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a b s t r a c t 

Background: Anxiety disorders are highly prevalent in mental health problems. The lives of people suf- 

fering from an anxiety disorder can be severely impaired. Virtual Reality Exposure Therapy (VRET) is an 

effective treatment, which immerses patients in a controlled Virtual Environment (VE). This creates the 

opportunity to confront feared stimuli and learn how to deal with them, which may result in the re- 

duction of anxiety. The configuration of these VEs requires extensive effort to maximise the potential of 

Virtual Reality (VR) and the effectiveness of the therapy. Manual configuration becomes infeasible when 

the number of possible virtual stimuli combinations is infinite. Due to the growing complexity, acquiring 

the skills to truly master a VR system is difficult and it increases the threshold for psychotherapists to use 

such useful systems. We therefore developed a prototype of a supportive algorithm to facilitate the use 

of VRET in a clinical setting. This automatised system assists psychotherapists to use the wide range of 

functionalities without burdening them with technical challenges. Thus, psychotherapists can focus their 

attention on the patient. 

Methods: In this paper both the prototype of the algorithm and a first proof of concept are described. The 

algorithm suggests environment configurations for VRET, tailored to the individual therapeutic needs of 

each patient. The system aims to maximise learning during exposure therapy for different combinations 

of stimuli by using the Rescorla–Wagner model as a predictor for learning. In a first proof of concept, 

the VE configurations suggested by the algorithm for three anonymised clinical vignettes were compared 

with prior manual configurations by two psychotherapists. 

Results: The prototype of the algorithm and a first proof of concept are described. The first proof of con- 

cept demonstrated the relevance and potential of the proposed system, as it managed to propose similar 

configurations for the clinical vignettes compared to those made by therapists. Nonetheless, because of 

the exploratory nature of the study, no claims can yet be made about its efficacy. 

Conclusions: With the increasing ubiquity of immersive technologies, this technology for assisted config- 

uration of VEs could make VRET a valuable tool for psychotherapists. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Anxiety disorders are highly prevalent, often chronic, mental 

ealth disorders. On average, one in four individuals in the United 

tates and Europe suffer from such a condition across their lifetime 
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1,2] . Specific phobias, panic disorders, and Post-Traumatic Stress 

isorder (Ptsds) are examples of anxiety and trauma-related dis- 

rders that can severely impact disability and impairment. For- 

unately, effective treatments exist, like Exposure Therapy (ET), 

hich is grounded in Cognitive Behaviour Therapy (CBT) [3,4] . Dur- 

ng ET, the patient is repeatedly and systematically exposed to 

 feared stimulus in a safe context. For example, patients with 

rachnophobia are exposed to spiders and gradually learn to deal 

ith the elicited fear. ET tends to make a patient less anxious or 

akes the anxiety less debilitating for specific stimuli, although 

his is not a necessity [5] . Understanding what makes the patient 
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1 https://ovrhealth.com . 
2 https://psious.com . 
nxious is essential to create a proper exposure exercise. If a pa- 

ient is afraid of an external cue, e.g. driving a car on a freeway or

n a tunnel or taking an elevator, they should be exposed to sim- 

lar contexts. Complementary, interoceptive cues, e.g. feeling one’s 

eartbeat or experiencing blurred vision, are often both the ob- 

ect of a patient’s fears and essential symptoms of their condition. 

herefore, elicitation of these cues is fundamental to conduct the 

roper exposure exercise. With these requirements, different forms 

f ET are possible, e.g. in vivo (in real life), imaginary, or in Virtual 

eality (VR) [6,7] . To augment both the reach and effectiveness of 

xisting treatments and services, this latter form of Virtual Reality 

xposure Therapy (VRET), in which VR technology enhances expo- 

ure treatment, is increasingly being explored [8] . With VR tech- 

ology, it is possible to simulate almost any scenario. This creates 

he opportunity for fine-tuned personalised VR environments for 

T. However, configuring these environments is not trivial and in- 

roduces an additional workload for the psychotherapist. 

This manuscript is the product of interdisciplinary research be- 

ween psychotherapists and computer scientists. The main objec- 

ive of this paper is the presentation of a prototype of a novel 

daptation algorithm for VRET which generates personalised VR 

nvironments to treat patients with anxiety. The scalability of the 

lgorithm is investigated in terms of execution time relative to the 

mount of input data. Furthermore, a proof of concept VRET ap- 

lication called PATRONUS has been designed and implemented in 

hich the algorithm is integrated. The proof of concept focusses 

n fear of driving a car, claustrophobia, and panic disorders. In this 

roof of concept, data of three prior anonymised clinical vignettes 

re used to generate suggestions with the adaptation algorithm. 

hese suggestions are compared with the manual configurations of 

wo psychotherapists. The adaptation algorithm was not used in a 

linical setting to steer the patients’ therapy. 

This paper presents the algorithm by describing the underlying 

heory and techniques from both the psychological and computer 

cience point of view, making it relevant for experts from both 

omains. The remainder of the paper is structured as follows. 

ection 2 gives a theoretical foundation of the psychological 

earning mechanisms that are relevant for ET. Section 3 continues 

ith the methodology for the design of the presented adaptation 

lgorithm and proof of concept application. This section covers 

he outline of the system in which the adaptation algorithm 

s integrated as well as the knowledge and data management 

echniques used. In Section 3.4 , the PATRONUS proof of concept, a 

RET system that integrates the adaptation algorithm, is described 

n detail. The prototype of the adaptation algorithm is presented 

n Section 4.1 , the technical details of the implementation are 

xplained in Section 4.2 . A scalability test on the execution time 

f the algorithm is presented in Section 4.3 . The results of the 

omparison between the generated suggestions on three clinical 

ignettes are presented in Section 4.4 . Finally, a discussion and 

onclusion is given in Section 5 . 

. Related work 

VR has a proven track record. Contrary to common belief, it has 

ffectively been used in clinical practice for over two decades [9–

1] . The therapeutic approach relying on VR, known as VRET, was 

nitially primarily offered in specialised settings, i.e. treatment cen- 

res for war veterans in the United States suffering from PTSD [12] . 

ne of the main advantages of VRET, compared to conventional 

T, is the possibility to immerse patients in Virtual Environments 

VEs) that are highly controllable and customisable. This is particu- 

arly interesting for the treatment of anxiety disorders. Despite the 

ommon ground of anxiety disorders, each patient is still unique. 

cross patients, there may not only be subtle differences between 

eared stimuli but also in terms of the pace at which the patient 
2

rogresses. Determining when a patient is ready for the next step 

s therefore individually determined. Optimising VE and the pace 

t which they evolve and tailoring that to individual patients is 

herefore necessary. Personalised VEs tend to increase the potential 

f creating a sense of presence, offering patients the idea of really 

eing in a different place than where they physically are [13] . To 

ome extent, the technology itself can facilitate this by creating a 

ighly immersive experience, e.g., accommodating a wide field of 

iew in the virtual world or offering highly realistic VE [14] . How- 

ver, research indicates that creating a feeling of being a part of a 

E is not only a characteristic of the technology itself. Tailoring the 

E to the particular fears of individual patients can play an impor- 

ant role as well [15] . 

