algorithm was developed to compare the rule-based
algorithm with. Validation is performed based on three free open-source
databases containing accelerometer data of 85 people performing 18 835 ac-
tivities of daily livings (ADLs) or fall activities. After an extensive training,
testing and validation of both algorithms, comparable results were achieved.
Finally, a power analysis for the wearable was made based on a realistic sce-
nario of an elderly. This resulted in a highly power-efficient system, while
still achieving a high detection rate compared to other solutions proposed
in literature.

Third and final topic concerns Train Integrity (TI) in Chapter 4. An-
nually, much money is invested by companies to manually check the con-
dition of locomotives and train wagons. Employing a WSN around these
locomotives or train wagons, will reduce the annual cost significantly. Liter-
ature, provides limited solutions, ranging from basic WSNs to sensors with
integrated energy harvester (EH) techniques. Chapter 4 proposes some
measures to make measurements with a WSN energy efficient with reliable
communication. A first technique is based on the vibrations measured on
different train wagons. An accelerometer is attached to a train wagon and
measures continuously the acceleration due to starting, moving and stop-
ping. Based on these measurements, some built-in interrupts were utilized
to detect if the train is moving or standing still. In this way, the WSNs can
be put to sleep or woken up. Next, some Radio Frequency (RF) measure-
ments are proposed. Two different planar inverted-F antennas (PIFAs) are
placed on predefined spots on a train wagon. A TX node sends 300 adver-
tisement packages at different Tx levels, ranging from 0dBm to 10 dBm in
steps of 1 dBm. The Rx node is placed on different positions around the
train wagon and continuously scans for these advertisement packages. The
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results of these measurements are illustrated and discussed.
Appendix A focuses on the miniaturization of the DN, proposed in Chap-

ter 2, to make it fit inside the sidelight of the truck or trailer. First, the
development of the multilayer Printed Circuit Board (PCB) is elaborated.
A Grounded Co-Planar Waveguide (GCPW) was utilized to match the RF
transceiver impedance to the SubMiniature version A (SMA) connector, re-
sulting in a small, universal DN. An SMA connector was utilized to test
different antenna topologies. This appendix also proposes a miniaturized
PIFA. First, the single antenna element is simulated, followed by the an-
tenna mounted on a trailer at different positions and different orientations.

While in Chapter 3, a wearable was proposed that detects when an
elderly has fallen, Appendix B proposes the rest of the system. The complete
systems consists of four different types of nodes. The first node is the patient
wearable that was proposed previously. Next is the DN, this one is mounted
in a central position of the room and will continuously scan for alert packages
sent by the patient wearable. On receiving, this node adds the necessary
data such as room number, floor number or location from where the alert
was sent from and transmits it to the Network Nodes (NNs) in the hallway.
The purpose of these NNs is to look for the closest Caretaker Node (CTN)
and send the alert package. The CTN is equipped with an LCD-display
and informs the caretaker which patient has fallen, but also where the fall
occurred. This chapter proposes the developed hardware and software for
the DN, NN and CTN. Finally, some measurements are proposed that
demonstrate this proof-of-concept works.
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1
Introduction

Wearable devices are here to stay, and they’ll only get more sophisticated

and effective as they evolve. Until now, most of us have made our health

and fitness decisions based on what we think we know about ourselves.

Advancements in technology - wearables and otherwise - will eventually

take much of the guess work out of healthy living.

– Michael Dell, 2015

⋆ ⋆ ⋆

1.1 Context

Just like Michael Dell quoted in 2015, wearables are woven into our daily

lives and have a massive influence on our day-to-day decisions. From an

intelligent alarm clock that tracks your sleep pattern, to an intelligent wa-

ter bottle that reminds you to drink during the day. From getting up in

the morning till going to sleep at night, wearables are sending their data

to a smartphone or another smart device. These devices have known a

huge increase in sales and daily usability since the development of the first

Bluetooth headset in 2002 [1, 2]. The estimation is that by 2028 the sale

of wearable technology will be USD 118.16 billion, resulting in a 13.8% in-

crease from 2021 to 2028, according to a study conducted by Grand View

Research, Inc. [3]. This rapid increase in sales is mainly due to a rapid
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growing need of smart devices in the healthcare and fitness community in

combination with a rising income per family.

Current fitness users make decisions based on data retrieved from their

heart rate monitor, movement monitor and food tracker. In healthcare,

the increase in wearables sale and usage is enormous. Ample research is

performed in the development of different biomaterials and sensors [4] to

monitor dedicated parameters of the human body. Examples range from

the well-known heart rate monitor with integrated temperature sensor, to

state-of-the-art sensors for wound, blood pressure and/or breath monitoring.

All these sensors capture data with a high efficiency and accuracy, which

are then transferred to any kind of smart device.

This dissertation presents research on the development of sensor nodes

based on Bluetooth Low Energy (BLE). This research is subdivided into

three topics. First, we take a closer look at blind spot detection of vulnera-

ble road user (VRU) around trucks. The problem is analysed and a proto-

type with custom developed hardware and software is proposed, followed by

an extensive simulation and real-life measurement campaign. Second, fall

detection of an elderly in nursing homes is discussed. An unobtrusive, low-

power wearable is developed that is worn around the waist and detects when

an elderly person has fallen. Extensive simulations were performed to deter-

mine the best suited parameters for the self-developed rule-based algorithm.

Afterwards, a comparative study was performed with a convolutional neural

network (CNN) algorithm based on three open-source datasets. Third and

final topic handles on the development of a energy efficient Wireless Sensor

Network (WSN) for locomotives and train wagons. A thorough measure-

ment campaign was executed to find a suitable antenna topology and the

vibrations of the locomotives and train wagons were analysed. In this way,

reliable and an energy efficient communication is ensured.

1.2 Motivation

With the ever-growing need for food and supplies delivered by and towards

shipping companies, there is a significant increase in trucks on highways

and secondary roads. This increase resulted in 92 lethal accidents on the

Belgian Roads [5, 6] caused by trucks in 2021. Approximately 20% of

these accidents are due to the blind spot around a truck [7]. Most of the

accidents are caused due to inattention of the driver or pedestrian [8], and

a lack of communication between them. The inattention can be caused

by distraction and monotonous driving. In current times, the distraction

is mostly caused by social media, news alerts and other text messages on

smartphones. Furthermore, due to the increasing workload among truck
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drivers, driving and relaxing times are not always respected, resulting in

tired drivers and raised work pressure. Road accidents are not only due

to truck drivers. Most pedestrians and cyclists are wearing headphones.

Thereby they pay less attention towards their surroundings and may fail

to see a potential accident or respect the traffic rules. When combining

this with jaywalking, it is nearly impossible for the truck driver to prevent

an accident from happening. The challenge of this topic is to make the

pedestrian and the truck driver communicate with each other and hence

prevent a possible accident. This can be done via a low-cost wearable for

the pedestrian and a straightforward WSN mounted in the truck.

When we move our attention from the roadusers to the elderly people, we

come to the conclusion that a wearable is also useful in this field. According

to [9], 37.3 million severe falls occur globally on an annually base that

require medical attention. Of these millions of falls, 684 000 have a fatal

ending, which makes falling the second leading cause of unintentional injury

deaths [9]. Statistically, elderly above 60 year suffer the largest number of

these fatal falls [10]. This puts much pressure on the nursing personnel that

has to manually check if and elderly person has fallen or not. Making the

elderly wear a small wearable that will detect a fall and alarm the nursing

personnel will lower the work pressure and limit the lethal accidents.

In a final part of the research, the experience with wearable nodes was

employed to develop small autonomous nodes for monitoring Train Integrity

(TI). Annually, companies invest massive amounts in the maintenance of

locomotive and train wagons. A large portion of this budget is spent on

manual labour, where technicians check the condition of these locomotives

and train wagons before they decide to bring them in for maintenance.

Therefore, a WSN is deployed around a locomotive and train wagon in

combination with several sensors. To transfer the data efficiently, some

design requirements [11] are listed. Some very important requirements are

the energy efficiency of the nodes and intelligent communication between

them. When nodes send several data packages, the power consumption

is high and the communication channels are always in use. Furthermore,

it is challenging due to the large amount of metal that will influence the

performance of the antenna and communication channel.

Since wearables are worn, they must comply with some basic design

requirements. These requirements can be split up into three properties [12,

13]. First, you have the physical property. The most important here is

being unobtrusive and comfortable. If wearing it is too much of a burden

on the person, it will affect the functioning and usability of the wearable.

Second, there is the cognitive property. The wearable should be intuitive

and easy to use. This means that the wearable has a limited amount of
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inputs, and the ones that are available should have a simple and easy use.

Third and final is the emotional property. The wearable has to respect the

privacy of the user data and a fashionable design will increase the sale.

Taking previously mentioned design requirements of the wearables into

account in combination with the challenges described earlier, some require-

ments for the Communication Protocol (CP) can be derived. Current wear-

ables need a Wireless Communication Protocol (WCP) that is low-power,

low-cost and has a low latency. Energy-efficient operation is a very im-

portant factor, since wearables have to be unobtrusive. This results in a

small design and even smaller battery size with limited battery capacity.

The WCP has to be scalable and easy integrable in other smart devices. In

this way, the data collected from all different sensors can be visualized on a

smartphone and no extra smart devices have to be added. A scalable WCP

will not limit the amount of connected sensors. Finally, the WCP needs to

be able to cover a decent range, since it has to cover the human body to a

full room in a hospital or a complete locomotive and train wagon.

Current literature provides multiple wireless solutions to connect all

these smart devices with each other or to the cloud. Most commonly known

is Wireless Fidelity (Wi-Fi) [14]. Wi-Fi was developed by the Institute of

Electrical and Electronics Engineers (IEEE) 802.11-standard [15] which aim

is a high data. It offers IP support, is easily accessible and does not hinder

the mobility of the user. Furthermore, there are no compatibility problems

between different Wi-Fi versions. Nevertheless, it is not energy-efficient

and it is less scalable for large WSN, since the amount of connected nodes

is limited. Finally, Wi-Fi has a limited range. In most cases, it is used in a

residential environment where no large distances have to be covered.

Other WCP are Z-Wave [16] and ZigBee [17], which are known as a low-

power wireless technology designed for use in residential areas or industrial

Internet of Things (IoT) applications [18], respectively. Z-Wave is built

on the IEEE 802.11-standard, the aim is to have a reliable, low-latency

transmission of small data packets for control and sensor applications. It

utilizes full mesh networking and operates in the sub-1GHz. ZigBee is build

on IEEE 802.15.4-standard [19], which is best suited for Wireless Personal

Area Networks (WPANs) with a need for low-power and low-bandwidth

communication based on a small, low-power digital radio. Besides the sub-

1GHz, it also utilizes the 2.4GHz band. A large disadvantage of these

WCPs is the lack of support by other commonly used smart devices and the

low communication throughput.

Finally, there is Bluetooth Low Energy (BLE). This WCP is developed

to be used for all types of WSN. Low-cost and low-power combined in small

microcontroller (MCU) were three of the main pillars for the developers of
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Bluetooth. Owing to these pillars, BLE is enrolled in almost every smart

device on the market. A brief history outline of Bluetooth is depicted in the

following section. This describes the different updates that were executed

to make Bluetooth and later BLE a perfect match for WSN.

1.3 State of the art

Bluetooth [20] is created to comply with all the previously summarized

design requirements. In 1994 Ericsson started the development of a cheap

wireless communication platform to transfer small portions of data between

mobile devices. By 1997, the first working solution is presented, followed by

the Bluetooth Special Interest Group (SIG) which was launched by IBM,

Ericsson, Nokia, Toshiba and Intel as the founding signatories in 1998. The

name Bluetooth is proposed by Jim Kardach from Intel, who linked the

Swedish technology to the 10th-centrury Danish King Harald Bluetooth.

In 2002 the Bluetooth 1.1 version is released and ratified as the

IEEE 802.15.1 − 2002 standard. This version solved multiple errors of the

1.0 version and Received Signal Strength Indicator (RSSI) is added. Later

on, this was updated to 1.2, 2.0, 2.1 and 3.0. During these updates, multiple

features such as Adaptive frequency-hopping spread spectrum (AFH) and

Enhanced Data Rate (EDR) were added to further improve Bluetooth. In

2011, Bluetooth SIG released Bluetooth 4.0 called Bluetooth Smart. This

version includes Classic Bluetooth, Bluetooth High Speed (Bluetooth 3.0)

and BLE, as can be seen in Figure 1.1.
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Figure 1.1: Timeline of the different Bluetooth versions.
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BLE [21] is a subset of Bluetooth 4.0 with an entirely new protocol

stack. Instead of 79 channels, BLE has only 40 channels of 2MHz. Three of

these channels are used for advertising while, the others are used for data

transmission. In combination with the AFH, there is less interference be-

tween channels of two coupled devices, while advertising or sending data.

Furthermore, BLE carries power efficiency as a top priority. To achieve

this, the PHY and link layer [22–25] as well as the packet format from the

basic Bluetooth version were redesigned to act as a transmitter (master) or

a receiver (slave). Since only a short burst of data needs to be transmitted,

there is no need for full duplex communication. When the standard was

updated to version 4.1, the role of master and slave was made switchable

on a device. This way, a so-called ”mesh” feature could be achieved by con-

tinuously switching between roles, but keeping a point-to-point connection.

Version 4.2 [26] allowed a master to connect with more than one slave at

the same time, this is a first step towards one-to-many communication and

even closer to a full mesh network. Finally, the payload was increased from

27 byte to 251 byte, while keeping the same packet format. This results in

a throughput increase of a factor 2.6.

In 2016, Bluetooth 5.0 [27] was introduced with the aim to overcome all

limitations of the previous versions. By using some data channels as adver-

tisement channels, the advertisement payload was increased by 8 times. By

doubling the modulation rate, an increase of data rate was achieved. This

improvement lowered the power consumption and shortened the occupancy

of air time. In 2019, Bluetooth 5.1 [28] was introduced. The most impor-

tant contribution is the direction-finding feature. The addition of Angle of

Departure (AoD) and Angle of Arrival (AoA) [29, 30] improves the usability

of BLE in indoor localization and industrial IoT. Unfortunately, due to un-

stable and protected Application Programming Interface (API) functions,

these features were not further examined. Furthermore, using an antenna

array of minimum four antennas is not always convenient. Figure 1.1 illus-

trates the timeline of all the different Bluetooth versions.

All of these BLE versions are based on a point-to-point or star-based net-

work topology, with a smart device as a central node. But in current IoT

applications, the need for a full Mesh network becomes important. Further-

more, Bluetooth had to find an answer to the full mesh solution of Zigbee

and Z-Wave to overcome this rivalry. Therefore, in 2017 Bluetooth SIG

released Bluetooth Mesh [31–34]. The Mesh utilizes several features like

profile types [31] for the nodes within a network, a publish and subscribe

mechanism and relationships between nodes/groups, as can be seen in Fig-

ure 1.2. Via these features, the network becomes energy-efficient [35], easy

scalable and is able to communicate with other devices that support BLE
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Figure 1.2: Graphical representation of a mesh network [31].

but not the Mesh stack. Nevertheless, utilizing BLE Mesh for WSNs with

a very low polling rate (i.e. WSN for Train Integrity) is superfluous.

Taking a closer look at the literature, research performed in [36] illus-

trates that the energy consumption used for data transmission of BLE is

30% lower than that of Wi-Fi. Furthermore, research proposed in [37] illus-

trates that BLE 4.2 has a maximal data throughput of 221.7 kbps. In [38],

it becomes clear that the power consumption is lower with each new ver-

sion, even though the data throughput increases significantly. This is done

by decreasing the transmission rate, but sending the same amount of data.

The results in an overall lower power consumption per given data volume.

Taking the complete history of the different Bluetooth versions into account

and literature proposed in [39, 40], provides the required proof that Blue-

tooth was developed to be energy efficient and has always had a decent data

throughput compared to its energy consumption. Therefore, this technology

is best suited for all sorts of WSNs.

1.3.1 Blind spot detection

In literature, this topic is described and studied in different ways. In [41]

a system is proposed where radar, camera and ultrasonic data is fused to

detect a pedestrian in the blind spot. Three cameras are mounted on the

car (side mirrors and central mirror), two ultrasonic sensors are deployed on

the stop lights and six radar units are installed around the car (one in front,

above the headlights, on the trunk and one on each side door). When a

pedestrian is detected, the driver will receive an alert. In total, this system

utilizes eleven sensors around a normal car and no real-life measurements

were proposed. Furthermore, when integrating a truck with trailer, the

amount of sensors increases significantly and makes the total system more

expensive. [42] proposes a blind spot detection system based on ultrasonic
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sensors. Here, four cameras were mounted on the cabin of the truck and four

ultrasonic sensors were mounted alongside the truck. Based on some real-

life accidents, the system test showed that 68% of the desired alerts were

missed when they occurred in front of the front axle. The ultrasonic system

achieved a detection rate of 48% alongside the nearside zone. This means

that 32% and 52% were missed, respectively. Since both systems alarm the

truck driver, all the responsibility lays with the truck driver. Therefore, the

pedestrian will never know of this potential blind spot accident and learn

from it. In [43] a 360◦ camera system is proposed to detect and track moving

objects. When mounting the camera on a truck, the proposed system gives a

false positive ratio of 5.8% resulting in a large detection rate. Nevertheless,

it only warns the truck driver, camera systems are more expensive than

radar systems and there could be some privacy issues. Furthermore, there

are limitations due to soiled camera lenses.

In conclusion, literature proposes sufficient solutions to detect vulnerable

road user (VRU) in the blind spot of trucks. For some of these systems,

the detection rate is low due to some limitations, but the rate is still larger

than without. Nevertheless, most of these systems alert only the truck

driver. This means that, all responsibility lays with the truck driver and a

false safety feeling could exist with all the VRUs. Combined with a very

complex set-up and/or expensive system, this slows down the roll-out on

current and new trucks.

1.3.2 Fall detection

Much work is performed in individual fall prevention by extensive physical

training of the elderly, or ”Active Ageing” [44] as they are denoted by the

World Health Organization (WHO). By training during the adult life and

continuing this at older ages, a strong muscular strength and cardiovascular

output is achieved. By keeping this up, the likelihood of a fatal fall accident

is drastically reduced. Nevertheless, falls still occur and have to be detected.

Literature provides multiple solutions [45] to this problem. First, there

exist camera based solutions [46]. In [47] a central camera is positioned in a

room that tracks the movement of a body. By utilizing a machine learning

(ML) algorithm, the system is trained to detect a fallen person. Similar

research is performed in [48] and [49]. Here, a deep learning algorithm is

used to train the system to detect falls. Both systems use a basic camera

positioned in the room of an elderly. These systems [48] and [49] have an F1-

score of close to 99.94% and 99.98% on detecting falls and non-fall events,

respectively. The F1-score is a measure to illustrate the algorithm accuracy

on a dataset. It is used to evaluate binary classification systems, where

the classes are ’positive’ or ’negative’. However, these camera systems are
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expensive in purchase and installation. Furthermore, some questions arise

about the privacy since these cameras are continuously recording.

