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1. Introduction

Soft sensors made of highly deformable
materials are one of the enabling technolo-
gies in developing a number of soft robotic
systems[1] and wearable devices.[2–4] They
are typically used to measure contact, defor-
mation, pressure, and stress information
based on an electrical response to a
mechanical stimulus. Sensing mecha-
nisms include conductive liquids,[5] elasto-
meric composites with conductive fillers,[6]

ionic hydrogels,[7] and optical fibers.[6,8] As
these sensors are designed to undergo
large deformations over repeated cycles,
they are susceptible to fatigue and degrada-
tion over time, and are easily damaged by
sharp objects. Using self-healing functional
materials can therefore improve the
reliability, stability, and long-term perfor-
mance of these soft sensors.[9–12]

Recently, there has been increasing
interest in the development of self-healing
materials for soft robotic applications.[13]

Self-healing polymers can be used for
structural support,[14] as functional soft actuators[15,16] or as
electronic components.[10,12] Self-healing electronic devices can
range in complexity from conducting wires,[17] to semiconduc-
tors and dielectric materials[18,19] and to sensing elements.[20–23]

One of the earliest works on a self-healing sensor used a pie-
zoresistive composite made of μNi particles and a self-healing
polymeric material.[21] Similarly, piezoresistive composites with
better electrical properties were developed using different func-
tional conductive materials.[24,25] These sensors change their
electrical properties in response to a strain signal and can hence
be used for proprioception, force estimation, and contact locali-
zation. Hardman et al. used the piezoresistive response of an
ionic gelatin/glycerol hydrogel to develop self-healing soft strain
sensors for pneumatic actuators.[26] Contact localization and
force sensing can also be done with soft self-healing capacitive
sensors.[27] Capacitive sensing technologies, however, require
more involved electronic hardware and suffer from parasitic
capacitive effects. Other types of self-healing sensors include
temperature sensors,[28] chemical sensors,[29] and damage
detection sensors.[30] All demonstrate the recovery of electrical
properties after damage, but have not investigated the modeling
of these sensors and the functional integrity of these models after
a damage–heal cycle.
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Natural agents display various adaptation strategies to damages, including
damage assessment, localization, healing, and recalibration. This work
investigates strategies by which a soft electronic skin can similarly preserve its
sensitivity after multiple damages, combining material-level healing with soft-
ware-level adaptation. Being manufactured entirely from self-healing Diels–Alder
matrix and composite fibers, the skin is capable of physically recovering from
macroscopic damages. However, the simultaneous shifts in sensor fiber signals
cannot be modeled using analytical approaches because the materials visco-
elasticity and healing processes introduce significant nonlinearities and time-
variance into the skin’s response. It is shown that machine learning of five-layer
networks after 5000 probes leads to highly sensitive models for touch localization
with 2.3 mm position and 95% depth accuracy. Through health monitoring via
probing, damage and partial recovery are localized. Although healing is often
successful, insufficient recontact leads to limited recovery or complete loss of a
fiber. In these cases, complete resampling and retraining recovers the networks’
full performance, regaining sensitivity, and further increasing the system’s
robustness. Transfer learning with a single frozen layer provides the ability to
rapidly adapt with fewer than 200 probes.
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Soft robotic sensors present numerous challenges in their
modeling. This is because they tend to be responsive to multiple
physical cues, exhibit temporal nonlinearities (hysteresis and
drift), and their properties are linked to the surrounding
matrix.[2] As extensively demonstrated in this work, these
undesired dynamic effects are particularly present in healable
soft sensors because they are manufactured out of dynamic
reversible polymers and have a viscoelastic behavior. In addition,
partial recoveries after healing lead to new sensor behaviors,
requiring recalibration. Hence, learning-based approaches,
which are becoming increasingly popular in sensor
modeling,[31,32] can be the enabling technology for healable soft
sensors. Deep learning techniques have shown promise for
modeling these time-variant sensor properties.[33,34] Long- and
short-term memory networks are typically used to capture drift
and hysteresis in the sensors. However, these dynamic networks
require a continuous stream of sensor data at a fixed sample rate
for state estimation, making them challenging for practical appli-
cations. Alternatively, static networks can be used with explicit
sensor history[35] or redundant sensor configuration.[36] In this
work, we use deep static networks for drift and hysteresis com-
pensation. In addition, these learning-based approaches are used
to model multisensor electronic skins,[32] multielectrode piezor-
esistive sensors,[37] and electrical impedance tomography (EIT)
sensors,[38] having a complex relationship between their resistan-
ces/impedances and location of touch. Although machine
learning has its sampling and training cost, it allows to make
high-performance electronic skins out of extremely inexpensive
conductive polymer composite sheets[39,40] or carbon electrode
fibers,[41] reducing hardware costs.

We present a deep-learning approach for the modeling of a
self-healing skin, composed of eight resistive strain sensors,
enabling contact localization and depth perception. Although
the presented approach is applicable to a wide variety of self-
healing materials and sensor morphologies, a general grid-based
sensor morphology is selected, composed of a Diels–Alder poly-
mer matrix and conductive Diels–Alder composite fibers. We
show how temporal nonlinearities in the sensor response can
be compensated using response history and deep neural net-
works to provide highly accurate state estimation models.
Methods for health monitoring, damage detection, and damage
localization are presented. As the healed sensors undergo behav-
ioral transformations, we show that transfer learning techniques
can be used to recover functionality, enabling the model to be
accurately updated with minimal resampling. Our work is the
first demonstration of a complete framework for adapting to
damages in a soft bodied system, covering damage detection,
localization, healing, and recalibration of internal models.