Although found to be clinically effective, the technical nature of 

RET and the associated costs did not allow this treatment form to 

ecome widely available yet. In recent years, VR systems ongoing 

ommercialisation has opened up possibilities for more widespread 

se beyond these settings [16] . A lower hardware cost and in- 

reased accessibility of relevant software applications and plat- 

orms hold promise. Alongside established, extensive VRET plat- 

orms, e.g. Oxford VR 

1 and Psious, 2 a low-cost stand-alone VRET- 

pp with demonstrated clinical effectiveness has also made its way 

o market [17] . Nevertheless, this does not imply that no challenges 

emain for psychotherapists to implement VRET. Psychotherapists 

re not necessarily tech-savvy or are insufficiently familiar with 

he wide range of possibilities and features that broadly available 

R systems increasingly support [18] . The current solutions are ei- 

her very static with predefined environments or are dynamic with 

n overload of manually configurable options. The static environ- 

ents are easy to use but lack the possibility to personalise the 

herapy to the patient’s needs completely. The dynamic environ- 

ents allow this personalisation at the cost of increased complex- 

ty, hindering psychotherapists from using these tools effectively. 

he latter can, in part, be overcome through vocational training, 

n which psychotherapists are informed and trained in interact- 

ng with VRET - and other - technological extensions to conven- 

ional practice [19] . As possibilities of VE are incrementally increas- 

ng, so do the possibilities for tailoring these environments. The 

ncreasing complexity implies that truly mastering a system will 

lso require increasing and ongoing amounts of training, which in- 

roduces a novel threshold and limits the full potential for clini- 

al practice. Furthermore, a VRET system should be easy to use, 

nd the psychotherapist should possess the required knowledge to 

dopt a VR tool in therapy effortlessly. Otherwise, the VR system 

raws the psychotherapist’s focus away from the patient, damag- 

ng the patient-therapist bond. 

One way to deal with this challenge is through the development 

f supportive algorithms. Such algorithms could facilitate VR sys- 

ems to consider clinical expertise without requiring psychother- 

pists to grasp the technical nuances fully. Nor do they need to 

now by heart the wide range of functionalities available in a sys- 

em. More specifically, adaptation algorithms are needed to au- 

omatise this translation from expert observations and insights to 

nvironmental adaptations in VR. This will take away the burden 

f requiring psychotherapists to manually create the tailored envi- 

onment they consider most suitable for each step of a VRET. At 

he same time, it can help them keep their focus during sessions 

o where it matters the most: on their patients. 

A vast amount of lab research aims at uncovering the learning 

rocesses underlying ET. For this purpose, psychotherapists often 

se a Pavlovian fear condition paradigm to model the pathogene- 

is of anxiety disorders and ET [5,20,21] . This procedure consists 

https://ovrhealth.com
https://psious.com
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f two parts, starting with the fear acquisition to mimic the devel- 

pment of an anxiety disorder and then followed by fear extinc- 

ion as a model for ET. In the fear acquisition, a neutral stimulus 

onditioned Stimulus (CS) is repeatedly presented to the subject, 

ollowed by an aversive stimulus Unconditioned Stimulus (US). As 

 result, the CS acquires a dangerous meaning and starts eliciting 

ear reactions in anticipation of the US (routinely measured as en- 

anced physiological arousal, US-expectancy and increased nega- 

ive valence of the CS). This is commonly termed the Conditioned 

esponse (CR). The current dominant view is that during condi- 

ioning, the person forms a mental association between represen- 

ations of the CS and the US [22] . Novel confrontations with the CS

ill thereby activate the representation of the US as well, which 

roduces fear reactions. Subsequently, in fear extinction, the sub- 

ect is repeatedly exposed to this CS in the absence of the US, and

he conditioned fear reactions decrease. This fear extinction proce- 

ure is similar to what happens in ET. However, what drives this 

ear reduction? 

A rationale why fear declines during extinction is that the US is 

xpected but not delivered whenever the CS appears. This violates 

 patient’s expectancy, which drives new learning to update false 

xpectations. Violations of these false expectations of danger are 

herefore vital in extinction learning. Researchers have formalised 

his notion in formulas that stipulate how expectations are up- 

ated after each violation. As in the influential theory of Rescorla 

nd Wagner [23] , the standard approach is to calculate the differ- 

nce between what a patient expects and what has actually hap- 

ened. This allows evaluating the amount of learning on any given 

xtinction trial. 

Furthermore, the Rescorla–Wagner (RW) model allows for an 

diosyncratic formalisation per patient per exposure exercise. In 

heory, such an approach would allow to personalise and optimise 

Es. A therapist, however, cannot perform the calculations of the 

W model to determine the amount of learning in real-time dur- 

ng VRET. Therefore, this paper presents an algorithm that uses the 

W model that will play an essential role in supporting a therapist 

o maximise potential learning during exposure exercises. The al- 

orithm suggests VEs that are personalised and optimised for each 

ndividual patient at every step during the therapy process. 

. Methods 

In this work, a prototype of an algorithm for adapting VR en- 

ironments is presented, specifically for VRET. The adaptations aim 

o optimise the configuration of these VEs to match the patient’s 

eeds in each therapy exercise, as indicated by their psychothera- 

ist. The adaptations are performed based on profile information of 

he patient, which describes characteristics of the phobia, and con- 

ext information, which describes what happens during exposure 

xercises. The presented adaptation algorithm is to be integrated 

n a system for administering VRET. In this study the PATRONUS 

pplication is designed as a proof of concept in which the adapta- 

ion algorithm is implemented. This section describes this system 

nd the proof of concept in detail. 

.1. System overview 

The adaptation system for VR content in ET consists of multi- 

le software and hardware components. Fig. 1 gives a high-level 

verview of the system. The personalised adaptations are calcu- 

ated in the Adaptor component, which uses data about the pa- 

ient and the exercises they performed. All the data is gathered 

nd stored in a Knowledge base that combines that data with prior 

nowledge from domain experts, e.g. the knowledge introduced in 

he background section of this work. The Knowledge base offers 

n access point for the Adaptor to get the information needed to 
3

ake adaptations. The output of the Adaptor is multiple sugges- 

ions for new environments. The psychotherapist then selects one 

f these suggestions. Before presenting the environment to the pa- 

ient through the VR system , the psychotherapist can still manu- 

lly change the configuration. By generating multiple suggestions, 

he psychotherapist can still decide how to advance the therapy as 

here often is not only one single solution in exposure therapy but 

ultiple valid approaches. 

Because the psychotherapist has, at all times, complete control 

ver what the patient sees, the adaptation system is a Decision 

upport System (DSS) [24] . It presents the information in an easy 

o digest format while leaving the final decision to a human ex- 

ert. Before, during and after each exposure exercise, information 

s collected from the patient and stored in the Knowledge base for 

onfiguration of the next exercise. 

.2. Knowledge base 

The Knowledge base is a collection point for all information and 

nowledge. This section describes which data is used, how data is 

odelled and how knowledge is extracted from that data. 

