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Abstract—Neuromorphic near-sensor computing has recently emerged as a low-power and
low-memory paradigm for the design of AI-enabled IoT devices working at the extreme edge.
Compared to conventional sensing and learning techniques, neuromorphic sampling and
processing reduces data bandwidth requirements, induces large savings on power and area
consumption, and enables on-line learning and adaptation. In this article, we discuss recent
studies made in the design of event-based sampling and learning circuits. We show that our
event-based sampling methods outperform conventional techniques in terms of power
consumption. We also show that our spiking neural network (SNN), learning through
spike-timing-dependent plasticity (STDP), outperforms state-of-the-art SNN-STDP systems in
terms of inference accuracy while being orders of magnitude more power efficient than
conventional deep learning systems. We hope that the opportunities discussed in this summary
paper will inspire future research.

NEAR-SENSOR COMPUTING offers a promis-
ing avenue towards the deployment of AI-enabled
energy- and area-efficient IoT sensory nodes at
the extreme edge. Indeed, the worldwide number
of IoT nodes is expected to reach more than
100 billion by 2030, leading to an even greater
deluge of data towards back-end servers with,
often, high redundancy levels [1]. For instance,
standard cameras not only output the foreground
information of interest, but also the redundant

background [13]; standard microphones sample
background noise when users are silent; and so on
[2]. Therefore, AI-driven near-sensor computing
emerges as a natural path towards the in-situ
compression of sensory data into semantic-level
meta-data (e.g., from full-image camera data to a
limited-bits class vector), drastically reducing the
bandwidth usage, leading to huge power savings,
and providing early feedback to users without the
need for back-end computation.
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Figure 1: a) Conventional and b) Neuromorphic near-sensor computing architectures. The SNN-
STDP processor performs on-line unsupervised feature extraction at the edge. Local post-processing is
then used to map the extracted features to input classes (using e.g., low-complexity linear regression).

In recent years, edge AI has mostly been
investigated using deep neural networks (DNNs)
with memory- and compute-intensive deep learn-
ing approaches for DNN training in the back-
end. During the off-line training phase in a GPU
server, the network is quantized, pruned and com-
pressed before being deployed at the edge, where
training does not happen, prohibiting fast adapt-
ability to environmental changes (even though
smaller models such as multi-layer perceptrons
are gaining interest in such applications).

In addition, DNNs are inherently sample-
based and not event-driven. They process
conventionally-sampled data such as image
frames or Analog to Digital Converter (ADC)
data sampled at Nyquist rate, effectively pro-
cessing inter-frame redundancy as well [3]. For
example, a DNN for image recognition will both
process the dominant number of still image pixels
from the background and the much fewer pixels
from the moving foreground (e.g., a walking per-
son), leading to an increase of energy and mem-
ory consumption compared to an event-driven,
neuromorphic pipeline (see Fig. 1).

Such neuromorphic sampling and computing
schemes have recently gained considerable inter-
est thanks to their ultra-low power consumption
and small area and memory footprint [3]. Event-
driven (or spiking) neural networks (SNNs) use
bio-inspired spiking neurons, often modelled as a
leaky integrate and fire (LIF) neuron (Fig. 2 a):{

dV
dt

= 1
τm

(Jin − V )

σ = 1, V ←− 0 if V ≥ µ else σ = 0
(1)

where V is the membrane potential, τm is the
membrane time constant to be set, Jin is the input
to the neuron and σ is the neuron output that
spikes when V crosses the settable threshold µ,
V being reset to zero afterwards (note that other
neural models exists) [3].

Figure 2: SNN-STDP building blocks. a) Illus-
tration of the LIF neuron behavior. b) Illustration
of the STDP learning rule with the long-term
potentiation (LTP) and depression (LTD) regions.