2. Results

2.1. Design of the Healable Artificial Skin

In this work, a completely healable soft electronic skin is created
composed of an insulating self-healing 55� 55� 5mm3 square
matrix (Figure 1A, yellow), in which eight conductive fibers
(Figure 1A, black) are integrated in a grid-based morphology.
These fibers function as resistive strain sensors and have a

diameter of 0.5mm. The healing of both the polymer matrix
and composite fibers is relying on Diels–Alder cross-links in
the polymer/composite network, discussed in Section 2.2.
Four fibers are embedded straight in the x-directions with a
distance of 11mm between them and at a depth of 2.5mm.
The other fibers are embedded perpendicular to these, in the
y-direction, also with a distance of 11mm between them, but
at a depth of 3.5 mm. Consequently, perpendicular fibers do
not touch in the matrix. Both the matrix and fiber material
are flexible, and consequently the skin acts as a soft sensor net-
work that is bendable and stretchable and can potentially be used
in soft robotics, including embedding touch sensing in soft grip-
pers (Figure 1A). Additionally, as both materials are self-healing,
the entire electronic skin can be healed.

2.2. Artificial Healing on the Material Level

Finding inspiration in biology, scientists have been developing
synthetic materials possessing biomimetic healing abilities.[42]

Many are polymer networks relying on reversible (physico)
chemical cross-links, like the equilibrium Diels–Alder reac-
tion between a furan and maleimide (blue and red in
Figure 1B).[43] Two different Diels–Alder polymer networks
are synthesized: the nonconductive BMI1400-FT3000-r0.5 mate-
rial used as matrix and the conductive DPBM-FT5000-r0.6-20wt%
CB260 composite used for the fibers (details in Materials and
Methods). As these polymers contain the reversible Diels–Alder
cross-links, they can both heal. When cuts are made, the Diels–
Alder bonds locally break, generating reactive maleimide and
furan on the fracture surfaces (Figure 1C). However, being
reversible, these covalent bonds can be reformed when bringing
the fracture surfaces and reactive maleimide and furan groups
back together. Upon excellent contact and limited misalignment
of the fracture surfaces, healing can occur even at room
temperature.[44] Nevertheless, microscopic gaps caused by
misalignment or imperfect contact can be sealed by heating at
a higher temperature (90 °C) which increases mobility in the
polymer network.

This remarkable healing capacity can be illustrated via tensile
testing (Figure 1D), as well as the stretchability of this Diels–
Alder polymer and composite, shown by fracture strains surpass-
ing 100%. Samples are cut in half using a scalpel blade, brought
back in contact, and healed by heating to 90 °C for 1 h. When
fracturing these healed samples in the tensile test and comparing
them to a pristine (undamaged) sample, it is clear that the
mechanical properties are recovered after this healing process
(Figure 1D). For the polymer (yellow), the fracture stress is
recovered with a high healing efficiency of 98%, and fracture
not initiating at the healed site. Although the mechanical behav-
ior of the composite (black) is recovered for strains below 90%,
the fracture stress is not completely recovered and a healing effi-
ciency of 81% is measured (Figure 1D). In addition, the baseline
resistance changed from 285 to 460Ω, recovering the electrical
properties with 60% efficiency. This reduction in healing capacity
results from the carbon black C260 fillers, which provide
conductivity, but reduce the mobility in the polymer network.
Nevertheless, a recovery of the mechanical behavior until strains
of 90% provides sufficient recovery for many applications,
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such as healable soft sensors[10] and embedded heaters for soft
robotics or smart wearable devices.[45]

2.3. Response of the Healable Artificial Skin

Initial tests are performed using a 55� 10� 2mm3 sensor con-
sisting of a conductive DPBM-FT5000-r0.6-20wt%CB260 fiber
with a 0.5mm diameter that is embedded in an insulating
BMI1400-FT3000-r0.5 (Figure 1E). Being constructed solely
out of self-healing polymers, this entire resistive strain sensor
is healable and can even recover from being cut in half, subject-
ing it to a temperature of 90 °C for 1 h. Upon stretching in a ten-
sile test with fixed strain ramp of 0.01 s�1, the resistance presents
a complex surjective relationship with a nonunique mapping

between resistance and strain,[46] which is challenging to express
analytically.

Resistive strain sensors based on conductive elastomeric
nanocomposites are not only hard to model due to their high
nonlinearity (Figure 1E), but also due to their time-dependent
stress/resistive-strain responses caused by the viscoelastic nature
of the elastomeric matrix. These effects can be seen in the
responses of the skin’s eight sensor fibers when pressed and held
at three different locations using a robotic probe (Figure 2A).
Conversely, Figure 2B shows the skin’s repeated response when
pressed and held at a single location at a depth of 1.5 mm. As the
probe moves with a speed of 7mm s�1 and the probing depth
is only 1.5 mm, it is clear that the sensor response is time
dependent, indicated by the elastic recovery time of up to 3 s
upon release. The relationship between the probing location

Figure 1. A) The equilibrium reaction between maleimide (red) and furan (blue) forms a reversible Diels–Alder bond. B) The self-healing artificial skin,
composed of a sensor network with a grid-based sensor morphology. Eight flexible and healable strain sensors are embedded in the healable matrix. The
entire artificial skin is flexible. C) The fiber has a diameter of 0.5 mm and is made from an elastomer that is cross-linked via reversible Diels–Alder bonds
and is filled with carbon particles, making it conductive. This fiber is embedded in a Diels–Alder matrix. As both the fibers and the matrix are made from
Diels–Alder elastomers, the interface between fiber and matrix is covalently bonded, leading to a high interfacial strength enhancing the sensor perfor-
mance. D) Both the conductive Diels–Alder composite and nonconductive Diel–Alder matrix are healable due to the presence of reversible Diels–Alder
cross-links in their polymer network, as illustrated by recovery of the mechanical properties in a tensile stress strain test with strain ramp of 1% s�1, after
being cut completely in half, brought back in contact and healed for 1 h at 90 °C. E) The resistance–strain relationship, obtained from a tensile test on a
single strain sensor (55� 10� 1mm3) with a strain ramp of 1% s�1, is nonlinear and is a surjection for the entire strain window. In addition, the loading
and unloading curves form a hysteresis loop.
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in the x-y plane (dark orange zone indicated in Figure 2A), the
depth, and the sensor response is not easy to model, as already
evident by the nonlinear response of the sensor to strain
(Figure 1E). This can be seen by the skin’s response to probing
at three different locations at varying depths (Figure 2B).
Depending on the amount of deformation and its location, the
sensor resistance can either increase or decrease, more than
two sensors can be activated to a single contact, and the sensors
may not return to their initial conditions after probing (due to
hysteresis and drift).