.2.1. Data 

Data is fed to the adaptation algorithm to generate new person- 

lised adaptations for the VE. On the one hand, the user’s profile 

nformation identifies the characteristics of their anxiety, e.g. the 

atient is uncomfortable in busy places and apprehensive of bright 

ights. On the other hand, the used context data is the level of anx- 

ety during exposure which aids in understanding the effect of the 

erformed exercises. The patients express their level of anxiety us- 

ng the Subjective Units of Distress Scale (SUDS). It expresses the 

atient’s perception of discomfort as a number between 0 and 10, 

hich is widely used for ET [25] . The context data allows designing 

xercises tailored to the patient’s phobia at each step throughout 

he therapy. 

The profile information is collected by having the patient fill 

ut a VR parameter questionnaire. This questionnaire is specifically 

onstructed for this work and depends entirely on the specific en- 

ironments supported by the system. The questionnaire inquires 

he patient about their expected reactions to the set of stimuli 

n the VR system. All these questions have the following format: 

What effect do you expect [ parameter configuration of the VE ] has 

n you?”. Each question is answered with “Anxious”, “Not anx- 

ous”, or “I don’t know”. Examples are: 

• “What effect do you expect driving through a tunnel has on 

you?”
• “What effect do you expect standing in a crowded elevator has 

on you?”
• “What effect do you expect hearing your own heartbeat has on 

you?”

The context information about the progress during exercises is 

ollected through exposure logs which are commonly used in ET 

6] . In these exposure logs, the patient answers a few questions 

fter each exercise: 

• “How afraid are you immediately after the exposure exercise?”

(SUDS) 
• “What was your peak anxiety level during the exposure exer- 

cise?” (SUDS) 
• “Did that what you feared the most actually happen during the 

exposure exercise?” [Yes/No] 

These questions have been designed to precisely extract the in- 

ormation needed to evaluate the RW model used by the adapta- 

ion algorithm. 
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Fig. 1. Overview of the adaption system for VRET. 
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.2.2. Ontology 

Data in itself has little meaning. Only when adding context 

bout the data, the information it holds becomes clear. Expert 

nowledge is required to add and interpret the context. The merger 

f these types of data and knowledge can ideally be performed 

hrough Semantic Web technologies [26] , i.e. semantic ontolo- 

ies, which provide formal descriptions of concepts, their prop- 

rties and relationships between those concepts. These ontolo- 

ies are built with domain experts through a co-creation ap- 

roach [27] . Instances of the defined concepts are created from raw 

ata, thereby mapping the data on the ontology. These are called 

ndividuals. 

For this research, a new ontology has been developed specifi- 

ally for VRET. To the authors’ knowledge, no ontologies yet exist 

hat describe the domain of CBT in general and VRET in specific. 

he ontology is split up into three logical layers, each modelling a 

ifferent level of specificity. The top layer contains a general up- 

er ontology, which defines concepts relevant to ET in general. The 

ayer below consists of a VRET-ontology, which extends the upper 

ntology with concepts specific for ET in VR. The bottom layer con- 

ains several ontologies, each corresponding to a specific VE. The 

resented ontologies in each layer are publicly accessible from our 

epository 3 and are discussed in more detail below. 

The upper ontology is modelled around the concept of hypothe- 

es about the patient’s fear and is shown in Fig. 2 . These hypothe-

es model a relationship between a set of fear stimuli and re- 

ponses, e.g. a tiny elevator with no windows and no alarm button 

licits high anxiety in the patient. A hypothesis is tested through 

n exposure exercise. Doing the exercise reveals the actual re- 

ponse of the user. One target hypothesis is defined. It is a trans- 

ation of one of the patient’s goals into a configuration for the sys- 

em. The Adaptor will generate intermediate hypotheses based on 

his target hypothesis that is used for new exercises. The ontol- 

gy models both internal stimuli and external stimuli. These are 

roperties of the environment or events happening during the ex- 

rcise. The patient’s responses to the exercise can be modelled as 

ither behaviour characteristics, e.g. avoidance, panic and freezing 

p, or a SUDS. Fig. 2 shows some examples of individuals created 

or some of these classes in green. This represents instantiations of 

hese concepts based on input data. 

The VRET-ontology extends the upper ontology by providing 

RET specific definitions for general concepts and introducing 

ome new ones. The ontology is graphically presented in Fig. 3 . 

 VRScenario embodies the hypothesis in VR. Therefore, it is a sub- 
3 https://github.com/IBCNServices/PATRONUS-ontology . 

c

T

4 
ype of Hypothesis . A scenario is an entire configuration of a VE 

ith all its properties and events that can occur. Exercise, Stimu- 

us and EnvironmentProperty from the upper ontology have a VRET 

quivalent prefixed by the acronym “VR ”. The equivalents of Inter- 

alEvent and ExternalEvent are VRInteroceptiveStimulus and VREvent , 

espectively. These sub-classes are needed and used in this sys- 

em because potentially other ontologies on the same level as 

he VRET-ontology, e.g. an ontology for in vivo ET, could extend 

hese super-classes as well. In addition, the VRET-ontology con- 

ains a classification for stimuli based on the datatype of the stim- 

lus parameter. The Adaptor requires this classification to query 

he Knowledge base about the stimuli present in each VE and how 

hey can be configured. The main two classes are VRDiscreteStim- 

lus for stimuli with discrete values and VRContinuousStimulus for 

timuli with an infinite range of values. Both have some subtypes 

s well. 

The ontologies in the lower layer depend entirely on the de- 

ign of the VEs. They classify the stimuli used in each VE based 

n the types defined in the VRET-ontology. In essence, each ontol- 

gy in the lower layer describes one type of VE and corresponds to 

ne specific phobia to be treated with the system. Through this ap- 

roach, the system is agnostic to the specific phobias it can treat. 

hus, to support more types of VE, only the Knowledge base needs 

o be extended with a description of those VEs, while the rest of 

he system remains untouched. The adaptation algorithm is build 

o work with the classes in the upper layers. Thus, through inher- 

tance, the adaptation algorithm works with any VE ontology that 

xtends the upper layers with sub-classes. Fig. 4 shows an exam- 

le of an ontology for a VE of a driving car. The concepts of the

RET-ontology, shown in grey, are extended to describe the spe- 

ific attributes of the car VE. 

.2.3. Semantic reasoning 

Semantic reasoning allows deriving logical consequences from 

he data and knowledge inside a Knowledge base [28,29] . There are 

wo types of information that can be derived. On the one hand, 

ntology reasoning is used to infer to which classes an individual 

elongs. On the other hand, user-defined reasoning extracts high- 

evel insights from low-level data. This is called user-defined rea- 

oning, as the rules which dictate the reasoner are formulated by 

he end-user. In other words, the domain experts’ knowledge is 

ranslated into rules such that the computer system can replicate 

art of its thought process. 

