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Abstract. Search schemes enable the efficient identification of all ap-
proximate occurrences of a search pattern in a text. Using a bidirectional
FM-index, search schemes describe how to explore the search space in
such a way that runtime is minimized. Even though in-index matching
has an optimal time complexity, relatively expensive random memory
access is required for elementary operations on the FM-index. We an-
alyze to what extent in-index matching can be complemented with in-
text verification where a candidate occurrence is directly validated in
the text using a bit-parallel, pairwise alignment procedure. We find that
hybrid in-index/in-text matching can reduce the running time by more
than a factor of two, compared to pure in-index matching. We present
Columba 1.1, an open-source (AGPL-3.0 license) software tool written
in C++ that efficiently implements these ideas. Using a single CPU core,
Columba 1.1 can identify, within a maximum edit distance of four, all
occurrences of 100 000 Illumina reads (150 bp) in the human reference
genome in roughly half a minute. This significantly outperforms exist-
ing, state-of-the-art tools.

Keywords: Lossless sequence alignment · FM-Index · bit-parallel align-
ment · in-text validation

1 Introduction

Approximate pattern matching is a well-studied problem in computer science and
central to many bioinformatics applications. It involves identifying occurrences of
a search pattern P in a (much) larger text T . For example, in a typical setting,
P could be a short DNA fragment (a read) and T a (collection of) reference
genome(s). Due to sequencing errors and genetic diversity among individuals,
one is often interested in finding approximate occurrences of P in T .

Historically, lossy approximate pattern matching algorithms gained a lot of
popularity. Such algorithms rely on heuristics to quickly identify some (but not
necessarily all) approximate matches of P in T . By sacrificing some sensitivity,
significant performance gains can be obtained. As such, lossy algorithms are
used in many state-of-the-art alignment tools such as BLAT [8], BLAST [2],
BWA [12], etc. In contrast, in this paper, we focus on lossless algorithms which
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are guaranteed to retrieve all approximate matches of P in T under a certain
error distance metric. Specifically, the k-mismatch problem involves identifying
all occurrences of P in T with up to k errors. Under the Hamming distance
metric, only substitutions are allowed whereas the Levenshtein/edit distance
metric allows substitutions, insertions, and deletions. In this work, we focus on
the edit distance metric.

Full-text indexes such as suffix trees [5], enhanced suffix arrays [1] and FM-
indexes [4] are used within numerous bioinformatics tools [18]. They allow for
unidirectional, exact pattern matching, one character at a time, with a runtime
proportional to the length of the search pattern and independent of the size of T .
A naive approach to lossless approximate pattern matching would be to explore
all possible branches in the index (called backtracking) within the maximum
allowed Hamming/Levenshtein distance of search pattern P . This approach has
two problems: a) the number of branches to explore increases rapidly with k and
b) the vast majority of branches that are explored eventually turn out not to be
matches.

A bidirectional index (such as the affix tree [13], the affix array [24] and
the bidirectional FM-index [11]) augments the functionality of its unidirectional
counterpart by allowing patterns to be matched in both directions: left-to-right
and right-to-left. Using, e.g., a bidirectional FM-index, a query pattern can be
searched by starting at any arbitrary position of that pattern and extending
the match either to the left or to the right in arbitrary order. More formally, a
(partial) match P can be extended by a single character c to either cP or Pc.
In 2009, Lam et al. were the first to note that this added functionality opens up
new possibilities for faster lossless approximate matching [11]. Leveraging the
classical pigeonhole principle, they partitioned P into k + 1 parts, from which
immediately follows that any approximate occurrence with at most k errors,
must have an exact match with at least one of these parts. By first performing
an exact search for one part of P (which maps to a single branch of the index)
and then extending this partial match with an approximate search (backtrack-
ing), significant computational gains are obtained. This idea was generalized by
Kucherov et al. who introduced the concept of search schemes [10]. Informally,
search schemes define how a pattern P is matched using a bidirectional index,
such that unsuccessful branches are discarded as quickly as possible and, hence,
the runtime is minimized. Kucherov et al. also proposed a number of efficient
search schemes with k + 1 and k + 2 parts for up to k = 4 errors. Kianfar et
al. [9] further extended this work and used integer linear programming (ILP)
to generate additional search schemes for the Hamming distance metric. Addi-
tionally, they show that related work on lossless approximate pattern matching
by Vroland et al. on 01*0 seeds [26] can also be expressed as search schemes.
Therefore, search schemes represent a flexible framework for lossless approximate
pattern matching in which a multitude of algorithmic ideas can be expressed.

Recently, we proposed Columba [21], an efficient software tool for lossless
approximate pattern matching using arbitrary search schemes. We proposed an
algorithm for the dynamic partitioning of search patterns to further reduce the
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search space and used an efficient memory layout for the data structures that
underlie the FM-index. In this paper, we further build upon this work and we
make the following contributions:

1. We adapted the search schemes by Kucherov et al. with k + 1 parts by
imposing more stringent lower bounds on the cumulative number of errors in
the different parts of the search pattern while maintaining the guarantee that
all possible error distributions are covered. These adapted search schemes
reduce the runtime by nearly 15%.