Healing of a damage can lead to noncomplete recovery of the
mechanical properties (Figure 1D), but also of the sensor

performance. In a third test in Figure 2B, the artificial skin is
tested by probing with a depth of 1.5 mm at a single location prior
to damage, after damage, and after being healed. Damage is
induced using a scalpel blade and slicing completely through
one of the sensor fibers. Looking at Figure 2B’s sensor response
after damage, it can be seen that the damaged fiber regains elec-
trical contact autonomously after the blade is retracted. This is due
to self-sealing, which results from the elastic recovery of the
matrix. However, upon probing, the cut reopens leading to a spike
to high voltage in the sensor response, indicating that the sensor is
still damaged. After healing, the sensor property is regained.
However, its response is clearly different from before damage.

Figure 2. A) The training setup, consisting of a UR5 manipulator from Universal Robots equipped with a cylindrical end effector probe with a diameter of
5 mm. The UR5 probes the soft sensor matrix at different locations within the red zone indicated on the sensor matrix with a depth of 0.5, 1, or 1.5 mm in
order to evaluate the skin’s sensitivity. B) The raw signals from the eight sensors while pressing at the location indicated by a black dot on the sensor
matrix; i) shows the repeatability of the response to three identical presses. In ii), three locations are probed, each at a different depth. iii) Plots the
response to a probe directly next to a damaged area before and after damage and healing. C) The architecture of the deep neural network used throughout
this work to map the sensor responses to the predicted x-y location and depth of probing. The size of the input layer can be varied, with the architecture of
the output and three hidden layers remain fixed. D) Comparisons of the 24-input and 80-input network performances when trained on 4500 probes of the
undamaged skin. The 24-input case first fits a representative square wave to each of the eight sensor’s responses, sampling the three marked locations for
the network’s input. The 80-input case uses no signal filtering, and instead directly samples 10 points from each sensor during the press and release of the
probe. The x-y error distributions (predicted vs actual) over (A)’s zone are plotted, and the proportion of depths correctly guessed is calculated. The
80-input method is chosen for further use: additional input numbers are tested in Figure S1, Supporting Information.
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It is important to note that the baseline resistances of the
undamaged fiber sensors also change after healing. This is prob-
ably caused by a slight reconfiguration of the carbon particles/
agglomerates in the composite, or by increased contact between
the fiber and the crimp connector. Both are induced by a high
polymer network mobility, caused by the increase in temperature
during the healing process. Due to the influence of healing on
the baseline of the sensors, recalibration is necessary in order to
preserve the sensitivity of the artificial skin. Altogether, the
effects described in this section make the modeling of these
healable artificial skin challenging, especially using analytical
methods.

2.4. Machine Learning for Contact Localization

The challenges described in previous sections can be circum-
vented by generating data-driven models of the healable
electronic skin. There are two considerations to be made in
the design of the learning architecture. First, the network should
be able to compensate for the nonlinearities in the sensor
response, particularly the ones caused by drift and hysteresis.
This is done by appending the inputs to the network with the
sensor-response history. Second, the network should be easy
and quick to adapt to repeated damage-and-healing cycles.
This can be achieved with a sufficiently deep network and
transfer learning techniques.[47]

Figure 2C’s network architecture can take either 24 or 80
inputs to predict the location and depth of skin contact, corre-
sponding to either three or ten samples from each of the eight

sensor responses on specific times (see Figure S2, Supporting
Information). When three samples are taken, the signal response
is first fitted to a square wave, with samples taken before, during,
and after contact. Figure 2D shows the x-y error magnitude of a
network trained on 4500 probes of the undamaged skin, each
randomly located and with 0.5, 1.0, or 1.5 mm depth inside
the red square (Figure 2A). Uncertainties caused by symmetries
in the major sensor responses are visible as a grid of higher
errors,[35] leading to an average error of 5.10mm for the x-y prob-
ing position, and the correct depth being identified 69.1% of the
time. Contrastingly, the network trained with ten samples from
each sensor (Figure 2D) shows a much more uniform and low
error of only 2.13mm while correctly identifying >99% of the
probed depths. The training and validation datasets perform
extremely similarly (Figure S3, Supporting Information), sug-
gesting that this is not merely a result of overfitting to the test
data. The 80-input architecture is selected for further experimen-
tation; as well as lower-error predictions, the samples do not
require a square wave to be fitted to the data, and are simply
sampled from the raw voltage measurements (Figure 2D).

2.5. Damage Types

In this work, we distinguish three types of damage inside the
healable artificial skin. All these damages result from cutting
through a single sensor fiber and the surrounding matrix using
a scalpel blade (Figure 3A). However, the three differ in the
recovery of the system from this damage. 1) In the first case,
the sensor fiber regains electrical contact almost immediately

Figure 3. Damage and damage detection in the electronic skin for three damage cases. For each, the damage locations are marked on a representative
grid, and the sensor responses to cutting are plotted (see Movie S2, Supporting Information). After damage, 5000 new points are probed (see Figure 2),
used to evaluate the performance of a network trained on the skin’s behavior before each damage. In addition, in iii, 100 probes are measured along the
damaged sensor, and ΔV ¼ VbeforeþVafter

2

� �� Vduring is calculated at each point for the eight sensors. A) The damages are clean scalpel cuts through the
matrix and sensor. B) Damage 1: The sensor is cut, but immediately regains and maintains contact when the scalpel is removed. C) Damage 2: Contact is
partially regained shortly after damage—during the first probe—but the sensor still separates and loses the electrical connection when probed close to the
damaged area. D) Damage 3: Contact is not regained, and the damaged sensor shows no response.
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after retracting the blade (Movie S2, Supporting Information),
due to a very clean damage, excellent elastic recovery of the sen-
sor matrix, and negligible misalignment. As a result of excellent
contact, the healing takes place instantaneously at room temper-
ature, as described in a previous work.[44] For this autonomous
healing, it is important that contact is regained instantaneously
after damage, when the number of reactive maleimide and furan
compounds is still high. 2) In the second case, recontact is
not achieved immediately, but after some time (Movie S5,
Supporting Information) due to slower elastic recovery.
During this time, the available reactive maleimide and furan
react with one another on separate fracture surfaces.
Consequently, healing at the damaged surface is slowed down
considerably, e.g., in the order of hours, at room temperature.
Nevertheless, this damage can be healed by heating the artificial
skin to 90 °C for 1 h. 3) Lastly, in some damage cases, contact is
not initially regained. However, upon heating of the artificial
skin, an increase in molecular mobility and thermal expansion
of the matrix and fibers causes recontact. After recontact, this
damage heals during the heating process.