The Knowledge base contains two user-defined rules, but it 

an easily be extended with more rules or more complex rules. 

he first rule is a simple rule used to define the property has- 

https://github.com/IBCNServices/PATRONUS-ontology


J. Heyse, B. Depreeuw, T. Van Daele et al. Computer Methods and Programs in Biomedicine 225 (2022) 107077 

Fig. 2. This graphical presentation of the upper ontology shows the concepts (black boxes) and the relations between them (black arrows). The green boxes represent 

examples of individuals created for the corresponding classes. 

Fig. 3. The concepts and relations of the VRET-ontology that extend the concepts of the upper ontology (grey). 

T

h

t

t

w

t

t

t

b

a

3

t

r

argetHypothesis . This relation holds when a patient has some 

ypothesis ( hasHypothesis ), and that hypothesis is marked as the 

arget hypothesis ( isTargetHypothesis ). The second rule calculates 

he value of the association change defined by the RW model, 

hich is needed in the Adaptor and is discussed in more detail in 

he next section. This value can be calculated from data collected 

hrough the exposure log. This is an excellent example of how 

he Knowledge base contains expert knowledge. The Knowledge 
5 
ase knows how to calculate the association change based on the 

vailable data. 

.3. Adaptor 

The Adaptor is the component that contains the actual adap- 

ation algorithm for personalising the environment. It collects the 

equired data from the Knowledge base and provides four sug- 
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Fig. 4. An example of a small ontology that describes a VE of a driving car. The environment has four parameters that can be configured (CS). They extend the VRET-ontology 

concepts (grey). 

Fig. 5. The PATRONUS system is a patient-centred blended care solution for anxiety treatment through VRET with the psychotherapist and at home. 
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ested configurations for the following exercises to the psychother- 

pist. The choice for four configurations is primarily pragmatic: 

t creates sufficiently distinct environments while keeping the 

hoice for a specific environment manageable for the psychother- 

pist. The Adaptor employs the theory and model proposed by 

escorla and Wagner [23] for calculating the explicit configura- 

ions. The mechanisms of the algorithm are discussed in detail in 

ection 4.1 

.4. Proof of concept 

The VE for which the adaptation algorithm is generating sug- 

estions are part of the VR system . In this work, a proof of con-

ept application for VRET has been developed which fulfils the role 

f the VR system . This proof on concept application is called PA- 

RONUS 4 and is the product of an interdisciplinary collaboration 

etween computer science engineers, user researchers, IT experts 

nd psychotherapists. The proof of concept application with which 

he adaptation algorithm is interacting is further discussed in this 

ubsection. Special attention is given to the virtual environments 

f the proof of concept. 

.4.1. PATRONUS system 

The PATRONUS system aims to create a patient-centric blended 

ealthcare solution for anxiety treatment through ET. The approach 

onsists of therapy at the psychotherapist’s office and longitudi- 

al follow-ups through homework exercises on a mobile coaching 

pp, as presented in Fig. 5 . During the face-to-face sessions, the 
4 https://www.imec- int.com/en/what- we- offer/research-portfolio/patronus . 

i

l

c

6

atient receives ET through the use of VR. The VE are personalised 

o the specific needs of the patient. In between sessions, the pa- 

ient can continue exposing themselves to anxiety-inducing envi- 

onments through homework exercises on their mobile phone. The 

atient always plans the homework exercises in consultation with 

he psychotherapist. These homework exercises are instructions to 

xperience real-life situations or VRET exercises similar to those 

erformed during the face-to-face sessions. 

At the centre of the PATRONUS system is a dashboard applica- 

ion, as shown in Fig. 6 . Through this dashboard, the psychothera- 

ist can record information about the patient, configure and start 

R exercises for ET and create homework exercises that synchro- 

ise with a mobile application on the patient’s smartphone. The 

sychotherapist can also consult the progress of the patient from 

he dashboard. When configuring a VR exposure exercise, the psy- 

hotherapist can either manually configure a new environment or 

ave the adaptation algorithm generate four suggestions for the 

atient. 

.4.2. The virtual environments 

The VEs are designed to make them easily adaptable, either 

anually or through an algorithm. Each environment has some 

ase elements and characteristics which cannot be changed. These 

efine the overall purpose of the environment. For each environ- 

ent, a set of parameters is defined, which further refines the el- 

ments and characteristics of the environment. These parameters 

re configurable and allow the environment to be adapted. In this 

mplementation, each parameter is considered a potential stimu- 

us that elicits fear, i.e. CS. The following sections discuss specific 

onfigurable parameters. 

https://www.imec-int.com/en/what-we-offer/research-portfolio/patronus
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Fig. 6. The dashboard application is the interface for the psychotherapists to use the entire PATRONUS system. 
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The PATRONUS system incorporates two distinct environments. 

here is an elevator environment and a car environment. Both en- 

ironments can be used for people with panic disorder and claus- 

rophobia. The car environment also focuses on fear of driving. 

Apart from the environment-specific parameters, a small set 

f general adaptation parameters are provided. These are the 

o-called interoceptive parameters. These do not change anything 

bout the environment itself. They are designed to elicit a specific 

nteroceptive sensation in the patient by modifying the perception 

f the environment. 

The elevator and car environments, and interoceptive parameters 

re discussed in more detail in the following sections. 

Elevator environment 

The user can interact with the elevator environment by walk- 

ng around freely and pressing the buttons in the elevator. In this 

cenario, the user controls what happens as they decide to enter 

he elevator or go to a specific floor. Interaction happens through 

and-held controllers, which are represented by hands in the VE. 

he look and feel of the elevator are crucial because this can influ- 

nce the patient’s anxiety level. Therefore, three base types of el- 

vators are supported, a modern-looking elevator ( Fig. 7 a), an old 

levator ( Fig. 7 b) and a service elevator ( Fig. 7 c). They can then be

urther tailored by choosing a type of door from a one-sided slid- 

ng door ( Fig. 7 c), a two-sided sliding door ( Fig. 7 a), or a hinged

oor ( Fig. 7 b), adding windows ( Fig. 7 b), and changing the size of

he elevator. Also, more subtle elements can be configured, such 

s whether the floor buttons are inside or outside the elevator, 

hether an alarm button is present or how much noise the ele- 

ator makes. The number of people in the elevator can be changed 

o simulate a crowded space. To further enhance the sense of pres- 

nce, subtle visual cues are incorporated for the elevator’s speed 

hrough moving light streaks around the doors and the sensation 

f the elevator starting and stopping through some camera shake. 

astly, three parameters simulate defects in the elevator as these 

re essential stimuli for some patients. Random shaking of the ele- 

ator is simulated through camera shaking, the lights in the cabin 
7 
an dim at random moments, and the elevator could get stuck 

hile moving between floors. 