SNNs communicate through asynchronous,
binary spikes and consume dynamic energy only
when a spike is emitted [3]. In addition, SNNs
can be implemented in non-Von Neumann, mas-
sively parallel architectures [11], solving the
memory bottleneck issue. In addition to many
backprop-inspired offline learning techniques and
their emerging on-line implementation [4], SNNs
can also be trained at the edge using event-
driven, power- and memory-efficient local learn-
ing rules, such as Spike-Timing-Dependent Plas-
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Figure 3: Pioneering near-sensor SNN computing system proposed by Y. He et al. [3] (figures
courtesy of Y. He). Even though the proposed SNN system does not feature on-chip learning yet, we
consider this work as a pioneering step and inspiration for future neuromorphic near-sensor computing
systems: a) system block diagram composed of the event-based sampler, the SNN accelerator and the
wireless communication circuitry; b) power consumption of the local SNN solution against cloud
computing and conventional DSP [3].

ticity (STDP) [9]:

Wij ←−
{
Wij +A+e

−τij/τ+ , if τij ≥ 0

Wij −A−e
τij/τ− , if τij < 0

(2)

where Wij is the jth weight of neuron i, A+

and A− are respectively the potentiation and
depression amplitudes, τ+ and τ− are respectively
the potentiation and depression time constants (to
be set) and τij is the difference between the post-
and the pre-synaptic spike times (see Fig. 2 b) [9].

But SNNs are only part of the story. Neuro-
morphic computing systems require the sensory
data to be sampled in an event-driven manner, in
order to be compatible with the spiking nature of
the SNN processor (see Fig. 1 b). This requires
the development of novel sensory readouts. In
this paper, we will discuss the progress made
towards the co-integration of novel event-driven
sensory and sampling schemes, together with
newly-developed methodologies for the design
of SNN-STDP processing circuits that can learn
at the edge. The paper is organized as follows.
First, we discuss the paradigm shift induced by
event-based processing over classical computing
architectures. Then, neuromorphic sensing and
sampling techniques will be detailed. Next, the
design of SNN-STDP learning systems will be
discussed. Finally, we conclude this paper by
discussing future outlooks and opportunities.

A Paradigm Shift
The ultimate aims of the neuromorphic

paradigm (Fig. 1 b) are i) to avoid the processing

of redundant data using event-based sampling,
and ii) to apply continuous inference and learning
using massively parallel SNN accelerators with
learning rules local to each weight register. In
contrast, a conventional edge-AI sensing system
(Fig. 1 a), using e.g., DSP blocks or DNNs,
processes Nyquist-sampled data (thus processing
all the redundancy in the data), which leads
to higher energy overheads, mostly due to data
transfer in and out of the memory. In addition,
conventional edge-AI systems are predominantly
used for inference only (no learning nor on-line
adaptation capability) [13].

A remarkable recent example in the direction
of neuromorphic near-sensor computing is the
architecture proposed by He et al. [3] (see Fig.
3), where an ultra-low-power cardiac monitoring
system is presented, achieving record-low power
consumption (28.2 µW) and low core area (0.32
mm2). The system of He et al. [3] follows the
high-level neuromorphic architecture shown in
Fig. 1 b), only lacking on-chip STDP learning.

In recent years, STDP has attracted much
attention for ultra-low-power learning at the edge
(see Fig. 2 b) [9]. First, as STDP is local, power-
and latency-expensive data transfers in and out
of a centralized memory are avoided. Secondly,
as STDP-equipped neurons are implemented in a
massively parallel manner, there is no need for
a centralized unit assigning the relevant errors
to the corresponding network layers [9]. Thirdly,
STDP does not need a full inference pass before
affecting the network weights and can learn con-
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Figure 4: Our neuromorphic sensor sampling methods: a) LCADC circuit; b) LCADC vs. SAR
ADC power consumption; c) transmission power for a conventional Nyquist-rate-sampled system vs.
a neuromorphic level-crossing-based sampling; d) Nyquist-rate sampling vs. event-based sampling [2]

tinuously (in contrast to backpropagation) [11].
On the other hand, we observe in literature

that the use of the STDP rule is still rather
experimental, due to the large inference perfor-
mance gap compared to offline backprop train-
ing [12]. Following prior discussions [4], we
argue that a limiting factor for high-performance
STDP network processors is the lack of an
optimization-based methodology that allows the
translation from well-established techniques to-
wards the STDP domain [11]. To this end, this
paper describes a novel optimization-based SNN-
STDP methodology, outperforming existing ar-
chitectures on common event data benchmarks.

