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Abstract. Modern datasets in intrusion detection are designed to be
evaluated by machine learning techniques and often contain metadata
features which ought to be removed prior to training. Unfortunately
many published articles include (at least) one such metadata feature in
their models, namely destination port. In this article, it is shown exper-
imentally that this feature acts as a prime target for shortcut learn-
ing. When used as the only predictor, destination port can separate ten
state of the art intrusion detection datasets (CIC collection, UNSW-
NB15, CIDDS collection, CTU-13, NSL-KDD and ISCX-IDS2012) with
70 to 100% accuracy on class-balanced test sets. Any model that includes
this feature will learn this strong relationship during training which is
only meaningful within the dataset. Dataset authors can take counter-
measures against this influence, but when applied properly, the feature
becomes non-informative and could just as easily not have been part of
the dataset in the first place. Consequently, this is the central recom-
mendation in this article. Dataset users should not include destination
port (or any other metadata feature) in their models and dataset authors
should avoid giving their users the opportunity to use them.

Keywords: Intrusion detection · Machine learning · Shortcut
learning · Dataset issues

1 Introduction

Intrusion detection systems (IDS) are part of multi-layered network defenses.
They are tasked with identifying unusual patterns that are a consequence of mali-
cious use of the network. In the academic literature, modern intrusion detection
methods rely on machine learning (ML) to accomplish this goal. They are evalu-
ated on a set of specialty datasets. Method recognition as an improvement over
the current state-of-the-art is conditioned on its ability to outperform previous
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methods on standard classification metrics. Intentional manipulation notwith-
standing, it is still possible that choices in dataset (pre)processing lead to overly
optimistic results.

The goal of this article is to demonstrate that one common choice in the
preprocessing stage unintentionally overstates the results in a major way. That
choice is to keep destination port in the feature set. Destination port is part
of the network flow metadata quadfecta: source and destination IP addresses
and ports. While most researchers do realize that IP addresses would bias the
model and that source port should never be informative because it is randomly
assigned by the operating system, destination port gets to stay in the training
data much more frequently. It is kept in the training data often without a stated
motivation or analysis. If a motivation is given, then it tends to align with the
statement that the feature contains relevant information to identify attacks that
are bound to specific services. From a theoretical perspective there is some merit
to this statement, although it too introduces unnecessary bias in the model. Most
importantly, the datasets are not generated in a way that counterbalances the
potential bias of destination port. Depending on the attack type in the dataset,
the distribution of destination port can exhibit significant scatter for attacks and
concentrated values for the selection of (emulated) benign services. This pattern
is quickly picked up by learning methods and then acts as a shortcut, leading to
inflation of the results.

We demonstrate that the shortcut learning effect of destination port in ML-
IDS is real and that proposed methods which include it are not screened out dur-
ing peer review. In order to demonstrate the effectiveness of destination port, it
is used as the single predictor to classify ten state-of-the-art IDS datasets (and
their different subsets, i.e. attack classes). Destination port can separate the
datasets with accuracies between 70 and 100% (overview results in Tables 2, 3
and 4). When using the other metadata features as single predictors, their mod-
els reach similar heights of undeserved classification performance (summarized
results in Subsect. 4.7).

Accuracy can be used as a metric because the dataset is balanced by class label
prior to sampling train and test portions. Without this balancing, using accuracy
as a metric would be very misleading due to the inherent class imbalance in many
of the IDS datasets. Even though this balancing reduces the amount of samples to
train and test on, the accuracy on a second test set (the remainder of the samples,
always one class) stays in-line with the results on the balanced test set. Further-
more, the results on a 20–80 train-test split, rather than the typical 80–20 split,
are just marginally worse, indicating that even fewer samples are enough to learn
the relation between destination port and the class label.

The recommendation that follows from this analysis is simple. The destina-
tion port should be viewed as part of the metadata features to be omitted during
preprocessing. Proposed methods that keep it (or any other metadata feature)
should be sent back during review to re-evaluate the method without its (or
their) inclusion. This issue can be addressed at the source by dataset authors if
they would stop providing the metadata features altogether when they publish
new datasets.
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The remainder of this article is laid out in six other sections. The related work
introduces the datasets and demonstrates that the problem of metadata inclusion
is widespread in the literature. The methodology provides the details regarding
algorithm choice, dataset preprocessing and the ML pipeline. In the interest of
full transparency, all datasets and preprocessing code (original, clean, and dirty
with metadata as used in this analysis) are openly available at https://gitlab.
ilabt.imec.be/lpdhooge/ids-dataset-collection. The code for this analysis is also
openly stored on the same platform at https://gitlab.ilabt.imec.be/lpdhooge/
ids-metadata-contamination. Section 4 (results) is primarily conveyed through
Tables 2, 3 and 4 with additional explanation in textual format in the subsec-
tions. The results also cover the other metadata features (source and destination
IP addresses, source port and metadata time features) in a summarized format.
The common patterns are discussed in Sect. 5 after which the article concludes
and proposes future work into uncovering non-metadata contaminant features
in IDS datasets.