2.6. Health Monitoring, Damage Detection, and Localization

Damages in the artificial skin can be detected by monitoring the
resistance of the eight sensors. Upon cutting one of the sensors
using a scalpel blade (Figure 3A), its measured resistance
becomes infinite and the voltage across the resistor jumps to
5 V. This is done for three damages in two of the eight sensor
fibers (Figure 3B–D). By detecting this sharp increase in voltage,
the system can easily isolate the damaged sensor line. After the
blade is retracted, further tracking of the sensor response allows
the detection of recontact due to self-sealing, caused by the elastic
recovery of the matrix. This recontact can appear immediately
after damage (Figure 3B), in which case the initial sensor state
is reached after the blade is retracted. Alternatively, recontact can
also be achieved when the skin is touched close to or on the dam-
aged location (Figure 3C). To narrow down the location of dam-
age, the UR5manipulator probes 100 equally spaced points along
the damaged fiber with increments of 0.3mm while tracking the
sensor signal for voltage spikes (Figure 3B). At each location, the
difference in voltage during probing and directly before/after
probing is calculated and plotted, i.e.

ΔV ¼ Vbefore þ Vafter

2

� �
� Vduring (1)

For the first damage, contact is regained immediately and,
looking at ΔV along the fiber, it can be seen that the fiber main-
tains electrical contact, returning a small and relatively constant
reading at every location. This measurement suggests that the
artificial skin is healed from this damage without the need for
a healing procedure that involves heating. For the second damage
(Figure 3C), probing along the damaged fiber shows that electri-
cal contact is quickly regained, as the sensor is again sensitive.
However, when probing near the damaged region, a loss of
electrical contact due to insufficient healing leads to a strong dis-
continuity in the response. Information from other sensors can
also be utilized for localization; clear bumps are visible as the
probe passes over sensors aligned with the y-axis. As such, this

probing method allows the identification of the location of dam-
age in the x-y direction. For the third damage (Figure 3D), elec-
trical recontact is not regained after damage, nor during probing.
ΔV is zero for the damaged (red) sensor during the entire prob-
ing experiments, and the damaged location cannot be further
narrowed down.

Damage detection can also be performed by probing the entire
x-y plane of the artificial skin. In a second experiment, the UR5
manipulator probes 5000 random x-y coordinates within the red
square (Figure 2A), with each randomly allocated to a depth of
0.5, 1.0, or 1.5mm. After sampling the sensor responses, the
probing location and depth are predicted using a network trained
prior to damage, in order to highlight the differences in response
introduced by the damage. The x-y error is calculated by compar-
ing the estimated probing coordinates to the actual x-y probing
position. For the first damage (Figure 3B), only a small increase
in error can be detected at the location of damage, illustrating
that the sensor is healed without the need for a temperature treat-
ment. For the second damage (Figure 3C), the damage is clearly
detected as the area which causes loss of contact when probed,
resulting in a region with high error. For the last damage
(Figure 3D), the error is large along the entire length of the dam-
aged fiber, as electrical contact is not regained. Although this sec-
ond damage-detection experiment allows clear visualization of
the damage in the x-y plane, probing along the damaged fibers
is a much faster method to localize damage. Nevertheless, this
extensive probing approach is useful if the damage event is
not detected, e.g., when it occurs when the system is offline.

Although it is not always possible to detect the exact location of
damage, it is important for the system to investigate in order to
facilitate its recovery. In addition, in future applications, includ-
ing soft robots and smart wearables, tracking of the locations of
damage provides important information about parts and loca-
tions that are prone to damage. The sensitivity of both touch
and damage can be increased by integrating a larger number
of sensor fibers into the artificial skin.

2.7. Healing and Retraining

Damages are healed by subjecting the entire artificial skin to a
temperature of 90 °C and leaving it for 1 day at 25 °C. From visual
inspection in Figure 4A, it can be seen that the damage in matrix
and fibers is healed, leaving only a small scar due to misalign-
ment in damages 2 and 3. ΔV along the healed sensors is plotted
in Figure 4B–D, to be compared with those of Figure 3. The first
damage case shows a reasonably constant response, with a small
bump near the damaged area illustrating the residual effect on
the sensor’s resistance at this location. The constant value is dif-
ferent to that of Figure 3B, reflecting the shift in baseline resis-
tance and responsive properties undergone by all sensors during
the temperature treatments. Though the x-y coordinates of each
probe can still be localized to within �3mm by the network
trained on the undamaged sensor, these shifts in resistance
cause the proportion of correctly predicted depths to severely
drop after healing. This decrease in sensitivity illustrates the
importance of health monitoring and damage detection after
damage occurs. If the damage is self-sealed and healed at room
temperature, the system should not be heated, as this decreases
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its sensor performance. This decision to continue operation with-
out heating will depend on a thorough health monitoring. Still,
given new inputs from the healed skin, the network can adapt to
this new behavior—when a new network is fully retrained on the
same healed data, 96.1% correct depth predictions are found to
be possible (Figure 4B).