Neuromorphic Sensors and Sampling
In conventional systems, signals are sampled

at a fixed clock rate of at least twice the highest
frequency component in their spectrum. However,
such sampling approach does not consider the
fact that signals may be sparse in time and thus,
may sample much more than actually needed
(e.g., videos contain static background informa-
tion, electrocardiogram (ECG) signals are only
periodically active, and so on). When exploiting
this signal sparsity, it is possible to sample at a

rate below the Nyquist rate, decreasing the power
of the sampling circuits, as well as reducing the
amount of data that need to be processed [2].

In their seminal work, Mahowald and Mead
proposed the first neuromorphic sampling sys-
tem used to design an event-based camera [13]
(also called Dynamic Vision Sensor or DVS).
Their work laid the foundations for the event-
based vision field, and a growing number of DVS
systems have been proposed since then [13]. In
a DVS camera, each pixel (x, y) emits spikes
independently and asynchronously whenever the
change in light log intensity ∆L(x, y) crosses a
certain threshold. This is in striking contrast to
a regular camera which periodically samples all
static information as well, leading to a significant
increase in data bandwidth.

In our research, we are generalizing this event-
based sensing and sampling paradigm to the use
of any temporal signal featuring some sparsity in
time (e.g., audio, ECG, etc). We are exploring
the design of event-driven, level-crossing ADCs
(LCADC) [2] (see Fig. 4 a) to this purpose. The
working principle of the LCADC is shown and
compared to conventional Nyquist sampling in
Fig. 4 d). Each time the signal change crosses a
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predefined level, the LCADC captures a sample
(in contrast to the fixed sample rate in regular
ADCs). This has two advantages. First, the power
consumption of the LCADC scales with the signal
sparsity in time. Secondly, the LCADC signif-
icantly reduces the amount of data sent to the
on-chip neuromorphic processor [2].

An in-depth comparison of the event-driven
LCADC against a conventional SAR ADC has
been presented in [2]. The LCADC (green curve
in Fig. 4 b) outperforms the conventional SAR
ADC in terms of power efficiency for sampling
resolutions ≤ 8 bits (typical resolution used in
quantized neural networks for edge applications)
[2]. In addition, the LCADC significantly re-
duces by up to two orders of magnitude the
required data bandwidth for tasks such as elec-
troencephalogram (EEG), ECG, etc. [2], leading
to more than one order of magnitude less power
consumption for data transmission and storage
between the sampler and processor (see yellow
bar plot in Fig. 4 c) [2]. Other works have also
shed light on the effectiveness of event-based
sampling [3], clearly showing the advantage of
using neuromorphic sampling techniques for AI-
sensing applications working at the extreme edge.

Novel approach to SNN-STDP design
SNN-STDP learning (see Fig. 2) is bio-

inspired, fully event-based and therefore, fits
nicely with the spiking data produced by an event-
driven sampler like an LCADC. STDP has the
potential to unlock on-chip learning and adapta-
tion within the tight power constraints that edge
computing demands. Still, most reported STDP
works are lagging behind DNNs in terms of
inference performance [12], a key metric for real-
world deployment of such systems. To help clos-
ing this performance gap, we recently introduced
an SNN-STDP design methodology that signif-
icantly outperforms previously proposed SNN-
STDP systems in terms of data classification ac-
curacy (>10%). We demonstrate this on common
event-based camera benchmark datasets [11].