2 Related Work

This section briefly introduces the concept of shortcut learning, followed by intro-
ductions for each of the ten datasets that are part of the analysis (Subsect. 2.2).
Subsequently a non-exhaustive list (Table 1) of published methods is presented
in which the authors included one or more metadata features from the afore-
mentioned datasets. It is not difficult to find published articles, even with high
citation counts (recorded through Google Scholar in March 2022) which included
features prone to shortcut learning in their models.

2.1 Shortcut Learning

The issue of shortcut learning refers to the ability of learning algorithms to find
and exploit spurious correlations in the data. This commonly happens when the
dataset has an insufficient sampling of the problem and/or the data generation
process left artifacts in the data. The algorithms learn to recognize the arti-
facts and seemingly perform well on the original dataset’s test set(s). However,
when exposed to a broader test set, the models fail to maintain their perfor-
mance. Good ML practitioners use methods from the domains of interpretable
ML and explainable artificial intelligence (XAI) to check whether their models
have learnt shortcuts. Especially in the context of deep neural networks, the
issue has gotten much attention [9]. More pertinent to this application domain,
the issue of spurious correlations in cybersecurity-related ML research has been
raised by Arp et al. [4].

https://gitlab.ilabt.imec.be/lpdhooge/ids-dataset-collection
https://gitlab.ilabt.imec.be/lpdhooge/ids-dataset-collection
https://gitlab.ilabt.imec.be/lpdhooge/ids-metadata-contamination
https://gitlab.ilabt.imec.be/lpdhooge/ids-metadata-contamination
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2.2 State of the Art Datasets

For clarity’s sake, when metadata features are mentioned, they include source
and destination IPs, source and destination ports, timestamps and NetFlow IDs.
As the objective of this article is to definitively place destination port among the
metadata features which ought not to be used in models, we will always refer to
it as a metadata feature.

NSL-KDD, ISCX-IDS2012 and the CIC Collection. The university of
New Brunswick has the longest-standing history within the field of generat-
ing (network) intrusion datasets. It is the leading university in the Canadian
Institute for Cybersecurity (CIC), a partnership between government, academia
and industry. In 2009 they published an updated version of KDD99, dubbing it
NSL-KDD [34], to address KDD99’s shortcomings. NSL-KDD subsequently dom-
inated as the dataset of choice, indirectly expanding the lifespan of KDD99 well
beyond a decade of use. Interestingly, NSL-KDD (and KDD99) did not include
destination port explicitly, instead opting to include a service field which con-
tains the same information, abstracted away from any specific port. The ability
of this destination port proxy to contaminate will be evaluated (Sect. 4.1).

In 2012, the first dataset from their own testbed was published. The paper
which introduced the methodology behind ISCX-IDS2012 [32] laid out a frame-
work of attack execution and user simulation at various levels of automation. The
research group chose to develop their own feature extractor (ISCXFlowmeter)
which operates on reconstructed network flows. The flow feature set of ISCX-
IDS2012 was limited and also included reconstructed packet payloads (20 fea-
tures: 9 flow, 4 payload, 1 label, 6 metadata). All targets (labels) were pre-
encoded by the dataset authors in a binary attack/normal. A higher level of
resolution for the labeling is not available.

The foundational parts had been put in place to build upon and refine the
dataset generation. In 2017, this resulted in CIC-IDS2017 [30], which uses a
new flow-level feature extractor CICFlowmeter, which outputs 80 features. The
variety of attacks was increased and the labeling much more granular (individual
attacks within 6 broad attack classes). The same attack class divisions were
kept in next year’s CSE-CIC-IDS2018 [30]. The CIC collection also includes the
specialized CIC-DoS2017 [12] and CIC-DDoS2019 [31] datasets with even more
attacks in their respective classes.

Thanks in part to the quality, ease of access and ease of use of the CIC
collection, adoption has grown rapidly. For the foreseeable future, these datasets
will see further adoption until they displace NSL-KDD.

CTU-13. The technical university of Prague published a specialized intrusion
detection dataset in 2014 [8], centered around 13 captures of botnets, intermixed
with normal and background traffic. The traffic is intricately labeled at flow-
aggregation level. The flow extraction was done by the open source tool Argus.
9 flow-based features were captured and 1 label (plus 4 metadata features).
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UNSW-NB15. The university of New South Wales has arguably published
the second most widely adopted intrusion detection dataset [21]. The authors
specifically set out to modernize the IDS data landscape, in response to the
obsolescence of the attacks in the KDD collection. The dataset is geared towards
machine learning, with 49 features (4 metadata, 2 labels and 43 content). Like
NSL-KDD, the dataset authors published designated train and test sets to
encourage researchers to publish results at least starting from the same data
selection. These pre-selections no longer include destination port as a feature
(though its presence is still reflected in the service feature).

CIDDS Collection. The CIDDS dataset collection (CIDDS-001 [25] & CIDDS-
002 [26]), published by the university of Coburg in 2017 is less well-known, but
is quite similar to CIC-IDS2017 in terms of experimental aim and methodology.
A potential reason for its lack of adoption may lie in the amount of features it
includes. Out of 16 total features, 5 are explicitly metadata and 4 are related to
labeling, leaving only 7 features to learn from.