Car environment 

The patient is seated in a virtual car on the freeway. There is 

ittle interaction possible from the user with the VE. The user can 

nly look around while being submitted to what is going on in the 

nvironment. To provide a better sense of presence in the environ- 

ent, the patient holds two controllers matched to hands on the 

teering wheel. In this car environment, many parameters can be 

ltered to increase or decrease the patient’s level of anxiety. The 

rst is the type of freeway: an open freeway ( Fig. 8 a), a tunnel

 Fig. 8 b) or a bridge ( Fig. 8 c). The traffic on the road is configurable

s well: the amount of traffic, the speed level, the presence of mo- 

orcycles ( Fig. 8 b), and the lane in which the car is driving. Also,

he time of day and the weather conditions can be altered. In this 

E, it can be nighttime or daytime, and it can be sunny or rainy 

nd clear or foggy. A set of parameters focuses on the situation 

n the car itself and discerns between visual and auditive stimuli. 

or the visual parameters, the patient can be seated behind the 

teering wheel or sit in the passenger’s seat in the front or the 

ack. Additionally, the number of passengers in the car can also be 

odified. There is also an option for enabling a blinking warning 

ight on the dashboard to signal a defect. Finally, four more param- 

ters provide acoustic stimuli to increase or decrease the patient’s 

evel of anxiety, as some patients are more susceptible to sounds. 

he patient can hear a car horn, wailing sirens and engine sounds. 

lso, the radio can be turned on and off, either broadcasting traffic 

nformation or instrumental music. 

Interoceptive parameters 

Dizziness is achieved by applying motion on the camera view 

f the virtual environment, which causes a misalignment between 

he physical position of the user’s head and the position in the vir- 

ual environment. A filter on the visual feed applies a blur to sim- 

late a sudden vision blur for the user. Tunnel vision is also a filter 

pplied on the visual feed. This filter narrows down the field of vi- 

ion resulting in a small area through which can be seen, while 
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Fig. 7. The look and feel of the elevator depends on the combination of many parameters such as the elevator interior, the door type, and the buttons’ position. 

Fig. 8. The combination of parameters such as the road type, the seating position and the time of day influence the representation of the car environment. 

8 
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Fig. 9. The interoceptive stimuli are adjustable in the dashboard view during an 

exposure exercise. 
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Fig. 10. Flow diagram of the adaptive algorithm based on the Rescorla–Wagner 

model. 
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he rest is black. Another effect causes light flickers which cre- 

te short bursts in which the view turns completely white. These 

ickers happen at random points in time. The last two are based 

n an acoustic cue. The sound of a heartbeat can be simulated. 

his creates the illusion that the patients hear their heartbeat. 

astly, intentionally causing hyperventilation is a common exer- 

ise in ET and elicits interoceptive sensations. Hyperventilation can 

e triggered by letting the patient breathe deeply in and out at 

 steady and fast pace. In the VE, a beeping sound indicates the 

ace. All interoceptive parameters can be set in the dashboard, 

ee Fig. 9 , through a toggle button and a slider indicating the 

ntensity. 

. Results 

The primary result presented by this paper is the prototype of 

n adaptation algorithm for VRET. The algorithm creates four sug- 

estions for possible new configurations of VE based on the needs 

f the patient by relying on the theoretical foundation provided 

y the RW model and data of the patient and prior exercises. This 

rototype is further described in this section. Furthermore, a scal- 

bility test on the execution time of the algorithm is performed in 

he next part of the section. Finally, the suggestions resulting from 

his algorithm are compared to prior manual configuration of two 

sychotherapists from three anonymised clinical vignettes. 
9 
.1. Adaptation algorithm 

The adaptation algorithm relies on a plethora of heterogenous 

ata of the patient, its history and the available VE for the VRET. 

his information is consolidated in a knowledge base as discussed 

n Section 3 . This knowledge base is critical for the adaptation al- 

orithm. Fig. 10 presents the process of the adaptation algorithm 

o generated the four suggestions based on the information it has 

vailable. 

The process starts by querying the knowledge base for the tar- 

et hypothesis and a base hypothesis. The target hypothesis has 

een constructed from the VR parameter questionnaire. The base 

ypothesis corresponds to the hypothesis that was used in the 

ast exercise. It is called the base hypothesis or configuration be- 

ause it forms the starting point for the suggestions of the next 

xercise, i.e. for each new exercise, the configuration of the previ- 

us exercise is altered. If no target or base hypothesis exists, de- 

ault suggestions will be provided to the psychotherapist as there 

s not enough data available to construct sensible suggestions. In 

his case, the process terminates early. 

The next step is updating the RW model [23] . The following two 

ormulas describe the model. 

V 

n +1 
X = αX β

( 

λ −
∑ 

s ∈ S 
V s 

) 

, (1) 

 

n +1 
X = V 

n 
X + �V 

n +1 
X . (2) 

Eq. (1) models the change in association, �V X for trial n + 1 be-

ween the CS X and the US whereas, Eq. (2) expresses the total as- 

ociation strength between CS X and the US after n + 1 trials. In 

q. (1) , αX is the salience of X , β is the rate parameter for the US,

is the maximum association possible for X , and S is the collec- 

ion of all stimuli presented during the trial. 

The knowledge base provides the information needed to per- 

orm the update step. Specifically, it provides estimations for the 

alues of αX , β , λ and V tot . The theory of Rescorla and Wagner 

tates that αX and β need to remain the same for each exercise. 

he parameter β denotes the rate at which a patient forms new 

ssociations. Therefore, the value of β is associated with the num- 

er of exposure exercises needed before the patient shows a re- 

uced SUDS for a particular stimulus. For the construction of this 

lgorithm, we assume a value of 0.2 for the product of αX and β
n Eq. (1) . Finding the optimal values for αX and β is outside the 

cope of this research. This work uses an estimated value as a de- 
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Fig. 11. The implementation overview of the different components of the adapta- 

tion system and how the message bus is used for communication with any other 

part of the system. 
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ault. The value for λ can be extracted from the exposure log di- 

ectly. The answer to the question “Did that what you feared the 

ost actually happen during the exposure exercise?” is either yes 

r no , which translates to a value of 1 or 0, respectively, for λ.

astly, V tot is the fear association of the patient for the combina- 

ion of all stimuli in the current exercise. This value can also be 

irectly obtained from the exposure log. The observed peak dis- 

omfort provides this value. 

With the updated RW model, the four suggestions can be cal- 

ulated. Each suggestion has an estimated difficulty as a number 

etween 0 and 1 denoted difficulty_level . An even distribution of 

ifficulties ranging from 0.5 to 0.95 is chosen, resulting in a diverse 

ange of suggestions that are not too simple but still challenge the 

atient. Adjusting the difficulty level for each of the four sugges- 

ions can result in more diverse configurations if needed. 

The difficulty value influences the number of stimuli for which 

 new value is chosen and the value of the new stimulus itself. 

s mentioned before, a new configuration is created by chang- 

ng the configuration of the previous exercise, which was called 

he base hypothesis. Each stimulus from the base configuration 

hanges with a probability p, as defined in Eq. (3) , and stays the

ame with a probability of 1 − p. Therefore, a higher difficulty 

alue leads to more stimuli with a new value, while a higher as- 

ociation with the previous exercise leads to fewer stimuli with a 

ew value. 

p = di f f icul ty _ l e v el ∗ (1 − V tot ) (3) 

The new value of a stimulus is based on s , according to Eq. (4) .

his value indicates the distance between the value of the stimulus 

nd the target value of that stimulus. A value of 1 results in pre-

isely the target value, while 0 results in the value furthest away 

rom the target. 