2. We adopt the bit-parallel, pairwise alignment algorithm by Hyyrö [7]. This
algorithm is used to accelerate edit distance computations during in-index
matching. Additionally, it is applied to in-text verification where a candi-
date occurrence of the search pattern is assessed directly in the text T . We
show that using hybrid in-index matching/in-text verification can reduce the
runtime by half compared to using only in-index matching.

3. We developed Columba 1.1, an open-source implementation in standard
C++11 in which the above techniques were implemented. We demonstrate
that our implementation is several times faster than other state-of-the-art
lossless alignment algorithms such as GEM [14] and Bwolo [26] for the task
of identifying all occurrences of 150 bp Illumina reads in the human refer-
ence genome within an edit distance of k = 4. We show that Columba 1.1 is
faster than BWA in mem mode for k = 1, 2 and 3 and has a similar runtime
for k = 4. Columba 1.1 is available at https://github.com/biointec/columba
under AGPL-3.0 license.

This paper is organized as follows. In Section 2, we briefly describe the (bidi-
rectional) FM-index and search scheme functionality. Section 3 introduces the
adapted search schemes that are used throughout this work. In Sections 4 and
5, we provide the key algorithms for bit-parallel edit distance computations and
their application to in-text verification, respectively. Finally, Section 6 provides
performance benchmarks of Columba as well as existing state-of-the-art tools.

2 Preliminaries

2.1 Bidirectional FM-index

In this paper, we use zero-based array indexing, half-open intervals [.,.) and
standard notation on strings. A text T [0, n) of size n, which ends with a unique
sentinel character $ (defined as the lexicographically smallest character), has a
Burrows-Wheeler transform BWT[0, n), which is defined as BWT[i] = T [SA[i]− 1]
if SA[i] > 0 and BWT[i] = $ otherwise [3]. Here, SA denotes the suffix array
of text T , defined as a permutation over {0, 1, . . . , n − 1}, such that SA[i] is
the starting position of the lexicographically i-th suffix of T . To perform exact
and approximate matching, we need support for occ(c, i) queries on the BWT,
that return the number of occurrences of a character c in the prefix BWT[0, i).
This is realized through |Σ| (where Σ denotes the alphabet) bit vectors with
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Fig. 1. Search scheme for k = 2 errors and 3 parts proposed by Kucherov et al. The
parts are processed from darkest to lightest shade of gray. In each part, the lower and
upper bound to the cumulative number of errors up to and including that part, are
indicated. The arrows indicate the search direction (left-to-right or right-to-left).

constant-time rank support. Exact matching can then be performed by match-
ing character by character from right to left. Consider an interval [b, e) over
the suffix array for which the corresponding suffixes are prefixed by P . In or-
der to do exact matching backwards, we want to find interval [b′, e′) whose
corresponding suffixes are prefixed by cP . This can be computed as follows:
b′ = C(c) + occ(c, b) and e′ = C(c) + occ(c, e), where C(c) denotes the number
of characters in BWT[0, n) that are smaller than c. These are pre-computed and
stored in a small array of size |Σ|. Since occ queries rely only on constant-time
rank operations, exact matching of a pattern P takes O(|P |) time. The number
of occurrences of P in T is equal to the size of the interval [b, e), i.e., e− b. The
positions of these occurrences in T are then found using the suffix array. One can
opt to use a sparse version of the suffix array, where SA[i] is stored only when
SA[i] is a multiple of a pre-defined sparseness factor s. A length-n bit vector B
is stored alongside the sparse suffix array to indicate for each index i if SA[i] is
stored. The value SA[i] for arbitrary i can be inferred in O(s) time. For details
of this procedure, we refer to e.g. [20]. The FM-index is a full-text index that
comprises a BWT representation and auxiliary tables and that may occupy as
little as 2-4 bits of memory per character for DNA sequences [4].

In 2009, the bidirectional FM-index was introduced [11]. By also storing
BWTr, the Burrows-Wheeler transform of the reverse of T , and keeping track
of both the range [b, e) over the BWT as well as the range [b′, e′) over BWTr in
a synchronized manner, P can be extended backwards (to cP ) or forwards (to
Pc). By replacing the ‘occ’ data structure with a so-called ‘Prefix-Occ’ structure,
both can be done in O(1) time [19].