2.3 Proposed ML-IDS Systems

All datasets in Subsect. 2.2 contain destination port or equivalent information.
The metadata inclusion does allow researchers more flexibility, but also places
the burden of selecting the a priori features to remove with them. Invariably,
this leads to proposals which keep certain metadata features, while others do
not. In Table 1, we outline recent, (often well-cited) IDS proposals validated on
any of the aforementioned datasets which included (at least) destination port
(or service, its equivalent).

Some of the proposed methods tried to eliminate the metadata features, but
failed to accomplish this because they added newly engineered features based
on the original metadata. For newly engineered features, computed from the
flow features after grouping by IP addresses in the dataset [5,23], it should
not be surprising that the results are excellent. The experimental setups for
data generation typically have no overlap in the roles for their nodes. A node’s
role is either attacker or victim (or in some datasets: other infrastructure) and
maintains this role throughout the data generation process.

3 Evaluation Methodology

The methodology is straightforward, all datasets (as downloaded straight from
their sources) underwent preprocessing including: ensuring data integrity with
regard to expected feature types (as described by the dataset authors) and
removing invalid and duplicate samples. During this preprocessing stage, max-
imal attention was given to clean up dataset quirks while retaining as many
samples as possible. During this stage, the entire feature set (i.e. including meta-
data features) was taken into account when evaluating sample uniqueness. To
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Table 1. Published articles on the included datasets which included metadata features
in their models

Ref Year Citations Metadata inclusion

NSL-KDD

[13] 2017 8 Service (numerical encoding)

[33] 2020 75 Service (OHE encoding)

[7] 2020 7 Feature-selected service

[41] 2020 169 Feature selection method found service as a top feature

[38] 2021 6 Service (OHE encoding), kept after feature selection

[20] 2021 7 Service

ISCX-IDS2012

[39] 2013 102 All metadata features

[3] 2015 28 Only metadata features

[6] 2017 32 Leaky new features (time-aggregation) metadata features included

[5] 2018 7 Leaky new features, derived from IP metadata

[19] 2021 6 All metadata features

CTU-13

[6] 2017 32 All metadata features

[27] 2018 15 Categorical metadata features (IPs, service/port)

[29] 2019 14 All metadata features

[23] 2019 21 Leaky new features, aggregated from IP metadata

UNSW-NB15

[11] 2017 106 Service

[14] 2019 29 Service

[40] 2019 21 All metadata features

[16] 2020 37 Service

[20] 2021 7 Service

[24] 2021 0 Service

CIDDS-001/CIDDS-002

[2] 2018 59 All metadata features

[36] 2018 87 All metadata features

[1] 2019 94 All metadata features

[10] 2019 3 All metadata (except ‘date first seen’)

[35] 2020 23 Source and destination port

CIC-IDS2017

[18] 2020 57 Destination port

[41] 2020 169 Feature selection method found destination port as a top feature

[20] 2021 7 Several metadata features

CSE-CIC-IDS2018

[15] 2020 63 At least destination port

[17] 2020 73 Destination port

CIC-DDoS2019

[28] 2020 3 Destination port

[24] 2021 0 Timestamp and source port

[37] 2021 1 Destination port

be as transparent as possible, the preprocessing code and datasets are publicly
available at https://gitlab.ilabt.imec.be/lpdhooge/ids-metadata-contamination.

The actual experiments use the preprocessed datasets and add three specific
preprocessing steps. After the data is loaded, only the destination port and the

https://gitlab.ilabt.imec.be/lpdhooge/ids-metadata-contamination
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target (label) are kept. The label is binarized which collapses all attacks into
one label. Subsequently, the dataset is balanced with regard to the label before
splitting into train and test sets.

The remainder (remaining samples of the majority class) is kept as a sec-
ondary verification for the trained model. The balancing is done so that the
standard classification metrics remain informative. For the remainder, accuracy

TP+TN
TP+TN+FP+FN is reported. However, if the majority of the samples in the sub-
set was malicious (positive class), then the remainder only contains malicious
samples and the evaluation metric simplifies to the true positive rate (i.e. recall

TP
TP+FN ). Conversely, if the majority of the samples in the subset was benign,
then the metric for the remainder simplifies to the true negative rate ( TN

TN+FP ).
Representation of attack classes was considered sufficient if at least 200 sam-

ples exist in the dataset. This does lead to some missing results in the tables. No
feature scaling is applied, because the selected ML algorithm does not require
uniform ranges for the features. If scaling were to be applied, then the choice to
balance the datasets before scaling would bias the scaling parameters towards
the minority class. Two train-test split options have been tested (80–20 and 20–
80). The 80-train, 20-test split typically outperforms the 20–80 split, but the
difference is often marginal.

The selected algorithm was a random forest with fixed hyperparameters
(most importantly, maximally 16 levels deep, 10 individual estimators, each given
access to a different 50% of the training set). One could optimize these parame-
ters further (especially the depth can be reduced even below 8 without significant
performance loss). The splitting mechanism of decision trees is ideal to clearly
separate a categorical feature such as destination port. Regression models (lin-
ear or otherwise) with 1 feature (i.e. coefficient) are underparametrized to cap-
ture the distribution. That shortcoming could be alleviated by one-hot-encoding
the destination port to create a separate binary feature for every unique value.
Modern, overparametrized models such as the various flavors of neural networks
would be able to model the distribution, even if not one-hot-encoded, but at a
significantly higher computational cost.