Second, there are several radar based solutions. In [50] a radar and

Recurrent Neural Network (RNN) is used to detect falling persons. This

results in a 98% detection out of 50 falls, but no activities of daily liv-

ings (ADLs) were used to train and test the algorithm. Similar research is

performed in [51], where an ultra-wideband (UWB) radar is utilized. With

the proposed CNN algorithm, an F1-score of 91.9% is reached. Just as

in [50], no ADLs were used during the training of the algorithm, so these

F1-scores are not representative. Another type of radar is based on infrared

frequencies [52]. This system reaches an F1-score of 92% with the proposed

support vector machine (SVM) classifier. These systems were developed in

square, almost empty offices, while most nursing homes room have furni-

ture, a built-in bathroom and often visitors. Furthermore, these systems are

tested on personal computers (PCs) without memory or power limitations.

Third and final, there are the wearable fall detection systems. These

consist of a wearable or a smart device that is worn on the body and contains

an accelerometer. In [53] the accelerometer continuously sends its data

to a PC via a BLE link. An algorithm on the PC determines if a fall

occurred. Next, there are the smart devices that utilize a ML algorithm [54,

55] to determine if a fall occurred. In an updated step, an accelerometer

is integrated on a smart board with integrated MCU that runs a CNN

algorithm [56] to detect a fall. By utilizing an ML of a CNN algorithm or

the computing force of a PC or MCU, very high F1-scores are obtained.

Nevertheless, these are not the most energy efficient solutions, since these

algorithms have to run continuously and cannot be put into a deep sleep.

Furthermore, to train these algorithms, training data is required. Retrieving

fall data of elderly is difficult. There are free online databases containing

all sorts of data of people falling in controlled circumstances. This will help

to train the algorithm, but differences remain between simulated and real

fall events.

1.3.3 Train integrity

A limited amount of research is proposed in current literature about WSN

used for TI monitoring. Most of the proposed networks contain several

sensors around the train wagon and transfer their data to a Central Node

(CN) via various wireless communication protocols like XBee [57]. In some

occasions, a General Packet Radio Service (GPRS) or Global System for

Mobile Communications (GSM) module is added to the CN that transfers

data over a cellular network to the main station at the maintenance hall or

the locomotive [58]. Since this is not energy efficient, a lot of research is
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performed in developing energy harvesters (EHs) for these systems. In [59],

an EH is developed based on the piezoelectric effect, which is placed inside

a passenger train wagon. The harvested energy reaches a peak of 0.72 µJ/h.

When the vibration increases to 19.5m/s2 the harvested energy reaches a

level of about 0.2mJ/h which is enough to transfer data packages. This

resulted in the research proposed in [60] and in [61] where the energy is

generated via an EH inside a wheel bearing or an accelerometer, respectively.

This last one is an ideal solution, since the accelerometer can be used to

detect movement.

1.4 Own Contribution

This dissertation presents the research performed to develop sensor nodes

for WSN utilizing BLE as a main communication protocol for on-body and

industrial IoTs. First, a blind spot detection and warning system was de-

veloped that will continuously scan for vulnerable road user. When coming

too close, this is detected by a self-developed rule-based algorithm based on

RSSI measurements, warning the truck driver and VRUs. Hence, there is a

shared responsibility. Since leveraging BLE results in, a low-cost, low-power

and low latency system. To validate this system, custom-made hardware

and software was developed. Afterwards, one of the nodes used in this

system was miniaturized to fit inside the sidelights of a truck or his trailer.

Next, a fall detection and warning system for nursing homes is developed.

This consists of a small, unobtrusive wearable that uses an accelerometer

and a low-power rule-based algorithm that detects a fall of an elderly. Af-

terwards, an alert is send to the rest of the system warning the closest

caretaker. For both the wearable and the other nodes, custom-made hard-

ware and software are developed. In this way, a low-power, low-cost and

easy implementable system is developed.

Finally, measurements are performed on train wagons to find a suitable

antenna topology for WSN on trains. Some acceleration measurements

are performed to make the WSN energy efficient. Based on an extensive

measurement campaign, several simulations are performed.

1.5 Outline

This book contains five chapters and two appendices. In this chapter, the

context, motivation and state-of-the-art were presented, followed by the own

contribution to the three proposed topics.

In Chapter 2, the blind spot detection and warning system to detect

vulnerable road users (VRUs) is proposed. The system set-up with the
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different nodes and the communication steps between them is elaborated.

Next, the development of the hardware for each node is illustrated. This is

followed by extensive simulations of the different parameters used in the self-

written low-power rule based algorithm. Finally, the real-life measurement

campaign and results are discussed.

In Chapter 3, the fall detection and warning system for nursing homes

is proposed. The complete system set-up with different nodes is elaborated.

Next, the developed hardware and self-developed rule based algorithm with

integrated filtering is proposed. Next, the performed simulations and mea-

surements on open-source datasets are discussed and compared to the per-

formance of a CNN algorithm. Finally, a power analysis is performed to

estimate the battery lifetime.

In Chapter 4, the measurements performed to make a WSN for TI power

efficient and find an optimal antenna for the wireless communication. First,

the measurement set-ups are elaborated followed by an extensive discussion

on the received results for the acceleration and RF-measurements.

Chapter 5, presents the conclusion of this dissertation. The important

improvements of these topics in comparison of the state-of-the-art are listed.

In addition, Appendix A describes the miniaturization of the Detection

Node (DN) presented in Chapter 2. In appendix B, the further develop-

ment of the hardware for the other nodes of the fall detection and warning

system proposed in Chapter 3 is elaborated, followed by a presentation of

the measurement results.
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Blind spot road accidents are a frequently occurring problem. Every year

too many deaths are caused by this phenomenon, even though a lot of money

is invested in raising awareness and in the development of prevention sys-

tems. In this chapter, a blind spot detection and warning system is pro-

posed, relying on Received Signal Strength Indicator (RSSI) measurements

and Bluetooth Low Energy (BLE) wireless communication. The received

RSSI samples are threshold-filtered, after which a weighted average is com-

puted with a sliding window filter. The technique is validated by simulations

and measurements. Finally, the strength of the proposed system is demon-

strated with real-life measurements.
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2.1 Introduction & related work

On Belgian roads, every year approximately 50 people are involved in blind

spot accidents [1], of which approximately 10% end lethally. Annually, the

government invests a lot to raise the awareness of this problem. However,

the danger still exists, mainly due to the lack of reliable communication

between the truck driver and the vulnerable road user. Therefore, in this

chapter we propose a blind spot detection and warning system that makes

both parties aware of a potential blind spot danger.

Most systems which are developed and sold on the market are camera-

based or radar-based. In most cases, camera systems use visual parameters

to detect vehicles in the blind spot through post-processing machine learn-

ing algorithms [2–4]. Their big advantage is the visualization of a potential

accident. At night, when compared to daytime, special camera systems are

needed and the detection rate is inevitably reduced. In [5, 6] an improved

solution for detection at nighttime was introduced. However, since the de-

tection is based on images, all cameras have to stay clean, which is often

problematic in the truck’s operating conditions. Furthermore, when a truck

makes a turn, the cameras lose the observation position as well as the de-

tection region. In contrast, radar-based systems can be applied in real-life

situations [7]. Their biggest advantage is their versatility, since these sys-

tems can operate during day- and nighttime. Most studies, however, show

that only motorized vehicles are detected, and not vulnerable road users.

It is easy to understand that radar detection for vulnerable road users is

problematic, due to their fairly small radar cross section in combination

with significant clutter on a realistic radar image. In most situations, rain,

snow, trash bins, etc. are also detected, leading to many unwanted false

positives. In this chapter, a Bluetooth Low Energy (BLE)-based detection

and warning system where both the truck driver and the vulnerable road

user are warned for a potential danger, is proposed. Moreover, as the sys-

tem is based on Radio Frequency (RF) communication, the major problems

of camera- and radar-based detection systems are solved.

Publications based on reconstruction reports of heavy good vehicle ac-

cidents confirm that most of the vulnerable road users are on the right side

of the truck at the moment of the accident [8, 9]. In Figure 2.1 different

zones around the truck are visualized. The areas with the double blue lines

are visible from the truck driver’s seat, directly through the windows. The

areas with orange solid and dashed lines are visible via the truck’s mirrors,

when deployed as regulated by law. The areas with the red squares are

not visible from inside the cabin through the windows and/or the mirrors.

These areas are called the blind spots. Important to mention here is that all
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Figure 2.1: Truck with all detection nodes (green dots) mounted and all blind
spots around a truck. Double blue lines are areas visible through the windshield,
the orange solid and dashed lines are the areas visible through the side mirrors
and the red crossed lines are not visible through the side mirrors, also known as

the blind spot area.

areas are drawn based on the position of the truck in Figure 2.1. When the

truck turns to the right, the area visible through the mirrors decreases and

the blind spot area increases. Furthermore, mirrors are a passive system

and will not alert the truck driver of potential danger. In this chapter, we

propose a blind spot detection and warning system based on BLE, warning

both the truck driver and the vulnerable road user for a possible blind spot

accident. Although the system can be used by all kinds of cyclists, the rest

of the sections focuses on pedestrians as vulnerable road users.

This chapter presents the hardware implementation of the different nodes

and the design of a small sensor or wearable. Moreover in Section 2.2, the

communication protocol between the different nodes and the applied filter-

ing are discussed. Next, the performed simulations and real-life measure-

ments that validate the system’s operation are detailed in Section 2.3 and

Section 2.4. This chapter ends with a conclusion formulated in Section 2.5.

2.2 Design

The system proposed in this chapter creates a complete detection area

around the right side of the truck. Therefore, Figure 2.1 also shows de-

tection nodes attached to the truck in order to detect objects and persons

in the blind spots. Therefore, at the front of the truck a detection node is

deployed and also one at the rear of the truck, as well as uniformly distribut-

ing three nodes along the right side. The vulnerable road user is equipped



22 Chapter 2

with a small sensor or wearable, that can wirelessly connect to a detection

node. Hence, the vulnerable road user can detected these detection nodes

when entering the blind spot. In what follows, the detailed hardware im-

plementation of the designed nodes is described and the software routines

and filtering algorithms are explained.

2.2.1 Hardware implementation

The communication between the nodes in the proposed system is based on

BLE. This communication standard was selected for the low power capa-

bilities, minimal complexity, low price, easy connectivity with smartphone

applications and compatibility of future versions. Furthermore, Silicon Labs

provides multiprotocol chips, including BLE, making their hardware suit-

able for the design of a proof-of-concept.

For this system, BLE4.2 is the minimal required version. All previ-

ous versions used a one-to-one communication protocol, while starting from

BLE4.2 one-to-many is possible. The entire required data throughput is

limited and higher versions of the BLE-standard are not necessary, limiting

also the power usage [10].

Figure 2.2: Designed detection node in its fluorescent housing.

The design of the hardware relies on BGM111 modules from Silicon

Laboratories [11]. These modules use the BLE4.2 stack [12] and contain an

on-board 32-bit, 38.4MHz Advanced RISCMachines (ARM) Cortex M4 [13]

microcontroller with Digital Signal Processing (DSP) instruction set, com-

bined with an integrated antenna. In order to have an optimal maximal

range, the data sheet of the BGM111 prescribes an empty space of at least

16mm around both sides of the System-on-Chip (SoC). Furthermore, a

TAG-connect [14] connector was used to program all different nodes via the
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Serial Wire Debug (SWD) protocol [15]. As power supply LiPo batteries of

3.3V [16] are used.

Figure 2.2 shows the designed Printed Circuit Board (PCB) for the de-

tection node. Some leds were added for initialization and debugging pur-

poses. As protection PCB plastic boxes were 3D-printed. A neodymium

magnet is glued at the bottom side of the box to attach the node alongside

the truck.

The wireless starter kit accompanying the BGM111 module from Silicon

Laboratories [17] is used as central node. This development board contains

a small Liquid Crystal Display (LCD) screen, LED, push buttons, etc. but

also the necessary circuitry to debug and log all necessary data.

Figure 2.3: Designed wearable next to its housing.

Figure 2.3 shows the designed wearable and buzzer PCB next to its

flexible housing. A light band worn by runners, cyclists and pedestrians,

was chosen. The main PCB contains the BLE module and the peripheral

components to activate the module and to set the outputs. Also here, the

size of the PCB is very important. To fit the PCB inside the package, the

width at both lateral sides of the SoC was reduced to 11mm, yielding a

decrease by approximately 10% in maximum range, according to the data

sheet.

The second PCB of Figure 2.3 contains the buzzer. On this PCB, an

oscillator was implemented based on NAND gates with a built-in Schmitt

trigger. According to the data sheet of the buzzer [18], a signal between 4

to 8 kHz is necessary to receive the highest pitch. Realized with in-house

components, a frequency of 5.4 kHz was measured with a Rigol DS1054Z os-

cilloscope. Furthermore, leds and a vibration motor were added for flashing

and vibrating in case of an alert.
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2.2.2 Software

In this section, a global overview of the communication steps is given. The

sequence diagram in Figure 2.4 pictures these steps. After initialization,

the detection nodes send advertisement packets. The wearable records the

Received Signal Strength Indicator (RSSI) levels of the received packets of

the different detection nodes in a database. When the buffer is full, the

wearable algorithm calculates the alert level for each detection node. If

there is an alert, the wearable makes a connection with the corresponding

detection node and alerts it. Afterwards, this detection node immediately

disconnects from the wearable and sends a message to the central node to

alert it.

At this point, the truck driver and the vulnerable road user are both

alerted of each other’s presence. This subsequently enables both parties to

take the required measures to avoid a blind spot accident. In the following

subsections, the communication steps of the different nodes and the filtering

technique implemented in the algorithm are discussed in more detail. Also,

a more detailed interpretation of the buffer size and the weights for the alert

calculation is given.

2.2.2.1 Wearable

The designed wearable contains a push button to switch on the system. Af-

ter the initialization of the complete database, the device starts scanning for

advertising messages from the detection nodes [19]. The wearable runs three

main software routines. The first one is the initialization routine, the second

adds the RSSI levels to the database and a last one checks the database.

Figure 2.5 illustrates in the top part the initialization of the wearable, while

the bottom part shows the function to add the RSSI levels to the database.

In the first software routine, the leds of the wearable light up, while it

starts scanning for advertisement messages with predefined data. The sec-

ond software routine adds the received RSSI levels to the corresponding

buffers inside the database. At the same time, a timer-controlled routine

runs in the background and checks this database. If no more packages from

a specific detection node are received, this timer-controlled routine clears

the database entity so it can be reused.

The third and final software routine checks the database, as can be seen

in Figure 2.6. The wearable continuously scans for advertisement packets.

In order to have a fast response, the system pauses scanning after every

five received packages and then checks the database. In this way, with an

advertisement interval of 20ms, every 100ms the database with all received

RSSI samples in multiple buffers is checked. When one of these buffers is
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Detection node Wearable

Save to database

Calculate alert

Set alert

Save to database

Advertisement message

Central node

Set alert

Buffer == full

Advertisement message

Make connection

Disconnect

Send alert

Initialization process of central

and detection node

isRunning == TRUE

if

loop

Figure 2.4: Sequence diagram of the designed system starting from the point
when the wearable is activated.
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Detection node Wearable

Add RSSI packages

Turn LEDs on

Start scanning for

predefined data

Add RSSI to

database

Skip package

Restart scanning

Advertise message

if

Push start button

isAdvData == TRUE

Vulnerable road user

Initialize database

Initialization of the wearable

Figure 2.5: Sequence diagrams of the wearable with the initialization and add
RSSI levels to database software routine.
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WearableCentral node Detection node

if
Stop scanning

if Database == Full

Calculate alert level

if Alert == High Alert
Make connection

Disconnect from wearable

Set alert

Send alert

Set alert

Received packages == 5

Restart scanning for

advertisement message

Scanning for

advertisement message

Figure 2.6: Sequence diagram of the wearable with the check database software
routine.
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full, the algorithm filters all RSSI samples, calculates the average value and

determines the alert level. If the level is ’high’, the routine connects to the

detection node. Once the connection is made, the detection node immedi-

ately disconnects from the wearable and sends the corresponding alert to the

alert level characteristic of the central node [12]. Because the connection is

immediately disconnected, the wearable sets the alert and restarts scanning

for new advertisement messages. When an alert-level-characteristic message

is received, the central node also sets the corresponding alert.

2.2.2.2 Detection and central node

The next sequence diagram (Figure 2.7) shows the initialization procedure

of the central and detection nodes. When the button on the central node

is pushed, the initialization is started and the central node advertises. In a

second step, the button on the first detection node is pushed. This detection

node starts scanning for the advertising messages from the central node.

When this message is received, the detection node makes a connection and

requests a handle for the immediate alert service and for the alert level

characteristic [12]. These handles contain the addresses of the memory

allocations inside the BLE stack. Afterwards, the detection node sends an

acknowledgment and starts scanning for ’start’ packages. The first detection

node is now completely initialized and is waiting to start advertising. The

same steps are repeated consecutively for every detection node.

When all detection nodes are connected, the central node then adver-

tises ’start’ and goes in a waiting state. In total ten ’start’ messages are

used, in order to have redundancy. When receiving these ’start’ messages,

the detection node scans for packages sent by the wearable. During initial-

ization, the central node and detection node save the addresses from the

other nodes. The next time the system is activated, the nodes can just con-

nect and start advertising without the need of the complete initialization

process. If a node fails, the addresses can be adapted by reinitializing the

complete system.
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Detection node 1

Connected node != 5
Push initialization button

if

Detection node 2Central node

Send handle

Send handle

Send "ACK"

Node starts scanning

for start message

Node is initialized

if

Driver

Push initialization button

Till all detection nodes are connected

Push initialization button

Node starts scanning for

initialization message

Advertise initialization message

Advertisement data == initialization message
Make a connection

Request Immediate Alert Service handle

Request Alert Level Characteristic handle

Node is initialized

10 x Advertise start message

Nodes start advertising

Node restarts scanning for

initialization message

Loop


Initialization

Figure 2.7: Sequence diagram of the initialization between detection node and
central node.
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2.2.3 Filtering

The detection system has to rely on very volatile RSSI levels, hence requir-

ing extensive filtering. The recorded signal levels are influenced by several

radio-wave-propagation effects. Path loss causes a gradual attenuation of

the signals when the distance between the transmit and receive antennas

increases. Shadowing and multipath fading cause these signals to fluctuate

significantly during the recorded trajectory. Shadowing is inevitably caused

by the human body on which the wearable is worn. As the body is situ-

ated into the radio-wave-propagation path, signals are variably attenuated

depending on body orientation and posture. While walking, the arm on

which the wearable is worn also moves, causing signal fluctuations. Addi-

tionally, multipath fading results in quick signal variations. The physical

reason for this phenomenon is the interference between signals that travel

along different paths. Metal obstacles cause the strongest reflections, but

also trees and buildings play an important role. The operating frequency of

the detection system is 2.45GHz, corresponding to a wavelength of 12 cm.

Due to alternating destructive and constructive interference the signal fluc-

tuates rapidly, even with small displacements of the transmitter and/or

receiver.

