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Background: Chronic stress and depressive symptoms have both been linked

to increased heart rate (HR) and reduced HR variability. However, up to date, it

is not clear whether chronic stress, the mechanisms intrinsic to depression

or a combination of both cause these alterations. Subclinical cases may

help to answer these questions. In a healthy working population, we aimed

to investigate whether the effect of chronic stress on HR circadian rhythm

depends on the presence of depressive symptoms and whether chronic stress

and depressive symptoms have differential effects on HR reactivity to an acute

stressor.

Methods: 1,002 individuals of the SWEET study completed baseline

questionnaires, including psychological information, and 5 days of

electrocardiogram (ECG) measurements. Complete datasets were available

for 516 individuals. In addition, a subset (n = 194) of these participants

completed a stress task on a mobile device. Participants were grouped

according to their scores for the Depression Anxiety Stress Scale (DASS)

and Perceived Stress Scale (PSS). We explored the resulting groups for

differences in HR circadian rhythm and stress reactivity using linear mixed

effect models. Additionally, we explored the effect of stress and depressive

symptoms on night-time HR variability [root mean square of successive

differences (RMSSD)].

Results: High and extreme stress alone did not alter HR circadian rhythm, apart

from a limited increase in basal HR. Yet, if depressive symptoms were present,

extreme chronic stress levels did lead to a blunted circadian rhythm and a

lower basal HR. Furthermore, blunted stress reactivity was associated with

depressive symptoms, but not chronic stress. Night-time RMSSD data was not

influenced by chronic stress, depressive symptoms or their interaction.
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Conclusion: The combination of stress and depressive symptoms, but

not chronic stress by itself leads to a blunted HR circadian rhythm.

Furthermore, blunted HR reactivity is associated with depressive symptoms

and not chronic stress.

KEYWORDS

heart rate, depressive symptoms, chronic stress, circadian rhythm, stress reactivity

Introduction

Depression is associated with pronounced autonomic
nervous system abnormalities. Patients with Major Depressive
Disorder (MDD) show higher baseline levels of heart rate (HR)
and altered heart rate variability (HRV) [e.g., lower Standard
Deviation of Normal-to-Normal Intervals (SDNN), Root Mean
Square of Successive Differences (RMSSD), low-frequency and
high frequency (HF) HRV] (1–3). These baseline differences
are paired with blunted reactivity during exposure to acute and
repeated psychological stress (2–5). Furthermore, differences
of HR and HRV at baseline extend to abnormalities of HR
circadian rhythm in severe depression (6, 7). A circadian rhythm
is an oscillation of a process over 24 h. HR, for example, rises
strongly in the morning, reaches a peak before noon, decreases
again and reaches another peak in the afternoon, after which it
keeps on lowering during the night until the next morning (8).
Abnormalities within this rhythm may be used to discriminate
between cases and controls (4, 9). Indeed, it is well known
that patients with MDD show altered circadian rhythms and
diurnal mood variation (10). Analyzing HR/HRV, particularly
during the night period may provide more insight into potential
pathological mechanisms.

Interestingly, the association of depressive symptoms
and HR/HF-HRV is not as clear-cut. Depressive Recently,
Jarczok and colleagues showed that depressive symptoms
were associated with reduced 24-h cardiac vagal variation in
men, but increased variation in women (11). Interestingly,
in their large-scale longitudinal study, Jandackova et al. (12)
did not find a cross-sectional association between HR/HRV
measures and depressive symptoms at baseline. However, in
a predictive analysis, the authors showed that lower HR and
higher HF-HRV predicted a lower likelihood of depressive
symptoms at follow-up, 10 years later. Inversely, the presence
of depressive symptoms at baseline was not associated with
HR/HRV measures at follow-up (12). Similar findings have been
reported by others: It seems that particularly higher levels of
HRV are indicative of a better outcome to treatment [e.g., (13)].
It should also be noted, that resting state HR/HRV alterations
do occur in various other psychiatric [e.g., post-traumatic stress
disorder (14), anxiety disorders (15)] and somatic [e.g., type
2 diabetes (16), fibromyalgia (17)] disorders and should not
be understood as a diagnostic biomarker, but rather as general

risk assessment that if combined with other measures, could be
helpful in identifying at-risk patients.

While resting state physiological data are informative,
functional data provides important information on the capacity
to adapt to environmental demands. Stress reactivity studies
in healthy people with depressive symptoms are ambiguous:
increased (HR) reactivity (18), decreased reactivity (19),
or no changed reactivity to a mental stressor (20, 21)
have been reported.

A big caveat of the above studies, and possibly a reason
for the heterogeneous findings, is that they did not account
for the effects of chronic stress. Amongst other factors which
can influence HR and HRV readouts, such as age and sex
(22), poor cognitive function (23, 24), mental fatigue (25),
metabolic syndrome (26), temperature (27), and possibly, other
lifestyle factors [e.g., physical activity, alcohol use, smoking
(22)], chronic stress may increase HR reactivity and/or decrease
HRV (28, 29), although some reports did not find an effect
(22). Chronic stress is also a well-known risk factor for
psychopathology: the experience of chronic stress (i.e., the
real or perceived threat to an individual’s psychological or
physiological integrity) (30, 31) has been linked to both
the development (32) and the maintenance (33) of several
mental disorders, one of which is MDD. In contrast to the
blunted stress reactivity observed in MDD, high perceived
stress and/or negative life events may increase HR reactivity
to stress (34). Changes in HR/HRV may thus represent
the consequence of chronic stress, which can precede the
development of depressive symptoms [e.g., (12, 29)]. Depression
and/or depressive symptoms are often associated with the
subjective experience of chronic stress (35); the direction of
causality, i.e., whether chronic stress precedes depression or
whether depression leads to high subjective stress, is unclear and
may vary between individuals.