In contrast to empirically designed, bottom-
up SNN-STDP approaches, we propose the use
of a top-down approach where the goal is to
design an SNN-STDP architecture that provably
solves the joint dictionary learning basis pursuit
(DLBP) optimisation problem for unsupervised

feature learning [11] (see Fig. 5 a):

c̄,Φ = argmin
c̄,Φ

1

2
||Φc̄− s̄||22

+ λ1||c̄||1 +
λ2

2
||Φ||2F (3)

where c̄ is the SNN network output of dimension
M , Φ is the M × N network weight matrix, s̄
is the input vector of dimension N (e.g., EEG
data from a sensor array of dimension N ), λ1

is a sparsity-defining hyper-parameter and λ2 is
a weight decay hyper-parameter. Then, it can be
shown that the SNN-STDP architecture of Fig.
5 a) solves the DLBP problem (3) via its neural
connectivity and its use of STDP learning [11].

The SNN-STDP ensemble of Fig. 5 a) is
constructed using two distinct layers: the coding
layer responsible for estimating c̄ in (3) and the
error layer used during the STDP learning of Φ.

First, the ith coding layer neuron takes as
input both the signal to transform s̄ (e.g., coming
from an LCADC array) and the previous output
of all coding neurons c̄. The coding neuron i
transforms those inputs according to:

ai =
N∑
i=1

ΦT
i,jsj +

N∑
k=1

Wi,kck (4)

where W is the (learned) lateral weight matrix
feeding the prior output of the coding layer
back to the coding neurons (creating competition
between coding neurons). Then, ai is low-pass
filtered and fed to the push-pull LIF neuron (noted
LIFp). The coding neurons also receive the out-
put ē from the error neurons. The STDP learning
modifies both Wi and ϕT

i by using the coding
neuron output as the post-synaptic spike source
and both ē and c̄ as the pre-synaptic sources [11].

Secondly, the jth error neuron (see Fig. 5 a) is
responsible for modelling the re-projection error
ē = Φc̄− s̄ as a spiking vector and takes as input
the jth entry of the input signal s̄ and the output
of the coding layer c̄, combined as:

bj =
M∑
i=1

Φi,jci − sj (5)

Then, bj is low-pass filtered and fed to a push-pull
LIF neuron. Finally, the STDP learning engine
modifies ϕj by using the error neuron output ej
as the post-synaptic spike source and c̄ as the pre-
synaptic source.
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Figure 5: SNN-STDP architecture for unsupervised feature learning in neuromorphic processors:
a) the coding layer of the SNN architecture infers c̄ using the push-pull LIF neuron pairs and learns
ΦT and W using STDP. The error layer continuously outputs the spiking signal ē used during the
learning process and learns Φ via STDP. b) power consumption during STDP learning on N-MNIST
vs. conventional backprop training in ubiquitous embedded GPUs and in binary nets [14], [16]. c)
Impact of LIF neuron and STDP dynamics on N-MNIST accuracy (using M = 100 coding neurons).

Accuracy assessment

In [11], our SNN-STDP architecture of Fig. 5
has been assessed for image recognition on three
common neuromorphic benchmark datasets: N-
MNIST, CIFAR10-DVS (challenging) and IBM
DVS128 (gesture recognition). Tables 1 and 2
compare the performance of our SNN-STDP ar-
chitecture against conventional single-layer meth-
ods and against the state-of-the-art systems. We
use M = 4000 coding neurons for N-MNIST,
M = 1500 for the IBM DVS128 Gesture. For the
CIFAR10-DVS, we use our system in a convolu-
tional setting, by sweeping the SNN-STDP with
kernel size 20×20, stride 5 and M = 256 across
the image plane. Regarding system latency, we
use the first 300ms of data points in N-MNIST,
1.5s in IBM DVS128 and 1s in CIFAR10-DVS.
Table 1 and 2 show that our SNN-STDP design
outperforms state-of-the-art STDP architectures.