For every dataset, 10 independent iterations have been completed and the
reported classification metrics are averages with standard deviations.

3.1 Two Notes on Methodological Design Choices

Time-Aware Train and Test Sets. Most datasets include a timestamp or
another time-related feature that could be used to create time-aware data splits.
The importance of such time-aware splits to combat concept drift and to reach
greater real-world generalization has been well-established in malware classifi-
cation [22]. However, in the authors’ view, current intrusion detection datasets
have issues in this regard when compared to malware detection datasets. Mal-
ware datasets have multi-year histories which do give rise to actual concept drift
in the form of malware (family) mutations as well as fully novel samples and
families. Intrusion detection datasets are typically gathered from one-off experi-
ments where the variety of attacks is much lower (a handful of representatives per
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attack class), where there are no variations of the included attacks and where the
time span is at most a couple of weeks. Due to a lack of interoperability between
the academic IDS datasets, expanding variety and time frames through com-
bination is impossible. The authors do concede that using time-aware dataset
splits would partially eliminate the contaminating influence of destination port,
especially in the combined datasets with multiple attack classes all squeezed into
one label malicious.

The Drawbacks of Balancing. Two issues raised in the “Dos and Don’ts
of Machine Learning in Computer Security” by Arp et al. [4] are linked to our
choice to balance the datasets to keep standard classification metrics informative.
Creating class-balanced train and test sets does avoid accuracy from becoming
an inappropriate measure of performance, but the balancing leads the evalua-
tion further away from the real-world and potentially under-estimates the false
positive rate by ignoring the base rate of benign traffic. The same issue of bias
in the evaluation due to imbalanced testing (away from a real-world estimate of
the true class balance) was also identified in [22].

4 Results

The results are presented, grouped per dataset or per collection of datasets
when appropriate. The textual summaries and explanations with regard to the
expectedness of the results accompany the tabular formats for the same data.
The results conclude with a Subsect. 4.7 dedicated to the contaminating influence
of other metadata features in the IDS datasets.

4.1 NSL-KDD

When adhering to the author-provided train-test split for NSL-KDD (Table 2),
the performance of the service (i.e. destination port) model is 75% accurate on
the test set. It is held back by its recall (65.6%), not by its precision (89.8%)
indicating that the authors added attacks in the test set which targeted different
services. Still, the single feature metadata model managed to score 50% better
than random. Dataset users who do not adhere to the designated train-test split,
can expect the destination port model to rise to 90% accuracy with recall and
precision now equally at 89–90% (regardless of 80–20 or 20–80 train-test split).
Researchers who still use NSL-KDD should therefore stick to the author-provided
train-test split, since that split is not merely the result of sampling the entire
dataset.

4.2 ISCX-IDS2012

For ISCX-IDS2012, the individual subsets have been tested, as well as the
concatenated total dataset. The subsets represent different classes of attacks
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(Table 2 HTTP-DoS, DDoS by botnet, SSH brute forcing and infiltration from
within the network).

There are huge differences in the discriminative power of destination port
between the subsets of ISCX-IDS2012. For the brute force and infiltration sub-
sets, accuracy varies between 95 and 100%. One of the subsets for which the
authors state that it contains no attacks, does contain more than 2000 attack
samples and it too can be classified with an accuracy well above 99%.

This contrasts sharply with the results on the HTTP-DoS and DDoS (by
botnet) subsets for which classification accuracy is no more than 66%. This is
easily explainable when grouping the data by class and listing their distributions.
The HTTP-DoS attacks predictably target port 80 and port 443. The DDoS
attacks also overwhelmingly targeted port 80 (32034/32183 positive samples).

The generated benign traffic always includes browsing by simulated users,
which means that ports 80 and 443 have significant representation. This high-
lights the futility of using destination port. If the benign and attack traffic are
kept proportional for common ports, then the feature is useless. However, if this
is not guaranteed, then the feature reveals itself to be an ideal shortcut by which
the classification performance gets overstated.

4.3 CTU-13

The CTU-13 (Table 3) dataset captured 7 distinct botnets in various configu-
rations for a total of 13 scenarios. Some results are missing, but this is due to
the authors’ decision that subsets with less than 200 samples of the minority
class are not evaluated further. Destination port by itself yields 4 models with
70–80% accuracy, 3 with 80–90% accuracy and 2 with 90–100% accuracy. The
dataset authors provide a table with details about which botnet behaviors and
targets were activated in each scenario. Linking these with the results for desti-
nation port as a single predictor, it is revealed that the best classification scores,
obtained on scenarios 3, 5, 8, 9 (arguably) and 13, all used the botnet for port
scanning. The inherent scatter of port scanning compared to the focused user
simulation, yields an easily separable distribution.

4.4 UNSW-NB15

UNSW-NB15, like NSL-KDD, has designated train and test sets. The authors
realized the potential for destination port to serve as a shortcut and omitted it
as a feature from the designated sets. The dataset is also published in full format
which plenty of researchers have used instead of the preselected train and test
sets. That rawer version does contain destination port as a feature and when
kept, can single-handedly perform 50% better than random (Table 3).