A lot of research was performed in order to improve the detection based

on RSSI levels and to mitigate radio propagation related effects [20, 21].

Most of these algorithms require a lot of resources in terms of calculations

and memory, hence they are mostly performed in post-processing. To retain

real-time behaviour, two basic filtering systems are proposed. The first filter

was implemented in order to suppress outlier RSSI samples due to path loss,

shadowing and fading. In this filter received RSSI samples smaller than a

certain threshold level are replaced by that threshold value.

RSSIavg = w1.

∑
i=Q2,3

RSSIsort,i⌊
k
2

⌋ + w2.RSSIk+1 (2.1)

The second filter is a weighted average filter with sliding window [22].

This filter is implemented in order to smoothen the received RSSI samples

and to calculate the average value, as is shown in Formula 2.1. All values

in these buffers are expressed in dBm.

The proposed filter consists of a buffer that is filled with RSSI samples.

When the buffer is completely full, the buffer is sorted (RSSIsort) and the

average is calculated with the RSSI samples in the interquartile range be-

tween the 0.25 and 0.75 quartile, visualized by Q2 and Q3 in Figure 2.8.

The size of the buffer is represented by k and the summation of the selected

RSSI samples is divided by the floored value of k/2. Afterwards, the av-



Detection and Warning System of road users in the Blind Spot 31

Q1 Q2 Q3 Q4

RSSIsort,1 RSSIsort,2 ... RSSIsort,k−1 RSSIsort,k RSSIk+1

⌊
k
2

⌋
Figure 2.8: Graphical representation of the average filter with sliding window. k

represents the buffer size, Q1−4 represents the quartiles of the buffer.

erage is multiplied by the weight w1. In a next step, a new RSSI sample

(RSSIk+1) is multiplied by the weight w2 and added to the average of the

sorted buffer. These weights are calculated based on Formulas 2.2 and 2.3.

Figure 2.9 illustrates how the weights are generated. x1 and x2 represents

the number of RSSI samples that are being used to calculate the weight.

The denominator is half the size of the buffer plus one, because of the last

added RSSI sample (RSSIk+1).

w1 =
x1⌊

k
2

⌋
+ 1

(2.2)

w2 =
x2⌊

k
2

⌋
+ 1

(2.3)

Q2 Q3

RSSIk+1

# = x1 # = x2

Figure 2.9: Graphical representation of the weight calculation.

2.3 Measurements

In this section, two measurement setups are analysed and different simula-

tions are explained in detail. From these simulations, the parameters for

the final algorithm were extracted. To conclude this section, results with

the optimized algorithm are shown.
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2.3.1 Measurement setup

2.3.1.1 Static RSSI measurement

A first measurement campaign was set up to find the most appropriate

threshold level. It is important to note that the accurate conversion from

RSSI levels to distances is not possible, but ranges of RSSI levels corre-

sponding to different distances can be determined. To obtain this feeling,

some static measurements were performed and are schematically illustrated

in Figure 2.10. A detection node was fixed against a metal container build-

ing at a height of 1.2m (as is shown in Figure 2.11). This metal structure

replicated a metal trailer of a truck. At a distance of 1m, 250 RSSI samples

were logged while the test person was standing still. The same measurement

was repeated at distances varying from 1 to 8m in steps of 1m.

Figure 2.10: Top view of the static measurement setup against a metal container
building. X represents the distance between the vulnerable road user with the

wearable and the detection node mounted at a height of 1.2m. X varies from 1 to
8m in steps of 1m

Next, the measured data is filtered with a moving average filter. A win-

dow size of 7 measurements was chosen because, given the measurement

rate, the average speed of the user and the small-scale fading pattern oc-

curring at 2.45GHz, this window size offered the best compromise between

sufficient smoothing and limited delay. Figure 2.12 shows the filtered data

at each distance, together with the unfiltered data as dots. There is a clear

difference in RSSI levels between 1m and 2m. Starting from 3m, overlap-

ping ranges occur. Since the system has to start detecting vulnerable road

users at a minimum distance of 8m or more, a threshold level of −65 dBm

was selected. At a distance of 3 to 4m, the system has to give an alert. So

an RSSI alert level of 10 dBm higher was selected.
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Figure 2.11: Detection node mounted against the metal container building at a
height of 1.2m
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Figure 2.12: Averaged RSSI levels at distances of 1m to 8m in steps of 1m.

Having this knowledge and knowing that the maximum length of a truck

with trailer in Europe is 16.5m. It can be concluded that that 5 detection

nodes provided sufficient coverage since the maximum distance between

these nodes is approximately 3.3m. Furthermore, the 5 nodes provide us

with the possibility that the truck driver have a better view at which point

the pedestrian is detected.

2.3.1.2 Dynamic RSSI measurement

To obtain the optimal parameters for Formulas 2.1, 2.2 and 2.3, a num-

ber of dynamic RSSI measurements are performed. Figure 2.13 shows the

measurement setup. Also here, the detection node was deployed on a metal

container building at a height of 1.2m. To simulate a vulnerable road user

walking beside a truck, a test person walks at a distance of 4m in front of

the metal container building, starts at 6m before and ends 6m beyond the
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Figure 2.13: Top view of the dynamic measurement setup. The detection node is
mounted at a height of 1.2m. A test person wearing the wearable walks in front
of the metal container building at a distance of 4m. The test person follows a

trajectory that starts at a distance of 6m before and ends 6m beyond the
detection node.

node, covering a trajectory of 12m. In three different runs, RSSI samples,

received by the test person, are logged and used in the following simulations

to determine the parameters of both filters.

2.3.2 Threshold filtering

The first filter compares each RSSI level to a fixed threshold value, as is

defined in Subsection 2.3.1.1. The comparison itself can be done via different

filtering techniques. The first technique is the minimum threshold filtering:

every RSSI value lower than the threshold value is replaced by the threshold

value. The second proposed technique is the step 1 dB filter: every RSSI

value lower than the threshold is replaced by the previous value minus 1 dB.

The same idea is used for the third technique with a step of 2 dB, although

the RSSI measurement resolution of the used hardware is 1 dB.

Figure 2.14 presents the RSSI samples filtered by the three techniques,

the original data and the discarded data points. The optimal threshold has

already been derived earlier, and is represented as a solid black line. Start-

ing from sample 55, the effect of the different techniques becomes visual.

The step 1 dB (dashed green line with right triangles) and 2 dB (dashed

blue line with left triangles) techniques result in RSSI levels with a much

lower value than the original ones. Especially in areas with many discarded

points, the negative influence becomes even larger. In contrast, the min-

imum filtering technique yields the most acceptable result. All discarded

points are replaced by the threshold value which results in a more accept-

able effect. Therefore, the minimum technique was selected as the preferred

filtering technique for the first filter. A threshold level of −65 dBm was
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Figure 2.14: RSSI samples filtered by three different threshold filtering techniques.

selected based on the measurements performed in Section 2.3.1.1. These

RSSI levels where received at a distance of approximately 8m. In this way,

there is a kind of prefiltering on the received values resulting in a faster and

more accurate alert calculation.

2.3.3 Weighted average filter with sliding window

For the weighted average filtering given by Formula 2.1, a number of sim-

ulations were performed to find the best suited buffer size and weights. In

order to find these parameters, the best result of the buffer size is used in the

simulations for the weights and vice versa. Figure 2.15 shows the minimum

threshold filtered data that is used in every next simulation.
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Figure 2.15: Minimum threshold filtered RSSI samples.
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In Figure 2.16, it can be seen that the size of the buffer has a large

influence indeed. This size needs to be chosen carefully: the larger the

buffer, the more smoothing effect. However, the buffer has to be filled in a

reasonable time. Advertisement packets are sent at 20ms intervals. For a

buffer size equal to 51, it takes 1.02 s to calculate the first alert. For small

buffer sizes, the obtained average value is by far too small compared to

the original data points of Figure 2.14. Therefore, a buffer size of 31 was

selected as the best compromise, offering an acceptable delay in combination

with sufficient sensitivity. In case of an alert, a connection is made to the

corresponding detection node, alerting it. This alert is forwarded by the

detection node to the central node, resulting in a connection time or latency

limited to 620ms.

2 4 6 8 10 12

−64

−62

−60

Samples

R
S
S
I
[d
B
m
]

Buffer size 11
Buffer size 21
Buffer size 31
Buffer size 41
Buffer size 51

Figure 2.16: Weighted average filtering with different buffer sizes.

For the weight, a similar conclusion can be drawn. Figure 2.17 demon-

strates the effects of different weights. Since the buffer contains the most

information, 50% as a lower bound for w2 was set. Earlier a buffer size

of 31 had been selected, resulting in an average calculation based on the

middle 15 values (between the 0.25 and 0.75 quartile). The denominator of

Formulas 2.2 and 2.3 was set to 16. As can been seen in the figure, 68.75%

or 11/16 for w1 gives the smoothest result. Furthermore, this value still at-

tributes sufficient weight (w2) to the most recently added sample (31.25%

or 5/16).
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Figure 2.17: Weighted average filtering with different weights.

2.3.4 Optimized algorithm

In order to verify the selected threshold filtering, buffer size and weights, the

simulations were repeated for three other data sets. All runs were filtered

separately and the average value is presented in the graphs, where the mea-

surement spread with minimum and maximum for the selected parameters

is also represented.
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Figure 2.18: Threshold filtering with mean, minimum and maximum for three
data sets.

The result of the selected threshold filter is displayed in Figure 2.18.

For every RSSI sample the minimum and maximum value of all runs are

displayed, showing the performance of this threshold filter.

Figure 2.19 shows the variation in RSSI levels for a buffer size of 31.

Taking the measurement spread into account, similar results are obtained.
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Figure 2.19: Weighted average filtering with different buffer sizes for three data
sets.

Figure 2.20 demonstrates the result of the weight simulation for the three

runs. The measurement spread for 68.75% has an acceptable effect for the

different data sets.

2.4 Real-life Measurements

Based on real-life measurements, the performance of designed hardware

and the realization of the optimized algorithm are validated. After the

description of a general test, also the system behaviour for a big group of

people is handled.

2.4.1 General test

As a general test, the system was mounted on a truck and multiple secondary

school teenagers were equipped with a wearable, worn on the left upper arm.

One at a time, a pupil approached the truck from the back or the front. The

start position of everyone was 20m away from the truck. From the moment

the pupil started to walk towards the truck, the wearable was activated.

Figure 2.21a shows a pupil receiving his second alert, with the wearable

blinking.

During this test, the general operation of the system was validated. At

the start of the test, it was experienced that −65 dBm is a little bit too low.

Therefore, the threshold level was changed to −70 dBm. This increased the

detection distance by approximately 3m and when starting from the rear
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Figure 2.20: Weighted average filtering with different weights for three data sets.

(a) Pupil receiving second alert. (b) Group of ten receiving an alert.

Figure 2.21: Pupils receiving alert during real-life measurements.

end of the truck, the first alert was received at a distance of around 8m.

Coming from the other side, the alert was received much later, resulting in a

distance of roughly 3.5m from the truck. This can be explained by the fact

that the wearable was worn at the left upper arm and was hence oriented

away from the detection nodes.

2.4.2 Large group of people

Other tests were carried out with more than one person at a time: with

five, ten and twenty pupils respectively.

Five persons walk in a small group towards the truck starting from

approximately 20m from behind the truck (Figure 2.22). The first alert

was received by persons in position one and two, followed by an alert for

the pupil in the third position. The pupils in position four and five received

the alert from the moment they passed the others. This test shows that
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Figure 2.22: Top view of the real-life measurement test with big group of people.
Five persons in a small group walked towards the truck starting at a distance of

approximately 20m behind the truck.

the RSSI levels for pupil four and five are influenced by the others around

them. When there is a Line-of-Sight (LoS) connection, the system performs

perfectly.

(a) Start from behind truck. (b) Start from before truck.

Figure 2.23: Group of twenty pupils receiving alert during measurement.

The test with a group of ten was in a random position. As can been

seen in Figure 2.21b, the first time the teenagers walked towards the truck

starting from 20m behind the truck and the second time from the front

of the truck. Pupils with an LoS connection received the earliest alert

just-in-time. Repeated with twenty persons (see Figure 2.23a), alerts were

received at various times. Once the teenagers started before the truck (see

Figure 2.23b) and the wearable on the left upper arm was obstructed by

the different bodies, alerts were received much later. However, all people

on the side of the truck received a fast alert.
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2.4.3 Verification measurement

In order to test the system progressively, the same tests were repeated with

a larger truck (16.5m) and 30 other persons (see Figure 2.24a and Fig-

ure 2.24b). This way, the entire system was tested with a larger group and

employing the longest truck allowed on Belgian roads.

(a) Group of two received alerts. (b) Group of four received alerts.

Figure 2.24: Pupils receiving alert during the verification measurement campaign.

Just like in previously described real-life measurements, the test persons

walked by in different group sizes and positions. Also here, the proposed

system performed as intended. For students starting from the back, the

first alert was received at a distance of approximately 8m, measured from

the back of the trailer and confirming the results described above.

2.5 Conclusion

In this chapter, a blind spot detecting and warning system based on Blue-

tooth Low Energy (BLE) wireless communication is proposed, relying on

Received Signal Strength Indicator (RSSI) measurements. The system con-

sists of five detection nodes around the truck who advertise their presence.

The vulnerable road user utilizes a wearable that scans these advertisement

packets. The algorithm inside the wearable interprets these messages and

applies filtering on the RSSI levels of them.

The algorithm itself consists of two filters: the threshold filter and the

weighted average filter with sliding window. Based on static RSSI measure-

ments, the threshold level was fixed at −65 dBm. Later, during the real-life

measurements, this value is lowered to −70 dBm. From the threshold simu-

lations, the minimum technique is selected as the preferred threshold filter.

Dynamic RSSI measurements are performed to find the best suited buffer

size and weights to be used. A buffer size of 31 is proposed and for the

weights w1 and w2 the values 68.75% or 11/16 and 31.25% or 5/16 are

suggested, respectively. The first alert is received in 620ms.
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During the real-life measurement, the system performed reliably well.

The first alert for a vulnerable road user starting from the back of the truck

is received at approximately 8m. The test with multiple vulnerable road

users at the same time lead to the same results. When the wearable is

surrounded by many people, the alert is received slightly later. In a group

of people, only a few need to wear the wearable in order to receive an alert,

the complete group will be alerted due to the light and sound effect of the

others.

A blind spot detection and warning system is proposed, relying on RSSI

measurements and BLE wireless communication. Compared to camera- and

radar-based systems, the proposed system is based on RF communication

and uniquely identifies only all vulnerable road users. The system warns

both the truck driver and the vulnerable road user for a potential danger.
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Due to the ever growing population of elderly people, there is a dramatic

increase in fall accidents. Currently, multiple ideas exist to prevent the

elderly from falling, by means of technology or individualised fall prevention

training programs. Most of them are costly, difficult to implement or less

used by the elderly and they do not deliver the required results. Furthermore,

the increasingly older population will also impact the workload of the medical

and nursing personnel. Therefore, we propose a novel fall detection and

warning system for nursing homes, relying on Bluetooth Low Energy (BLE)

wireless communication. This chapter describes the hardware design of a

fall-acceleration sensing wearable for the elderly. Moreover, this chapter also
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focuses on a novel algorithm for real-time filtering of the measurement data

as well as on a strategy to confirm the detected fall events, based on changes

in the person’s orientation. In addition, we compare the performance of

the algorithm to a machine learning procedure using a convolutional neural

network (CNN). Finally, the proposed filtering technique is validated via

measurements and simulation. The results show that the proposed algorithm

as well as the CNN both result in an excellent accuracy when validating on

a common database.

3.1 Introduction

Fall accidents are a large risk in the life of elderly people and form one of

the most important public health problems in the ageing population [1].

Research shows that, from the age of 65 on, the number of fall accidents

rises dramatically [2, 3], often with a lethal ending. Furthermore, it is found

that individualised fall prevention training programs [4, 5] do not have the

intended results. All these fall injuries have a large influence on the health

system [6]. Moreover, they definitely impact the workload of the medical

and nursing personnel, since they have to constantly check if an elderly

person has fallen. This causes stress for the personnel and can lead to mental

or physical problems. Current literature proposes multiple solutions to lower

the number of fall accidents with lethal endings, by alerting the personnel

faster. Accordingly, the workload of the medical and nursing personnel

is lowered as well. However, many of these solutions are very expensive,

difficult to implement or hindered by privacy regulations. Therefore, we

propose a low-cost fall detection and warning system for nursing homes

based on Bluetooth Low Energy (BLE)5.1 [7]. The proposed system consists

of four different nodes, all using BLE5.1 or Bluetooth Mesh as a wireless

communication platform.

The novel contributions of this system is as follows. A truly wearable

node for fall detection is developed, complemented with victim localization

and staff alerting functionality and based on a single-chip solution, exploit-

ing BLE5.1. Thereby a novel reliable physics-based fall detection algorithm

that does not require any training is conceived and the proposed algorithm

is compared with machine learning (ML) using convolutional neural net-

works (CNNs).

This chapter describes the design and implementation of a fall detection

wearable for the elderly. First, an overview is presented of the current lit-

erature, followed by a detailed explanation of the hardware implementation

and algorithm used to reliably detect and confirm a fall. The detection

is triggered by acceleration and the conformation is based on orientation
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change. Next, there is an overview of all measurements and simulations

that are used to construct and validate the algorithm, followed by measure-

ment analysis and conclusions.

3.2 Related Work

In current literature, multiple fall detection systems are proposed [8–14].

These detection systems can be split up in three different groups, as can be

seen in Figure 3.1.

Fall Detection

Ambient Device Smart Wearable DeviceCamera-based

Smart Device Wearable DeviceAudio & Video Vibration

On board  Cloud-based

Figure 3.1: Classification of fall detection systems

A first group is formed by camera-based systems [15–19]. By means of a

camera implemented in a room or on a person, a fall is detected based on an

extensive algorithm that runs on a personal computer (PC). Even though

these systems work well, they have some disadvantages. Most of them

have a limited coverage area, have a very high cost and can be hindered

by privacy regulations. Furthermore, it is important to notice that none of

these systems communicate to provide the necessary help when a fall occurs.

Since these systems rely on a different principle, we do not go into further

detail.

A second group consists of ambient device systems [8–10, 20–23]. This

group can be split up into two subgroups. The first subgroup utilises vi-

bration to determine whether a fall occurred. Sensors are mounted in a

room, on a floor [21] etc., to monitor the environment and to detect a fall.

Accelerometers are integrated into the walls [20] and continuously scan for

vibration, while an algorithm detects a fall based on these wall sensors.

The second subgroup attempts to fuse audio and visual data. The sys-

tem proposed in [23] combines accelerometer and camera data to determine

whether a fall has occurred. Just like camera-based systems, these have an

even higher implementation cost. Moreover, they can only detect a fall, but

they cannot determine which elderly person has fallen, nor can they send

vital parameters to the nursing personnel. Most of these systems are prone
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to generating false alerts, which is stressful for the personnel and can lead

to carers paying less attention to the alerts.