In comparison with Figure 3C’s data, Figure 4A’s ΔV plot
illustrates the significant improvement in response upon healing
of the second damage case. The resistive effects of the damage
are still visible (shown in blue), with a small instability in
response appearing when the damaged area is probed.
However, contact is now maintained throughout probing
(Movie S4, Supporting Information), with the response being
much more constant along the entire fiber, and showing no sig-
nificant discontinuity. The healing of this fiber is confirmed by
Figure 4C’s sensitivity map before retraining, which shows clear
improvement of the sensitivity at the damaged location.
Compared to the prehealed map, the average x-y error has

increased, while the correct estimation of the depth has dropped
to 34%. This is the result of a change in base resistance after the
heat treatment, caused by a slight reconfiguration of the carbon
particles/agglomerates in the composite or/and changes in con-
tact resistance at the interface of the fiber and the crimp connec-
tor. In order to adapt to this new sensory behavior, the pretrained
network must undergo additional training to compensate for
these new effects, to prevent the visibly damaged area seen in
the error mapping of the “no retraining” evaluation. Full retrain-
ing of a network with 4500 new data points from this healed skin
is able to attain excellent x-y localization and depth prediction,
outperforming even the undamaged network in Figure 2D.

Similarly, the third damage case, which previously showed no
sensory response whatsoever, now responds nonlinearly to
deformations of the skin (Figure 4D, red curve). However, for
the final probing points the sensor response is small, indicating
that contact is weak and the fiber is not properly healed. This is
emphasized by the sensitivity map before retraining, in which

Figure 4. Healing and retraining of the electronic skin. A) The temperature–time profile during healing and images of the healed damages 1, 2, and 3.
B–D) Sensitivities of the damaged sensors (B–D in Figure 3) after healing of the three damage cases. In ii, the damaged sensors are probed along their
lengths, whereupon the healing of case 2 is particularly clear when compared to the damaged plot. 5000 new points are probed after healing: first the x-y
error distributions over the skin are shown for the networks trained before each damage (iii), and then compared (iv) to the errors of new networks trained
using these 5000 data points with a 90%:10% training:validation split. In all cases, full retraining results in better x-y localization and depth prediction.
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the damage produces a large average localization error of 11mm.
However, a fully retrained network shows no such error, produc-
ing a uniform error distribution which performs comparably to
the undamaged skin’s network in Figure 2D. This illustrates the
redundancy of the electronic skin toward individual sensor dam-
age. This results from a redundancy of sensor fibers and the
machine learning-based calibration approach.

This redundancy is further emphasized in Figure S2,
Supporting Information, by the performance of a 70-input net-
work trained, validated, and tested on the skin after the first dam-
age case. For each, one of the eight sensors’ data is entirely
removed. The uniform sensitivity maps, <2mm localization,
and�100% depth predictions illustrate the redundancy provided
by multiple sensor responses, enabling the robustness of the skin
to single damages. As stated in this previous work,[35] it is obvi-
ous that this redundancy is limited and losses of multiple fibers
will decrease sensitivity rapidly, indicating the importance of
striving for correct healing on the material level in electronic
skins that are damaged for multiple times in application.
Although recalibration through full retraining is very successful,
it poses challenges in future applications due to extensive sam-
pling. The following section looks at how a pretrained network’s
prior knowledge can be utilized to quickly produce similarly
performing models when additional recalibration data are costly,
i.e., avoiding the need for 5000 new data samples after damage/
healing.

2.8. Transfer Learning for Healed Skin Recalibration

In the previous section, we saw how changes in sensor properties
introduced by the healing process cause significant degradation
in the performances of networks trained on the undamaged skin.
Networks trained on 4500 new physical sensor responses mea-
sured from the healed skin show no such degradation, demon-
strating excellent localization and depth prediction capabilities.
These secondary networks are trained “from scratch,” with no
prior knowledge, and thus they require the same amount of data
to reach these levels of performance. As discussed in the intro-
ductory sections, such full recalibration of a bioinspired soft sen-
sor is likely to be costly in time, resources, and energy. Instead, it
is often beneficial to quickly produce a reasonably performing
model with minimal recalibration data, avoiding the “downtime”
in which no functioning model is available. To investigate this,
we continue the training of the undamaged skin’s network,
which adapts to the healed sensor nonlinearities. In order to
encourage the quick convergence of the network on a satisfactory
solution, we analyze the performance of transfer learning tech-
niques on two aspects (discussed fully in Materials and
Methods): 1) Layer freezing: the learn rates of up to three of
the hidden layers are set to zero before training continues, reduc-
ing the total number of weights and biases for optimization.
2) Tactical selection: four methods of selecting the x-y coordi-
nates of new samples are compared: arranged in a uniform grid
over the surface of the skin; fully random; weighted in 1D such
that y coordinates close to the damaged sensor are more likely to
be selected; and weighted in 2D, such that points closest to the
damaged location are more likely to be selected.

Figure 5 presents the utility of these techniques in adapting to
the healed skin based on the average error and the percentage of
correct depths, after the two most severe damage cases: cases 2
and 3, represented in Figure 5 and 6, respectively. Gray dotted
lines indicate the performance of a network trained with no prior
knowledge. Learning with each parameter set is repeated three
times; the ranges of the average localization error and depth pre-
dictions are marked, with plotted lines following the mean
values.

Figure 5 looks at the adaptation of a pretrained network to the
second healed case, having been trained on 4500 data points
before damage. Without any form of retraining, we have seen
from Figure 4A that an average x-y error of 3.21mm and
depth-prediction accuracy of 34.3% are achieved, marked with
a horizontal dashed line in the six plots. After being provided
with just 49 new sample points, the networks’ localization per-
formances generally remain very close to this line, with one
exception: the 2D Gaussian method of selection (represented
in pink) performs consistently poorly throughout the tests. To
explain why, the first plot includes an image of the localization
errors when 4900 samples are used for the transfer learning. As
the region directly surrounding the damage has been favored
during sample selection, a consistently low error is now found
here, as designed. However, this comes at the cost of higher error
in the lesser sampled areas—in this case, the left, right, and bot-
tom edges of the sensorized skin. This Gaussian method is there-
fore a good choice when we wish to design a sensor network with
areas of higher and lower sensitivity, and could be extended to
include more complex 2D functions. As our model focuses on
global optimization of sensitivity, the 2D method is not the best
option—additional experiments could consider the effect of stan-
dard deviation on its performance.

Using one of the remaining transfer learning methods
appears to be a much better choice than full retraining when
smaller numbers of sampling are favored: all the methods out-
perform the network with no prior knowledge below approxi-
mately 400 sample points; if only depth prediction is
necessary, this figure is closer to 1000. As expected, all perform-
ances tend to improve as the number of samples increases, and
the benefits of full retraining over a quicker transfer method only
become significant when thousands of sample points are
available.