Although the preselected sets no longer have destination port, they (again like
NSL-KDD) do still include a feature named service. The labeling for this feature
is less granular when compared to its labeling in NSL-KDD, many flows have
an empty service label. Solely relying on service to classify the designated test
set yields a meager 56.7% accuracy. The drop in performance is not attributable
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to the sparse labeling of the service field. When the samples with empty service
values are removed a new model is trained on the preselected training set and
tested on the preselected test set, it is still just 55% accurate.

The difference is attributable to the different distributions for the same fea-
ture (for both targets), between the designated train and test selections. This
will lead to poor generalization, which is painfully obvious when using a meta-
data feature as the only predictor. However, if these distributional shifts are
present enough for the other features, then performance will always be weak-
ened. A random forest suffers hard from these distributional shifts, but the loss
of performance would be observable in any model. If dataset authors provide pre-
selected train and test splits, they should be wary of this distributional issue.

4.5 CIDDS Collection

CIDDS-001. The creation methodology of CIDDS-001 included a completely
controlled internal network with multiple segments and a publicly available
external server. The internal network is attacked by machines connected on
the same internal infrastructure. The external server is also attacked by author-
controlled attackers outside of the internal network. The external server exposes
services on the internet (on ports 80 and 443) and as such may have been probed
and or attacked during the dataset collection period. The authors made this
choice consciously, but also acknowledge that this has implications for the label-
ing of the dataset. Only the attacks executed by the dataset authors were explic-
itly labeled as such.

The vast majority of the samples is collected on the internal network (99+%,
˜5.5 million samples). A destination port model is more than 70% accurate
on the internal network and at least 85% accurate on the external network
(Table 3). The added confusion on the internal network is again due to the
mixture of benign and malicious traffic on port 80. Even though the authors
(probably without direct intention) balanced somewhat on port 80, they did not
for port 443. Port 443 is the most common port for benign traffic in the internal
dataset (600000+ samples), but the attack frequency against the same service
is vanishingly small (< 2500) samples.

CIDDS-002. The CIDDS-002 documentation and publication explicitly men-
tion that the dataset is a port scanning dataset. Compared to CIDDS-001, there
is no external network anymore. All attacks are executed within the internal
network architecture set up in earlier work. All port scanning was done with the
nmap tool and the dataset authors list the scanning type (protocol) and timing
controls as the primary sources of variance between the attacks. Predictably,
destination port is a serious contaminant in CIDDS-002, yielding models with
accuracies in excess of 96% (Table 3).
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4.6 CIC Collection

The CIC data collection is displacing the older datasets as the new data of choice
to model and compare ML-based network intrusion detection systems. Samples
from a range of attack classes and normal user behavior are included in the
main IDS datasets (2017 & 2018) and the pure network attacks DoS (2017) and
DDoS (2019) have special, augmented representations in the form of specialty
datasets. Yet, despite the advances made by the CIC research team to improve
the state-of-the-art in dataset generation, the datasets are extremely vulnerable
to shortcut learning through the destination port metadata feature (Table 4).

CIC-IDS2017. Starting with CIC-IDS2017 and its seven attack classes (of
which six are included because infiltration only has 36 positive samples in CIC-
IDS2017), classification of a destination port model on the whole dataset is
91.8% accurate. At the individual attack class resolution level, the accuracy of
destination port models is exaggerated further beyond 95–99%.

CIC-DoS2017. The CIC-DoS2017 dataset is impacted to a lesser degree,
because its attacks directly target web servers on port 80 and a tiny fraction
targeted at port 443, both of which also had been included in the user simu-
lation. Still the destination port model can 100% reliably predict benign on all
other ports, ultimately leading to an accuracy of 71.6%.

CSE-CIC-IDS2018. The follow-up CIC-IDS dataset, was released one year
after CIC-IDS2017 and includes the same attack categories with better repre-
sentation and execution on Amazon Web Services (AWS) infrastructure. Unfor-
tunately, all attack classes except infiltration are very vulnerable to shortcut
learning if the destination port is part of the model. By itself, it can predict
the entire dataset with 90% accuracy and within the subsets, the accuracy of
the feature regularly jumps to 99.9+%. Only for infiltration is the accuracy far
below 90%, reaching just 55–65%. Upon inspection of the data broken down by
label, the five most common ports for both subsets of infiltration attacks (53,
443, 3389, 445 and 80) are shared at about equal frequency by the samples for
both targets. Those samples represent 75% of the samples of infiltration subset
1 and 66% of the samples of infiltration subset 2.

CIC-DDoS2019. The variance in CIC-DDoS2019 is captured with 91.5% accu-
racy by a destination port model. The individual attack sets of CIC-DDoS2019
are captured even better, often reaching 95–99% accuracy. Any proposed models
that included the feature should be dismissed out-of-hand because this feature
by itself can generate a near-perfect model.
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Table 2. Results of the pure destination port (service) models on NSL-KDD and
ISCX-IDS2012.