2.2 Search schemes

To perform lossless approximate pattern matching with up to k errors one
needs to explore all the branches of the FM-index that could potentially be
matches. Using a naive backtracking approach, an excessive number of unsuc-
cessful branches near the dense root of the search tree will be explored, rendering
backtracking computationally unfeasible even for modest values of k. To allevi-
ate this, Kucherov et al. proposed search schemes [10]. We adopt their notation.
A pattern P is partitioned into p parts Pi (i = 0 . . . p − 1). A search S is a
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triplet of arrays (π, L, U) of size p. Here, π is a permutation over {0, ..., p − 1}
that defines the order in which the parts Pi are processed. In order to constitute
a valid search scheme, π must satisfy the connectivity property, i.e., a partial
match can only be extended in a contiguous manner, either to the left or to the
right. The arrays L and U respectively define the lower and upper bound to
the cumulative number of errors after each part is processed. The core idea of
search schemes is that the number of allowed errors is only gradually increased.
This significantly reduces the search space near the dense root of the search tree.
To cover all possible error distributions over the length of a pattern, multiple
searches are required that collectively form a search scheme. We denote an error
distribution for p parts and at most k errors as e0e1 . . . ep−1, with

∑p−1
i=0 ei ≤ k,

where ei is the number of errors in part Pi. In order for a search scheme for p
parts and at most k errors to be valid, all possible error distributions need to be
covered by at least one search.

For example, for k = 2 errors, Kucherov et al. proposed a search scheme with
three searches: S0 = (012, 000, 022); S1 = (210, 000, 012); S2 = (102, 001, 012)
(see Fig. 1). In the S0 search, exact matching is first performed for the leftmost
part P0. Next, this exact match is extended to the right, thus processing parts P1

and P2, using a backtracking procedure that allows up to two errors. In the S1
search, exact matching is first performed for the rightmost part P2, and extended
to the left by first allowing up to a single error in P1, and then two errors in
P0. Indeed, occurrences of P with two errors in the middle part were already
covered by search S0. Finally, search S2 first involves an exact matching of P1,
which is then extended to the left allowing a single error, and finally to the right
with at least one, and at most two errors. This search also explains the need for
bidirectional matching functionality. Kucherov et al. [10] and Kianfar et al. [9]
proposed search schemes for up to k = 4 errors.

3 Adapted search schemes

In earlier work [21], we concluded that the search schemes by Kucherov et al.
with p = k + 1 parts showed the best performance for the task of identifying
occurrences of Illumina reads in the human reference genome under an edit dis-
tance constraint. However, it appears that for some searches S = (π, L, U), the
lower bound array L can be made more stringent, while maintaining the guar-
antee that collectively, all searches within the search scheme cover all possible
error distributions over a pattern. Recall that when part Pi has been processed,
the cumulative number of errors must be between L[i] and U [i]. The benefit of
the adapted search schemes is twofold: 1) if fewer error distributions of a search
pattern are covered by multiple searches, the number of redundant occurrences
decreases, reducing the time to filter them and 2) by making the lower bounds
more stringent, the search space that needs to be explored decreases. The original
and adapted search schemes are presented in Table 1.
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Table 1. The original search schemes by Kucherov et al. for p = k + 1 parts and our
adapted search schemes for k = {1, 2, 3, 4} errors. Changes are highlighted in bold.

k Original Adapted

1 (01, 00, 01); (10, 01, 01) (01, 00, 01); (10, 01, 01)

2
(012, 000, 022); (210, 000, 012); (012, 012, 022); (210, 000, 012);

(102, 001, 012) (102, 001, 012)

3
(0123, 0000, 0133); (1023, 0011, 0133) (0123, 0002, 0133); (1023, 0113, 0133)
(2310, 0000, 0133); (3210, 0011, 0133) (2310, 0000, 0133); (3210, 0111, 0133)

4

(01234, 00000, 02244); (43210, 00000, 01344); (01234, 00002, 02244); (43210, 00000, 01344);
(10234, 00133, 01334); (01234, 00133, 01334); (10234, 01334, 01334); (01234, 00334, 01334);
(32410, 00011, 01244); (21034, 00013, 01244); (32410, 00111, 01244); (21034, 00113, 01244);
(10234, 00124, 01244); (01234, 00034, 00444); (10234, 01224, 01244); (01234, 00344, 00444)

4 Bit-parallel edit distance computation

To enable approximate pattern matching, we rely on edit distance computa-
tions. The edit distance between two sequences S1 and S2 of lengths m and n,
respectively, can be computed in O(mn) time using a dynamic programming
algorithm. This entails computing an (m+1)× (n+1) matrix D such that each
element D(i, j) represents the edit distance between prefix S1[0 . . . i) and prefix
S2[0 . . . j). The values D(i, j) are efficiently computed by following recurrence
relation:

D(i, 0) = i;D(0, j) = j ∀i, j ≥ 0

D(i, j) = min


D(i− 1, j − 1) + δ(S1[i− 1], S2[j − 1]

D(i− 1, j) + 1

D(i, j − 1) + 1

∀i, j > 0

where δ(a, b) is 0 if a = b and 1 otherwise. The oldest description of this algorithm
is by Vintsyuk [25] in 1968; it has been independently rediscovered by others (see
e.g. [17] and the references therein). Myers [16] improved the time complexity to
O(mn/w), where w denotes the computer word size (w = 64 for most CPU archi-
tectures). The core idea is to leverage bit-level parallelism to compute multiple
values of matrix D simultaneously. Inspired by Myers work, Hyyrö [6] proposed a
slightly more efficient bit-parallel algorithm. We first provide a brief description
of this algorithm. Next, we describe our specific adaptations.