There is surprisingly little difference between the performan-
ces of the grid, random, and weighted methods—especially at
higher sample points. It should be noted that the 1D weighted
implementation is less severe than that of the underperforming
2D Gaussian method. The fact that only the 2D method is clearly
separate from the others suggests that global, rather than local,
calibration is necessary for successful short-term transfer.
Provided the network continues learning from a sufficiently uni-
form distribution over the skin plane, the method of selection
(grid, random, or weighted) does not appear to make a significant
difference.

Figure 5’s three columns consider the magnitude of layer
freezing upon performance, setting the learn rates of one,
two, or three of the hidden layers to zero before transfer learning
commences. In the extremely short term (49/100 sample points),
freezing all 3 layers—leaving only the output layer to be
adapted—produces the best-performing network. Indeed, the
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49-sample grid, random, and weighted methods of the first two
columns show slight decreases in localization performance com-
pared to the zero-sample case, while three frozen layers consis-
tently improve localization. However, the limited change in
input!output mapping that can be changed using only the third
layer weights leads to a quick saturation of this column’s
performance, while the single frozen layer continues to improve
for larger samples. Unsurprisingly, two frozen layers produce a
set of results lying between these two extremes, forming a

reasonable compromise when the number of available sample
points is unknown.

Figure 6 shows a similar set of patterns in adapting to the
more severe damage/healed case. Again, the 2D method does
not satisfactorily converge, overfitting to the damaged area at
the expense of sensitivity in more remote regions. The remaining
three more uniformly distributed transfer methods are near-
indistinguishable, outperforming the fully retrained network
for fewer than �1000 samples. However, 49 samples are now

Figure 5. Performance of the networks’ transfer learning for damage 2. After “freezing” the weights of selected fully connected layers, training of the
networks is continued using 49, 100, 196, 284, 484, or 4900 new data points. Four methods of selecting these points—grid, random, weighted, and 2D
(see methods)—are compared to the “fully retrained” performance which has no prior knowledge. A dashed horizontal line represents the performance
of the pretrained networks before transfer learning begins (i.e., number of sample points¼ 0). Example mappings of x-y localization error are shown for
the random selection method.
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sufficient for all three methods to significantly improve upon the
zero-sample case; the localization maps show that the region of
significant error above the damaged sensor quickly vanishes, and
could simply be the result of small shifts in baseline resistance.
As such, freezing all three layers is no longer the best approach
for small sample sizes, and the 1 frozen layer network produces
the best performance in every case. Its greatest improvement
upon the fully retrained network occurs with 196 samples, where
the random transfer learning technique improves the average
localization accuracy by 7.9mm, and the accuracy of depth pre-
dictions by 28.4%.

3. Discussion

Although many studies have proven the potential of healable soft
sensors, all these works are limited to the recovery of electrical
properties after damage and have not investigated the functional
integrity of the sensors after a damage–heal cycle. This is mainly
because of the challenges involved in modeling these highly
nonlinear and time-variant polymer composites. The proposed
learning-based framework circumvents this challenge using
real-world experience. The use of deep neural networks with
sensor responses resulted in a high-resolution electronic skin

Figure 6. Performance of the networks’ transfer learning for damage 3. After “freezing” the weights of selected fully connected layers, training of the
networks is continued using 49, 100, 196, 284, 484, or 4900 new data points. Four methods of selecting these points—grid, random, weighted, and 2D
(see methods)—are compared to the “fully retrained” performance which has no prior knowledge. A dashed horizontal line represents the performance
of the pretrained networks before transfer learning begins (number of sample points¼ 0). Example mappings of x-y localization error are shown for the
random selection method.
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able to localize touch with a high resolution of 2mm and a
correct depth estimation of nearly 100%, even with these highly
nonlinear healable sensor fibers. This clearly illustrates the
capacity of machine learning, which use will be inevitable in
the calibration of many future healable soft sensors.

In order to truly enhance longevity of healable sensors and the
systems in which they are embedded, healing of damages should
involve minimal sensitivity deterioration. Although full restora-
tion of the sensor response at room temperature is possible upon
excellent recontact, its recovery is highly influenced by the slight-
est misalignment or insufficient contact. In future applications
that demand autonomous healing and multiple damage–healing
cycles, these nonoptimal recontacts will be unavoidable. In these
cases, healing by heating can fill the resulting microscopic cavi-
ties, increasing the contact, and the healing efficiency. However,
this thermal treatment impacts the base resistance and the sen-
sor response of the healed fiber and the undamaged fibers.
Consequently, the sensitivity decreases and in particular the
depth estimation becomes unreliable. In these cases, recalibra-
tion is inevitable to preserve sensor sensitivity.

In this article, it is shown that full resampling and retraining
of the network on the healed electronic skin regains original per-
formance, and even improves it in some cases. In addition, the
proposed approach also allows us to exploit redundancies in the
system upon loss of a sensor fiber, which provides an additional
temporary robustness to damages. This is, however, limited, as
the loss of multiple fibers will eventually drive down accuracy,
highlighting the need for physical healing abilities, in particular
for applications where damage is recurrent. Consequently, the
authors believe that the combination of machine learning and
self-healing can provide robust and long-lived soft sensorized
systems able to cope with multiple types of damage via healing
on the material level and adaptation on the software level.

Although training from scratch is reliable, it limits future
applications as it will be time-consuming and costly. Though
not explored in this work, the authors expect the “press-and-
release” method of sampling to be relatively robust to changes
in press duration, enabling quicker sampling procedures to be
designed. Ultimately, this will be limited by the recovery period
of the material. Second, to eliminate unnecessary recalibration,
health monitoring is extremely important. As presented in the
article, damage can be detected by monitoring the loss of electri-
cal contact of the fiber resistances, while damage localization in
the millimeter scale can be performed by probing along the
damaged fiber. This can also detect if the damage is healed
autonomously at room temperature. For these damages, heating
is not required as it would not further increase recovery; on the
contrary, it decreases sensitivity and results in the need for recali-
bration. In addition, in actual future applications, including soft
robots and smart wearables, tracking the locations of damage
provides important information about parts and locations that
are prone to damage.