As initially proposed by McEwen, the identification of
subclinical cases before emergence of psychopathology may be
key to answer these questions (30). Therefore, we set out to
investigate the effects of chronic stress on circadian rhythms
and stress reactivity in the Stress in the Work Environment
(SWEET) study, which studies a large sample of individuals
from the healthy working population. The participants were
specifically selected to have (a) no chronic stress and no
depressive symptoms, (b) chronic stress but no depressive
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symptoms, (c) depressive symptoms but no chronic stress, and
finally (d) depressive symptoms and high chronic stress.

We aim to investigate whether the effect of chronic stress
on HR circadian rhythm is (a) dose dependent and (b)
different in participants with, compared to participants without
depressive symptoms. We hypothesize that chronic stress and
depressive symptoms gradually increase basal HR levels, and
that the combination of both, high chronic stress and depressive
symptoms results in a biological profile similar to patients
with depression. Secondly, we investigated if chronic stress and
depressive symptoms alter HR reactivity to an acute stressor.
We hypothesize that high depressive symptoms are associated
with blunted stress reactivity, while high stress is associated with
increased stress reactivity.

Materials and methods

Participants

This study is part of the Stress in the Work Environment
study (SWEET-study; n = 1,002) described in Smets et al.
(36), which was approved by the Ethics Committee Research
UZ/KU Leuven (approval number: S57916). Participants were
recruited in 11 technology-oriented, banking, and public sector
companies. Participants with heart disease or any psychiatric
disorder based on self-report were excluded from analysis.
Participants who did not report a psychiatric disease but were
currently taking psychotropic medication were also excluded.
Cholesterol-lowering supplements or medication was permitted
if no heart disease was specified. Participants did not receive any
reward for participating in the study apart from having a chance
at winning a restaurant or travel voucher.

Procedures

Questionnaires
Before the experiment, participants completed an intake

questionnaire which gathered personal information, such as
age, sex, health problems, work situation, and lifestyle, and
four psychological questionnaires: The Perceived Stress Scale
with 10-items (PSS-10), the Pittsburgh Sleep Quality Index
(PSQI), and the Depression Anxiety Stress Scale with 21
items (DASS-21).

Ambulatory monitoring
On Thursday morning, participants received a chest

patch [hardware system of (37)] which received regulatory
approval and measures the electrocardiogram (ECG) and tri-
axis acceleration (Acc) at a sampling rate of 256 and 32 Hz,
respectively. Though higher sampling rates are preferred in
HRV research, a sampling rate of 256 Hz has been reported as

sufficient (38) and was preferred in this large-scale ambulatory
study to limit memory and storage issues. Participants were
asked to wear the chest patch day and night for a total of
5 days (Thursday–Monday morning) and to remove it only
during vigorous physical activities. For more details on the data
collection, see Smets et al. (36).

Stress task
On the first day (Thursday) of the experiment, participants

were asked to complete a modified version of the Montreal
Imaging Stress Task (MIST) (39) to induce moderate stress.
The MIST (hereafter referred to as stress task) consists of a
resting, a training, and an experimental condition. In this study,
participants completed the task on a mobile app: a 5-min rest
period (relaxing music and images), a 5-min training period, a
5-min stress task and a 5-min recovery period. For details on the
task, see Supplementary Information 1.

Data pre-processing
The mean HR(V) and activity levels were calculated in

windows of 5 min with 4 min of overlap, analog to Schiweck
et al. (4) and Smets et al. (36), following the minimum window
length required to calculate HRV features. The activity level
of the participants was calculated as the standard deviation of
the magnitude of acceleration (Std Acc) as derived from the
accelerometer of the ECG patch. As ambulant physiological
recordings may be corrupted by motion artifacts and poor
sensor attachment, the acceptability of the recorded ECG was
assessed using a quality indicator (QI) derived from Orphanidou
et al. (40) and previously implemented by Smets et al. (36).
For details see Supplementary Information 2. The HR(V) data
was filtered using the QI. All 5 min windows with an average
QI below 0.8 were excluded. In addition, all segments of high
activity (Std Acc > 0.04) were excluded to obtain a clear result
without the confounding effect of physical activity. Finally, all
retained windows were averaged into hourly measurements.

The ECG data recorded during the stress task was divided
into windows of 1 min, without any overlap, from which the
mean HR was calculated. Windows with an average QI below
0.8 were excluded. The retained windows were averaged per
condition of the stress task.

Statistical analysis

All statistical analysis was performed in R version 3.6.1
(41). Graphical representations were performed with Python
version 3.7. Relevant variables were age, biological sex, hours
of physical activity per week, smoking behavior, DASS scores,
and PSS scores. For simple group comparisons, the Wilcoxon
rank sum test was performed. For multiple group comparisons,
the Kruskal-Wallis test was used. If significant, it was followed
by Dunn’s test with a Benjamini-Hochberg correction. Missing
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weight or length data was imputed by the median of the
included population. Hours of physical activity per week was
enquired as the total hours of sports performed per week
with 5 suggested categories: 0, 0–1h, 1–3h, 3–5h, and > 5 h.
These values were transformed into a numeric variable ranging
from 0 to 4. For circadian variation, recordings were required
to include an average HR for at least every hour of a 24 h
day (i.e., a minimum of 24 datapoints without constraints for
within-day consecutiveness), in which the hourly average was
derived from at least 5 data windows. If this requirement was
violated, the corresponding participant was excluded. For stress
reactivity analyses during the stress task, only participants who
completed the MIST and for whom physiological recordings
were of sufficient quality were included.