 = di f f icul ty _ l e v el /V X (4) 

The target value t is the value given to a stimulus in the target 

ypothesis. The method for calculating the exact new value u of 

 stimulus depends on the datatype of its parameter and the tar- 

et value of the stimulus. The four supported types are parameters 

ith boolean values, parameters with an ordered set of possible 

alues, parameters with an unordered set of possible values and 

arameters with continuous values. 

For stimuli with boolean parameters, the value of u is calculated 

s Eq. (5) formulates. 

 = 

{
true s > 0 . 5 

false s ≤ 0 . 5 

(5) 

If the parameter can take a value from a set of ordered options, 

 is first transformed to match the range between 0 and t , and then

he value is rounded to the nearest integer number. This value then 

epresents the selected option from the set as Eq. (6) states. 

 = round (s · t) (6) 

When the set of options is unordered, the value of s has little 

ignificance. Therefore, the algorithm always selects the exact tar- 

et value. 

Finally, for continuous values, the new setting is calculated by 

ultiplying s by the target value and adjusting for the minimum 

alue of the range as stated in Eq. (7) . 

 = (s · (t − v alue min )) + v alue min (7) 

As mentioned before, the value of s indicates the relative differ- 

nce between t and u . When s = 0 , the difference should be max-

mal. In these formulas, the assumption was made that the target 

alue is always close to 1, indicating a high intensity. Therefore, the 

pposite would be 0, indicating a low intensity. In practice, this as- 

umption does not always hold as the target could also be exposed 
10 
o a low-intensity stimulus because it elicits fear. If the target is 

lose to 0, the new value of the stimulus can be calculated using 

he previous formulas as 1 − u . 

.2. Implementation 

The system in which the adaptation algorithm gets integrated 

s responsible for collecting data from different sources (e.g., man- 

al input, questionnaires, previous exercises) and rendering the 

E based on the configuration. Therefore, the algorithm and the 

nowledge base need to interact with the system to use the col- 

ected data and instruct it how to configure the VEs. The technical 

mplementation details of the interaction with the system are dis- 

ussed here. 

Fig. 11 illustrates the three components that enable the inte- 

ration of the adaptation algorithm. These components communi- 

ate with any other part of the system through a message bus. A 

ontinuously running listener process written in Python monitors 

he bus for new incoming messages for the adaptions system. The 

essage on the bus contains an identifier indicating for which pa- 

ient the adaptations should be calculated. The message also con- 

ains the locations of the relevant data for that patient. For ev- 

ry incoming message, a new process is started which performs 

he calculations for the adaptions. The control flow is driven by 

he Adaptor component as depicted in Fig. 1 , which is also imple- 

ented in Python and interacts with a Java-based semantic rea- 

oner called Pellet [30] . Once the suggestions are generated, these 

re pushed back on the message bus for the following components 

o handle them. 

.2.1. Ontology representation and reasoning 

Ontologies need a formal description for a computer system 

o be able to interpret it. The ontology description uses OWL 2 

31] , the most recent version of Web Ontology Language (OWL). 

WL is a recommendation of the W3C. The Adaptor uses OWL API 

32] for handling the OWL ontologies at runtime, while SPARQL 

s used to query the information from the ontologies. The Pro- 

égé [33] editor software was used to create the OWL ontologies. 

isting A.1 presents a fragment of the VRET-ontology using OWL. 

The user-defined rules also need a formal definition for the rea- 

oner to interpret them. The Semantic Web Rule Language (SWRL) 

34,35] can be used for this. It makes it possible to describe logical 

ules for OWL ontologies. An example of a SWRL rule is as follows: 

ExposureLog (? e ) ∧ experiencedDiscomfort (? e , ? x ) 

∧ expectedDiscomfort (? e , ? y ) ∧ swrlb:subtract (? z , ? x , ? y ) 

−→ associationChange (? e , ? z ) 
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Fig. 12. Overview of the data mapping process showing the two processor units (squares) and the data objects (ovals) that flow through it. The orange process is only 

executed once before execution time. Similarly, the orange data objects are created once at design time. The black process is executed repeatedly at runtime resulting in 

new data objects. 
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.2.2. Data mapping 

Raw incoming data is mapped onto the ontology. This means 

reating instances of the concepts defined in the ontology and as- 

igning relationships between these instances based on the incom- 

ng data. Fig. 12 depicts this data mapping process. The raw data 

nters the adaptation system in a semi-structured format, namely 

SON. The result of this data mapping is a set of Resource De- 

cription Framework(RDF) triples. A triple consists of a subject, a 

redicate and an object, e.g. patient (subject) hasHypothesis 
predicate) hypothesis (object). In this way, every relation of ev- 

ry instance can be defined. The data in semi-structured JSON for- 

at can be automatically mapped using a tool called RMLmapper , 

hich uses the RDF Mapping Language(RML) [36] to define rules 

or mapping from one structure to another. 

The RML syntax is rather complex. Therefore, an additional tool 

s used for generating these rules from a much simpler syntax. 

ARRRML [37] is an application that accepts mapping rules in 

AML syntax and outputs the corresponding RML rules. 

Constructing the RML rules using YARRRML is only performed 

nce during implementation. The mapping into RDF triples using 

MLmapper is performed for every new data entering the system. 

his is illustrated by the orange and black components, respec- 

ively, in Fig. 12 . 

To illustrate this process, the following example is presented. 

he input is the JSON-file in Listing 1 , which contains only an ID

f the patient. The input data is mapped according to the mapping 

ules defined in Listing A.2 . These rules are in YAML syntax. There- 

ore, they are first translated into RML syntax, which results in the 

ules shown in Listing A.3 . The output of the process for this ex- 

mple is two triples shown in Listing 2 . The first triple states that

here is some entity which is of type Patient . The second triple in-

icates that this new entity has the property hasPatientID , which 

rovides it with an ID. 

isting 1. This is an example of a possible input JSON file. It only contains an ID of

 patient. 

.3. Evaluation of the execution time 

It is hardly feasible to collect large amounts of data from real- 

ife experiments with actual patients for evaluating computational 
Listing 2. The output of the mapp

11 
omplexity and performance, nor would it be ethically appropri- 

te to do so with a first protoype of the algorithm. Therefore, 

hese tests ran in a simulated environment with randomised data. 

pecifically, the execution time of the algorithm for an increasing 

mount of input data is evaluated. The amount of input data di- 

ectly correlates to the number of previous exercises. Therefore, the 

ests are evaluated as a function of the number of previous exer- 

ises directly. The content of the processed data does not influence 

he execution time, thus, randomised data is used. 

The number of input exercises for the simulation range from 1 

o 50. The execution metrics presented are averaged over 50 rep- 

titions. All simulations ran on a 2,4 GHz Dual-Core Intel Core i5 

ith 8GB of memory. The code is written in Python without any 

arallel computing. 