Subset Accuracy Precision Recall Remainder acc

NSL-KDD

Designated-train-test-split 75.4 ± 0.9% 89.8 ± 0.1% 65.6 ± 1.6% –

Straight-sampling 90.0 ± 0.2% 89.9 ± 1.2% 90.1 ± 1.5% –

ISCX-IDS2012

HTTP-DoS 67.9 ± 1.3% 94.5 ± 0.9% 37.5 ± 2.2% 97.8 ± 0.3%

Unspecified 99.7 ± 0.2% 99.5 ± 0.3% 100 ± 0.0% 99.3 ± 0.0%

Infiltration 95.3 ± 0.3% 98.4 ± 0.2% 92.2 ± 0.5% 98.4 ± 0.1%

Brute force 100 ± 0.0% 100 ± 0.0% 100 ± 0.0% 100 ± 0.0%

DDoS 57.9 ± 0.3% 54.4 ± 0.3% 100 ± 0.0% 15.9 ± 0.0%

Combined 66.3 ± 0.2% 96.4 ± 0.4% 34.0 ± 0.4% 98.7 ± 0.1%

4.7 Other Metadata Features

Although they are much more frequently stripped from evaluation, as they should
be, other metadata features are present in the IDS datasets. This subsection
summarizes their effectiveness as shortcut features across the included datasets.
Full numerical results for these other metadata features are stored in the online
repository for this experiment.

Source IP. Source IP addresses are easily recognized as a source of contamina-
tion. IDS datasets typically have defined, disjoint sets of nodes that will function
either as attacker or as target. Unsurprisingly, ML methods quickly pick up on
this pattern, often leading to perfect models for the included data sets. Deriving
new features after grouping by source IP (blocks) should also be discouraged,
because the composition of those groups will be heavily skewed and leak into
the derived features.

Source Port. Source port should not be considered as a genuine feature,
because the choice is determined by the operating system (OS). Furthermore,
the range of available ports for use as source port OS-specific. On the author’s
personal Linux system, this range encompasses 32768 to 60999 by default. Con-
versely, on the author’s Windows system, this range starts at 1025 and ends at
65535. At worst, if the data generation design used only Linux systems as attack-
ers and only Windows systems as targets, the non-overlapping portions of these
ranges would immediately identify a node’s role. In the included datasets, using
just the source port as a predictor leads to models with 60 to 90+% accuracy.
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Table 3. Results of the pure destination port (service) models on CTU-13, UNSW-
NB15 and the CIDDS collection. Po = Portscan, Br = Bruteforce, Pi = Pingscan

Scenario Accuracy Precision Recall Remainder acc

CTU-13

1. Neris 79.3 ± 0.4% 72.1 ± 0.7% 95.4 ± 0.3% 63.2 ± 0.0%

2. Neris 88.1 ± 0.6% 86.8 ± 1.0% 89.7 ± 0.7% 86.5 ± 0.1%

3. Rbot 99.2 ± 0.2% 98.9 ± 0.4% 99.5 ± 0.3% 98.4 ± 0.0%

5. Virut 84.5 ± 1.3% 89.0 ± 0.4% 80.8 ± 11.3% 89.2 ± 8.9%

8. Murlo 96.6 ± 0.8% 99.4 ± 0.5% 93.7 ± 1.4% 99.4 ± 0.1%

9. Neris 71.1 ± 0.2% 65.1 ± 0.3% 91.3 ± 0.1% 51.1 ± 0.0%

12 .NSIS.ay 74.9 ± 1.5% 72.7 ± 1.8% 79.4 ± 2.5% 71.0 ± 0.3%

13. Virut 83.7 ± 0.2% 96.0 ± 0.3% 70.2 ± 0.5% 97.0 ± 0.0%

Combined 70.6 ± 0.2% 64.9 ± 0.2% 90.0 ± 0.2% 51.1 ± 0.0%

UNSW-NB15

Raw UNSW-NB15 75.7 ± 0.2% 73.3 ± 4.0% 82.3 ± 9.9% 69.2 ± 10.0%

CIDDS-001

External-2 (Po,Br) 89.7 ± 0.7% 92.6 ± 0.% 86.0 ± 1.3% 93.3 ± 0.3%

External-3 (Po,Br) 85.9 ± 0.4% 85.1 ± 0.7% 87.2 ± 0.7% 84.7 ± 0.2%

External-4 (Po,Br) 86.1 ± 1.8% 90.7 ± 1.9% 80.4 ± 0.% 91.6 ± 1.1%

Internal-1 (Po,Pi,DoS,Br) 71.0 ± 0.0% 68.0 ± 0.1% 79.3 ± 0.3% 62.6 ± 0.3%

Internal-2 (Po,Pi,DoS,Br) 70.7 ± 0.1% 66.4 ± 0.1% 84.0 ± 0.2% 57.3 ± 0.2%

Internal-combined 71.2 ± 0.1% 67.6 ± 0.1% 81.6 ± 0.1% 60.9 ± 0.1%

External-combined 86.4 ± 0.4% 85.9 ± 0.5% 87.1 ± 0.4% 85.7 ± 0.1%

Combined 71.2 ± 0.0% 67.6 ± 0.1% 81.4 ± 0.1% 61.1 ± 0.0%

CIDDS-002

Internal-1 (Po) 97.3 ± 0.0% 98.8 ± 0.0% 95.9 ± 0.1% 98.8 ± 0.0%

Internal-2 (Po) 96.6 ± 0.1% 98.3 ± 0.1% 94.8 ± 0.2% 98.3 ± 0.0%

Combined 96.3 ± 0.5% 98.9 ± 0.1% 93.7 ± 0.9% 98.9 ± 0.1%

Table 4. Results of the pure destination port (service) models on the CIC collection.