Definition of depression and stress subgroups
To define our population of interest, with and without

symptoms of depression and low or high stress, respectively, we
used the DASSD [Cronbach’s alpha: 0.81 (42)] and PSS scores
[Cronbach’s alpha: 0.78 (43)]. First exploratory dimensional
analyses, using HR averages per day and night, indicated the
possible importance of second order terms in the PSS and/or
DASSD (see Supplementary Table 2).

Since several model terms were already used to model
circadian rhythm, we decided against further dimensional
analyses, as these would require the inclusion of second order
terms for both the PSS and DASSD in interaction with all
the harmonic terms. To preserve interpretability and allow for
non-linear relationships, we opted for group-based analyses.

The DASSD was used to define groups experiencing no or
only low depression scores, and those with high levels, following
the official cut-off score of 6 as recommended by Lovibond
and Lovibond (44). We opted for a binary distribution due to
the expected, non-normal distribution of depression scores in
a working population which was confirmed by a skewness of
1.67 and kurtosis of 6.33 within the DASSD (skewness > 1,
the distribution is heavily skewed; kurtosis > 3, the distribution
has heavier tails than a normal distribution). Regarding the
PSS, several cut-offs are mentioned in the literature, but since
the PSS is not a diagnostic instrument, no validated cut-
offs are given. Given our interest in the difference between
low/normal, medium/high, and extreme stress (often present
in depression), participants were grouped into three categories
using our own, population-derived cut-off values: (1) normal
stress levels (lower or equal to the 75th percentile of the PSS
scores), (2) high stress levels (between the 75th and the 95th
percentile), and (3) very high stress (above the 95th percentile).
This corresponded to a PSS value of < 18 for normal stress,
between 18 and < 24 for high stress or > 24 for extreme stress.
These values are congruent with the values published by Cohen
and Janicki-Deverts (45) in their large survey of the normal
population using the PSS-10: Mean PSS scores in 2009 were

situated around 17 (16.38–17.46) with a standard deviation of
around 7 (7.07–7.83) for the population aged 25–54, which is
comparable to our sample.

Circadian rhythm
Model development for heart rate

We performed a group-based time-series analysis in which
we studied HR, for every group, at consistent time intervals, i.e.,
1 h, while modeling time dependencies between the intervals.
For this, we used a linear mixed model, predicting HR with
the independent variables age, sex, Body Mass Index (BMI),
smoking, depressive symptom group, and chronic stress group.
The hourly average activity level (Std. Acc), hereafter referred
to as the activity index, was also included as a covariate to
control for HR recovery following (the excluded) periods of
high physical activity. All numerical variables were rescaled to
range from 0 to 1. As HR shows diurnal fluctuations (8, 46),
we introduced harmonic terms with periods of 24, 12, 8, and
6 h as described in the literature (47, 48). Via interactions with
the factor groups, these terms allow for the estimation of group-
related diurnal differences. A random intercept was included
per subject, as well as random slopes for all harmonic terms.
The latter allow us to model person-to-person variability. Due
to slight deviations from model assumptions, HR data was log
transformed. As the effect of sleep quality was not of primary
interest, its relevance was only tested in the final model after the
model selection procedure. In a second step, separate models
were built for healthy participants with high and low levels of
depressive symptomatology to investigate whether differential
effects were present.

Model development for heart rate variability

Regarding HR variability, we aimed at studying vagal
modulation, as this has been linked with stress vulnerability
and reactivity (49, 50) and depression (51). Cardiac vagal
tone can be approximated through the HF variations of
the RR interval, which primarily reflects the activity of the
parasympathetic nervous system (52). The root mean squared
successive differences (RMSSD) is a time domain measure that
represents short-term variation, and therefore correlates with
the power in the HF band. For long-term, ambulatory ECG
recordings, it has been recommended to look into RMSSD
rather than the HF-HRV (53). Since we were not able to
control for respiratory measures and RMSSD is known to be
less influenced by respiration than HF-HRV (54), we chose
RMSSD as outcome.

Pre-processing revealed that the day-to-day variability
within RMSSD was substantially higher than within HR (see
Supplementary Table 1 for the comparison). This might
have been a consequence of the ambulatory set-up, in
which the ECG recording is subject to artifacts and noises:
baseline wandering, electromyogram interference, powerline
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interference, and motion artifacts. As HRV measures require
high temporal accuracy for R-wave peak identification, part of
the variability may have originated from poor signal quality.
Consequently, the circadian model, as explained in the previous
section, did not reach good model fit. To reduce the influence
of motion, we limited the analysis of RMSSD to night-time
analyses (from 10 p.m. to 6 a.m.).

Similar to the HR analysis, we performed a group-based
time-series analysis using a linear mixed effects model. In
this model, we predicted the hourly average for RMSSD with
the independent variables age, sex, BMI, smoking, activity
index, depressive symptom group, and chronic stress group. In
contrast to the model for HR, we added time directly to the
model, without harmonic terms. Interactions between the time
variable and the factor groups allowed for the estimation of
group-related differences in night-time recovery, i.e., the night-
time slope of RMSSD. The variable time ranged from 1 to 8,
representing the hours between 10 p.m. and 6 a.m. A random
intercept was included per subject, as well as a random slope for
time. Due to slight deviations from model assumptions, RMSSD
data was log transformed.