4.1 Hyyrö’s bit-parallel algorithm

Adjacent elements within any row or column of matrixD differ by at most a value
of 1, i.e., for all i, j: D(i, j)−D(i, j − 1) ∈ {−1, 0, 1} and D(i, j)−D(i− 1, j) ∈
{−1, 0, 1} (see [15], lemma 3). Similarly, for adjacent elements on a diagonal, it
holds that D(i, j)−D(i− 1, j − 1) ∈ {0, 1}. Rather than computing the values
of D directly, each row i is encoded by five delta vectors VPi, VNi, HPi, HNi,
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and D0i. These delta vectors are stored as bit vectors (i.e., a sequence of 0s and
1s) and are defined as follows:

1. The vertical positive delta vector: VPi[j] = 1 ⇐⇒ D(i, j)−D(i− 1, j) = 1
2. The vertical negative delta vector: VNi[j] = 1 ⇐⇒ D(i, j)−D(i−1, j) = −1
3. The horizontal positive delta vector: HPi[j] = 1 ⇐⇒ D(i, j)−D(i, j−1) = 1
4. The horizontal negative delta vector: HNi[j] = 1 ⇐⇒ D(i, j)−D(i, j−1) =
−1

5. The diagonal zero delta vector: D0i[j] = 1 ⇐⇒ D(i, j)−D(i−1, j−1) = 0

The bits HPi[j] and HNi[j] encode the value D(i, j) − D(i, j − 1). The latter
equals either 1 (when HPi[j] = 1), -1 (when HNi[j] = 1), or 0 (when both
HPi[j] = 0 and HNi[j] = 0). Similarly, VPi[j] and VNi[j] encode the value
D(i, j) − D(i − 1, j). Therefore, because D(0, 0) is known (often 0), all other
values D(i, j) can be inferred from the delta vectors.

The key advantage of using the delta vectors is that they can be computed
in a bit-parallel manner as shown in Algorithm 1:

Algorithm 1: Bit-parallel computation of the delta vectors at row i
from those at row i− 1

D0i ← (((MS1[i−1] & HPi−1) + HPi−1) ˆ HPi−1) | MS1[i−1] | HNi−1

VPi ← HNi−1 | ∼(D0i | HPi−1)
VNi ← D0i & HPi−1

HPi ← (VNi << 1) | ∼(D0i | (VPi << 1))
HNi ← (D0i & (VPi << 1))

Here, the symbols &, |, ˆ, ∼ and << respectively denote the bitwise AND, OR,
XOR, NOT and left shift operators. MS1[i−1] is a match vector (again a bit
vector) that indicates which positions in S2 match character S1[i− 1]. The four
match vectors Mc (with c ∈ {A, C, G, T}) are pre-computed. For the exact
details of Algorithm 1, we refer to [6].

4.2 Bit-parallel banded alignment

In the context of this work, we want to identify approximate occurrences within
a distance of at most k edit operations of search pattern P . Therefore, computa-
tions can be restricted to those elements D(i, j) for which |i− j| ≤ k, i.e., within
a band along the diagonal. Each row (or column) of matrix D thus contains at
most 2k + 1 values to compute. For this problem of banded alignment, Hyyrö
proposed a bit-parallel algorithm [6]. Our implementation is heavily influenced
by these ideas but uses a different layout of bit vectors. It is described below.

The global layout of the banded dynamic programming matrix D is depicted
in Fig. 2. Search pattern P is the ‘horizontal’ sequence while candidate occur-
rence O is the ‘vertical’ sequence. The FM-index spells out candidate occurrences
character by character, therefore, we leverage bit-parallel computations at the
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Fig. 2. Layout of the banded dynamic programming matrix D as 64-bit words.

level of rows of D. During in-index searching, candidate occurrences are gener-
ated by a depth-first exploration of the search tree. To support backtracking,
the delta vectors of each row are kept in a stack data structure.

Our implementation can compute edit distance values up to k = 10 for
sequences of arbitrary length. Because k is sufficiently small, a single 64-bits
word can be used to represent a delta vector and all computations per row
are done in O(1) time. Support for larger values of k could easily be achieved
by representing a delta vector by multiple words, at the cost of some loss of
performance. Rows are grouped into blocks of 32 rows each. At each next block,
the delta vectors are shifted by 32 bit positions such that they overlap all relevant
values of the banded dynamic programming matrix (gray-shaded cells in Fig. 2).
For each block, four match vectors Mc (with c = {A, C, G, T}) are pre-computed
to indicate character matches between c and the overlapping positions of P . At
each row i, we also keep track of the value D(i, i). Using the D0i delta vector,
D(i, i) can easily be computed from D(i−1, i−1). The knowledge of D(i, i) and
the HPi and HNi delta vectors allows for the computation of any value D(i, j).
By using population count (‘popcount’) instructions, this can be achieved in O(1)
time. Finally, we adopted Hyyrö’s algorithm to evaluate in a bit-parallel manner
whether all values on a row exceed the maximum edit distance threshold k. This
is important to signal the backtracking algorithm that the current candidate
occurrence O should no longer be extended and that the search procedure should
backtrack and explore a different branch of the search tree. For details on this
algorithm, we refer to [7].