The introduced transfer learning approach presents a fast
alternative for model adaptation with reduced data points.
Freezing a higher number of layers in the network is desirable
when working with fewer data points and vice versa. The advan-
tages of the proposed transfer learning approach will become
more relevant as the sensor network becomes increasingly larger.
In such cases, the amount of data required for full training would

be much higher. Additionally, damages and healing would be
more localized, implying that a larger chunk of the prior model
can be recycled. In that scenario, the resampling algorithm can
also become relevant, which is not found in our experiments.
Targeting the sampling near to the damage area, or around
the damaged sensor, did not lead to improved transfer learning
compared to random sampling. This is due to the change in base-
line resistance of all fibers due to heating, leading to changes in
sensory response throughout the entire skin. Consequently, the
resampling and retraining strategy will highly depend on the
application in which the sensor skin is used and the time at
which damages occur. Transfer learning with a high number
of frozen layers can be used to restart operation quickly after
healing, with a slightly reduced performance. On the other hand,
full retraining can be performed during inactive periods of the
system as it requires more time, eventually recovering full
sensitivity of the electronic skin.

Although polymeric soft sensors and electronic skins can be
produced very cheaply, the authors believe that recovery of the
skin after damage through material-based healing whether or
not in combination with compensation trough recalibration
can provide an economic alternative to replacement in various
future applications. This is the case when electronic skins are
integrated in complex systems. Although the components can
be cheap, replacement or maintenance can still be very expen-
sive, due to extensive (dis)assembly. These disassembly issues
are exacerbated by the fact that creating modular, scalable soft
robots and systems is very challenging, and components are gen-
erally irreversibly bond or cured together. In addition, whereas
recovery through healing and adaptation can be done autono-
mously by the system, replacement will in most cases by done
through external intervention. For remote applications and field
(soft) robotics, external interventions can be very costly as they
would rely on transporting the replacement parts to the system
or the system to a repair station. Consequently, the authors
believe that the presented combination of material-based healing
and software-based adaptation/compensation can be an enabling
technology for many soft robotics and soft devices, of which their
adoption is currently prevented by their lack of resilience to
damage.

4. Experimental Section

Materials: The self-healing material, used to insulate the conductive
fibers in the sensor matrix, is composed of a Diels–Alder network polymer.
The network is formed by cross-linking between bismaleimide (BMI1400
or DPBM) and furan compounds (FT3000 or FT5000). BMI1400 is a low
viscosity bismaleimide oligomer with an average molecular weight of
1715 gmol�1 and a maleimide functionality of two and supplied by
Caplinq. DPBM is 1,1-(methylenedi-4,1-phenylene) bismaleimide with a
purity of 95% is obtained from Sigma-Aldrich. FT3000 and FT5000 are
furan-fuctionalized Jeffamines, obtained through an epoxy amine reaction
between furfuryl glycidyl ether (FGE) and Jeffamine JT3000 or JT5000.
JT3000 and JT5000 are polyetheramine obtained from Huntsmann from
the Jeffamine T-series triamines, with a molecular weight of respectively
3180 and 5712 g mol�1. FGE has a purity of 97% and is supplied by Sage
Chemicals. By mixing two reactive compounds, furan-functionalize
Jeffamine JT3000 or JT5000 (Figure 1A,B: blue) and bismaleimide
DPBM or BMI1400 (red), the Diels–Alder reaction forms thermoreversible
covalent cross-links and an elastomeric polymer network (Figure 1B).
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The nonconductive BMI1400-FT3000-r0.5, used as insulating matrix in the
sensors, is obtained via polymerization of a mixture of BMI1400 and
FT3000 with a maleimide-to-furan stoichiometric ratio r of 0.5. The
conductive DPBM-FT5000-r0.6-20wt%CB260, used to manufacture the
fibers, is synthesized via solvent casting a mixture of DPBM and
FT5000 with a maleimide-to-furan stoichiometric ratio r of 0.6 and
20 wt% carbon black CB260, dissolved in chloroform with a 20 wt%.
The synthesis of both of these polymer networks described in detail in
Supporting Information 1, Supporting Information.

Healable Artificial Skin: The sensor network (Figure 1D) is a 55� 55
� 5mm3 square composed out of BMI1400-FT3000-r0.5 in which eight
conductive DPBM-FT5000-r0.6-20wt%CB260 fibers are integrated in a
grid-based morphology. Four fibers are embedded straight in the
x-directions with a distance of 11 mm between them and at a depth of
2.5mm. The other fibers are embedded perpendicular to these, in the
y-direction, also with a distance of 11 mm between them, but at a depth
of 3.5mm. Consequently, perpendicular fibers do not touch in the matrix.
The fibers have a diameter of 0.5mm and are extruded in a dedicated
piston extruder (Supporting Information 2, Supporting Information).
The sensor network is manufactured by straightening the fibers in a laser
cut PMMA mold, in which a mixture of BMI1400 and FT3000 is poured
(Supporting Information 3, Supporting Information). Upon polymeriza-
tion of this BMI1400-FT3000-r0.5 mixture, the matrix solidifies and the
fibers are embedded. During this polymerization, strong covalent
Diels–Alder bonds are formed between the fibers and the matrix. At
the end of the sensor network, the fibers are connected to jump wires
via aluminum crimp connectors.

Characterization: The two Diels–Alder polymer networks are character-
ized via tensile testing until fracture with a strain ramp of 1% s�1 on a
Dynamic Mechanic Analyzer (DMA) Q800 of TA instruments and sample
sizes of 5� 30� 1mm3 for the BMI1400-FT3000-r0.5 samples and 3� 30
� 1mm3 for the DPBM-FT5000-r0.6-20wt%CB260. The single resistive
strain sensor is characterized on a dedicated tensile testing setup. The
sensor network is characterized via training data collected using a UR5
arm from Universal Robots equipped with a cylindrical polylactic acid
(PLA) probe end effector with a diameter of 5 mm (Figure 1A). The skin
is adhered to a 3mm PMMA plate, which is secured to the table below the
probe. The 3D origin is set above the intersection of sensors 4 and 8 in
Figure 2, such that sensor 4 lies in the x¼ 0 plane and sensor 8 lies in the
y¼ 0 plane. The z¼ 0 plane is defined at the skin’s free surface. All
descents and ascents begin from the z¼ 10mm plane, in which the probe
moves between x-y coordinates.