Model selection

For HR, a final model was selected using backward stepwise
elimination based on the Akaike information criterion (AIC).
The AIC is an estimator of prediction error which promotes
models with a high goodness-of-fit and penalizes overly complex
ones (55). The stepwise elimination process was performed
using the R-package “buildmer” with the parameter “crit” set
on “AIC” and the parameter “direction” set on the default
combination (“order, backward”) to first make sure that the
model converges and to then perform backward elimination
(56). The retained variables were finally tested in the R-package
“lme4.” Importantly, in contrast to the traditional cut-off based
on a p-value of 0.05, the AIC-based model selection allows for
the inclusion of variables with a p-value above the significance
level of 0.05 if these variables improve the goodness-of-fit of the
model significantly. With regard of RMSSD, we did not perform
a stepwise elimination but estimated the full model.

Stress reactivity
In a linear mixed model, we predicted HR with the

independent variables: depressive symptom group, chronic
stress group and stress exposure. A random intercept was
included per subject. To investigate the effect of depressive
symptoms and chronic stress on stress reactivity, both group
factors were added in interaction with the stress exposure.
No stepwise elimination was performed. Per grouping, the
conditions were compared in a pairwise manner while using a
Benjamini-Hochberg correction. We did not analyze reactivity
in RMSSD for the reasons explained in section “Model
development for HR variability.”

Results

Sample characteristics

A total of 1,002 participants took part in the SWEET study.
Among these participants, 104 did not have any (good quality)
ECG data and 181 did not have enough data, i.e., at least one data
point for every hour in a day, to perform circadian modeling.
This data loss found its origin in several issues inherent to
ambulatory data collection such as participant drop-out within
24 h, poor signal quality because of bad sensor adhesion or
vigorous motion and sensor failure because of water damage
(e.g., while showering). An additional 153 participants did not
fill in the questionnaires and 48 participants were removed
from the data set based on the exclusion criteria [n = 13
psychiatric disorders (anxiety, ADHD, depression, or other)],
n = 2 intake of psychotropic medication without diagnosis,
n = 17 heart diseases with medication intake such as beta-
blockers, n = 15 heart diseases without medication intake,
n = 1 chronic disease (neuropathy), resulting in a total of 516
participants included for analyses [mean age = 39.44 (SD 10.21),
mean BMI = 24.20 (SD 3.78), number of women = 243 (47%),
mean PSS = 14.21 (SD 6.01), mean DASSD = 2.50 (SD 2.91),
mean HR = 67.87 BPM (SD 7.53)]. Participants were mostly
highly educated (34.9% graduate school, 7.3% secondary school,
57.8% university). On average, participants had 83.8 (SD 17.7)
hourly averages of valid physiological recording spread over the
entire period of approximately 104 h (Thursday morning 9 a.m.
to Monday evening 5 p.m.). The group of participants who were
excluded because of insufficient ECG data after pre-processing
(n = 285) did not differ significantly in age, sex, smoking
behavior, education, PSS, and DASSD from the final group.
However, the final group reported higher levels of physical
activity than the excluded group (p-value = 0.035).

Stress subgroups
Three hundred ninety participants (75.59%) had low to

normative chronic stress levels (PSS≤ 18) (hereafter: normative
stress group), 106 (20.54%) had moderate to high chronic
stress levels (18 < PSS 24) (hereafter: high stress group) and
20 (3.86%) had extreme chronic stress (PSS > 24) (hereafter:
extreme stress group). Post hoc comparison using Benjamini-
Hochberg corrections indicated that the high stress group
performed fewer hours of physical activity per week and had
a significantly higher HR than the normative stress group
(z = 2.564, p = 0.031 and z = 2.505, p = 0.037, respectively).
Fewer women were in the normative stress group compared
to the other groups (normative—high; p = 0.002 normative—
extreme; p = 0.011). The normative stress group also indicated
better sleep quality than the other groups (normative—high and
normative—extreme; p < 0.001). All groups differed in their
DASSD scores (high—extreme; p = 0.015, other; p < 0.001).
No other variables differed significantly between groups. Sample
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characteristics and statistical tests for stress subgroups can be
found in Supplementary Table 3.

Depression subgroups
Four hundred sixty (89.15%) participants scored below the

cut-off for depressive symptoms and 56 (10.85%) scored above
the cut-off for depressive symptoms. No significant differences
were present for age, sex, BMI, smoking behavior, HR, and
Std. Acc. Participants high in depressive symptoms performed
significantly less sport per week (W = 14936, p = 0.042), had
significantly different PSS scores (W = 4502, p < 0.001) and
significantly poorer sleep quality (W = 7204.5, p < 0.001). Of
the participants with low depressive symptoms, the majority
had normative stress levels (n = 371, 80.65%), a smaller subset
had high (n = 79, 17.17%) and few participants had extreme
(n = 10, 2.17%) stress levels. In contrast, the majority of the
participants with high depression scores also had high stress
levels (n = 27, 48.21%). Nineteen participants within this group
(33.93%) had normative stress levels and 10 (17.86%) had
extreme stress levels. An overview of the sample characteristics
for these combined groups can be found in Table 1, sample
characteristics and statistical tests for subgroups separately can
be found in Supplementary Table 4.

Stress task
A subset of the participants completed the MIST (n = 194).