The execution of the entire algorithm is divided into five steps, 

he pre-processing step, the RML-mapping step, the reasoning step, 

he updating step of the RW model and the suggestion generation 

tep. The execution time for each step is reported individually. A 

ategory is added for other processing, including downloading data 

nd querying the knowledge base to ensure the sum of all steps 

quals the overall execution time. Fig. 13 shows the stack plot of 

he execution time as a function of the number of previous exer- 

ises. Table 1 presents the exact values of each step’s average exe- 

ution time and standard deviation for 1, 10, 20, 40 and 50 previ- 

us exercises. 

Every step of the algorithm scales linearly with the number of 

revious exercises. The pre-processing step and the other processing 

ake up the least amount of time and are almost negligible com- 

ared to the other four classes. For an input of 50 exercises, these 

our classes account for 99 . 2% of the total execution time. In to- 

al, 14 . 07% of the execution time is spent on data mapping, 38 . 54%

s spent on reasoning, 6 . 62% is spent on updating the RW model, 

nd 39 . 98% is spent on generating suggestions. All steps together 

cale at a rate of 0.27 s per additional previous exercise. The stan- 

ard deviations are reasonably low for each step. The reasoning 

tep does show the most deviation at max 953 ms. 

Fig. 14 compares the slope of each of these four dominating 

omputation steps against each other. The RW updating step is the 

east affected by the amount of input data, while the reasoning 

nd suggestion generation steps are affected the most. The reason- 

ng step has a very high initial overhead. However, it has a rela- 

ively small slope. After approximately 39 exercises, the execution 

ime of the generation step will dominate over that of the reasoning 

tep. The high initial overhead of the reasoner is due to the slow 

tartup time of the reasoning process, which is performed at the 
ing process are two triples. 
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Fig. 13. The majority of the total execution time of the algorithm, namely, 99%, is accounted for by four steps of the algorithm: RML-mapping step (14%), reasoning step 

(39%), updating step of the RW model (7%) and the suggestion generation step (40%) for 50 exercises. Pre-processing and the “other processing” category are almost negligible, 

making up the final 1%. 

Table 1 

Each test condition is executed 50 times, the average execution time and standard deviations for each step are presented in seconds for 1, 10, 20, 30, 

40 and 50 previous exercises. 

Number of exercises Pre processing RML mapping Reasoning Updating RW model Generating suggestion Other 

avg std avg std avg std avg std avg std avg std 

1 0.023 0.003 0.806 0.104 2.060 0.245 0.023 0.003 0.568 0.047 0.012 0.004 

10 0.035 0.005 1.066 0.052 2.785 0.126 0.191 0.036 1.720 0.143 0.021 0.001 

20 0.050 0.009 1.380 0.081 3.661 0.499 0.405 0.073 2.934 0.285 0.027 0.008 

30 0.071 0.048 1.730 0.265 4.666 0.499 0.633 0.103 4.186 0.335 0.033 0.016 

40 0.080 0.004 2.054 0.098 5.525 0.685 0.870 0.137 5.441 0.468 0.038 0.018 

50 0.095 0.006 2.412 0.133 6.610 0.953 1.135 0.171 6.857 0.553 0.041 0.016 

Fig. 14. For each step, the average execution times (faded colours) are shown to which a linear function is fit (bright colours). Every step of the algorithm scales approx- 

imately linearly with the number of previous exercises. However, the reasoning and generation steps are the most affected by the amount of input data, as the execution 

time increases significantly more than the other two dominating computation steps with increased input data. 
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tart of each simulation run. OWL-DL reasoning is a slow process 

hat scales poorly for large amounts of data [38] . 

In the presented system, the Adaptor component lacks the capa- 

ility of persistent storage. This has an impact on the data mapping 

tep and the calculations for updating the RW model. Specifically, 

ntermediate results of both steps cannot be stored. By introducing 

ersistent storage and storing intermediate results, these two steps 

an be optimised. Since only new information from the last exer- 

ise needs processing, the mapping step would reduce to mapping 

he data of the last exercises. The execution time would be con- 

tant at approximately 800ms, as can be deduced from Fig. 14 . The 

ame applies to the update step of the RW model. The time needed 

or this step would be constant at approximately 20ms, as shown 

n Fig. 13 . Assuming these optimisations are applied, the execution 

imes can be estimated to be reduced by 15 . 8% for 50 previous ex-

rcises. This results in a scaling factor of 0.22 s per previous exer- 

ises. Additionally, the reasoning process would benefit from stor- 

ng intermediate results. The reasoning would be limited to data 

rom new exercises by storing the materialised ontology for each 

atient. Therefore, the gain in execution time is more challenging 
d

12 
o estimate and is therefore not included in the presented time es- 

imation above. 

.4. Clinical vignettes 

Through tests on data of clinical vignettes, the overall quality 

f the generated suggestions is evaluated. Specifically, VRET ther- 

py sessions were held with clinical patients without the use of 

he adaptation algorithm. The data of these therapy sessions was 

ollected as part of a prior study, for which the protocol was ap- 

roved by the Medical Ethical Committee of Ghent University Hos- 

ital [EC/2019/0893]. During these sessions, three patients suffer- 

ng from panic disorder or specific phobia – fear of driving diag- 

osed via a structured interview, Mini International Neuropsychi- 

tric Interview (MINI) [39] – received ET with manually config- 

red VR exposure exercises on the PATRONUS system. These pa- 

ients had the following characteristics: Patient 1, male, 34 years, 

iagnosed with panic disorder; Patient 2, male, 68 years, diagnosed 

ith specific phobia and fear of driving; Patient 3, female, 55 years, 

iagnosed with specific phobia. The two psychotherapists perform- 
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Table 2 

The similarity of each generated suggestion compared to the used configu- 

rations. The values in bold indicate the highest similarity for each configu- 

ration. The values in italic indicate the choice of the psychotherapist during 

the post-study. 

Exercise 

Suggestions 

1 2 3 4 

1 0.53 0.66 0.53 0.50 

2 0.81 0.83 0.62 0.82 

3 0.77 0.78 0.77 0.79 

4 0.81 0.79 0.78 0.77 

5 0.58 0.60 0.55 0.49 

6 0.46 0.46 0.44 0.38 

7 0.45 0.45 0.40 0.34 

8 0.83 0.79 0.75 0.81 

9 0.66 0.65 0.60 0.62 
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ng the therapy are experienced in their domain and well familiar 

ith the PATRONUS system (psychotherapist 1, 38 year old, psy- 

hotherapist 2, 31 years, with experience between 10 and 15 years 

f professional experience), both are IRB approved for participating 

n the study. This experience provides them with good knowledge 

f how to create the best VE for the patients manually. During a 

ost-therapy evaluation, the psychotherapists were presented with 

ultiple sets of four suggestions for each exercise they actually 

erformed with the patient during the therapy sessions. In other 

ords, each set of suggestions was calculated with the data which 

ould be available at that time to simulate the actual setting. 