A final group of solutions consists of wearable systems. We have opted

to divide these systems in two subgroups. The first and biggest subgroup

consists of systems that are based on a smart device with integrated ac-

celerometer or gyroscope sensors [24–29]. In a next step, these systems can

be divided in categories, based on where most of the processing is performed.

In the systems proposed in [24, 26], the accelerometer data are transferred

to the cloud or to a PC, where a post-processing algorithm detects a fall.

In the cloud, multiple algorithm types can be used to determine whether

a person has fallen. In current literature, a lot of research is performed on

machine learning algorithms [30–39] that detect falls. However, these sys-

tems require a lot of training data, which is difficult to obtain. Furthermore,

such systems consume a lot of power. Secondly, there are the smart device

systems that perform all necessary calculations on the device itself [27, 28].

In this way, there is no unnecessary transfer of data to the cloud.

The second type of smart wearable devices are the ones where a dedi-

cated wearable will detect a fall. Note that research confirms that elderly

people prefer not to wear (obtrusive) smart devices [40, 41]. A truly unob-

trusive wearable [42–46] generally only contains a microcontroller (MCU)

and an accelerometer or gyroscope sensor. The MCU will determine whether

a fall has occurred, based on movement or posture changes of the person

wearing the device. The device is energy efficient consumes little energy

and the wearable does not hinder the elderly people. Since these wear-

ables do not look like smart devices or do not require any input actions

from elderly people, the likelihood of acceptance increases. However, such

wearables often do not communicate with the carers. A selected group of

fall detection systems uses a gyroscope [47–52] to detect a fall or even the

typical movements just before a fall occurs.

There are also several commercially available products. Most of these

products [53–55] will make a call to the emergency services when a fall event

is observed. In most situations, the detection is based on accelerometer

or gyroscope data that are fused together. The detection occurs with a

smartphone, smartwatch or dedicated wearable. Disadvantages of these

systems are the smart technology. It is a known fact [40, 41] that elderly do

not like to wear smart devices, especially when they are not unobtrusive.

There are also some radar-based solutions [56, 57]. These are placed inside

the room and detect falling persons. When a fall occurs, the system calls

the emergency service. Radar solutions have promising effects, but can

suffer image clutter caused by furniture in the room. Other products do

not only detect when a person falls, but also try to prevent a serious fall.
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The product proposed in [58] is a belt worn around the waist that uses a

fusion of different sensors to detect if a person is going to fall. If so, an

airbag is deployed and a predefined phone number is called. Compared to

our solution, it is very difficult to wear this wearable in an unobtrusive way.

Since the system proposed in this chapter only has to detect whether a

fall occurred, we opted to use only an accelerometer instead of a gyroscope

for several reasons. First, current state-of-the-art micro-electro-mechanical

systems (MEMS) accelerometers consume less energy in comparison to gy-

roscopes. Next, determining the orientation of a person based on 3-D ac-

celerometer measurements of the gravitational vector is straightforward.

Finally, MEMS accelerometers only measure angular speed in rad/s, which

needs to be integrated to find the angle. However, bias and drift are known

to produce deviations in the angles produced. The following sections will

further explain how the accelerometer detects the fall acceleration as well

as changes in orientation of the falling person.

3.3 Design

Based on the advantages and disadvantages of the previously mentioned

systems, the following system requirements for the patient wearable were

adopted:

1. More than 90% of the falls detected

2. Less than 10% false alerts

3. Compact and unobtrusive

4. Battery lifetime of up to 7 days

The proposed system consists of four different nodes, Figure 3.2 provides

a ground plan of a typical room in a nursing home that is equipped with

the system and Figure 3.3 illustrates the communication steps between the

different nodes. The first node, the patient wearable (green dot), is worn

around the waist. This node uses BLE5.1 as wireless communication plat-

form and contains an accelerometer for measuring the movements of the

elderly person. As soon as the node measures a fall, it starts advertising

alert messages. For each alert, five subsequent advertisement packets are

transmitted to ensure reliable reception. With this approach, system pairing

and self-healing are not necessary.

The second node is the DN (red dot) and is placed in a central posi-

tion of the room and scans for alert messages from the wearable. When

detecting an alert, it pushes a message on the mesh network. This network
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Figure 3.2: Ground plan of a room in a nursing home with the different nodes
mounted. The patient wearable (green dot) (P) is worn by an elderly person who
has fallen. The Detection Node (DN) (red dot) is mounted in a central position
and communicates with the Network Nodes (NNs) (blue dot) mounted in the

hallway. These nodes transfer messages to the Caretaker Node (CTN) equipped
with a wearable/smartphone (purple dot).

is realised by the NNs (blue dots) that are placed in the corridors. These

nodes transfer the alert messages to the closest carer wearable (purple dot),

alerting the carer that patient X has fallen in room Y. Since each room

is equipped with its DN, it is easy to map each node to a floor and room

number. Additional information can be added to these alert messages or a

continuous stream can be setup to visualise the vital parameters from the

elderly person. Furthermore, by implementing the proxy feature [59, 60] in

the mesh network, every BLE device can communicate on the network. In

this way, the carer’s wearable can be replaced by a smartphone application.

The proposed system is very energy efficient, allowing the patient wear-

able and CTN to be powered by batteries, it does not cause any issues with

privacy, the installation costs are minimal, it is much cheaper than camera

systems or extensive individualised training programs. Additionally, there

is no need for advanced positioning systems or cellular communications,

which would make such a system more expensive. Furthermore, since this

network allows connection to smartphones, the nurses do not have to carry
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Figure 3.3: Graphical representation of the communication steps. The patient
(P) wearable, represented in green, will detect a fall and send a message to the

DN , represented in red. The number of the DN corresponds to the room number.
This node transmits an alert message to the NNs, shown in blue. These nodes
forward the message to the closest CTN, shown in purple. The carer can then

perform the necessary actions.

extra devices. The following subsections describe the hardware design and

the detection algorithm that is executed in the wearable, worn by the elderly

person.

3.3.1 Hardware design

A number of specific requirements are imposed during the design process

of the wearable. First, the wearable has to be unobtrusive to the end-user.

Studies show that elderly do not easily adopt novel technology, especially

when devices are too big or too complicated to use [40, 41]. Furthermore,

based on research performed in [61, 62], the ideal position to mount this

wearable is on the waist, which makes the unobtrusiveness even more im-

portant. Furthermore, the wearable needs to be energy efficient. The final

requirement is the versatility. If the wearable is easy to configure with dif-

ferent sensors, it is more useful for doctors and carers to track or monitor

patients in critical conditions. As mentioned before, BLE5.1 is an excel-

lent choice as wireless communication platform, given its high energy effi-

ciency [63]. Next, the use of the Generic Attribute (GATT) profiles [64],

which are part of the BLE stack, makes it very easy to add more function-

ality. Furthermore, BLE5.1 has a high message capacity and can operate

over a larger range compared to previous versions of BLE.

Figure 3.4 displays the layout of the PCB of the designed wearable. The
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Figure 3.4: Designed Printed Circuit Board (PCB) (dimensions in mm)

design relies on the BGM13P wireless module from Silicon Laboratories [65].

This device uses the BLE5.1 stack and contains an on-board 32-bit 38.4MHz

Advanced RISC Machines (ARM) [66] Cortex-M4 MCU with Digital Sig-

nal Processing (DSP) instruction set. The ARM Cortex-M4 is a modern

general-purpose MCU employed in many low-power systems. 32-bit pro-

cessing enables efficient execution of the complex procedures necessary to

deploy current-day wireless communication standards such as BLE. The

ARM can handle this in a very power efficient way, compared to low-end

8-bit processors, which need much more instructions to achieve the same

result. Moreover, modern ARM controllers also provide many power saving

modes. Hence, in this application, the processor goes into sleep mode for a

relatively long time between short bursts of activity, resulting in an energy

efficient solution.

The BGM13P unit also includes an integrated antenna. The complete

module has an overall size of 15×13mm, which makes the wearable unobtru-

sive and much smaller than most smart devices, as is shown in Figure 3.5. To

achieve an optimal communication range, the data sheet of the BGMP13P

prescribes an empty space of at least 17mm near the antenna. To ensure

that the device remains unobtrusive to the wearer, the width of the PCB

at both lateral sides of the System-on-Chip (SoC) was reduced to 9.5mm,

yielding a decrease by 10% in maximum communication range, according

to the data sheet. Furthermore, a TAG-connect [67] connector was used to

program all different nodes via the Serial Wire Debug (SWD) protocol [68].

The power supply is a standard small battery of 3.3V; a power analysis

follows in Section 3.5. Based on previous experience, these modules have
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been selected to implement this proof of concept.

Figure 3.5: Fabricated PCB with a size of 32× 23× 10mm

To measure the movements of the patient, the ultra-small, low-power,

triaxial Bosch BMA280 [69] accelerometer was added. This sensor features

an integrated low-pass filtering with a filtered-output data rate up to 500Hz

and an unfiltered data rate of 2 kHz. Furthermore, it possesses a resolution

of 4096 LSB/g in the ±2 g range, can be used in ±2 g, ±4 g, ±8 g and

±16 g range, communicates via an Serial Peripheral Interface (SPI) 3-wire

communication link and contains an integrated temperature sensor. These

properties make the accelerometer excellent to detect when a patient has

fallen. The integrated temperature sensor is a valuable extra feature because

if an elderly person falls and is lying on a cold floor, the body temperature

can drop to a critical value and lead to hypothermia. By wearing this

wearable under clothing, close to the body, the body temperature signifi-

cantly influences the on-board temperature sensor and a decreasing body

temperature can be detected. Taking all these measures into account, the

patient’s wearable is compact and unobtrusive and has an overall size of

32× 23× 10mm. Hence, the third design requirement is met.

3.3.2 Algorithm design and filtering procedure

Since the node is constantly receiving the X, Y and Z acceleration values

from the accelerometer at a high sample rate, filtering is necessary to re-

duce the amount of data. Figure 3.6 illustrates the flowchart of the applied

filtering and decision tree. The algorithm can be split up in two branches.

The first branch in red decides whether a fall occurred, based on the ampli-

tude of the accelerometer data, and is called the acceleration branch. The

second branch in green takes a decision based on the change of the spatial
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Figure 3.6: Flowchart of two branches used to filter accelerometer data and
determine fall alerts. Acceleration branch coloured in red, orientation branch in
green and decision tree in blue. Note that orientation change alone can never

trigger an alert.

orientation and is called the orientation branch. At the end of each branch,

in the decision tree, a measured fall is classified as a possible or confirmed

fall, visualised in blue.

The analysis starts when the samples of the accelerometer are received.

The acceleration branch calculates the Signal Magnitude Vector (SMV) as

used in many related publications [8, 26–29, 32, 70] based on formula (3.1)

and is expressed in mg = 9.81 × 10−3 m/s2, where aX , aY and aZ are

the measured accelerations expressed in mg along the X, Y and Z axis,

respectively. The calculated SMV is stored in a buffer. When this buffer is

full, the maximum SMV value is selected. This value has to be larger than a

certain threshold value, which will be determined in Subsection 3.4.2. When

this conditions is valid, the acceleration alert flag is set.

SMV =
√
a2X + a2Y + a2Z (3.1)

The orientation branch calculates the average aX , aY and aZ based on a

single exponential smoothing algorithm, as is expressed in formula 3.2 [71–

73], with aaxis,avg,i the average calculated for sample i along a certain axis

expressed in mg, with aaxis,avg,i−1 the previously calculated average along

that axis, with aaxis,i a new sample along the same axis and with α a
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damping factor, which is set to 0.1. Based on formula (3.3) and (3.4),

for the given sample rate (subsection 3.4.2), this α value results in a time

constant τ of 47.45ms, which leads to a cut-off frequency of 3.35Hz. Hence,

(3.2) implements a low-pass filtering operation to reduce the noise of the

accelerometer samples.

aaxis,avg,i = (1− α).aaxis,avg,i−1 + α.aaxis,i (3.2)

α = 1− e

−∆T

τ ⇒ τ =
−∆T

ln (1− α)
= 47.45ms (3.3)

fc =
1

2.π.τ
= 3.35Hz (3.4)

For every 250ms of captured data, the calculated averages aX,j , aY,j and

aZ,j determine a vector v⃗j as in equation (3.5). Next, based on equation

(3.6) the angle ∆θj between of the new vector v⃗j and the previous vector

v⃗j−1 is calculated. When this ∆θj is larger than or equal to 60◦, the orien-

tation alert flag is set, but only if the acceleration flag was set earlier. In a

final step, the alert flags are checked. When both flags are set, the person

definitely fell. Hence, a confirmed fall alert is sent to the carer’s wearable.

When only one of the flags is set, a normal fall alert is sent. Note that the

latter case should still be interpreted as a very high probability of a fall

event, although the fall is potentially less severe.

v⃗j = aX,j · X⃗ + aY,j · Y⃗ + aZ,j · Z⃗ (3.5)

∆θj = arccos
v⃗j−1.v⃗j

∥v⃗j−1∥.∥v⃗j∥
(3.6)

The main idea behind these branches and the associated conditions origi-

nates from looking at the amplitude flow of a fall (Figure 3.7) and the change

in spatial orientation (Figure 3.8). Figure 3.7 illustrates the calculated SMV

of a measured fall, with a theoretical fall profile fitted on the measurement

data. The theoretical fall profile was described in [70]. Under normal con-

ditions, the SMV is around 1 g or 9.81m/s2. When a fall occurs, the SMV

first drops, followed by a steep positive peak, followed by a smaller peak

and ending near 1 g again. Nearly always, the fall results in a different

orientation, as can be seen in Figure 3.8.

The purpose of this wearable is to provide reliable fall detection with-

out false positives. This is achieved by taking into account that the new

maximum value should be larger than the previous maximum and that the

difference between the two values should be larger than a predefined thresh-

old expressed in mg. Employing this method, we are able to reliably find

the peak and set the acceleration alert flag. Research performed in [70]
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Figure 3.7: Graphical representation of the calculated SMV for a measured fall at
a sample interval of 5ms compared to a fitted theoretical fall [70]. Both falls

represent acceleration data of a test person standing before a fall, during the fall
and lying down after a fall occurred.

illustrates that while walking, ascending and descending stairs, there will

never be a peak as large as when a fall occurs.

The main idea of the orientation branch is to confirm a fall by deter-

mining the different spatial orientations of the person before and after the

fall event. The peak of the angle between two vectors measured before and

after the fall with a time interval of 1 s in between is used to determine this

condition. It is important that this time separation is large enough in order

not to include accelerations measured during the fall, as this will disturb

the orientation measurement. During the orientation measurement, the to-

tal acceleration should be predominantly caused by gravity, which can be

confirmed by an SMV value approaching 1 g.

By calculating the moving averages of aX , aY and aZ with window size

of 250ms and transforming it to a vector, a more reliable orientation angle

is obtained. This angle approaches the orientation of the gravity vector and

is considered as a measurement of the gravity vector. The angle between

two measured gravity vectors, taken 250ms before the fall and 250ms after

the fall, provides valuable information to confirm the fall event.

An orientation difference around 90◦ is expected when a person’s ori-

entation changes from standing to lying down. However, a lower threshold

value of 60◦ is proposed in order to account for situations where the elderly

person falls on a nearby object and is not lying entirely flat. Note that the

orientation alert flag is only set if an acceleration alert flag had already been

set. Hence, an orientation change alone can never trigger a fall alert.
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Figure 3.8: Moving average of the calculated θ in a window size of 250ms. θ is
the angle between the spatial orientation vector of a test person and the

gravitational vector, sampled at an interval of 5ms. This Figure illustrates that θ
is fluctuating during a fall, but has a stable value before and after a fall occurred.

3.3.3 Convolutional Neural Network Design

To compare the performance of the proposed rule-based algorithm with ML,

we use a CNN, of which the architecture is shown in Figure 3.9. CNN has

shown tremendous performance in various classification problems such as

image classification [74], modulation classification [75] and wireless tech-

nology classification [76–78]. In this work, the CNN is trained with three

publicly available fall Datasets presented in [79–81]. These datasets consist

of the accelerometer data in the form of X, Y , and Z acceleration values,

which were captured on the human body. The proposed rule-based algo-

rithm identifies every event as either ’Fall’ or ’Not Fall’. In order to have

a fair one-to-one comparison, the CNN is trained with 70% of each dataset

that is categorising the events in a similar way. All the data classes corre-

sponding to falls are combined in the ’Fall’ category and all the activities of

daily living (ADL) classes are combined in the ’Not Fall’ category. There-

fore, the CNN also identifies the ’Fall’ and ’Not Fall’ events in a comparable

way.

For the input to the CNN, we consider the SMV values of the raw X, Y ,

and Z accelerometer data computed according to Formula 3.1. Furthermore,

we consider a window size of 20x30 = 600 SMV values, which represents 3 s

in the time domain. The architecture of the CNN is composed of three 2D

convolutional layers and four fully connected layers as shown in Figure 3.9.

The last fully connected layer of the architecture is the softmax layer with

two neurons, representing that the CNN is able to classify the two classes.
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Figure 3.9: Convolutional neural network architecture.

The total number of examples in KFall, SisFall1, SisFall2, and FallAIID

are 5036, 4500, 4500 and 1798, respectively. Note that each example is of size

(1 x 600), hence containing 600 SMV values computed according to Formula

3.1 from (3 x 600) values of X, Y , and Z. Since we use Conv2D in the CNN

architecture, we transformed each example from (1 x 600) to (1,20,30). For

training and testing the classifier for each dataset, we divided the data into

training, validation, and testing data sets with a split of 70%/15%/15%.

For the optimiser, the Adam optimiser was used as it provided the best

accuracy. In addition, ReduceLROnPlateau was used from the Tensorflow

platform, because it helped in reducing the learning rate from 10−3 to 10−4

when the validation loss stopped improving. In order to have a fine balance

between overfitting and underfitting, a batch size of 512 and a dropout

of 0.40 were used. The CNN classifier was trained on a NVIDIA GTX

1080Ti Graphics Card, which is available in our in-house Virtual Wall [82].

The classifier was implemented in an abstract level library Keras [83] with

Tensorflow [84] as a back-end.

3.4 Measurement and Analysis

3.4.1 Measurement setup

To validate the algorithm, a set of simulations was performed based on the

measurement setup in Figure 3.10. A person, approximately 1.8m tall and

wearing the device around his waist, falls on a mattress. Note that when

a fall on a mattress is detected, a fall on a hard floor would certainly be

detected as the acceleration at the moment of impact is certainly higher.

During these measurements, the accelerometer measures negative values

along the Y-axis, as shown in Figure 3.10. The MCU reads the accelerome-

ter samples at a sample interval of 200Hz and continuously transfers them

to a PC used for data collection. Note that this is only necessary for the
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analysis and is not required in the actual application. The accelerometer

was initialised to operate within a range of ±4 g and the integrated low-pass

filtering was selected. Before sampling, inline accelerometer calibration [85]

was performed according to the start-up procedure described by the manu-

facturer.

Figure 3.10: Graphical representation of the measurement setup: a person,
approximately 1.8m tall and wearing the wearable with integrated accelerometer

around the waist, is falling forward on a mattress. The orientation of the
accelerometer’s axes is visualised.