Subset Accuracy Precision Recall Remainder acc

CIC-IDS2017

Botnet 97.4 ± 0.6% 95.9 ± 1.4% 99.1 ± 0.4% 96.1 ± 0.3%

Bruteforce 99.6 ± 0.0% 99.3 ± 0.1% 100 ± 0.0% 99.3 ± 0.0%

DDoS 95.5 ± 0.1% 91.7 ± 0.2% 100 ± 0.0% 100 ± 0.0%

DoS 94.5 ± 0.0% 90.0 ± 0.1% 100 ± 0.0% 88.9 ± 0.0%

Portscan 98.4 ± 0.1% 98.2 ± 0.2% 98.6 ± 0.1% 98.4 ± 0.1%

Webattacks 95.0 ± 0.9% 90.9 ± 1.7% 100 ± 0.0% 88.9 ± 0.0%

Combined 91.8 ± 0.0% 86.6 ± 0.1% 99.1 ± 0.0% 84.6 ± 0.0%

(continued)
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Table 4. (continued)

Subset Accuracy Precision Recall Remainder acc

CIC-DoS2017

DoS 71.6 ± 0.3% 63.8 ± 0.3% 100 ± 0.0% 42.9 ± 0.0%

CSE-CIC-IDS2018

Botnet 98.3 ± 0.0% 98.6 ± 0.2% 98.1 ± 0.1% 98.6 ± 0.1%

Bruteforce 100 ± 0.0% 99.9 ± 0.0% 100 ± 0.0% 99.9 ± 0.0%

DDoS-1 91.0 ± 0.1% 84.7 ± 0.1% 100 ± 0.0% 100 ± 0.0%

DDos-2 99.8 ± 0.0% 99.6 ± 0.0% 100 ± 0.0% 99.6 ± 0.0%

DoS-1 91.4 ± 0.2% 85.4 ± 0.4% 100 ± 0.0% 82.7 ± 0.0%

DoS-2 100 ± 0.0% 100 ± 0.0% 100 ± 0.0% 100 ± 0.0%

Infiltration-1 55.2 ± 0.3% 53.7 ± 0.5% 79.1 ± 1.1% 30.9 ± 1.2%

Infiltration-2 63.7 ± 0.3% 80.8 ± 0.6% 36.2 ± 0.6% 91.5 ± 0.4%

Webattacks-1 94.3 ± 2.7% 90.0 ± 4.2% 100 ± 0.0% 84.2 ± 0.0%

Webattacks-2 90.7 ± 1.6% 84.3 ± 2.3% 99.6 ± 0.5% 82.8 ± 0.2%

Combined 89.7 ± 0.0% 87.0 ± 0.1% 93.3 ± 0.0% 86.1 ± 0.0%

CIC-DDoS2019

DNS 99.0 ± 0.2% 99.3 ± 0.2% 98.7 ± 0.5% 97.6 ± 0.0%

LDAP-1 99.3 ± 0.4% 99.7 ± 0.4% 98.8 ± 0.8% 98.9 ± 0.4%

MSSQL-1 99.1 ± 0.3% 99.5 ± 0.4% 98.6 ± 0.6% 100 ± 0.0%

NETBIOS-1 99.1 ± 0.3% 99.5 ± 0.5% 98.7 ± 0.5% 100 ± 0.0%

NTP 97.3 ± 0.2% 99.1 ± 0.2% 95.5 ± 0.4% 94.8 ± 0.6%

SNMP 98.5 ± 0.7% 98.9 ± 0.8% 98.1 ± 0.9% 97.7 ± 0.4%

SSDP 99.2 ± 0.5% 99.2 ± 0.7% 99.1 ± 0.6% 100 ± 0.0%

UDP-1 99.2 ± 0.2% 99.5 ± 0.2% 98.8 ± 0.3% 100 ± 0.0%

SYN-1 98.1 ± 1.1% 99.3 ± 0.7% 97.0 ± 1.9% 100 ± 0.0%

TFTP 96.3 ± 0.2% 98.8 ± 0.1% 93.7 ± 0.4% 99.0 ± 0.4%

UDPLAG-1 99.0 ± 0.2% 99.6 ± 0.2% 98.2 ± 0.4% 99.4 ± 0.1%

LDAP-2 94.3 ± 0.4% 92.8 ± 0.6% 96.0 ± 0.7% 93.9 ± 1.3%

MSSQL-2 96.1 ± 0.4% 95.0 ± 0.8% 97.5 ± 0.7% 92.3 ± 0.0%

NETBIOS-2 94.9 ± 0.9% 94.5 ± 1.4% 95.2 ± 1.7% 98.6 ± 2.2%

PORTMAP 97.6 ± 0.3% 97.1 ± 0.4% 98.0 ± 0.5% 97.1 ± 0.7%

SYN-2 92.6 ± 0.2% 91.7 ± 0.5% 93.6 ± 0.3% 93.6 ± 0.3%

UDPLAG-2 96.2 ± 0.3% 95.9 ± 0.5% 96.5 ± 0.7% 97.7 ± 0.4%

UDP-2 96.6 ± 0.8% 96.0 ± 1.2% 97.2 ± 0.6% 95.6 ± 5.7%

Combined 91.7 ± 0.1% 91.0 ± 0.2% 92.5 ± 0.3% 92.9 ± 0.3%
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Destination IP. Including destination IPs runs into a similar risk as including
source IPs. Certain portions of the network used for the data generation process
are much more likely to be the target of attacks while other parts are always
part of benign flows. The most prominent example would be malicious nodes
which always attack on the internal network, while the benign data generation
contacts servers outside the range of nodes controlled by the dataset authors (e.g.
browsing the internet or exchanging emails). Again, for the included datasets,
the effectiveness of just using destination IP ranges from 60 to 99+% accuracy.

Metadata Time Features. The labeling strategy of IDS datasets is typically
based on a combination of strict role definition for nodes in the experimental
network and precise bookkeeping of attack time frames. The CIC datasets have
a Timestamp feature, CIDDS has a feature called date first seen, CTU-13 has
starttime, ISCX-IDS2012 and UNSW-NB15 have start date time (stime) and
stop date time (ltime). When using these features as single predictors, models
with accuracies of 70% (UNSW-NB15) to 85% and above (all other datasets)
can be expected. The models simply learn the time frames of the attacks.

5 Discussion

Performance on individual datasets and subsets (attack classes) varies, but the
general trend is clear. Destination port (or its proxy service) can yield models
which separate benign from malicious traffic with accuracies significantly better
than random guessing. Put in terms of accuracy, the performance of the vast
majority of models ranges between 70 and 100% accuracy.

The low end of this performance range is heavily correlated with greater over-