4.3 Matrix initialization

Traditionally, the first row and column of matrix D are initialized with gap
penalties (i.e., D(i, 0) = i and D(0, j) = j) in the case of global alignment, or
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with zero values (i.e., D(i, 0) = 0 and/or D(0, j) = 0) in case of semi-global
alignment. For our use case of search schemes, we need to be able to initialize
the leftmost column of D with 2k + 1 arbitrary values. Indeed, using search
schemes, search pattern P is matched part by part. Therefore, assuming left-
to-right matching, when matching part Pi, the first column of D should be
initialized with the values from the last column of the matrix of part Pi−1 in
order to continue the alignment.

In the bit-parallel implementation, the initialization of the first row of D
is straightforward: we set the appropriate value for D(0, 0) (e.g., D(0, 0) = 0)
and encode the other values D(0, j) using the HP0 and HN0 delta vectors. For
example, to encode D(0, j) = j, we set HP0[j] = 1 and HN0[j] = 0 for j = 1 . . . k.

To initialize the first column of D with arbitrary values, we append dummy
columns with a ‘negative’ column index to D (illustrated in a lighter shade of
gray in Fig. 2). Again, we use the HP0 and HN0 delta vectors to encode the part
of the first row of D with negative column indexes such that D(0,−i) equals
the desired value for D(i, 0). By always assuming a character match at negative
column indexes, each value D(0,−i) will effectively propagate along a diagonal
and ultimately set D(i, 0) to its correct value. This is easily achieved by setting
1-bits in the corresponding part of Mc for all c = {A, C, G, T}. Even in the
presence of backtracking, the elements D(i, 0) will always be computed correctly.
Because the computations for the negative column indexes are handled within
the same 64-bit word as the regular column indexes, this procedure imposes no
computational overhead.

Because we support a maximum allowed edit distance of 10, we require at
most Wh,max = 11 elements at the top row of D (e.g., to encode the values
{0, 1, 2, . . . , 10} and at most Wv,max = 21 elements at the leftmost column of
D (e.g., to encode the values {10, . . . , 1, 0, 1, . . . , 10}). Thus, the parts of the
delta vectors that could contain relevant values are indicated in a darker shade
of gray in Fig. 2. Depending on the use-case (the actual allowed edit distance
k ≤ 10, and how precisely matrix D is initialized) only a subset of these cells
will effectively contain relevant data.

5 In-text verification

In principle, search schemes rely purely on in-index matching: using the bidi-
rectional FM-index, candidate occurrences O of a search pattern P are spelled
character by character. Extending a candidate occurrence by a single charac-
ter ultimately translates into rank operations on bit vectors. Collectively, these
rank operations lead to a random memory access pattern. The expression random
memory access refers to the fact that the memory access pattern is unpredictable,
and hence, will suffer from a large number of cache misses. Therefore, extend-
ing a candidate occurrence by a character is a relatively expensive operation:
Pockrandt et al. estimated at least 100 CPU clock cycles per character [20].

At all times during the spelling of a candidate occurrence O, a range [b, e)
over the suffix array is maintained that refers to the starting positions of each
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instance of O in T . Thus, at any point, the size of the range e− b corresponds to
the number of times O occurs in T . This number of instances decreases mono-
tonically when more characters are added to O. When the value e− b becomes
small, it can be beneficial to abandon the in-index matching procedure and to
verify each of the instances of O directly in T using the previously described
pairwise alignment procedure. As detailed in Section 4, pairwise alignment can
be performed efficiently using bit-parallel techniques in a cache-friendly manner.
In contrast, when the value e−b is large, in-index matching is more computation-
ally advantageous, because all instances of O of in T are handled simultaneously
by the FM-index.

In our implementation, part Pπ[0] is always matched using the FM-index.
In practice, matching Pπ[0] always entails an exact pattern matching procedure
(see search schemes in Table 1). From that point onwards, whenever the value
e − b becomes smaller than or equal to a pre-defined threshold t (referred to
as the ‘tipping point’), candidate occurrence O is no longer extended using the
index and the search procedure switches to in-text verification. When O has been
fully evaluated, the search procedure will backtrack and explore other candidate
occurrences, again using the FM-index.

This idea of hybrid in-index matching/in-text verification within the con-
text of search schemes has been explored previously by Pockrandt et al. for the
Hamming distance metric. The authors report speed-ups between 1.6× and 2.1×
and an optimal tipping point of 25 [20]. Performing in-text verification for the
edit distance metric is more complex because 1) pairwise alignment is computa-
tionally more expensive and thus needs to be highly optimized to have overall
performance gains; 2) the precise start and end positions of each approximate
occurrence of P in T are not known in advance. To this end, the bit-parallel
alignment algorithm from section 4 is easily modified to support semi-global
alignment.