This subset did not differ significantly from the overall sample
regarding age, BMI, sex, PSS, and DASSD (p > 0.05) Within the
subset, 180 participants had low depression scores and 14 high
depression scores. Regarding chronic stress, 152 participants
had normative stress levels (PSS 18), while 42 participants had
high or extreme stress levels (PSS > 18). Given the low number
of participants, we decided against further subgrouping of the
high stress group. Sample characteristics of respective subgroups
can be found in Supplementary Tables 5, 6.

Circadian rhythm is influenced by
chronic stress in healthy participants

Figures 1A,B present circadian variations in HR for
participants with low and high depression scores, respectively.
The final model (AIC = −84655.2, LogLik = 42396.6, and
R2

conditional = 0.75) retained several significant covariates (see
Supplementary Table 7 for a detailed overview of estimates),
a main effect for chronic stress, and a three-way interaction for
the 8-h harmonic regression term, chronic stress, and depressive
symptoms (main effect stress: F = 2.849, p = 0.059, interaction:
F = 2.489, p = 0.084). Given the significant interaction and
contrasts (b = 0.018, se = 0.008, t = 2.184, p = 0.030), we opted for
split-group analysis by depression category to further examine
the effects of chronic stress.

In the group with low depression scores (n = 460), high
chronic stress was associated with higher basal HR levels
(b = 0.031, se = 0.013, t = 2.318, p = 0.021) when compared
to normative stress. HR in the group with extreme stress did
not differ from the normative stress group (see Figure 1C).
Important covariates in this model were BMI (p < 0.001),
sex (p < 0.001), activity index (p < 0.001), and smoking
(p = 0.073). See Supplementary Table 8 for a detailed overview
of estimates.

For the group with high depressive symptoms (n = 56),
chronic stress also had a significant main effect on the circadian
rhythm (F = 3.644, p = 0.026). However, in contrast to the
low depressive symptom group, individuals with extreme stress
had lower HR (b = −0.084, se = 0.035, t = −2.408, p = 0.016)
compared to the normative stress group, while high stress
did not change basal HR. In addition, extreme stress altered
the circadian rhythm significantly [extreme stress∗sin ( 2π

12 h),
b = 0.022, se = 0.010, t = 2.176, p = 0.030; and extreme stress∗cos
( 2π

8 h), b = 0.011, se = 0.005, t = 2.136, p = 0.033]. These
effects resulted in blunted circadian variability of HR in the
extreme stress group, noticeable by the elevated plateau in the
afternoon and the diminished evening peak. People with high
depressive symptoms and high chronic stress show no difference
in HR compared to the normative chronic stress group (with
high depressive symptoms), see Figure 1D for the simulated
regression line. Several covariates were retained: sex (p < 0.001),
activity index (p < 0.001), and smoking (p = 0.025). Age and
BMI were not retained in the model. See Supplementary Table 9
for a detailed overview of estimates.

When hours of physical activity performed per week was
included, the models differed slightly. The altered models are
presented in Supplementary Tables 10–12. In the overall model,
the p-value for the main effect of high chronic stress was reduced
to a trend for significance (p = 0.081). In the group model
for low depressive symptoms, chronic stress was dropped after
model selection.

The model for night-time RMSSD reached moderate model
fit (AIC = 9796.1, LogLik = −4876.0, R2 = 0.63), but did
not show any significant group effects. Only age, BMI, activity
index and the time-point were significant predictors (see
Supplementary Table 13). Though insignificant, we explored
possible trends for the group effects. RMSSD baseline scores
showed a positive effect for stress (high stress: b = 0.041,
se = 0.047, t = 0.863, p = 0.389; extreme stress: b = 0.177,
se = 0.120, t = 1.474, 0.141) and a positive effect for depressive
symptoms (b = 0.088, se = 0.088, t = 1.000, p = 0.318). However,
the interaction of chronic stress groups (both high and extreme)
and depressive symptoms had a reducing effect when combined
(high stress× dep.: b =−0.099, se = 0.122, t =−0.814, p = 0.416;
extreme stress × dep.: b = −0.210, se = 0.189, t = −1.109,
p = 0.268). This suggests that the combination of chronic stress
and depressive symptoms has a different effect on RMSSD
than their mere summation. Regarding the slope in night-time
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TABLE 1 Sample characteristics.

Depressive symptoms 1 low 2 high

Chronic stress A
Normal

(n = 371)

B
High

(n = 79)

C
Extreme
(n = 10)

D
Normal
(n = 19)

E
High

(n = 27)

F
Extreme
(n = 10)

Median
(IQR)

Median
(IQR)

Median
(IQR)

Median
(IQR)

Median
(IQR)

Median
(IQR)

X2-value P-value Significant
differences

Age 39.00 (16.00) 38.00 (17.50) 41.50 (11.00) 45.00 (23.00) 36.00 (16.00) 43.00 (9.50) 3.05 0.693

BMI 24.09 (4.62) 22.65 (4.88) 22.22 (10.50) 24.00 (1.64) 23.89 (6.81) 24.67 (1.07) 7.18 0.208

Hours of physical activity 2 (2) 2 (2) 1.50 (1.75) 1 (2) 2 (1.75) 2 (1.75) 12.90 0.024 1↔ 2a