3.4.2 Fall

Multiple simulations are performed, to obtain the best sample rate for both

detection branches, as well as the optimal buffer size and threshold values.

The first parameter is the sample rate. Research proposed in [29, 32, 33]

suggests a sample interval of 20ms. However, taking into account that the

peak of the fall only exists for approximately 50ms, we decided to sample

at a higher interval of 5ms.

In Section 3.3.2, Figure 3.7 illustrated the measured fall at a sample

interval of 5ms or a sample rate of 200Hz. The peak consisted of multiple

samples above 3 g, which clearly illustrated that the peak cannot be missed

at this sample rate.
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Figure 3.11: Maximum filtered SMV data for a buffer size of 10 samples of the
fall measured in Figure 3.7. The results approach the theoretical fall profile.

The next parameter is the buffer size of the filter that determines the

maximum SMV. A buffer size of 5 will lower the detection time but will

increase the noise of the measurement. Utilising a buffer size of 15 will slow

down the detection time but has a large influence on the noise filtering. A

buffer size of 10 clearly provides the best result, approaching the theoretical

fall profile as illustrated earlier in Figure 3.7, preserving the important in-

formation while at the same time reducing noise in the measurement. The

result of filtering the measurement accordingly is displayed in Figure 3.11.

The last parameter is the threshold value that triggers an alert. From

research performed in [70], we know that, while ascending or descending

stairs, the SMV will never reach a peak as high as 1.7 g. Note that in

nursing homes the elderly will generally not even use staircases.
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Figure 3.12: Graphical representation of five sit events measured at a sample
interval of 5ms



Fall Detection 63

Measurements were also performed to assess the SMV values when an

elderly person falls back in a seat. The measurement setup was as described

before, but now the test person was standing in front of a seat, ‘fell’ into the

seat and stood up again. Figure 3.12 illustrates five measured ‘sit events’

sampled at a rate of 200Hz. As is shown in the graphs, the sit events did not

cause any accelerations above 1.7 g whereas potential harmful fall events

easily cause accelerations above a threshold of 2.5 g. This threshold value

is chosen at a level that guarantees detection of dangerous fall events, while

at the same time avoiding false alerts due to other harmless events.
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Figure 3.13: Results of the final algorithm applied to the fall from Figure 3.7,
which was measured at a sample interval of 5ms. The red vertical line represents
the acceleration alert and the green vertical line the orientation alert. Since both

alerts are set, this is a confirmed fall event.

After determining the optimal parameter values, we combined the ac-

celeration and orientation branches. Figure 3.13 illustrates the complete

algorithm applied to a fall measured at a sample interval of 5ms. It can be

seen that around 1.4 s the acceleration alert flag is set. When taking a closer

look, this flag is set at the peak of the fall, which proves the effectiveness

of the acceleration detection. After a delay of 1.1 s, this fall is confirmed

by the difference in spatial orientation, as can be seen in Figure 3.8. The

confirmed fall alert will be sent at 2.5 s.

3.4.3 Validation with open-source dataset

To verify the algorithm, we have selected three online fall detection databases.

The first dataset is the SisFall dataset [79]. This dataset was created in

2017 and contains accelerometer data of two different accelerometer and

gyroscope data from units mounted at waist level. This dataset was created
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with 38 subjects ranging from young to old, the adults/elderly (>60 year)

distribution is 23/15. Furthermore, it contains 34 ADL/falls that were re-

peated 1 or 5 times. In total, this dataset contains two times 4500 ADL/fall

events.

Table 3.1: Summary of the test subjects used in three datasets.

Subjects Age Weight Height Gender
[yrs] [kg] [cm] [M/F]

SisFall
(2017)

38 [22-70] [51-142,9] [152-188] 19/19

FALLAIID
(2021)

15 [21-53] [48-85] [158-187] 8/7

KFall
(2021)

32 [21-29] [60-79] [168-180] 32/0

The second dataset is the FallAIID dataset [80], which contains ac-

celerometer, gyroscope, magnetometer, temperature and barometer data

measured around the waist, neck and right hand. The 15 test subjects range

from young to elderly adults, with 44/35 ADLs/falls at variable times per

ADL/Fall. In total, this dataset contains 4760 ADL/Fall events. The third

dataset, KFall [81] contains accelerometer, gyroscope and magnetometer

data captured also at waist level. It is based on 32 young male test sub-

jects performing 36 ADLs/falls variable times per ADL/fall. In total, this

dataset contains 5075 ADL/Fall events. A summary of the test subjects

and ADLs/Falls per dataset can be found in Table 3.1 and Table 3.2, re-

spectively.

Table 3.2: Summary of the ADL/falls per dataset.

Position Times ADL/Falls Total
repeated events

SisFall
(2017)

Waist 1 or 5 19/15 4500× 2

FALLAIID
(2021)

Waist,
neck, right
hand

Variable 44/35 4760

KFall
(2021)

waist Variable 21/15 5075

Since the data in these datasets is captured with different accelerome-

ters and since test subjects are falling in a different way with sometimes less

representative falls, some parameter values of the proposed rule based algo-

rithm need to be adjusted. The first adjustment is the amplitude threshold.
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Since some measured ADL/Fall datasets contain more noise than others, it

is important to set the threshold level above the noise level in order to sup-

press false alerts. To find the best suitable threshold, the histogram gives

the maximum value of an ADL/fall event for each database, as can be seen

in Figure 3.14. From this figure, it can be concluded that a threshold be-

tween 2 and 3 g suppresses most noise and will result in good performance

of the algorithm.
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Figure 3.14: Calculated histogram of the maximum values of each event in the
dataset.

Figure 3.15 illustrates the results of the proposed algorithm for different

amplitude thresholds ranging from 1.75 to 3.5 g in steps of 0.25 g, with

a constant timeslot of 1 s and an orientation threshold of 45◦. It can be

concluded that a threshold of 2.5 g gives the best F1-score for each dataset,

proving that the previously chosen threshold performs well.

Second, we considered the orientation threshold. During extensive test-

ing, it appeared as if some test subjects did not wear the accelerometer unit

tight enough to the body. In these situations, where a person fell when

trying to sit or stand up from a chair, the recorded orientation differences

in the database are smaller than what is realistically possible. In order

to compensate for this underestimation, the threshold was lowered to 45◦

instead of 60◦.
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Figure 3.15: Results of the amplitude range simulations of the proposed
algorithm.

A final adjustment is the timeslot. To have a clear distinction between a

fall and for example a forward jump, the timeslot is increased. In this way,

the algorithm is prevented from calculating the orientation difference during

the fall or jumping. Table 3.3 gives a short overview of the parameters that

were changed for each dataset. The amplitude threshold differs per dataset

since this gives us the best result for each dataset. Setting this threshold to

the same value results in a minor difference in F1-score, as can be seen in

Figure 3.15.

Table 3.3: Summary of the adjusted parameters for each dataset.

Paper SisFall FALLAIID KFall
(2017) (2021) (2021)

Sample
rate

5ms 5ms 4.2ms 10ms

Amplitude
threshold

2.5 g 2 g 2.75 g 2.5 g

Orientation
threshold

60◦ 45◦ 45◦ 45◦

Timeslot 0.25 s 1 s 1 s 1 s

Table 3.4 represents the accuracy, precision, sensitivity and F1-score of

the developed algorithm applied to all three datasets. It results in an ac-

curacy in the range of 84.89% to 92.65%, representing the percentage of
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correct decisions. A precision in a range of 81.87% to 87.01% is obtained,

representing the ratio of true fall detections over all fall detections. A sen-

sitivity in the range of 80.66% to 92.77% is observed, corresponding to the

ratio of correct fall detections to the number of actual falls events. Based

on these values, the F1-scores are in a range of 82.94% to 89.8%, confirm-

ing the reliability of the algorithm. One must take into account that these

datasets also contain ADLs such as jogging and jumping. These can trigger

false alerts in some situations, even though they do not occur often in the

lives of the elderly.

Table 3.4: Summary of the obtained accuracy, Precision, sensitivity and F1-score
for the proposed algorithm per datasets.

SisFall FALLAIID KFall
(2017) (2021) (2021)

Accuracy 91.58% 91.27% 92.65% 84.89%
Precision 87.01% 86.61% 81.87% 85.35%
Sensitivity 92.77% 92.44% 92.06% 80.66%
F1-score 89.80% 89.43% 86.66% 82.94%

Table 3.5 also shows the performance of the CNN algorithm in terms

of accuracy, precision, sensitivity and F1-score. The algorithm was trained

on 70% training data and tested and validated on the 15% data for each

dataset. There can be stated that the results are higher than the results

from the proposed rule based algorithm (Table 3.4), but at a much higher

power consumption. Furthermore, it can be stated that CNN is very data

dependent. When the CNN is trained on both SisFall datasets and KFall,

and later validated on FALLAIID, we get an accuracy of 90.32%, a precision

of 73.40%, a sensitivity of 87.24% and an F1-score of 79.72%.

Table 3.5: Summary of the CNN algorithm for each dataset. The CNN was
trained on 70% data, validated on 15% and tested on 15% of each dataset.

SisFall FALLAIID KFall
(2017) (2021) (2021)

Accuracy 95.85% 96.07% 94.44% 93.44%
Precision 95.38% 93.28% 84.48% 93.43%
Sensitivity 94.34% 96.98% 89.09% 93.30%
F1-score 94.86% 95.09% 86.72% 93.36%

However, CNN also exhibits some drawbacks: a) it requires training

and b) it consumes more resources while executing on embedded platforms

as compared to the rule-based algorithm. Due to the advancement of ML
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on embedded platforms, the second problem can be alleviated, since now

procedures exist for generating light weight models including Tensorflow

libraries such as Tensorflow Lite and TensorRT. The aim of this system is

only to identify ’Fall’ and ’No Fall’ events and in this case the proposed

algorithm performs similar than the CNN algorithm because a) it provides

higher accuracy, b) there is no need for training and c) it yields a light

weight algorithm. However, if the goal is to identify other ’Fall’ and ’No Fall’

events such as walking, standing and picking up objects, then developing a

rule-based algorithm for such a case would be extremely difficult or rather

impossible. In that case, ML would be a nice alternative, because it does

not require development of such rules but rather a CNN must be trained by

a labelled data set and a similar performance as for a rule-based algorithm

can be expected.

3.5 Power management

In a wearable device, the battery lifetime is an important property. When

the elderly person is walking around, the MCU and the accelerometer will

be in active mode and consume power to perform the programmed tasks.

Utilising the no-motion interrupt of the accelerometer, the MCU is put in

a deep sleep mode, which dramatically decreases the consumed power. To

wake-up the MCU when the person is walking again, the High-g interrupt

of the accelerometer is used. To lower the power consumption even more,

the accelerometer will be put in a low-power mode, for example when the

elderly person goes to bed and is sleeping for multiple hours. Based on

information from a local nursing home for the elderly person, the following

scenario is proposed in Table 3.6.

When both MCU and the accelerometer are in active mode, there is an

energy consumption corresponding to a hourly charge of 0.45mAh. Putting

the MCU in deep sleep mode decreases the daily required battery charge

to 0.13mAh. When the MCU is in deep sleep mode and the accelerometer

is in low-power mode, the total required charge is 7.9µAh. Taking these

consumptions into account, the total required charge for this scenario per

day is 2.27mAh.

Furthermore, the wearable is programmed to send a ’standby’ signal

every 15minutes in order to inform the system that the wearable is still

active. One such message consists of five subsequent advertisement packets

in order to assure proper detection by the system. The 5 packets are sent

at a TX-level of 1mW, which results in a series of peak currents of 9mA

during approximately 20ms for each message [65]. In a worst-case scenario,

the elderly person falls once a day, which results in another five current
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Table 3.6: Proposed scenario for a day of an elderly person in a nursing home,
based on information from a local home.

Time Activity Micro-
controller

Accelero-
meter

mode mode

8:00 - 8:30 Wake-up, get dressed
and walking towards
the kitchen for break-
fast

Active Active

8:30 - 9:30 Having breakfast and
socialising with other
residents

Deep Sleep Active

9:30 - 9:35 Walking towards
the garden, room or
recreation centre

Active Active

9:35 - 12:00 Enjoying the moment Deep Sleep Active
12:00 - 12:05 Walking towards the

kitchen for lunch
Active Active

12:05 - 13:05 Having lunch and so-
cialising with other
residents

Deep Sleep Active

13:05 - 13:10 Walking towards
room

Active Active

13:10 - 14:30 Sleeping Deep Sleep Active
14:30 - 14:35 Walking towards

the garden, room or
recreation centre

Active Active

14:35 - 17:30 Enjoying the moment Deep Sleep Active
17:30 - 17:35 Walking towards the

kitchen for dinner
Active Active

17:35 - 18:35 Having dinner and
socialising with the
other residents

Deep Sleep Active

18:35 - 18:40 Walking back to the
room

Active Active

18:40 - 21:00 Sitting or lying down
in bed watching TV

Deep Sleep Active

21:00 - 22:30 Sleeping (time
needed to detect
elderly person is
sleeping)

Deep Sleep Active

22:30 - 8:00 Sleeping Deep Sleep Low Power
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peaks of 9mA during 20ms for each message.

Taking all of these parameters into account and using a 3V CR2032

battery with a capacity of 230mAh, this results in a battery lifetime of

100 days. The CR2032 was chosen for reasons of compactness and ease of

use during development. In this way, we meet the third and fourth design

requirement. A larger (rechargeable) cell can always be used if a longer

autonomy is preferred. As an example, applying a CR2477N 3V Lithium

Battery with a capacity of 950mAh would extend the autonomy to more

than 414 days maximum. The self-discharge of these lithium-ion batteries is

not taken into account, since this is approximately 2% per year. Therefore,

we state that this is neglectable.

3.6 Conclusion

This chapter describes the design of a wearable fall detection sensor for the

elderly based on BLE wireless communication, providing excellent room

coverage at low energy consumption. The wearable relies on a three-axis

accelerometer to find the peak of the fall as well as the change in spatial

orientation. This change in spatial orientation is used as a fall confirma-

tion signal. A false detection resulting in a confirmed fall alert is virtually

impossible with this approach.

The system is designed, implemented and validated by means of a mea-

surement campaign. In order to assess sensitivity and selectivity, not only

fall events were measured but also other harmless conditions causing fairly

large accelerations, such as ‘falling’ into a seat.

Based on the measurement results, realistic parameters were chosen for

the algorithms, of which the most important are the threshold values of

2.5 g and 60◦ for the acceleration and orientation change, respectively. A

sample rate of 5ms was chosen in order to surely capture all relevant details

of each fall event.

A validation of the algorithm was performed using three open-source

databases containing data for 85 persons, performing 18 835 ADL or fall ac-

tivities. These fall activities include falling from different starting positions

(forward fall, falling while standing up or sitting down, etc.). Based on these

data, the algorithm obtained an F1 score in a range of 82.94% to 89.8%,

confirming its reliability and illustrating that the first and second design

requirements are met. In addition, the proposed rule-based algorithm is

compared to ML using CNN. The results show that the CNN algorithm

yields an F1 performance in a range of 86.72% to 95.09%, which is compa-

rable to the proposed rule-based algorithm. This way the first and second

design requirement are met.
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The proposed wearable provides reliable fall detection, without false

acceleration alerts (level 1). The orientation confirmation system provides

a second, independent variable, making false (level 2) confirmed positives

extremely unlikely. The proposed unobtrusive wearable system fits in a 32×
23 × 10mm package and autonomously performs measurements as well as

communication employing state of the art wireless technology. The system is

energy efficient and achieves an autonomy of 100 days on a standard CR2032

coin-cell battery. In this way, the third and fourth design requirement are

also met.

3.7 Funding Statement

This work was supported in part by the Research Foundation—Flanders

(FWO) through the “MUlti-SErvice WIreless NETwork,” FWO/FRS Ex-

cellence of Science (EOS) Project and the Erasmus+ programme of the

European Union through the ”Capacity building for Digital Health Moni-

toring and Care Systems in Asia (DigiHealth-Asia), 2021-2024” project.



72 Chapter 3

References

[1] World Health Organization. Number of People over 60 Years set to

Double by 2050; Major Societal Changes Required. https://www.who.

int/mediacentre/news/releases/2015/older-persons-day/en/. Accessed

on October 18, 2022.

[2] World Health Organization. World Health Organization

Global Report on Falls Prevention in Older Age 2007.

https://extranet.who.int/agefriendlyworld/wp-content/uploads/

2014/06/WHo-Global-report-on-falls-prevention-in-older-age.pdf.

Accessed on October 18, 2022.

[3] World Health Organization. Falls Prevention in Older Age. https:

//www.who.int/ageing/projects/falls prevention older age/en/. Ac-

cessed on October 18, 2022.

[4] S. R. Lord, A. Tiedemann, K. Chapman, B. Munro, S. M. Mur-

ray, M. Gerontology, G. R. Ther, and C. Sherrington. The Effect

of an Individualized Fall Prevention Program on Fall Risk and Falls

in Older People: A Randomized, Controlled Trial. Journal of the

American Geriatrics Society, 53(8):1296–1304, 8 2005. Available from:

https://doi.org/10.1111/j.1532-5415.2005.53425.x, doi:10.1111/j.1532-

5415.2005.53425.x.

[5] B. Røyset, B. A. Talseth-Palmer, S. Lydersen, and P. G. Farup. Effects

of a Fall Prevention Program in Elderly: a Pragmatic Observational

Study in Two Orthopedic Departments. Clin Interv Aging, 14:145–154,

1 2019. doi:https://doi.org/10.2147/CIA.S191832.

[6] C. S. Florence, G. Bergen, A. Atherly, E. Burns, J. Stevens, and

C. Drake. Medical Costs of Fatal and Nonfatal Falls in Older

Adults. Journal of the American Geriatrics Society, 66(4):693–

698, 3 2018. Available from: https://doi.org/10.1111/jgs.15304,

doi:10.1111/jgs.15304.

[7] M. Woolley. Bluetooth Core Specification v5.1. Bluetooth Special In-

terest Group, 2019. Accessed on October 18, 2022.

[8] A. Makhlouf, I. Boudouane, N. Saadia, and A. R. Cherif. Ambient

Assistance Service for Fall and Heart Problem Detection. Journal

of Ambient Intelligence and Humanized Computing, 10(4):1527–1546,

2 2018. Available from: https://doi.org/10.1007/s12652-018-0724-4,

doi:10.1007/s12652-018-0724-4.

https://www.who.int/mediacentre/news/releases/2015/older-persons-day/en/
https://www.who.int/mediacentre/news/releases/2015/older-persons-day/en/
https://extranet.who.int/agefriendlyworld/wp-content/uploads/2014/06/WHo-Global-report-on-falls-prevention-in-older-age.pdf
https://extranet.who.int/agefriendlyworld/wp-content/uploads/2014/06/WHo-Global-report-on-falls-prevention-in-older-age.pdf
https://www.who.int/ageing/projects/falls_prevention_older_age/en/
https://www.who.int/ageing/projects/falls_prevention_older_age/en/
https://doi.org/10.1111/j.1532-5415.2005.53425.x
https://doi.org/10.1111/jgs.15304
https://doi.org/10.1007/s12652-018-0724-4


Fall Detection 73

[9] L. Ren and Y. Peng. Research of Fall Detection and Fall Preven-

tion Technologies: A Systematic Review. IEEE Access, 7:77702–77722,

2019. Available from: https://doi.org/10.1109/access.2019.2922708,

doi:10.1109/access.2019.2922708.