6 Results and Discussion

All benchmarks were performed using a dataset of 100 000 Illumina NovaSeq
6000 reads (150 bp), randomly sampled from a larger whole genome sequencing
dataset (accession no. SRR9091899). We identified all approximate read occur-
rences up to an edit distance of k = {1, 2, 3, 4} on both strands of the human
reference genome (GRCh38) [22]. We recall that we consider only lossless algo-
rithms that are guaranteed to report all occurrences. We replaced non-ACGT
characters in the reference genome (e.g., Ns) by a randomly chosen nucleotide.
The different chromosomes were concatenated into a single string. As such, a
read can be mapped across the borders of adjacent chromosomes. Such spurious
matches can easily be filtered during post-processing.

All results were obtained using a single core of a 32-core Intel® Xeon® E5-
2698 v3 CPU running at a base clock frequency of 2.30GHz. To quantify vari-
ability in runtime, each benchmark run was repeated 20 times. We report both
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Table 2. Comparison of the original search schemes by Kucherov et al. and our adapted
search schemes, for different values of the maximum allowed edit distance k. In both
cases, 100 000 Illumina reads of length 150 bp are mapped to both strands of the human
reference genome.

Search Wall clock No. of nodes No. of redundant
scheme time ± SD visited (search space) occurrences

k = 2, unique occurrences = 676 528, reads mapped 90.5%

Original 15.91 ± 1.58 s 62 035 887 267 541
Adapted 14.73 ± 1.44 s (−7.4%) 57 263 477 (−7.7%) 264 671 (−1.1%)

k = 3, unique occurrences = 1 416 632, reads mapped 93.1%

Original 30.89 ± 1.80 s 128 708 469 719 576
Adapted 26.82 ± 0.60 s (−13.2%) 116 965 983 (−9.1%) 648 817 (−9.8%)

k = 4, unique occurrences = 2 579 745, reads mapped 94.8%

Original 72.07 ± 2.54 s 364 385 491 1 492 806
Adapted 61.35 ± 0.59 s (−14.9%) 305 476 323 (−16.2%) 1 420 668 (−4.8%)

the average wall clock time as well as the standard deviation. Redundant occur-
rences (as defined in [21]) were filtered.

6.1 Original versus adapted search schemes

In Table 2, the original and adapted search schemes (as defined in Table 1) are
compared for edit distance values of k = {2, 3, 4} as for k = 1, both search
schemes are identical. We report the average runtime and standard deviation on
a single CPU core and the number of nodes visited in the search tree. The latter
equals the number of times a partial match is extended by a single character c
(in either direction). In practice, this involves expensive random memory access
that largely determines the runtime. It is therefore a clear indication of intrinsic
performance, regardless of the quality of implementation. It is clear that both
in the size of search space (number of nodes visited) and runtime the adapted
search schemes are superior. This is no surprise, as the adapted search schemes
have tighter bounds and thus reduce the search space.

Table 2 also reports the total number of unique and redundant (filtered out)
occurrences for the different values of k. Because search schemes are lossless, the
number of unique occurrences does not differ between the original and adapted
search scheme. Clearly, the tighter lower bounds also reduce the number of redun-
dant occurrences (i.e., occurrences reported by multiple searches in the search
scheme).

Finally, Table 2 reports the fraction of reads that have at least one occurrence
in the reference genome (‘reads mapped’), for the different values of k.

6.2 In-index versus in-text verification

We compared the runtime for matching 100 000 Illumina patterns to both strands
of the human reference genome with up to k = 4 edit operations for different
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Fig. 3. Left: the runtime for mapping 100 000 Illumina reads of length 150 bp to both
strands of the human reference genome (k = 4) as a function of the tipping point t.
Right: histogram of the number of matches for part Pπ[0] across all searches.

values of the tipping point t = 0, 1, 5, 50, 500 and ∞. A value of t = 0 means
that all patterns are entirely matched using the FM-index and that no in-text
verification is performed whereas t =∞ denotes that after the initial matching
of the first part Pπ[0], all candidate occurrences are verified directly in T and
that no further in-index extension takes place. For the intermediate tipping point
values, the search procedure switches to in-text verification when e− b ≤ t.

Figure 3 (left) shows the runtime as a function of tipping point t. Clearly,
using purely in-index matching shows the worst performance for this particular
dataset. This is because in-index matching involves expensive random mem-
ory access in the FM-index for each character that is added to a candidate
occurrence. Switching to in-text verification when there is only a single candi-
date occurrence in T (t = 1) reduces runtime by almost half. This is because
bit-parallel, pairwise alignment between the appropriate substring of T and P
can be performed very efficiently. This effect increases with larger tipping point
values and for t ≈ 5, runtime is minimized. For larger tipping point values
(t ≥ 50), the increasing overhead of suffix array lookup operations and pairwise
alignments associated with in-text verification (that often turn out to be un-
successful) dominates the gains. Remarkably, for this dataset, never performing
in-index extension beyond the exact matching of the first part Pπ[0] (t = ∞)
is still significantly faster than pure in-index matching (t = 0). For t = ∞, the
matching process degenerates to a very simple procedure: exact pattern matching
of part Pπ[0] followed by in-text verification of each of the candidate occurrences.
For our dataset, the largest suffix array range size encountered was 57 933. This
range was encountered for a single read for which Pπ[0] consists of 29 consecutive
characters A.