Sex female 42.05% 63.21% 80.00% 36.84% 55.56% 70.00% 20.14 <0.001 A↔ B

Smoking 7.28% 5.06% 0.00% 10.53% 11.11% 10.00% 2.38 0.795

PSQIb 4 (2.5) 6 (3) 5.5 (3.5) 5 (2.75) 5 (3) 8 (2.75) 49.42 <0.001 A↔ B,D,E,F

PSS 12 (6) 21 (2) 26.5 (2.75) 15 (3) 23 (3.5) 27.00 (2.75) 296.79 <0.001 1↔ 2
A↔ B,C,D,E,F
D↔ A,B,C,E,F

DASSD 1 (2) 2 (3) 4 (2.5) 8 (2) 9 (2) 9 (3) 194.14 <0.001 12
A↔ B,C,D,E,F
B↔ D,E,F

HR (in bpm) 66.96 (10.31) 68.12 (9.89) 69.51 (7.22) 66.03 (8.15) 68.92 (8.17) 65.30 (6.34) 8.87 0.114

RMSSD (in ms) 52.34 (25.09) 54.61 (26.76) 69.11 (38.70) 66.03 (15.54) 53.32 (12.61) 53.61 (17.91) 1.83 0.873

Std. Acc 0.0411 (0.0123) 0.0409 (0.0123) 0.0369 (0.0112) 0.0337 (0.0130) 0.0389 (0.0111) 0.0443 (0.0150) 5.21 0.391

Differences are indicated for both depression subgroups and stress subgroups.
BMI, Body Mass Index; PSQI, Pittsburg Sleep Quality Index; PSS, Perceived stress scale; DASSD, Depression scale of the Depression Anxiety Stress scale; HR, average heart rate; RMSSD, root mean square of successive differences; Std. Acc, standard
deviation of the magnitude of acceleration.
Bold, p < 0.05.
Significant differences between groups as determined by post hoc comparisons are indicated by the symbol↔.
aRejection of Kruskal Wallis followed by no significant differences in corrected Dunn’s test for A,B,C,D,E,F.
bThe PSQI included missing values. The true number of entries were the following: nA = 347, nB = 73, nC = 8, nD = 18, nE = 24, nF = 10.
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FIGURE 1

Circadian variations in heart rate averaged per stress subgroup for both low and high depression scores. (A) Averaging results for the low
depression subgroup. Chronic stress levels are indicated by color: normative levels in black, high levels in red, extreme levels in purple.
(B) Averaging results for the low depression subgroup. (C) Simulation results derived from the model for the low depression subgroup. The
graph illustrates the log-transformed HR derived from this model using only the harmonic and stress-related terms, therefore, without the
influence of BMI, sex, activity, and smoking behavior. Participants with high levels of chronic stress show the highest increase in HR.
(D) Simulation results derived from the model for the high depression subgroup. Whereas the negative main effect of the 12 h-based sine wave
causes an increase in the morning and evening, the positive interaction of this wave with extreme stress counteracts this, resulting in a
diminished evening peak and an elevated plateau in the afternoon. Similarly, the positive interaction including the 8 h-based cosine wave
counteracts the negative main effect of this wave, resulting in, among other effects, an additional reduction of the evening peak in participants
with extreme stress.

RMSSD, all group effects had a negative or near-zero positive
estimate, and general trends were not established.

Depressive symptoms are associated
with lower stress reactivity, chronic
stress with higher stress reactivity

For the overall group, reactivity to the stress task (MIST)
revealed a significant main effect for the stress task (F = 4.289,
p = 0.005) with increased HR during stress compared to baseline
(b = 0.028, se = 0.005, t = 5.625, p < 0.001). While the overall
ANOVA showed no significance for the interactions of chronic
stress or depression group with stress exposure for the overall
group (F = 1.868, p = 0.134 and F = 1.886, p = 0.131), the
summary output of the model at the factor level showed that
chronic stress and depressive symptoms had opposed effects:
high chronic stress was associated with slightly higher HR

during stress exposure (b = 0.025, se = 0.011, t = 2.274,
p = 0.023), while high depressive symptomatology modestly
reduced stress reactivity (b = −0.037, se = 0.018, t = 2.104,
p = 0.036). See Table 2 for a detailed overview of estimates.

Figure 2 shows the pairwise comparison within depressive
symptoms groups (A) and within chronic stress groups (B).
Participants with low depressive symptoms had significantly
higher HR during stress (pairwise contrasts compared to
baseline b = 0.032, p < 0.001; and to the training phase
b = 0.024, p < 0.001) and showed significant recovery after
the stressor (pairwise contrast: b = −0.031, p < 0.001).
However, participants with high depressive symptoms showed
no significant reactivity or recovery to the stressor for any
period (pairwise contrasts all p > 0.470). The groups did
not differ significantly in HR during the baseline condition
(Supplementary Table 4). Estimates per model term are
presented in Supplementary Table 14, individual results and
characteristics can be found in Supplementary Table 15
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TABLE 2 Result of the linear mixed model on reactivity during the
stress task (MIST).

Estimate Std. error T-value P-value

Intercept 4.239 0.011 391.421 <0.001

Depressive
symptoms (high)

0.076 0.011 1.949 0.053

Stress (high) −0.018 0.039 −0.719 0.473

MIST (training) 0.006 0.005 1.240 0.216

MIST (stress) 0.028 0.005 5.625 <0.001

MIST (recovery) 0.0003 0.005 0.072 0.943

MIST (training)* dep
(high)

−0.003 0.018 −0.169 0.866

MIST (stress)* dep
(high)

−0.037 0.018 −2.104 0.036

MIST (recovery)*
dep (high)

−0.020 0.018 −1.114 0.266

MIST (training)*
stress (high)

0.013 0.011 1.124 0.261

MIST (stress)* stress
(high)

0.025 0.011 2.274 0.023

MIST (recovery)*
stress (high)

0.007 0.011 0.595 0.552

Results are presented for the prediction of heart rate after log transformation, including
a random intercept per participant.
Bold, p < 0.05.

and Supplementary Figure 1 regarding the participants
with depressive symptomatology. Regarding chronic stress,
both participants with normative chronic stress and high

chronic stress showed a significantly increased HR during
the stress task in comparison to baseline and recovery
(Supplementary Table 16).