[10] M. Mubashir, L. Shao, and L. Seed. A Survey on Fall Detec-

tion: Principles and Approaches. Neurocomputing, 100:144–152, 1

2013. Available from: https://doi.org/10.1016/j.neucom.2011.09.037,

doi:10.1016/j.neucom.2011.09.037.

[11] X. Wang, J. Ellul, and G. Azzopardi. Elderly Fall Detection Sys-

tems: A Literature Survey. Frontiers in Robotics and AI, 7:71,

2020. Available from: https://www.frontiersin.org/article/10.3389/

frobt.2020.00071, doi:10.3389/frobt.2020.00071.

[12] G. Koshmak, A. Loutfi, and M. Linden. Challenges and Issues in Mul-

tisensor Fusion Approach for Fall Detection: Review Paper. Journal

of Sensors, 2016:1–12, 2016. Available from: https://doi.org/10.1155/

2016/6931789, doi:10.1155/2016/6931789.

[13] T. Xu, Y. Zhou, and J. Zhu. New Advances and Challenges of

Fall Detection Systems: A Survey. Applied Sciences, 8(3):418,

March 2018. Available from: https://doi.org/10.3390/app8030418,

doi:10.3390/app8030418.

[14] S. Nooruddin, M. M. Islam, F. A. Sharna, H. Alhetari, and M. N. Kabir.

Sensor-Based Fall Detection Systems: a Review. Journal of Ambient

Intelligence and Humanized Computing, April 2021. Available from:

https://doi.org/10.1007/s12652-021-03248-z, doi:10.1007/s12652-021-

03248-z.

[15] C. Vishnu, R. Datla, D. Roy, S. Babu, and C. K. Mohan. Hu-

man Fall Detection in Surveillance Videos Using Fall Motion Vec-

tor Modeling. IEEE Sensors Journal, 21(15):17162–17170, August

2021. Available from: https://doi.org/10.1109/jsen.2021.3082180,

doi:10.1109/jsen.2021.3082180.
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Monitoring train integrity is a very important topic for economical, man-

agement and safety reasons. Knowing the localization, volume and other

parameters is very valuable for most train and large industry companies.

Current literature focuses on placing many sensors in a Wireless Sensor

Network (WSN) around the train wagons, but do not take battery life-

time into perspective. With the increasing interest in industrial Internet

of Things (IoT) applications, the connectivity and battery lifetime are very

important parameters. In this chapter, the vibrations measured on train

wagons are analysed in order to find the most optimal trigger point to wake

up or to put the WSN in a deep sleep mode. This way, a large amount

of power can be saved and extend the battery lifetime significantly. Fur-
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thermore, several Received Signal Strength Indicator (RSSI) measurements

were performed to find the optimal Tx level and antenna topology for com-

munication between different wireless sensor nodes on the train wagon. The

proposed measurements show that an inexpensive accelerometer and a pre-

fabricated antenna are perfectly usable in the WSN. RF measurements on

the brakes results in an average Package Receive Rate (PRR) of approxi-

mately 92% and an Average Received Power (ARP) of around −83 dBm

starting from a Tx level of 4 dBm.

4.1 Introduction

Monitoring Train Integrity (TI) is a very important topic for economical,

management and safety reasons. Knowing where a train and/or train wag-

ons are located, how much freight they are carrying, the condition of the

brakes, etc. can save the company a lot of money. Furthermore, having a

real-time track and trace of these trains and train wagon parameters will

increase the ease of use and maintenance significantly.

In literature, extensive research is performed in developing Wireless Sen-

sor Network (WSN) inside [1] and outside [2, 3] train wagons [4], based on

different communication protocols [5]. A typical WSN consists of several

Sensor Nodes (SNs) spread across a train wagon and transfer their data to

the Central Node (CN), some of these sensors have an integrated energy har-

vester [6], [7]. In a later step, these WSN can be connected in an industrial

Internet of Things (IoT) network. This paper describes acceleration and

RF measurements performed on train wagons in an industrial environment

based on Bluetooth Low Energy (BLE) [8]. The acceleration measurements

are key in order to make the different SNs in the WSN more power-efficient.

It is important to know when a train is moving and when it has stopped.

Based on these two physical parameters, the WSN can be placed in a deep

sleep mode or the SNs can be woken up and data can be transferred to a

CN. RF measurements illustrate what type of antenna is ideal to deploy in

this harsh RF environment, but also what Tx level is ideal to transfer the

data in a power efficient way.

In Section 4.2 the different measurement setups are elaborated followed

by the hardware used for these measurements. Next, in Section 4.3, mea-

surements are described combined with a brief discussion of these results.

Finally, there is a conclusion (Section 4.4) which acceleration measures can

be taken and which antenna can be used at what Tx level.
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4.2 Measurement Setup

4.2.1 Used hardware

All measurements were performed with the BLE development boards from

Silicon Laboratories (SiLabs) containing the multiprotocol ERF32MG13

chip [9]. This System-on-Chip (SoC) contains a radio with a maximum

Tx level of 19 dBm at the frequency of 2.45GHz, consists of an on-board

32-bit, 38.4MHz ARM Cortex M4 microcontroller (MCU) with DSP in-

struction set. Furthermore, this board has an integrated F-antenna and an

U.FL connector. This way, other antennas can easily be connected.

Figure 4.1: Picture of the selected antennas with on the left the patch antenna
and on the top the button antenna.

For the RF measurements proposed in subsection 4.2.3, the following

two antennas were selected. The first investigated antenna is a dual-band

planar inverted-F antenna (PIFA) [10] with a frequency range of 2.4GHz

to 2.5GHz and 4.9GHz to 6GHz, with a radiation efficiency of 76% and

84% and a maximum gain of 2.4 dBi and 5 dBi, respectively. This antenna

is linearly polarized with an almost omnidirectional radiation pattern at

2.45GHz, which makes it an excellent antenna for BLE. This polymer

antenna has an overall size of 31×31×0.1mm, as can be seen in Figure 4.1

on the left side. We further refer to this as the ‘patch’ antenna.

The second investigated antenna is also a PIFA [11] with a frequency

range of 2.4GHz to 2.5GHz, a radiation efficiency of 30.6% and a maximum

gain of 0.4 dBi in free space. This antenna is also linear polarized with an

almost omnidirectional radiation pattern at 2.45GHz. This Acrylonitrile

Butadiene Styrene (ABS) antenna has an overall size of 19.8×14.3×16.4mm,

as can be seen in Figure 4.1 on the top side. We further refer to this as the

‘button’ antenna. Two PIFAs where selected since this topology is easy to

fabricate, they are small and have a large platform tolerance.

To perform the acceleration measurements of subsection 4.2.2, the ultra-

small, low-power, triaxial accelerometer BMA280 [12] was selected. Fur-
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thermore, this accelerometer has already been soldered on the development

board of SiLabs. This sensor features an integrated low-pass filter with an

output data rate up to 500Hz for an unfiltered input data rate of 2 kHz.

Moreover, it possesses a resolution of 4096 LSB/g in the ±2 g range, can

be used in ±2 g, ±4 g, ±8 g and ±16 g range, communicates via an SPI 3-

wire communication link. Moreover, it contains an integrated temperature

sensor and multiple interrupts that can be configured to respond on motion

events as well as on prolonged motionless conditions. These properties make

the accelerometer excellent to detect when a train wagon is moving or not.

4.2.2 Acceleration measurement setup

The first setup proposed in this chapter is used for acceleration measure-

ments. Here, an accelerometer will be attached to a train wagon and will

measure the vibrations of a train wagon that is starting and stopping with

or without air brakes.

ax

ay
az

Figure 4.2: Acceleration measurement set up. The train wagon is equipped with
an accelerometer attached via a 3D-printed polylactic acid (PLA) mount to the

frame above the outermost wheel axle.

The accelerometer is mounted on a 3D-printed PLA support and is at-

tached via neodymium magnets to the wagon above the most outer wheel

axle, as can be seen in Figure 4.2 and Figure 4.3. PLA is a hard plastic

so in combination with the large neodymium magnets, the accelerometer

will measure the train vibrations and the damping effect can be neglected.

This way, the X-axis (ax) of the accelerometer is perpendicular towards the

wheel axle of the train wagon, for measuring the gravitational force. The

Y-axis (ay) is alongside the train wagon, for measuring the movement of the

wagon. The Z-axis (az) is in line with the wheel axle of the train wagon,

for measuring left or right movements. The accelerometer will continuously

measure the vibrations of the train wagon and transfer the data to a per-

sonal computer (PC) at a sample rate of 200Hz or 5ms. In this way, a clear

view of the measured vibrations on the train wagon is illustrated.
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(a) Container wagon

(b) Tank wagon

Figure 4.3: Accelerometer attached to the container and tank wagon above the
most outer wheel axle.

4.2.3 RF measurement setup

The second proposed setup consists of Received Signal Strength Indicator

(RSSI) measurements. The main purpose of these measurements is to find

the optimal Tx level of a BLE node that is sending sensor data towards an

CN also mounted on the train wagon.

Figure 4.4 illustrates the measurement setup, where a top view of a train

wagon can be seen. A Tx node is placed at position 0 and a RX node is

placed at positions 1, 2 and 3, respectively. From position 0 to 1, there is a

clear Line-of-Sight (LoS) link, although with a lot of metal in the vicinity.

From position 0 to 2, there is no LoS, and a large empty or full metal tank

can shadow the communication link. From position 0 to 3, there is no LoS,

but due to the position of the transmitter and receiver, there can be less

obstruction when compared to the link from position 0 to 2.
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Figure 4.4: Top view representation of the RF measurement set-up on the tank
wagon. The four corners are labelled from 0 to 3. At 0 a Tx node is placed, while

at 1, 2 and 3 an Rx node is placed.

The Tx node is programmed to send 300 coded advertisement packages

with an interval of 20ms at a certain Tx level ranging from 0dBm to 10 dBm

in steps of 1 dBm. Due to battery management reasons, a Tx level of more

than 10 dBm is not measured. The advertisement packages are labelled in

the data, in order to prevent erroneous data capturing of other nodes. The

Rx node was programmed to continuously scan for these coded advertise-

ment packets, but also to log the RSSI level and to count the amount of

received packages at a certain Tx level. Both nodes were mounted on a 3D-

printed PLA support with an integrated neodymium magnet. Figure 4.5

illustrates the Rx node attached on the wagon at position 2.

Figure 4.5: Rx node attached at position 2 on the tank wagon.
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4.3 Measurements & Discussion

4.3.1 Acceleration measurements

With the acceleration, the vibration of the train wagon in the moving di-

rection is measured. These measurements are used to calculate the Signal

Magnitude Vector (SMV) as follows.

SMV =
√
a2X + a2Y + a2Z (4.1)

The measurements are performed on a train, composed of a small lo-

comotive and two different wagons. The first one was a container and the

second one a tank, both empty.

4.3.1.1 Wagon stopped

Efficiently employing the low-power and sleep modes of the WSN can dras-

tically extend the battery lifetime. Instead of a battery-intensive continuous

scan by the MCU, the system is mostly placed into a deep sleep mode and

is only woken up by accelerometer events, if a train movement is detected.

As mentioned earlier, the BMA280 has several built-in interrupts which are

very useful.
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Figure 4.6: No motion interrupt result based on vibrations measured on the first
wagon, with air brakes.

Figure 4.6 illustrates the vibration of the container wagon measured at

a sample rate of 4ms. To find out if the train has stopped, the no motion

interrupt is selected. An interrupt is triggered when the slope of all selected

axes is smaller than the predefined threshold for a certain time slot or a

consecutive amount of samples. The red lines in Figure 4.6 show the result

of the no motion interrupt. The parameters of this interrupt are a time
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slot of 4 s or 1000 consecutive samples and a slope difference of 100 mg. It

can be stated that this interrupt performs as desired. A larger time slot

will prevent the MCU from waking up too fast in case the wagon stopped

without air brakes.

4.3.1.2 Is the train moving?

Secondly, knowing when the train is moving, is important to put the WSN

in a deep sleep mode until the train stopped and a no motion interrupt is

triggered. The BMA280 has two built-in interrupts that can be utilized.

0 0.2 0.4 0.6 0.8 1,0

·104

500

1000

1500

2000

Samples

S
M
V

[m
g]

SMV
Any motion

Figure 4.7: Any motion interrupt result based on vibrations measured on the first
wagon, no air brakes.

The any motion interrupt is triggered if the slope difference of the se-

lected axes for a certain amount of consecutive samples is larger than a

predefined threshold. Figure 4.7 illustrates the 473 alerts that are triggered

on the measured vibration of the container wagon not utilizing air brakes,

sampled at a rate of 4ms. The parameters of this interrupt are a time slot

of 16ms or 4 consecutive samples and a slope difference of 50 mg is used.

A second possible interrupt is called High-g interrupt. This interrupt is

triggered if the absolute value of one of the selected axis (’or’ relation) is

higher than a predefined threshold for at least the defined time slot. The

interrupt is cleared when the absolute value of all axis (’and’ relation) is

lower than the threshold minus the lower hysteresis level for the defined

time slot.

Figure 4.8 illustrates the vibrations measured on the second wagon sam-

pled at a sample rate of 4ms and when braking with air brakes. The pa-

rameters of the interrupt are a time slot of 80ms or 20 consecutive samples,

a threshold on 1150 mg (purple line) and a lower hysteresis level of 250 mg
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Figure 4.8: High-g interrupt result based on vibrations measured on the second
wagon, with air brakes.

(cyan line). This results in 168 triggered interrupts. This clearly illus-

trates that both interrupts can be used to place the WSN in a deep sleep

mode very efficiently. Since the accelerometer has a current consumption

of 130µA in normal mode, the influence on the battery lifetime is minimal.

Furthermore, it can be noticed that the measured peaks are smaller on the

second wagon, but still measurable.

4.3.1.3 Air brakes

Based on measurements, braking with or without air has less influence on

the measured SMV. Figure 4.6 and Figure 4.7 illustrate the vibrations

measured from the container wagon that is braking with and without air

brakes, respectively. One can clearly see that after the wagon stops without

air brakes, it results in decreasing repetitive shocks from the hydraulic ab-

sorbers. Most of these are perfectly measurable and do not have an influence

on the WSN or the measurements these sensors make. With air brakes, it

results in a smooth full stop. However, as soon as the brakes were released,

some small aftershocks were noticed.
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4.3.2 RF Measurement

The RF measurements consist of logging the RSSI level and the amount

of received packages at a certain Tx level. In post-processing, the Average

Received Power (ARP) and the Package Receive Rate (PRR) are calculated,

as follows.

ARPTX [dBm] = 10. log10

 1

m
.

m∑
n=1

10

RSSIn [dBm]

10

 (4.2)

PRRTX [%] =
m

300
m = number of received packets

(4.3)

4.3.2.1 Reference measurements

As reference measurement, the Rx and Tx node were placed in the anechoic

chamber with a distance of approximately 3.5m between both nodes. Fig-

ure 4.9 illustrates the ARP for three different situations: two patch antennas

as Tx and Rx node, a button antenna as Tx node and a patch antenna as

Rx node and two button antennas as Tx and Rx node. This result clearly

proves that the patch-patch combination gives the highest ARP and hence

has the best reception. The combinations with the button antenna results

in weaker signals down to sometimes unusable reception. For the button-

button link no values were received between 0 dBm to 5 dBm, because the

corresponding ARPs are lower than the minimal Rx sensitivity of the MCU.

Figure 4.10 shows the PRR, where the same conclusion can be drawn. Based

on these results, the button-patch link results in a good quality reception

although with very low received power levels. Therefore, the link margin is

limited.
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Figure 4.9: ARP: reference measurement in the anechoic chamber.
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Figure 4.10: PRR: reference measurement in the anechoic chamber.

4.3.2.2 Real-life measurements

Based on the measurements performed in the anechoic chamber, it can be

stated that the button antenna has a worse performance. To confirm this

statement, the measurements were repeated in real-life. Figure 4.11 and

Figure 4.12 illustrate the ARP and PRR on a full tank wagon. In order to

see how the antenna link performs in the worse condition, the Tx node was

placed at position 0 and the Rx node was placed on position 2. Figure 4.11

illustrates that the ARP level of the button-button and button-patch link

are lower than the minimum Rx sensitivity level of−94.6 dBm from the radio

integrated in the MCU. Figure 4.12 proves that no packets were received

for those links. Therefore, the patch-patch antenna link was selected to

perform the other measurements.

0 1 2 3 4 5 6 7 8 9 10
-95

-85

-80

-75

-70

-65

Tx power [dBm]

A
R
P

[d
B
m
]

Patch - Patch
Button - Patch
Button - Button

Figure 4.11: ARP: full tank wagon for the different antenna links.
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Figure 4.12: PRR: full tank wagon for the different antenna links.

Figure 4.13 illustrates the ARP on an empty tank wagon. From position

0 to 1, we have a better performance compared to the reference measurement

because the measurement distance between the nodes is smaller. From

position 0 to 2 or 3, there is a serious decrease in received power, but still

enough to have a good communication between both nodes. Figure 4.14

illustrates the PRR for the empty tank wagon. The same conclusion can

be drawn for the position 0 to 1 link. From position 0 to 2, there is a good

reception, although metal structures of the train wagon need to be taken

into account. Starting from 2dBm transmit power, an ARP of around

−82 dBm and a PRR of approximately 65% are measured. From position

0 to 3, there is some fluctuation, probably due to multipath effects. Based

on the performed measurements, we can conclude that the patch-patch link

performs well even when a large metal structure is in close proximity. This

is due to the properties of the employed antenna, more importantly the

omnidirectional radiation at a frequency of 2.45GHz of the patch antenna.
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Figure 4.13: ARP: patch-patch link on an empty tank wagon.
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Figure 4.14: PRR: patch-patch link on an empty tank wagon.

Figure 4.15 presents the measured results for the ARP and Figure 4.16

for the PRR on another tank wagon, completely filled. The same conclusion

can be drawn, but with a better performance. For the worst communication

link 0 to 2, starting from a Tx power level of 2 dBm, there is a PRR of 90%

and an ARP of approximately −75 dBm. From position 0 to 2, an increase

of approximately 5 dBm ARP level and 50% PRR is observed. When the

measurements on the full and empty tank wagon are compared, the state-

ment can be made that the buildings surrounding these train wagons have a

positive influence on the ARP and PRR. Since most of the communication

will happen during the rest period at the factory or train stations, this will

positively influence the communication between de nodes.
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Figure 4.15: ARP: patch-patch link on a full tank wagon.
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Figure 4.16: PRR: patch-patch link on a full tank wagon.