Collectively over all reads, a tipping point t between 2 and 10 yields the
best performance. Within this range and for our dataset, the runtime is largely
insensitive to the precise choice of t (data not shown). Only for larger values of
the tipping point (t ≥ 10), we again observe an increase in runtime. For other
values of k, a similar conclusion is reached: hybrid in-index matching/in-text
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verification reduces runtime by 38.43% for k = 1, 45.24% for k = 2 and 51.30%
for k = 3.

Breakdown of reads The search scheme for k = 4 errors consists of eight
searches (see Table 1). Therefore, for the task of identifying all approximate
occurrences of 100 000 reads on both strands of the reference genome, 1 600 000
searches are executed in total. For more than half of these searches (834 198), the
first part Pπ[0] has no exact match in T and, hence, the search will immediately
be terminated. This is no surprise, as most reads have approximate occurrences
on only one strand of the reference genome. For the remaining 765 802 searches,
Fig. 3 (right) shows a breakdown as a function of the number of (exact) occur-
rences of part Pπ[0]. Remarkably, 76.67% (587 103) of those searches yield only
a single occurrence in T for Pπ[0]. In other words, for most reads, matching only
a single part of P already suffices to point to a unique position in T . For such
cases, in-text verification of that sole candidate occurrence outperforms a further
in-index character-by-character extension. This explains the large performance
difference between tipping point values t = 0 and t = 1. Additionally, 13.84%
(106 022) of the searches yield between 2 and 10 occurrences in T for part Pπ[0].
Also for these cases, in-text verification at each of these candidate positions in
T is superior to in-index matching.

In contrast, only a relatively small fraction of 9.49% (72 677) of the searches
deal with patterns for which Pπ[0] has more than 10 occurrences in T . In certain
cases, this number of instances is vast. For example, 14 329 searches yield more
than 1 000 instances of Pπ[0] in T , seven of which amount to more than 50 000
instances. The latter all correspond to low-complexity poly-A/T or poly-CA/GT
patterns which are highly repeated in the human genome. Here, in-index match-
ing has a clear advantage as all repeated candidate occurrences are handled
simultaneously by the FM-index.

We conclude that in-text verification is beneficial for those searches for which
the number of occurrences of Pπ[0] in T (and hence, the number of candidate
occurrences of P itself), is limited (≤ 10). For our dataset, this holds for roughly
90% of the searches. In contrast, the remaining searches (10%) deal with search
patterns with many potential occurrences in T , a task which is best performed
using in-index matching and the search scheme. We find that these ‘difficult’
searches, although limited in number, account for roughly two-thirds of the total
runtime. In total, these complex searches account for 96.0% of unique matches
over the entire dataset.

SA space-time tradeoff In-text verification requires a lookup operation in the
suffix array (SA) to retrieve, for each candidate occurrence, its position in T .
The number of candidate occurrences for which in-text verification is performed,
and hence, the number of required lookup operations in the SA, increases with
higher values of the tipping point t.

To reduce the memory footprint of the FM-index, a sparse version of the SA
is often used. In our implementation, every s-th suffix of the SA is stored, where s
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Fig. 4. Runtime for mapping 100 000 Illumina reads (150 bp) to both strands of the
human reference genome as a function of the tipping point t and sparseness factor s.

denotes the sparseness factor, i.e., SA[i] is stored if and only if SA[i] mod s = 0.
It is well-known that a suffix at an arbitrary index i can then be inferred in O(s)
time [20]. Thus, the sparseness factor s controls the space-time tradeoff. As each
in-text verification requires a lookup operation in the SA, a larger sparseness
factor s will diminish the gains in the runtime of in-text verification.

Figure 4 shows the runtime for different sparseness factors s and tipping
points t. The results for s = 1 (dense SA) are identical to those of Fig. 3 (left).
For all values of t, the runtime increases with the sparseness factor s, as lookup
operations in the SA become more expensive. For t = 0, the increase in runtime
from s = 1 to s = 32 is limited to only 4.2% whereas for t = ∞, the runtime
more than doubles.

Therefore, especially for larger values of the sparseness factor s, the tipping
point t should not be set to (too) high values for good performance. In our
experience, up to s = 16, a choice of t ≈ 5 appears appropriate. For sparseness
factors of s = 32 and larger, a tipping point of t = 1 or t = 2 showed the best
performance.

6.3 Comparison to state-of-the-art tools

In earlier work [21], we presented Columba 1.0, a fast software implementation
for lossless approximate pattern matching using search schemes. Columba 1.0
implements the ideas outlined in [21] such as a cache-friendly BWT representa-
tion and dynamic partitioning of search schemes.