Discussion

We here present results from the SWEET study, which
allowed us to assess the cumulative effect of stress and depressive
symptoms on HR circadian rhythm, night-time RMSSD and HR
in response to an acute mental stressor.

We show that chronic stress does not simply lead to an
increase in HR but is graded and varies in function of depressive
symptoms. Without depressive symptoms, high chronic stress
modestly increases basal HR but has no effect on circadian
rhythm. In contrast, in those with depressive symptoms, high
chronic stress does not change basal HR, nor circadian rhythm;
however, the few participants experiencing extreme chronic
stress and depressive symptoms showed a lower overall HR
paired with an atypical, flattened circadian rhythm variation.
In the MIST task, depressive symptoms were associated with
blunted HR reactivity while chronic stress with higher HR
reactivity. Although this finding must be considered preliminary
due to the small group size (n = 10), it may have important
implications for pathophysiology of depression. In addition,
we did not find any significant effects of depressive symptoms
and/or stress on RMSSD during the night. Blunted stress
reactivity has previously been linked to depression (57), and

FIGURE 2

Heart rate averaged per condition of the stress exposure (MIST) and stress/depression subgroup. (A) Mean heart rate for participants low in
depressive symptoms (black), n = 180, and high in depressive symptoms (gray), n = 14. All participants, regardless of their chronic stress level,
were considered. (B) Mean heart rate for participants with normative chronic stress (black), n = 152, and high chronic stress (gray), n = 42. All
participants, regardless of their depressive symptoms, were considered. Significant differences are indicated in a pairwise manner between
baseline, stress, recovery, and within subgroups. **p < 0.01 and ***p < 0.001.
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chronic stress has been hypothesized to be a major factor in
the pathogenesis of depression (58). However, given the largely
overlapping effect of both, it was previously difficult to show
this relationship experimentally. Here, we show that blunted HR
reactivity is explained by depressive symptoms and not exposure
to high chronic stress when including both in the analysis.

Others have previously shown that 24-h HR is positively
correlated with (work-related) stress (29, 59), and have reported
associations with various HRV measures (28, 59–61). However,
to our knowledge, these studies have mostly used average HR
over 24-h intervals and assessed either stress or depressive
symptoms, but not both. Few studies specifically assessed
circadian rhythm in HR or HRV, some of which assessed chronic
stress in shift workers (62, 63), or mood disorders (64), or
depressive symptoms (11, 65). In other parameters than HR and
HRV, there has been ample research on circadian alterations
in depression. The most consistent circadian abnormalities
that have been described are changes in daily mood variation,
brain activity, core body temperature, hormone secretion, sleep–
wake cycle, motor activity, and seasonal mood variation (66).
Most studies reported evidence for a blunted amplitude of the
circadian rhythm (10, 67). Though, again, no grading by stress
levels was examined.

Surprisingly, and somewhat opposed to our hypothesis,
in those with depressive symptoms and extreme chronic
stress, overall HR was lower, and decreased variability of
the HR circadian rhythm was observed, but chronic stress
and depressive symptoms were not associated with night-time
changes in RMSSD. Regarding the findings on RMSSD, we
here only analyzed night-time data and found no difference.
Previously, it has been reported that patients with depression
had lower RMSSD during sleep compared to those without
MDD, although this relationship was partially explained by
anti-depressant use (68). The here studied group did not
take any anti-depressant medication, and only had depressive
symptoms and effects were negligible. As the extreme stress
group with depressive symptoms only comprised 10 people, the
difference (or lack thereof for RMSSD) might be attributable
to this small sample size. It is important to bear in mind
that only very few of our healthy participants with extreme
stress reported low depressive symptoms (i.e., ∼2%). The co-
occurrence of high depressive symptoms and extreme chronic
stress is much more common (i.e., ∼18%), be that due to direct
relationship or through association with a secondary factor
(such as altered cognition). The here analyzed sample of stress
and low depressive symptoms is thus quite rare and albeit a
small sample, it allowed us to gather preliminary data on the
intriguing relationship between stress and depressive symptoms.

The allostatic load model posits that accumulated stress
exposure leads to wear and tear of the body (69). Following
this model, in depressive illness, there is an exhaustion of the
stress system, leading to, among others, a dysregulation of
the cardiovascular system (69). The latter potentially results
in the observed alterations of circadian HR. It is also possible
that depressive symptoms are the consequence of unresolved,

chronic stress exposure (in absence of protective factors),
over a sustained time-period. It has been suggested that
dysregulation of the circadian system increases susceptibility
to depression (70, 71). Such dysregulation might be the
result of chronic stress exposure, as the circadian system
interacts with stress-related neurotransmitter systems, including
serotonergic neurotransmission. Therefore, a stress-induced
change within the serotonin system may cause circadian
dysfunction and increased vulnerability to depression (12, 72).
Given that circadian misalignment is associated with decreased
cardiovascular health (73), clinicians should thus be on the
lookout for depressive symptomatology in patients who report
high levels of stress.