On the one hand, these suggestions are compared with the 

anual configurations of the psychotherapists from the actual ex- 

rcise. On the other hand, the psychotherapists were asked to in- 

icate the most appropriate suggestions. This approach was cho- 

en to prevent the algorithm from influencing the psychotherapist, 

hereby introducing bias into the results. All tests from this eval- 

ation are applied to the car environment because none of the 

articipating patients required therapy using the elevator environ- 

ent. However, environment design should not significantly im- 

act the results as the algorithm is environment agnostic. In other 

ords, the algorithm should adapt the values of any VR parameter 

r combination of parameters. 

The similarity of the two configurations increases with the 

umber of parameters with the same value between these two. 

or this evaluation, this similarity is expressed as a number be- 

ween 0 and 1, where a value of 0 means two configurations are 

s dissimilar as possible while a value of 1 denotes two identi- 

al configurations. Table 2 presents the similarity of the four sug- 

estions generated by the adaptation algorithm against the manual 

onfiguration of each exercise. For each row, the suggestion with 

he highest similarity is indicated in bold. In most cases, the high- 

st similarity is between 0.6 and 0.8. This result indicates that the 

uggestions are indeed close to what the psychotherapist would 

o. For some configurations, the similarity is the same compared 

o two different suggestions. That is because the actual configura- 

ion was equally similar to both, not because both suggestions are 

dentical. This occurs for exercises that have relatively low similar- 

ty to all suggestions. It suggests that the presented suggestions are 

ot in line with the psychotherapists approach during the therapy. 

The results in Table 2 present the similarity scores of the en- 

ironment parameters and interoceptive parameters combined for 

ine different exposure exercises covering three patients. Each ex- 

rcise was assessed by one of the two psychotherapists. The tests 

how a significant difference in the average similarity for intero- 

eptive parameters and environmental parameters. The similarity 

s 0.88 on average for the interoceptive parameters, while for the 

nvironmental parameters, it is 0.58. For specific suggested config- 

rations, the similarity on the interoceptive parameters equals 1, 
13 
eaning the configurations are identical. It is clear that appropri- 

te personalised interoceptive parameter values are much easier to 

redict. However, if this increased accuracy is due to the smaller 

onfiguration space of these parameters compared to the environ- 

ent parameters or better predictability of interoceptive parame- 

ers is unclear from the data. 

The cells with a value in italic in Table 2 indicate the sugges- 

ions the psychotherapist assessed as the most appropriate dur- 

ng the post-therapy evaluation. As can be seen, for some exer- 

ises, the psychotherapist decided that none of the suggestions was 

ood enough (Ex. 3, 4 and 9). For other exercises (Ex. 1 and 2), 

he choice of the psychotherapist matched the suggestion with the 

ighest similarity, i.e. the values in bold. In all other cases, the 

hoice of the psychotherapist during the post-study did not match 

ith the highest similarity suggestion of the actual therapy ses- 

ions. However, in those cases, the difference in similarity to the 

ctual configuration between the psychotherapist’s choice and the 

loses matching suggestion is minor. On average, a difference of 

.09 in similarity, with a minimum of 0.02 and a maximum of 0.21, 

as obtained. 

. Discussion and conclusion 

This work presents a prototype of an adaptation algorithm for 

ersonalised VE in VRET. A proof of concept application for VRET 

nabled the integration of the algorithm. Data from three clinical 

ignettes enabled the comparison of the manually configured envi- 

onments and the generated suggestions. The results of this com- 

arison indicate that the proposed system has merit, as therapists 

hoose similar configurations to at least one generated suggestion. 

ndeed, the results suggest that the output of the adaptation algo- 

ithm is valuable to the experienced psychotherapists in this study. 

owever, future studies are needed to discover if less experienced 

sychotherapists would benefit even more from the algorithm. 

From a computational point of view, the tests showed that the 

ystem scales linearly with the number of previous exercises with 

 factor of 0.22 s per exercise. Although this is quite steep, the 

omputation for 50 previous exercises is below 15 s. The domain 

xperts estimate that the actual required number of VR exercises 

an vary but rarely exceed 50. Therefore, the execution time mea- 

ured for 50 exercises can be considered an upper bound, which is 

cceptable for therapy application. 

The relevance for potential application in clinical practice has 

lso been a key focus throughout this work. Researching this rele- 

ance required a multidisciplinary mindset and resulted in contin- 

ous collaboration with psychotherapists. They provided a theoret- 

cally sound foundation for the resulting adaptation algorithm and 

mplemented a proof of concept in practice. This helped to demon- 

trate the algorithm’s potential better and pushed this research fur- 

her than mere theoretical conceptualisation. 

Nonetheless, further improvements are required to unlock the 

ull potential. The application of the RW model should be fur- 

her investigated. Specifically, research on the optimal values for 

x and β is needed. As αx depends on the impact of stimulus x 

n each user, this value could potentially be calculated for each 

ser/stimulus pair individually. Analogously, the parameter β mod- 

ls a property of the user itself, namely, the rate at which patients 

orm new associations. Both parameters could be calculated from 

he personality treats of the patients. 

Furthermore, no claims can be made concerning effectiveness 

r efficacy at this point. Future studies should be set up with 

arge samples of participants, both psychotherapists and clients, 

nd with a rigorous methodology. The development and evaluation 

ethodology proposed by Birckhead et al. [40] can serve as an ex- 

ellent framework to further iterate on the design of this algorithm 

nd its VR application. 
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It is clear from the results that the therapist makes different 

ecisions in some cases than those suggested by the adaptation al- 

orithm. On the one hand, fully quantifying and automating the 

omplex process of ET is probably not possible nor feasible. This 

s why the adaptation algorithm should primarily be considered 

s a decision support system to help guide psychotherapists. On 

he other hand, many solutions proposed by the system could have 

een proven to be relevant, as it is unlikely that only a single per-

ect configuration of the VR environment can be made at any given 

ime. Nevertheless, the quality of the system can be further im- 

roved by learning from the decisions made by psychotherapists, 

specially as they also become increasingly familiar with VRET, the 

unctionalities and the potential. Through self-learning technolo- 

ies, the system would learn to adapt to the intentions of the ther- 

pist as well. Furthermore, with more qualitative input data for the 

lgorithm, better suggestions become possible. Where a discrete 

xpectancy violation metric is used in the current design of the al- 

orithm, a continuous expectancy rating can provide a quantitative 

nd qualitative improvement in future studies. 

As immersive technology is becoming increasingly accessible, it 

s bound to spark the interest of psychotherapists as well. One par- 

icular technique that has already been proven valuable and effec- 

ive in research is VRET. We expect that - with further research 

 adaptation algorithms like the one described in this paper will 

lay a vital role in facilitating successful uptake in clinical prac- 

ice. These algorithms have the potential to reduce the challenge 

or psychotherapists to master the operation of the systems fully 

nd to make use of technology for its primary purpose: to facil- 

tate offering high-quality and effective care to those in need of 

upport. 
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A

nt of the VRET-ontology. 

ct to create a new invidual of type Patient and give it an ID. 
ppendix A. Listings 

Listing A.1. Fragme

Listing A.2. The mapping rules in YAML syntax instru
15 
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be the same as the mapping rules in YAML syntax. 
Listing A.3. These RML-mapping rules descri
16 
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