4.3.2.3 Brakes

In a next step, the nodes were placed on the outside of the brakes of the tank

wagon. At each side, the wagon has four steel wheels, each having their own

brake pair. The node was always placed on the most outer wheel brake, as

can be seen in Figure 4.17. Figure 4.18 and Figure 4.19 show the results

for the ARP and PRR on an empty tank wagon brakes, respectively. From

brake 1 to 2, there is an ARP level ranging from −75 dBm to −65 dBm and

a PRR of 95%. This illustrates that reliable communication is possible.

From brake position 0 to 2, similar results were measured, so the same

conclusion can be drawn. It is important to mention that during these

measurements, the nodes were attached in front of the big steel wheels.

Therefore, from position brake 0 to 2, the RF signals encounter at least two

large metal structures. Final measurement, a Tx node is placed on the CN
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(a) Brake position 2 (b) CN in position 0

Figure 4.17: Nodes placed on the brake and CN on the train wagon.
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Figure 4.18: ARP: from the outer brake on an empty wagon.

that is mounted above the train platform in position 0 and the Rx node

is placed on the brake in position 2. The CN is the grey box mounted on

the train wagon in Figure 4.17b. From the CN to 2, the received signal

levels decrease. This is because the signals are close to the big metal plate

underneath the tank wagon as well as the steel wheels. As conclusion,

starting from a Tx level of 4 dBm an average PRR of approximately 92%

is measured and an ARP of around −83 dBm is measured.
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Figure 4.19: PRR: from the outer brake on an empty wagon.

4.4 Conclusion

This paper presents the possibilities to use an accelerometer to put a WSN in

a deep sleep mode or to wake up the system when connected to an industrial

IoT network. Furthermore, it proposes a low cost, easy producible and

commercially available PIFA antenna that works perfectly in these harsh

metal environments train wagon are.

The first set measurements introduced in this paper were acceleration

measurements. These were obtained on different train wagon types, braking

with or without air brakes. Based on these measurements and the built-

in interrupts from the BMA280, a WSN on the train wagon can easily be

put to sleep or wake up. Employing the no motion, any motion and high-

g built-in interrupts of the accelerometer, the movements of the train can

be easily monitored and the WSN can be put to sleep or wake up. This

will have a large impact on the battery lifetime of each SN. Furthermore,

it can be concluded that there is a small difference between braking with

or without air brakes, but no large impact on the measured vibrations or

selected interrupt have been observed.

The second set of measurements introduced, were the RF measurements.

Two prefabricated PIFAs were placed on a train wagon, to measure the RSSI

levels at different Tx levels. Afterwards, the PRR and ARP were calculated.

This illustrated that the first selected patch antenna performs best in every

position on the train wagon. In a final step, the patch antenna was placed on

the outer brakes and outer wheels of the wagon. Despite the large amount

of metal structures, the antenna kept performing in a desirable way.

These measurements also illustrate that there are limited differences

between a full or empty tank wagon. Starting from a Tx level of 2 dBm,
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there is an PRR and an ARP of approximately 90% and −75 dBm on a

full tank wagon, respectively. On an empty tank wagon, less favourable,

but still usable results were registered. The measurement on the brakes

of the empty train wagon clearly illustrated that reliable communication is

possible. Starting from a Tx level of 4 dBm an average PRR and ARP of

roughly 92% and −83 dBm is measured.
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5
Conclusion

“If this does not appeal to you sufficiently to recognize in me a discoverer of

principles, do me, at least, the justice of calling me an ”inventor of some

beautiful pieces of electrical apparatus””

– Nikola Tesla, 1907

This dissertation has focused on the development of sensor nodes for

Wireless Sensor Network (WSN) based on Bluetooth Low Energy (BLE) for

on-body and industrial Internet of Things (IoT) applications. The research

was applied to three different topics where small low-power, low-cost sensor

nodes were required.

The first topic treats detecting vulnerable road user (VRU) in the blind

spot of vehicles. A complete low-power and low-cost detection system was

developed utilizing three types of nodes. First, Detection Nodes (DNs)

are mounted alongside the right side of a truck and trailer. These nodes

will continuously advertise their presence. The VRUs are wearing a small,

unobtrusive band around their arm that continuously scan for advertisement

packages from the DN. When VRU and truck are too close to each other,

the Received Signal Strength Indicator (RSSI) levels are too high, and a

self-developed rule based algorithm will trigger an alert on the wearable,

but also in the Central Node (CN) inside the cabin of the truck driver.

Thereby, there is a shared responsibility between VRU and truck driver.

Based on some extensive simulations, the different parameters for the rule

based algorithm were retrieved. The full system was tested in real life. This
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resulted in a detection range of approximately 8m. Moreover, research was

presented on the development of a miniaturized DN that fits inside the

sidelight of a trailer. By utilizing a multilayer Printed Circuit Board (PCB)

with limited peripherals and specific developed planar inverted-F antenna

(PIFA) antenna topology.

The second topic is about detecting elderly after a fall. The detection

of such an event happens with a low-power, low-cost and unobtrusive pa-

tient wearable that can be worn around the waist. It is based on a simple

rule-based algorithm that is continuously monitoring the acceleration and

the orientation towards the gravitational vector. When both thresholds

are crossed by the measured values, an alert is set. Based on extensive

simulations on real-life measurements and open-source databases, an accel-

eration threshold of 2.5 g and an orientation threshold of 45◦ were found as

the best fitted parameters. Validating the algorithm on these open-source

databases, containing data for 85 persons, performing 18 835 activities of

daily living (ADL) or fall activities, resulted in an F1-score in a range of

82.94% to 89.8%, confirming its reliability. The proposed convolutional

neural network (CNN) algorithm results in an F1-score of a range of 86.72%

to 95.09%, which is comparable to the proposed rule-based algorithm. The

combination of the developed PCB and rule-based algorithm results in a

battery autonomy of 100 days on a CR2032 battery. In further research, the

other part of the system was developed. When the patient wearable detects

and sends an alert, a fixed DN mounted inside the room will receive this.

The DN will add the necessary information such as room number and floor

to the alert package and forward the message to the Network Nodes (NNs)

that are scattered in the hallways of the nursing home. These nodes will

look for the closest care taker that is wearing the Caretaker Node (CTN)

and pass on the alert. Upon receiving, the caretaker will know the personal

details of the elderly (from the patient wearable) and the location were

the elderly fell (from the DN). Based on measurements performed with

developed PCBs and basic prefabricated antennas, perfect wireless commu-

nication was achieved at the lowest Tx level possible. An Average Received

Power (ARP) of −64.78 dBm and a Package Receive Rate (PRR) of ap-

proximately 90.5% was retrieved over a distance of 40m. Furthermore, it

takes 3 s to transfer an alert with one NN and 3.5 s with two NNs over a

maximum distance of 50m and 84m in a hallway environment, respectively.

This results in an energy efficient, low-cost fall detection system.

Third and final topic deals with train integrity. Modern trains are

equipped with multiple sensors that are combined in a WSN. Measure-

ments were performed to find the best suited antenna topology to perform

wireless communication between sensor nodes on locomotives and train wag-
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ons. Furthermore, some acceleration measurements were performed to de-

termine the best fitted built-in interrupt to make a WSN on a train energy

efficient. Basic Radio Frequency (RF) measurements inside an anechoic

chamber demonstrated that a basic prefabricated patch PIFA performed

best. The real-life measurements, where the Tx nodes was placed on the

brakes, resulted in a PRR of approximately 92% and an ARP of approx-

imately −83 dBm at a Tx level of 2 dBm. The acceleration measurements

illustrated that the built-in interrupts of the selected accelerometer work

perfectly to detect whether a train is moving or standing still. Based on

these measurements, a WSN with a small and inexpensive accelerometer

and antenna may be implemented.

These three topics clearly illustrates that BLE is a perfect communica-

tion protocol for WSNs in different fields. Since Bluetooth was developed

to be energy efficient and always had a decent data throughput compared

to its energy consumption, it can be used in all sorts of IoT applications.

In literature, much research is performed to make BLE even more energy

efficient by utilizing advertisement packages as data throughput, since this

consumes less power compared to data throughput via a connection between

nodes.

Future Work

Although for most of these topics excellent results were obtained, some

extras could be added to have an overall increase in performance of the

proposed systems. For the blind spot detection and warning system, the

developed wearable could be realized on a flex or flex-rigid PCB. This

would make it more easy to wear the wearable and extra peripherals could

be added. Furthermore, by utilizing the same System-on-Chip (SoC), as

mentioned in Appendix A, the overall design will be smaller and easier to

implement in other pedestrian of cyclist equipment and clothing. Depending

on this equipment, some energy harvesters (EHs) could be implemented.

This way, the battery life time will be extended in an efficient way. From a

commercial point of view, a smartphone application could be developed in

order to replace the dedicated wearable. Even though, more research needs

to be performed in order to develop an application that performs with the

same accuracy and efficiency. Next, the DNs could be upgraded to BLE

Mesh. In this way, sending the alert messages to the CN would be easier,

and the complete system would be more scalable in DN amount. Still, this

will have an influence on the battery lifetime. Implementing a direction

finding technique by Angle of Arrival (AoA) estimation, which is featured

in BLE 5, would make the detection more accurate.
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For the topic of fall detection, future steps would consist in making

the system easier in usability. By implementing Near-Field Communication

(NFC) and/or Radio-frequency identification (RFID), the caretaker could

easily clear an alert by pushing there CTN tag against the wall where the

DN is mounted. This is a small and inexpensive measure that has a huge

influence in the performance and ease of use for the caretakers. Furthermore,

the wearable and CTN could be extended with EHs. Since the care taker

is moving a lot while working, a micro generator system (MGS) could be

implemented. The DNs could be extended with AoA estimation. This will

enable, the system to tell the nursing personnel where exactly the elderly

fell inside his room. Finally, the patient’s wearable could be extended with

other sensors. This will allow the caretaker to see more vital parameters of

the fallen elderly and alert a doctor if necessary. Finally, by developing a

suitable antenna for each node, the performance will be increased.
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Annually, approximately 10 people are involved in a lethal blind spot ac-

cident on Belgian roads, even though a lot of money is invested in the devel-

opment of blind spot detection systems and in raising the awareness of this

phenomenon. In previous research, we developed a blind spot detection and

warning system based on Bluetooth Low Energy (BLE) and Received Signal

Strength Indicator (RSSI) measurements. In this chapter, the miniaturiza-

tion of the Detection Node (DN) and wearable is presented. There will be
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a closer look at the development of the Printed Circuit Board (PCB) and

the folded Shorted Patch (S-P) antenna that will be integrated into the side-

lights of trailers. In a future step, the wearable design will be updated with

the same miniaturization steps taken in this chapter.

A.1 Introduction

In 2020, approximately 100 people were killed on Belgium roads [1]. 10%

of the killed are due to a blind spot accident. Annually, a lot of money is

invested by government and traffic safety organizations to raise awareness

of this problem. However, the danger still exists. The main problem lies

in the lack of reliable communication between the truck driver and the

vulnerable road user (VRU). To eliminate or possibly solve this problem,

we proposed a blind spot detection and warning system based on Bluetooth

Low Energy (BLE) in a previous work [2]. In this chapter, there will be a

closer look at the miniaturization of the Detection Node (DN), so it can be

fitted inside the small lights alongside a truck trailer.

Industries provide multiple solutions, each with their disadvantages [3,

4]. In literature, multiple research is conducted in the placing of cameras [5]

and the optimization of different algorithm types [6, 7] to detect VRUs in

the blind spot. It is a known fact that camera systems suffer from some

known problems. Most of them have a limited coverage area, have a bad

performance when dirty and are hindered by privacy regulations. Combined

with a high implementation cost, cameras are not the most ideal solution.

Furthermore, some research is performed in detection based on radar [8].

Both systems will detect VRUs, but suffer from several false positives and

true negatives [3, 4]. Besides camera and radar, there are also the systems

that use wearables [2, 9]. These utilize an on-body wearable to detect how

close they are to a truck. Once too close they will trigger an alert so the

VRU and truck driver are notified about a potential blind spot accident.

This chapter presents the miniaturization of the DN. First, there will

be a closer look at the design of the Printed Circuit Board (PCB) and the

folded Shorted Patch (S-P) antenna. It is followed by the measurements

and discussion of the PCB and the antenna. Finally, the conclusion and

future work are presented.

A.2 Design

The proposed system from [2] consists of five DNs placed alongside a truck

with a trailer. A Central Node (CN) is positioned inside the cabin of the

truck. The DNs are continuously advertising the presence of the truck.
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A VRU is wearing the wearable, also proposed in [2] and can be seen in

Figure A.1, and receives all these advertisement packages. Based on the

Received Signal Strength Indicator (RSSI) values, the possibility of an ac-

cident is calculated. When both parties are too close, an alert is triggered

on the wearable device, but the wearable also connects to the closest DN.

Based on this connection, another alert is triggered in the cabin of the truck.

From this moment, there is a shared responsibility between both parties and

important lifesaving safety measures can be taken. The wearable worn by

the VRU contains leds, buzzer and vibration motor to alarm the person in

every possible method.

Figure A.1: Student wearing the designed wearable next to a truck, that is
equipped with the designed system.

The communication between the different nodes of the proposed system

relies on BLE. Therefore, we utilize the BGM111 module from Silicon Lab-

oratories (SiLabs) [10] is utilized. These modules use the BLE4.2 stack [11]

and contain an on-board 32-bit, 38.4MHz Advanced RISC Machines (ARM)

Cortex M4 [12] microcontroller (MCU) with Digital Signal Processing (DSP)

instruction set, combined with an integrated antenna. The PCB of the DN,

integrated in an in-house constructed plastic 3D-printed box, is shown in

Figure A.2. Besides the electronic components, this PCB contains also the

chip antenna and has a size of 45 × 30mm, necessary as ground plane for

the chip antenna.

This system is upgraded by a miniaturization of the DN. Due to the

required ground plane size for the chip antenna, these DNs cannot be built

inside a sidelight of a trailer, as can be seen in Figure A.3. Therefore, a

miniaturization of the DN is required, taking into account the following con-

straints. First of all, the PCB has to fit inside the housing of the sidelight,

resulting in dimensions smaller than 30×20mm. Further, the module in the

detection has to run on Bluetooth Mesh [13] to facilitate more convenient



112 Appendix 1

Figure A.2: Designed DN presented in [2].

data transfer between the DNs and the CN. Finally, since the node will be

implemented inside the metal chassis of the trailer, a dedicated and adapted

antenna has to be developed, satisfying the aforementioned dimension re-

strictions.

Figure A.3: Picture of a sidelight on European Truck.
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A.2.1 Printed Circuit Board

The design of the miniaturized PCB relies on the Silicon Laboratories

EFR32MG13 [14] System-on-Chip (SoC). It contains a 32-bit ARM [12]

Cortex-M4 core with 40MHz maximum operating frequency, 512 kB of flash

and 64 kB of Random Access Memory (RAM), an integrated power ampli-

fier with up to 19 dBm and an integrated balun for 2.4GHz. Furthermore,

this SoC also supports the use of Bluetooth Mesh [13]. This all is combined

in a package of 5× 5mm, which results in a serious downsize compared to

the earlier mentioned BGM111.

L1

C1

L2

C2

23− 11, 5jΩ 50Ω

Figure A.4: Applied matching network.

Table A.1: Calculated LC values.

Inductor Value [nH] Capacitor Value [pF]

L1 1.3 C1 5.3
L2 1.5 C2 3.2

An SubMiniature version A (SMA) connector has been added to the

PCB for easier testing of multiple antenna topologies. To provide maximal

power transfer towards the antenna, a fourth order LC-matching network

is designed in order to conjugate match the 50Ω SMA connector interface

to the (23− j11.5)Ω impedance of the EFR32MG13P MCU, as can be seen

in Figure A.4. The matching network, described further, determines the

values for L and C, as is given in Table A.1. Furthermore, by implementing

Grounded Co-Planar Waveguide (GCPW) [15], the traces are minimized

even further. Taking all these steps into account, a new PCB is designed

and is visualized in Figure A.5. This PCB has an overall size of 30×20mm,

which is a serious reduction in size compared with the previous design.

A.2.2 Miniaturized BLE antenna

As the antenna is required to support the Institute of Electrical and Elec-

tronics Engineers (IEEE) 802.15.1 standard (Bluetooth mesh), a reflection

coefficient with respect to 50Ω, |S11|, below −10 dB is imposed in the
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(a) Top (b) Bottom

Figure A.5: Designed miniaturized PCB for the DN.

2.400GHz to 2.4835GHz frequency band. In addition a 3 dB-beamwidth

greater than 70◦ in the azimuth-plane is imposed in order to ensure suffi-

cient coverage in a large area next to the truck. Finally, maximum dimen-

sions for the antenna are set at 35 × 25mm to fit the antenna inside the

sidelight of the truck. Note that special care is required when integrating

the antenna inside the light, as the large metallic structures can severely

influence the antenna performance.

D
H1

L1

L2

H2P

V

Figure A.6: Annotated representation of the folded Shorted-Patch (S-P) antenna
constructed out of 0.25mm brass sheets in yz-plane view.

To realize the imposed requirements a folded Shorted-Patch antenna,

based on [16], is proposed. The antenna essentially consists of two planar

inverted-F antenna (PIFA) implemented on an air substrate constructed

out of 0.25mm brass sheets, as depicted also in Figure A.6 and Figure A.7.

By stacking both PIFA elements on top of each other and, hence, creat-

ing a tight coupling between them, mode bifurcation is achieved [17]. By

judiciously optimizing the respective resonance frequencies of the antenna,

a strong miniaturization of the antenna structure is obtained, meanwhile

taking into account the above described design criteria. The final antenna

dimensions after optimization are depicted in Table A.2.
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B B1
K1 W1

W2
K2

B2

L

Figure A.7: Annotated representation of the folded Shorted-Patch (S-P) antenna
constructed out of 0.25mm brass sheets in xy-plane view.

Table A.2: Dimensions after optimization of the folded Shorted-Patch (S-P)
antenna.

Dimension Value [mm] Dimension Value [mm]

L 31.26 L2 16.53
B 20.00 B2 19.72
D 1.60 H2 6.50
L1 22.20 W2 3.06
B1 8.45 K2 8.80
H1 1.19 P 1.39
W1 2.20 V 4.77
K1 3.94

A.3 Simulations & discussion

After designing the PCB, the matching network as well as the proposed

antenna topology is simulated.

A.3.1 Matching network

In subsection A.2.1, the fourth order LC-matching network is discussed.

It is used to match the MCU with the SMA connector. GCPWs further

minimize the necessary PCB traces. The values for the matching can be

found in Table A.1, whereas all the different sizes of the waveguide can be

extracted from Figure A.9.
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Figure A.8: Simulated S11 of the designed matching network.

Figure A.9: Designed matching network with implemented GCPW.

The S11 of the designed matching network is visualized in Figure A.8.

At the centre frequency of 2.45GHz, there is a S11 of −27.3 dB. The S11

is smaller than −10 dB in the entire frequency band 2.34GHz to 2.56GHz.