lap between the services that are attacked and which are also well-represented in
user emulation. The top end of the performance range is characterized by models
that were tasked with learning dataset (subsets, i.e. attack classes) where the
attacks are scattered across many ports while the user emulation keeps to its
narrow selection of emulated services.

Models that have included destination port suffer harder on datasets with
pre-selected train and test splits, NSL-KDD and UNSW-NB15. The reason is
that the dataset authors did not just take (stratified) samples from their total
sample collection, but actively introduced new attacks (on unseen ports) in the
test sets. These distributional differences between the preselected train/test sets
are particularly detrimental for a categorical feature like destination port. It is
yet another reason why it should not be included as a feature.

6 Conclusion

Modern network intrusion datasets, intended to be modeled by machine learning
techniques, are often published with the inclusion of metadata features such as
source and destination IP addresses, ports and time-based features used for
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sample labeling. Of these metadata features, destination port is most likely to
be kept by researchers when training their models under the rationale that it
contains useful information to identify service-specific attacks. This short article
aims to demonstrate that the destination port or its proxy feature service are in
fact contaminants that result in shortcut learning. This claim is demonstrated
by showing the discriminative power of this feature by itself in models trained
to classify ten state-of-the-art IDS datasets.

There is variability between the datasets, but the standard outcome is that
destination port by itself can be used to generate models that are 70 to 100%
accurate. The datasets in descending order of vulnerability to this effect are
CIC-DDoS2019, CSE-CIC-IDS2018, CIC-IDS2017, CIDDS-002, UNSW-NB15,
CIC-DoS2017, CIDDS-001, CTU-13 and ISCX-IDS2012.

The end result is a paradox for dataset publishers. If they equalize the pro-
portion of benign and malicious samples on all represented ports, then the dis-
criminating power of the feature is no better than random guessing. If they do
not equalize representation across the ports, then the feature quickly rises to
yield excellent, but ultimately meaningless models.

Based on this information, we propose that future dataset publications for
intrusion detection omit this feature altogether. Reviewers evaluating newly
proposed methods validated on the current datasets should inspect the list of
included features. If destination port (or service) remained in the dataset, then
the results have a near certain probability of being too optimistic. This potential
for (unintended) inflation of the results is particularly poignant in this research
domain where new proposals are considered more meritorious if they can demon-
strate an increase in classification performance beyond the state-of-the-art.

7 Future Work

Settling the theoretical debate about whether intrusion detection models should
include samples’ destination port as a feature was the obvious first step in trying
to improve the data handling by users of the state-of-the-art IDS datasets.

The conclusion of this article primarily targets other IDS researchers to inter-
act more critically with the available datasets. In a secondary capacity it is
addressed to dataset authors in the field to consider omitting the feature when
publishing data.

The follow-up to this article will focus on finding less obvious contaminants in
the state-of-the-art IDS datasets. We have already identified several high-impact
features in the state-of-the-art datasets which may be the result of experimental
design and execution, rather than a consequence of real attack behavior. The
end goal is to also eliminate these features from the datasets to try to increase
robustness and generalizability of ML-IDS models.
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