A full characterization of the skin (undertaken after every damage/
healing) consists of three parts: 1) Line: (25 min) 100 equally spaced
points along the most recently damaged sensor are consecutively probed
at a 1.5 mm depth, and all sensor responses are recorded. During each,
the probe descends vertically downward at 3.8 mm s�1, is held in place for
5 s, before vertically ascending at 7.7 mm s�1. The setup pauses for 6 s
between each probe to minimize the transient effects of the skin’s recov-
ery. The 80 inputs to the neural network can be collected at the start of this
wait period, and do not depend on its length. The response recoveries are
generally observed to take �1 s, and it is expected that this wait could be
significantly shortened in future experiments. Animations of the sensor
responses can be found in Movies S3 and S4, Supporting Information.
2) Repeated: (16min) The closest intersection of 2 points to the damaged
location is probed 100 times at a 1 mm depth, and all sensor responses are
recorded. The probe descends and ascends at 7.3 mm s�1, pressing for 5 s
and leaving 2 s between each press. Animations of the sensor responses
can be found in Movies S5 and S6, Supporting Information. 3) Random:
(17 h) 5000 random x-y coordinates are generated within the red square of
Figure 2A, with each randomly allocated to a depth of 0.5, 1.0, or 1.5 mm.
All locations are probed, using the same timings described above (plus
additional movement between locations), and all eight sensor responses
are recorded. These 5000 responses are used to train the neural networks
(90%:10% training:validation split), to plot the error maps, and to
calculate the network’s performance.

Each of the eight sensors is connected to the ground side of a potential
divider, with 120 kΩ resistors completing the connection to a 5 V direct

current (DC) output of a National Instruments multichannel data
acquisition module-USB-6212. Throughout the characterization, sensor
responses are recorded at the central nodes of the potential dividers, using
the USB-6212’s analog inputs at a 20 Hz sampling rate. As such, the
mapping between a sensor’s plotted voltage V and the measured
resistance R is described

R ¼ 120.
V

5� V
kΩ (2)

The 80 inputs of the neural network are sampled from the 8 sensors’
raw voltage measurements at ten specific times after the probe begins to
descend: 1.25, 1.50, 1.75, 2.00, 2.25, 6.50, 6.75, 7.00, 7.25, and 7.50 s. The
24-input case in Figure 2D instead samples the eight sensor voltages at 1,
3, and 8 s, after using total variation denoising (λ¼ 15) to convert the
response to a square wave.[35,48] Intermediate numbers of inputs are
considered in Figure S2, Supporting Information: network performances
are found to have saturated before the 80-input case, such that higher
input numbers are not investigated in this work. Damaging events,
e.g., cuts in the sensor network, are recorded using a digital camera.

Healing: Upon excellent contact and limited misalignment of the frac-
ture surfaces, healing can be performed at room temperature.[44] However,
the rebonding and the resulting healing is accelerated by increasing the
temperature, which increases both reactivity and kinetics in the dynamic
polymer network.[49] For healing on the material level, on the single sensor
level and on the artificial skin level, always the same temperature profile
was used; 1 h at 90 °C. Upon cooling to 25 °C and remaining for 24 h, the
Diels–Alder bonds rebond, eventually recovering mechanical performance.
Heat was provided by placing the damaged parts in a preheated oven
at 90 °C.

Deep Neural Network: The same network architecture is used through-
out the work, implemented using MATLAB’s Deep Learning Toolbox, and
is shown in Figure 2C. The preliminary input layer is of size 80 in all cases
other than the creation of Figure 2D’s 24-input map. Between this and the
3-node regression output (x, y, and depth), three fully connected layers (of
sizes 20, 10, 10) are implemented, using tanh, tanh, and ReLU activation
functions, respectively.

To train the network on 5000 measured probes, the input dataset is first
normalized using the mean and standard deviations of each of the 80
inputs. The corresponding targets are linearly scaled to range between
0 and 1, such that depth and positional accuracies are assigned equal
importance. An adaptive moment estimation optimizer is used with
90%:10% training:validation split, 0.05 learn rate, and gradient threshold
of 1. Training is terminated when the validation loss (calculated every 30
iterations) does not improve over ten consecutive evaluations. If training
exceeds 1250 iterations, the learn rate is dropped to 0.01; training is ter-
minated if 2000 iterations pass. In practice, the only network which does
not fulfill the validation criterion before the learn rate drops is that of
Figure 4C, as shown in Figure S4, Supporting Information.

Transfer learning is performed by “freezing” a specified number (1, 2,
or 3) of the pretrained network’s fully connected hidden layers, i.e., setting
their learn rates to zero. Training is continued using the parameters
described above, with an increased gradient threshold of 10. Four meth-
ods are introduced to select a subset of the available data for training and
validation, representing the strategic choice of recalibration points after
sensor damage and healing: 1) Grid: The x-y coordinates of the selected
recalibration points form a geometric grid, with edges corresponding to
those of Figure 2A’s red zone; only square numbers are tested in Figure 5
and 6, in order to facilitate this. 2) Random: The points are sampled
randomly from the available dataset. 3) Weighted: The x coordinate is
sampled randomly, whilst the y coordinate is sampled from a truncated
Gaussian distribution centered on the damaged sensor, with 15mm
standard deviation. 4) 2D: The coordinates are sampled from a truncated
2D Gaussian, centered at the damaged location with σ¼ 20.I2.

Once a list of coordinates has been generated for the grid, weighted,
and 2D cases, the closest preprobed point is identified, and used as an
input for transfer learning. Probing depths remain randomly distributed
between 0.5, 1.0, and 1.5 mm.
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Supporting Information is available from the Wiley Online Library or from
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