Power consumption analysis
Next, we have estimated the power consump-

tion of our SNN-STDP architecture on N-MNIST
using the hardware metrics of the SNN chip [3]

Table 1: N-MNIST and CIFAR10-DVS.

Architecture N-MNIST % CIFAR10-DVS %

DECOLLE [17] 99.04 -
MuST (STDP) [5] 89.96 -
HATS [6] 99.1 52.4
DART [7] 97.95 65.78
Ours (STDP) 99.26 73.98

Table 2: IBM DVS128 performance, outperforms
the state-of-the-art SNN-STDP of [8] by 7.74%.

Architecture IBM DVS128

CNN [15] 91.77
DECOLLE [17] 95.54
SCRNN [18] 92.01
Reservoir (STDP) [12] 65
SNN-SBP-STDP [8] 84.76
Ours (STDP) 92.5

(upon which our processor design is based):

Pc =
1

Tp

× (Nspikes × Edyn + Tp × Pstat

+Nread × Eread +Nwrite × Ewrite) (6)

where Nspikes is the total number of spikes during
training or inference, Edyn = 2 × 2.1 pJ is
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the energy per spike (taking into account the
broadcasting of the spike to the next layer), Tp is
the time duration of the process (training or in-
ference), Pstat = 2×73 µW is the static leakage,
Nread and Nwrite are respectively the number
of SRAM fetch and store operations, and Eread

and Ewrite are respectively the energy per SRAM
fetch or store. We use a margin of ×2 for Pstat

and Edyn in order to take into account the STDP
circuit overhead (not implemented in [3]). Fig. 5
b) shows the estimated power consumption versus
M . Table 3 shows that our power consump-
tion estimate is in the same order of magnitude
than previously-proposed SNN-STDP circuits [9],
[10], while achieving the top performance among
SNN-STDP processing architectures in terms of
classification accuracy (see Table 1 and 2).

Table 3: Learning power consumption is three
orders of magnitude lower than DNN learning in
embedded GPUs [14].

Ours (STDP) STDP [16] (BNN) [14] DNN
[mW] 5.1 9.4 [9], 4 [10] 23.1 5000 (typ.)

A myriad of future opportunities
With the advent of neuromorphic techniques,

the design of event-driven sensing pipelines and
SNN processing algorithms, traditionally distinct
fields become more intertwined [3], [2]. Neuro-
morphic sensor sampling being a key enabling
technology, event-based sensing and sampling
readout schemes are becoming more prevalent
[2], even though existing converters implemented
and demonstrated on hardware are still few. While
existing spike converters can largely suffer from
device mismatch [13], designing the spike con-
verter with the SNN-STDP processor in mind
can allow for further relaxation of the matching
requirements while maintaining similar SNN per-
formance. Aside from the power reduction due to
the use of less precise spike generation circuits,
the actual reduction in the number of spikes
generated, using e.g., time-to-first-spike (TTFS)
codes [13], can further reduce the required in-
terface bandwidth and the power consumption.
Since the field is currently dominated by the
rate-based model of event data generation, future
research is needed to develop SNN processing
methodologies with on-chip learning rules that

can take full advantage of TTFS-like spike codes.
Finally, an important consideration in the

design of near-sensor computing systems for
extreme-edge IoT applications is the issue of sen-
sor degradation over time [13]. While the SNN-
STDP processor can learn to compensate for
initial sensor non-idealities such as non-linearity
and mismatches, these could vary as the sensor
degrades. Therefore, an interesting yet unexplored
path forward is the use of the SNN-STDP on-line
adaptation capability for the continual compensa-
tion of the evolving sensor non-idealities.

Conclusion
This summary article has discussed progress

in the emerging field of near-sensor computing for
edge-AI applications. Efficient signal-dependent
event-driven sensor readout in combination with
local spike-based data procesing and learning can
largely reduce the power consumption without
sacrificing system performance. The solutions and
opportunities discussed here aim to inspire future
research towards the grand goal of deploying
ultra-low-power and adaptive learning systems at
the extreme edge.
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