The techniques described in this paper (bit-parallel edit distance computa-
tions, in-text verification, and the adapted search schemes) are implemented in
Columba 1.1. In this section, we benchmark Columba 1.1 against state-of-the-
art lossless pattern matching tools, including Columba 1.0. We use the adapted
search schemes proposed in Table 1, a tipping point t = 5 and a SA sparseness
factor s = 1 (dense SA).
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Table 3. Runtime comparison of state-of-the-art lossless alignment tools, with the
exception of BWA in ‘mem’ node, which is a lossy alignment algorithm.

Tool Language Reference k = 1 k = 2 k = 3 k = 4

Columba 1.11 C++ This paper 5.15 ± 0.44 s 8.66 ± 1.00 s 13.06 ± 1.31 s 28.48 ± 2.13 s
Columba 1.02 C++ [21] 7.05 ± 0.16 s 13.10 ± 0.26 s 25.62 ± 0.33 s 67.75± 0.51 s

BWA3 C [12] 14.73± 0.23 s 133.11 ± 2.39 s 1454.40 ± 24.64 s DNC (> 3h)
Bwolo C++ [26] 12.53± 0.55 s 25.24 ± 0.86 s 63.67 ± 1.32 s 189.78 ± 2.25 s
GEMv34 C [14] 9.0 ± 1.5 s 18.6 ± 2.4 s 38.5 ± 4.6 s 84.6 ± 4.9 s
Yara v0.9.115 C++ [23] 4.49 ± 0.13 s 21.00 ± 0.34 s 81.90 ± 0.84 s 537.26 ± 7.65 s

BWA mem (lossy) [12] 32.42 ± 0.67 s (independent of k)

In Table 3, we compare the performance of Columba 1.1 to Columba 1.0,
Bwolo [26], GEM [14], Yara [23] and BWA [12] in all-mapping mode. Note that
Columba 1.0 and Bwolo do not report the CIGAR string of the alignments in
their output whereas the other tools do (including Columba 1.1). For the GEM
aligner, not all occurrences could be reported as the tool failed when using
the all parameter. Therefore, GEM was configured to report at most 1000
occurrences per read.

Columba 1.1 outperforms Columba 1.0 for all values of k, even though Columba
1.0 does not compute the CIGAR string. Gains are achieved through the tighter
lower bounds as specified in the adapted search schemes and bit-parallel, in-text
verification. Clearly, these gains outweigh the extra computations required to
generate the CIGAR string.

Both Columba 1.1 and 1.0 outperform all other lossless alignment tools for
k ≥ 2. For k = 1, both are slightly slower than Yara. This is likely due to the
overhead imposed by the use of the bidirectional FM-index, whereas Yara relies
on a unidirectional index. For k ≥ 2, Columba 1.1 is at least twice as fast as
other tools. For k = 4, Columba 1.1 appears roughly 3× faster than GEM, 6×
faster than Bwolo, and even 18× times faster than Yara. Clearly, BWA was not
designed to run in lossless mode for higher values of k.

We also compare Columba 1.1 with BWA in (lossy) mem mapping mode. In
mem mode, BWA does not require a maximum number of errors k to be specified
and it will typically report only a single candidate alignment position for each
read. Note that the time to read the index structure from disk is included in
BWA’s runtime, which is not the case for Columba 1.1. Also note that BWA
outputs SAM format and is able to handle paired-end reads, which is not the
case for Columba 1.1. Columba 1.1 appears faster than BWA for k = 1, 2 and 3.
For k = 4, the runtime of Columba 1.1 is similar to that of BWA. This indicates
that the performance gap between lossless and lossy alignment tools is closing
for practical bioinformatics applications such as read mapping.

1 -e k -i 5 -ss ../search schemes/kuch k+1 adapted/
2 -e k -ss ../search schemes/kuch k+1/
3 aln -N -n k -i 0 -l 150 -k k
4 -t 1 -e [k] -s [k] –alignment-model edit –mapping-mode complete -M 1000
5 -e [k] -s [k] -y full -t 1
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7 Conclusion

We introduced Columba 1.1, a tool for lossless approximate pattern matching
using search schemes under the edit distance metric. Columba 1.1 implements
hybrid in-index matching/in-text verification using a bit-parallel, pairwise align-
ment algorithm. It is demonstrated that this technique reduces runtime by more
than a factor of two, compared to pure in-index matching. We provided an analy-
sis of the effect of in-text verification for different types of reads. For reads with a
limited number of occurrences, switching to in-text verification greatly reduces
the runtime. In contrast, for reads with many potential occurrences, in-index
matching appears the better option. We showed that the use of a sparse suffix
array somewhat diminishes the performance gains of using in-text verification.
Nevertheless, for all practical values of the suffix array sparseness factor, in-text
verification proves beneficial. Finally, Columba 1.1 shows superior performance
to state-of-the-art lossless aligners.
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