This results in an impedance bandwidth of approximately 200MHz.
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A.3.2 Folded Shorted-Patch antenna results

The simulated S-parameters of the optimized antenna, depicted in Fig-

ure A.11, show a |S11| < −10 dB from 2.35GHz to 2.55GHz. The simulated

gain pattern in the azimuth and elevation plane is shown in Figure A.12a

and Figure A.12b, showing a peak gain of 2.1 dBi and 2.4 dBi, respectively.

A 3 dB-beamwidth of 360◦ and 103.6◦ can be observed in the azimuth and

elevation plane, respectively.

Figure A.10: Truck with antenna integration orientation α = 0◦.
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Figure A.11: Simulated S11 of folded S-P antenna constructed out of 0.25mm
brass sheets.

In order to validate the antenna performance in realistic deployment

scenarios, the folded S-P antenna is also simulated when integrated into a

sidelight on the trailer of a truck, as depicted in Figure A.10. A full metal

truck was included in the simulation program. In real life, the truck is not

completely full metal, but this gives us a worst case scenario. Here, the

red dot indicates the location of the antenna on the trailer, behind the last

wheel of the truck. The antenna is placed 60mm below the container frame

of the trailer.
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Figure A.12: Simulated gain of the standalone folded S-P antenna constructed
out of 0.25mm brass sheets.
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Figure A.13: Simulated S11 of folded S-P antenna constructed out of 0.25mm
brass sheets integrated on a truck.

Figure A.13 shows that the effect of the integration platform is negli-

gible on the antenna impedance and, as such, on the reflection coefficient.

To analyse the impact of the truck on the radiation performance, the ra-

diation pattern is simulated for different antenna integration orientations,

defined by the angle α. Again, the integration platform has negligible influ-

ence on the radiation pattern when α = 0◦ or α = 180◦, as can be seen in

Figure A.14. However in contrast, when α = 90◦ the integration platform

lowers the main beam direction in the elevation platform, thereby decreasing

the overall gain in the azimuth plane. As the PIFA antenna has a sufficiently

large ground plane and there are no objects in the reactive near field of the

antenna, perpendicular to the antenna ground plane, it can be stated that

the integration platform will have a negligible impact on the antenna polar-

isation. Furthermore, the radiation pattern contains both strong horizontal
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and vertical polarisation components, which will guarantee the polarisation

mismatch will never cancel the full link budget as the orientation of the an-

tenna on the wearable is continuously changing. A further optimization of

the wearable antenna could positively influence the polarisation mismatch.
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(a) Azimuth.
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Figure A.14: Simulated gain of the integrated folded S-P antenna constructed out
of 0.25mm brass sheets for different integration orientations. The solid line
represents α = 0◦, the dashed line α = 90◦ and the dotted line α = 180◦.

A.4 Conclusion

This chapter describes the upgrading and miniaturization of a previously

developed DN for blind spot detection and warning system for vehicles based

on BLE. The entire system consists of five DNs placed alongside a truck,

continuously transmitting advertising packets to potential wearable nodes

in its vicinity. In order to integrate the DNs into the trailer sidelights, a

miniaturized and highly integrated design is proposed.

To this end, both the PCB and antenna have been redesigned: a smaller

PCB footprint is obtained and a miniaturized folded S-P antenna is designed

to fit within this footprint. A fourth order matching network is added to

convert the transceiver output impedance from (23−j11.5)Ω to the required

50Ω. All these measures result in a perfect integrable design.

A.5 Future work

In a future work, there will be more optimizations of the entire system.

For the DN, the following measures will be implemented. First of all, to

decrease the overall size, the antenna will be matched to the impedance of
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the MCU. In that way, the matching network can be reduced and both the

PCB and the antenna can be integrated on one PCB.

Further, by implementing Bluetooth Mesh [13], it will be more con-

venient to transfer data between different DNs, but also towards the CN.

Replacing a DN will be cheaper and less complicated due to the provisioning

process [18] of Bluetooth Mesh.

Finally, by implementing Angle of Arrival (AoA) [19], the system will

be able to provide more accurate detection.

By utilizing the same SoC and PCB design, the wearable can be reduced

in size as well. This will also improve the possibility to redevelop the solid

PCB wearable to a flex or flex-rigid design, making the wearable more un-

obtrusive. Additionally, the PCB could be integrated in other equipment

that is used for walking, cycling or daily carrying.
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Fall accidents are a frequent problem with the elderly and lead to severe

injuries and/or could have a lethal ending. To prevent these potential deaths

the nursing personnel visits the elderly on a regular basis. This has an

enormous influence on the mental and physical capabilities of the nursing

personnel. In combination with the ever-growing presence of Internet of

Things (IoT) applications, this chapter proposes a low-power wireless fall

detection and warning system based on Bluetooth Low Energy (BLE). The

aim of the system is to lower the workload of the nursing personnel and

prevent elderly from dying from hypothermia. The system consists of a

patient wearable (P) monitoring the movement of the elderly, a Detection

Node (DN) scanning the room of the elderly to pinpoint the position of the
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fallen elderly, multiple Network Nodes (NNs) in the hallways sending the

alert messages to the closest caretaker wearing a Caretaker Node (CTN).

This node visualizes all vital parameters, so the nursing personnel can help

in the fastest way possible. A proof-of-concept is proposed in this paper,

together with measurements and power analysis.

B.1 Introduction

About 40% of elderly people over 65 year old, pass away due to fall ac-

cidents [1], [2], [3]. To prevent these falls from happening, much effort is

performed in personal training for the elderly [4]. These fall accidents have

a large financial impact on the medical system [5] since the nursing person-

nel has to manually check if a fall occurred. The consequence of this action,

is an extra physical and mental stress added to the baseline stress level of

the nursing personnel.

In current literature, much research is performed in developing algo-

rithms based on cameras [6], wearables [7], RF based [8] detection or a

fusion of different data streams [9, 10]. Many of these algorithms are based

on a type of machine learning (ML). A disadvantage of this system is the

need for representative training data [11] which can be difficult to achieve.

Most wearables proposed in literature are large and have the sole purpose

to obtain data, but cannot be used in real life. Furthermore, it is a known

fact that elderly people do not like the use of large or too complicated wear-

ables [12], [13]. Next, the care taking personnel is never part of the proposed

solutions, so no effort in lowering their stress levels is proposed.

To prevent the elderly from suffering serious injuries and trying to lower

the stress level from the nursing personnel, a small unobtrusive fall detection

and warning wearable was proposed in a previous publication [14]. Here, a

proof-of-concept for a low-cost fall detection and warning system based on

Bluetooth Low Energy (BLE) [15] is proposed. This system has to send the

alert messages from the wearable to the closest nursing personnel in a fast

and low-power way.

This chapter is further structured as follows. First, the design of the sys-

tem and the development of the different nodes is elaborated in Section B.2.

It is followed by the executed measurements in Section B.3 and by a small

conclusion in Section B.4. In Section B.5, some extra future features are

summarized.



Fall detection 125

B.2 Design

B.2.1 Design requirements

Based on the advantages and disadvantages of the current system presented

in literature, multiple design requirements were adopted:

1. A low-cost and low-power system

2. Easy to implement system

3. Compact and unobtrusive wearable for patient and care taker

4. Fast reception of an alert package at the care taker

B.2.2 System design

Taking the previously called design requirements into account, a system

with four different types of nodes is proposed. The first node is the patient

wearable P1, which is depicted as a green dot in Figure B.1. This wearable

contains an accelerometer to monitor the movements of the elderly and was

developed in an earlier publication [14]. It utilizes a rule based algorithm

based on the retrieved accelerometer data. The algorithm consists of two

thresholds. First, the Signal Magnitude Vector (SMV) is calculated. When

this value is higher than a predefined threshold of 2.5 g, the peak of the fall

is found. Second, the orientation towards the gravitational vector before the

peak and after the peak is calculated. When the difference between these

two angles is larger than 45◦, a fall occurred and the wearable will send an

alert. This alert will be picked up by the Detection Node (DN), which is

depicted as a red dot in Figure B.1. This node will not only forward the

alert package, but will also include the necessary data (like room number

and floor), so the nursing personnel can find the elderly efficiently. In this

way, the system can detect other elderly who fall in a room different from

theirs, and the nursing personnel does not go to the wrong room or floor. In

Subsection B.5, some extra features that could be added are summarized.

The DN sends this updated alert package to the NNs, which are depicted

as blue dots in Figure B.1. For illustrative purpose, these nodes are drawn

close to each other, in reality the distance is larger. These nodes have

the sole purpose to look for the closest nursing personnel or forward it the

surrounding NNs. When a CTN, depicted as a purple dot in Figure B.1, is

in proximity of a NN, the alert will be picked up. The nurse will get an alert

and see the important parameters like temperature, patient name, patient

room, floor number, etc. To achieve this, a custom-made advertisement

package is made and sent to the required nodes.
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Patient
Wearable (P1)

Detection Node (DN1)

Network node
(NN1)

Carer wearable
(CTN1)

Network node
(NN2)

Detection Node (DN2)

Patient
Wearable (P2)

Figure B.1: Top view of a typical nursing room with a part of the hallway. The
patient is wearing the wearable P1 (green dot) and the Detection Node (DN) is
placed in a central position of the room (red dot). Furthermore, the Network
Nodes (NNs) (blue dot) are mounted on the ceiling of the hallway while the

nursing personnel is wearing the Caretaker Node (CTN) (purple dot).

When an alert is handled, the nursing personnel pushes a button on

the CTN and the complete system knows the alert is handled. To handle

multiple fall accidents at the same time, the NN is equipped with an alert

stack function, so the first in first out (FIFO) principal is used.

B.2.3 Communication steps

Figure B.2 gives a graphical representation of the communication steps that

are taken when a fall is detected by one of the patient’s wearable Px. It

triggers an alert and sends an alert package to the DNx inside the room

where the elderly fell. This node adds the necessary data to the alert package

and sends it to the closest NNx. This node sends the message to the other

NNs when there is no CTN is in the proximity. When the CTN receives

the alert message, the NNs marks this alert stack entity as ’Being Handled’.

When the nursing personnel helped the elderly, the handled button on the

CNx or DNx is pushed. This sends a package to the closest NNx and the

alert stack entity is cleared. Next, the NN forwards the message to all other

NNs where the same entity is cleared.
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Figure B.2: Graphical representation of the different communication steps of the
proposed system.

B.2.4 PCB Design

To test the proposed system, some hardware was designed. Since most of the

nodes contain the same hardware and peripherals, only one Printed Circuit

Board (PCB) is designed. Figure B.3 displays the layout of the PCB for

the designed nodes. The design relies on the EFR32MG13P632F512GM48-

CR wireless System-on-Chip (SoC) from Silicon Laboratories (SiLabs) [16].

This multiprotocol SoC uses the BLE5.1 stack and contains an on-board

32-bit 38.4MHz ARM [17] Cortex-M4 microcontroller (MCU) with DSP

instruction set. This ARM Cortex-M4 is a modern general-purpose MCU

and makes it ideal for employment in many low-power systems.
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Figure B.3: Graphical representation of the developed CTN PCB.
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The complete module has an overall size of 30 × 30mm. It contains

two pushbuttons, four LEDs and the other peripherals, required by the

SoC. Furthermore, a TAG-connect [18] connector is used to program the

nodes via the Serial Wire Debug (SWD) protocol [19]. The Power Supply

Unit (PSU) is a standard small battery of 3.3V or can be switched to a

standard lab PSU. Since this is a proof-of-concept, an SMA connector is

added so multiple antennas could be tested. The pushbuttons and LEDs

have a specific purpose for each node. For the CTN, the pushbutton have a

”alert handled” or ”require more help” function. For the NN they are not

necessary and hence not soldered.

(a) Top. (b) Bottom.

Figure B.4: Picture of the developed PCB.

Figure B.5 illustrates the Delta 7A hinged mount WiFi/ISM antenna

of Siretta is selected to perform the measurements proposed in subsec-

tion B.3. This is a dual-band λ/4 omnidirectional dipole antenna tuned

at the 2.4GHz and 5.8GHz range, with a radiation efficiency of 63.6% and

66.2%, respectively. This antenna is vertically polarized with an almost

omnidirectional radiation pattern at 2.45GHz, which makes it an appropri-

ate antenna for BLE. This cylindrical hinged mount antenna has an overall

length of 108mm and the bottom diameter is 9.3mm. The integrated SMA

connector, makes this an ideal and low-cost antenna to perform these mea-

surements. In the future, the antenna will be co-optimized with the fall

detection circuit for optimal performance.
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Figure B.5: The soldered PCB with the hinged dual-band Delta 7A from Siretta
connected.

B.3 Measurement & Discussion

To test this proof-of-concept, some measurements were performed.

B.3.1 Range Measurement

First, the range of the system is determined based on a series of Received Sig-

nal Strength Indicator (RSSI) measurements over different distances. One

of the design requirements of this system (Section B.2.1) is a low-cost and

low-power solution. To meet this requirement, BLE is used as main commu-

nication protocol. This makes the system easily scalable and uses minimal

power to transfer large amounts of data. Furthermore, the amount of NNs

should be limited to keep the production and installation cost low.

0 m 10 m 20 m 30 m 40 m

Figure B.6: Graphical representation of range measurement setup in the hallway
at a Ghent University building.

To get a general idea of the range the system covers, RSSI measure-

ments are performed. The first NN is placed on the left side of the hallway

and is set to a fixed Tx level of 0 dBm. This node sends 2000 labelled ad-

vertisement packages. In this way, no other packages can be received and

influence the measurements. The second NN is placed at a distance of 10m,

20m, 30m and 40m and continuously scans for advertisement packages. A

graphical representation of the measurement setup is visible in Figure B.6.

Afterwards, the RSSI values are used to calculate the Average Received

Power (ARP) and the Package Receive Rate (PRR) based on equation 4.2

and 4.3, respectively.
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ARPTX [dBm] = 10. log10

 1

m
.

m∑
n=1

10

RSSIn [dBm]

10

 (B.1)

PRRTX [%] =
m

2000
m = number of received packets

(B.2)

The results of the range measurements are visible in Figure B.7 and

Figure B.8. Figure B.7 illustrates the calculated ARP of 2000 RSSI values

received at the NN. An ARP of −48.61 dBm, −58.12 dBm, −60.04 dBm and

−64.78 dBm at a distance of 10m, 20m, 30m and 40m result in a perfect

communication possibility. Taking into account that the minimum Rx sen-

sitivity level of the used MCU is −94.6 dBm. These result also illustrates

that at a distance of 40m, communication is still perfectly possible and

could be extended even further.

10 20 30 40

−65

−60

−55

−50

Distance [m]

A
R
P

[d
B
m
]

Figure B.7: Measured ARP at a distance of 10m, 20m, 30m and 40m from a
NN sending 2000 advertisement packages at a Tx level of 0 dBm.

Figure B.8 illustrates the calculated PRR of 2000 RSSI values received

at the NN. This graph, just like the previous, illustrates reliable commu-

nication with an average PRR of approximately 90% over all measured

distances. Both graphs clearly illustrate that the hallway has a positive

effect on the range and performance of the system. Furthermore, placing

an NN about every 40m in a hallway of a nursing home keeps the system

low-cost. The low-power requirement is also achieved, since a Tx level of

0 dBm has minimal influence on the battery lifetime or power consumption.
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Figure B.8: Measured PRR at a distance of 10m, 20m, 30m and 40m from a
NN sending 2000 advertisement packages at a Tx level of 0 dBm.

B.3.2 Latency Measurement

Latency is the second important factor that is measured. Since the system

has to send alert messages to the CTN, it is important to know how long

it takes to receive an alert. For this setup, the hallway from another Ghent

University building is used, as can be seen in Figure B.9. The P and DN

are placed at position A. The NN and CTN are placed at a certain posi-

tion, ranging from 22m to 84m (labelled from B to I in Figure B.9). The

positions were chosen based on obstacles in the hallway that could hinder

the communication signals. During these measurements, the time between

registering a fall and receiving it on the CTN is logged. The nodes trans-

mit at a fixed Tx level of 0 dBm to keep the energy consumption as low as

possible.

ABCDHI

022 m
33 m

46 m
55 m

65 m
84 m

G EF

50 m
58 m

Figure B.9: Graphical representation of the latency measurements in the hallway
at the Ghent University building.

The latency between sending an alert on the wearable P and receiving

this on a CTN, passing a DN and one NN, resulted in an overall latency of

approximately 3 s. Adding an extra NN to this chain has a serious influence



132 Appendix 2

on the extension of the range, but a limited influence on the latency. The

overall latency is increased to roughly 3.5 s. This measurement provides the

required proof for the fourth design requirement in Section B.2.

B.4 Conclusion

This paper proposes a proof-of-concept for a low-cost fall detection and

warning system based on BLE for nursing homes. The proposed system

consists of four nodes. The first node is worn on the patient and triggers an

alert in case of a fall event. Inside each room, a DN is mounted that will scan

the room for alert messages. In the hallway of the nursing home a network

of NNs is deployed. On arrival of an alert package, these nodes scans for

the closest CTN and sends the alert. When no CTN is in proximity, the

alert is forwarded to the next NN.

This paper covers the high-level communication steps of the complete

system, as well as the hardware that is developed. Some extra periph-

erals are added to these PCBs, so each node could be used in a real-life

test. Furthermore, some measurements were performed. First, RSSI levels

are measured to calculate the ARP and PRR. An ARP of −64.78 dBm

and a PRR of approximately 90.5% were measured at a distance of 40m.

This proves the low-cost and low-power property of the proposed proof-of-

concept. Furthermore, the numbers prove that the system can cover more

than 40m. In the latency measurements, over a distance of 50m the sys-

tems takes more or less 3 s with one NNs to transfer an alert from patient

wearable to CTN. When an NN is added, a distance of 84m is achieved

with a latency of roughly 3.5 s, proving the fourth design requirement of

fast reception of an alert package at the care taker. In conclusion, based on

the communication protocol of BLE and the performed measurements, all

design requirements are fulfilled.

B.5 Future Work

In a next step, multiple modifications can be made for each node. The DN

could be extended with Angle of Arrival (AoA). Since the MCU is utilizing

BLE5.1, AoA is a good extension to the detection range. When a fall

occurs, the wearable detects the fall, but the DN is able to pinpoint at with

position the fall happened. This way, the nursing personnel can determine

how dangerous the fall was. If an elderly person falls in the bathroom for

instance, there is a greater risk of serious injuries.

The CTN can be extended with a small LCD screen. The LCD screen

makes it more convenient to read the data from the wearable and replaces
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the LEDs efficiently. Next, a vibration motor and buzzer can be added to

make the receiving alert more noticeable for the nursing personnel wearing

the CTN. Of course, the power management is an important parameter

in this design. In an addition, a wireless charging coil is a nice feature to

charge the integrated battery.

Both nodes can be extended with Near-Field Communication (NFC)

and/or Radio-frequency identification (RFID). When the nursing personnel

enters a room, they can cancel or handle the alert by simply touching the

NFC and/or RFID reader with their tag integrated in the CTN. This

small and inexpensive adaptation has a large influence on the ease of use.

Furthermore, a suitable antenna topology is needed for both nodes since

they are placed on the ceiling of the hallway or against the wall of the

room. Therefore, a hemispherical radiation pattern is preferred.
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