It should be noted that adding hours of physical activity
to our model reduced the amount of variance explained by
high chronic stress. It is well known that higher physical
activity is linked to resilience and better mental wellbeing (74)
and inversely, that chronic stress may reduce physical activity
(75), and thus these results are hardly surprising. Physical
activity is also effective in reducing depressive symptoms (76).
Our results may thus also point toward this direction, albeit
formal analyses for moderating effects of this relationship were
not conducted. Additionally, we found that participants with
depressive symptoms have lower sleep quality. Sleep quality has
been described as an important factor linking chronic stress and
depression, potentially by moderating the effect between both
(77). In their study, da Estrela et al. (77) showed that lower
resting HRV was linked to poorer sleep quality. Furthermore,
sleep disturbances after stress exposure have been linked to
depressive symptoms (78, 79). It is a known fact that sleep is
highly important for regulating physiological functions such
as HR (80), and therefore it could also be that the effects we
observed here are moderated through sleep quality differences.
Although beyond the scope for this article, future studies could
elucidate this relationship further. Lastly, in this population, the
high stress groups tended to include more women than men.
This has been reported before in studies using the PSS (81), as
well as using other psychometric scales (82). Recently it was
shown that in men, depressive symptoms are associated with
lower circadian variation in vagal activity, but an opposite trend
was observed in women (11). We attempted to limit sex-related
biases by adding sex as a covariate to the baseline of the circadian
model, but stratified analyses were not possible due to the small
number of participants in the subgroups.

Of particular interest is our finding regarding stress
reactivity in this healthy population. Ample research exists
on HR stress reactivity in control participants [e.g., (83)],
participants with depressive symptoms [see Hamilton and
Alloy (57) for an overview] and in depressed patients [see
Schiweck et al. (84) for an overview]. Here, depressive symptoms
were associated with a blunted reactivity, but chronic stress
was linked to higher reactivity. It is of course possible, that
other confounding factors play a role in this relationship
between blunted reactivity and depressive symptoms: next to
the above-mentioned individual factors such as experience of
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childhood adversity (85), obesity and poor cognitive functioning
(23), motivation (86), hours of sleep/sleep quality (87), and
preference of “eveningness” may be associated with a blunted
cardiovascular response (88). Alternatively, a true association
between depressive symptoms and blunted HR reactivity is
possible and has been reported in healthy populations before
[e.g., (89, 90)], also for other measures: for instance, cortisol
reactivity to a naturalistic stressor was abolished in those with
high depressive symptoms (91).

With regard to chronic stress, literature has also identified
chronic stress to influence HR reactivity to stress [e.g., (92, 93)].
In previous studies it was difficult to disentangle the effects of
high chronic stress levels and depressive symptoms, since most
patients with depression experience elevated stress levels, and
increased stress levels in the population are also associated with
an increased likelihood of depression. In light of the findings
showing that blunted HR stress reactivity may be associated
with motivational dysfunction, or in the case of people with
cardiovascular disease even cardiovascular dysfunction (94), our
study provides first data on the differential impact of both
and can be used as a steppingstone for further research. In
the past it has been shown that exercise therapy is highly
beneficial for patients with mild to moderate depression and as
supplementation even for patients with severe depression (76).
Since exercise therapy targets both depressive symptoms and
can prevent/improve various health conditions (cardiovascular
diseases, type 2 diabetes and metabolic syndrome) (76), this
form of intervention should be strongly considered for people
with high levels of stress and depressive symptoms.

Conclusion

In this study, we were able to show that high and extreme
stress alone did not have any consequence on circadian rhythm,
apart from a limited increase in basal HR. Yet, in the presence
of depressive symptoms, extreme chronic stress levels did lead
to blunted HR circadian rhythm. In addition, blunted reactivity
to stressors was associated with depressive symptoms and not
chronic stress. Our data suggest that using interventions which
target depressive symptoms and cardiovascular health, such as
exercise therapy, may be highly relevant for those with high
levels of stress and depressive symptoms.

Limitations

A number of limitations need to be mentioned for this
study. As this study was cross-sectional, it does not allow to
evaluate the question of temporal precedence/causality of either
depressive symptoms or high stress levels. The limited sample
size of people with extreme stress (a total of 20 people) also
shows that this group is rather rare in the healthy population,
as expected, consequently power for group comparisons was

low. Furthermore, we did not assess cognition in this sample.
It may very well be that altered cognition, as often encountered
in depression, leads to a higher subjective experience of chronic
stress. Additionally, we did not have an objective measure
of chronic stress, such as e.g., hair cortisol. Moreover, the
study was limited to a single physiological parameter, instead
of a combination of multiple parameters. Another limitation
was the lack of a clinical assessment for depressive symptoms
on intake, and that other parameters which can influence
HR/HRV outcomes have not been assessed. Furthermore, our
model for HRV circadian analysis did not yield a sufficiently
good fit, only RMSSD data during the night provides limited
insight. Circadian HRV analyses would be important to draw
conclusions for cardiac vagal modulation and thus yield more
insight into the biology of chronic stress and depressive
symptoms. As there was no psychiatric interview, the sample
might include some people with undiagnosed pathology. The
sample was also limited to mostly highly educated people, which
may not be representative of the complete population. Other
limitations related to group differences in sleep quality and
sex. These variables were added as covariates to the baseline of
the circadian model to reduce possible biases. Particularly sex
should be investigated further in future studies since important
differences in circadian rhythm abnormalities have been found.
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