
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

An Energy-Aware Task Scheduler for Energy
Harvesting Battery-Less IoT Devices

Adnan Sabovic, Ashish Kumar Sultania, Carmen Delgado, Lander De Roeck
and Jeroen Famaey, Senior Member, IEEE

Abstract—Tiny battery-less Internet of Things (IoT) devices
that depend on the harvested energy from their environment pro-
vide a promising alternative for a sustainable IoT vision. These
devices use small capacitors as energy storage, which together
with the unpredictable and dynamic harvesting environment
results in intermittent on-off behavior of the device. The crucial
issue to effectively use battery-less IoT devices is to find a way of
enabling the successful execution of application tasks in face of
this intermittency. As the conventional computing models cannot
handle this behavior, in this paper we present an energy-aware
task scheduler for battery-less IoT devices based on dependencies
and priorities, which can intelligently schedule the application
tasks avoiding power failures and maintaining forward progress.
With the properly defined voltage thresholds for each application
task, using our energy-aware task scheduler a safer execution
can be ensured. We evaluate our approach based on emulated
and real experiments and validate it using two types of power
management units (Environment Emulator and Intelligent Power
Management Unit based on the AEM10941 chip). Our results
show that the energy-aware task scheduler is able to react and
adapt the execution to environmental changes, avoiding power
failures. Comparing to the state of the art scheduling approaches,
which are mostly not aware of the energy, we show that our
energy-aware task scheduler can keep the device on during
the full time of the experiment, executing more tasks when a
relatively small capacitor of 10mF or less is used at harvesting
currents as low as 40µA.

Index Terms—sustainable IoT, battery-less IoT, intermittent
computing, energy harvesting, BLE, energy-aware task scheduler.

I. INTRODUCTION

THE Internet of Things (IoT) is a concept used to con-
nect objects to the Internet, enabling billions of tiny

devices, from smart-enabled devices to sensors for climate and
agriculture monitoring, to cooperate and communicate with
each other while performing different application tasks such
as sensing (e.g., temperature and humidity), processing and
transmitting data [1]. Due to the low price and maintenance,
as well as easy usage, these devices are involved in a wide
range of IoT applications, such as wildlife tracking, healthcare
[2] [3], autonomous vehicles [4] or building monitoring [5]
[6]. Typically, most IoT devices consist of a microcontroller
(MCU), a radio chip (i.e., low power radio technologies),
sensors and actuators to interact with the environment, and
a battery that acts as a main power source [1] [7].

Adnan Sabovic, Ashish Kumar Sultania, Lander De Roeck and Jeroen
Famaey are with University of Antwerp and imec, Belgium (e-mail:
adnan.sabovic, ashishkumar.sultania, jeroen.famaey @uantwerpen.be, lan-
der.deroeck@student.uantwerpen.be)

Carmen Delgado is with AI-Driven Systems, i2CAT Foundation, Barcelona,
Spain email: (carmen.delgado@i2cat.net)

Stable power can be provided by batteries, but even when
rechargeable, they are short-lived, lasting at most a few years.
As the number of devices grows, the short lifetime of batteries
requires maintenance, disposing and replacing, which becomes
expensive and harmful to the environment. These batteries are
bulky, which is not suitable for smaller devices, temperature
sensitive and dangerous when not carefully protected, which
makes their maintenance even more difficult in hard-to-reach
areas. Even with some improvements, rechargeable batteries
in combination with energy harvesting mechanisms, can still
cause capacity degradation due to frequent charge-discharge
cycles, reducing their lifetime [1]. Considering all of these,
as well as their toxicity and chemically harmful composition
that is ecologically unacceptable, they are incompatible with
a sustainable IoT vision.

Improvements in processor architectures along with a re-
duction in energy consumption using low-power radio tech-
nologies enable a new type of devices that entirely depend on
harvested environmental energy and do not need batteries for
operating [8] [9]. These devices are powered by harvesting
available energy from different environmental and renewable
sources (e.g., solar, thermal or RF energy) which is stored
in small capacitors. These capacitors are cheap and more
resistant to capacity degradation, which prolongs their lifetime
to more than a decade. Battery-less devices are easy to recycle,
temperature insensitive and almost maintenance free, which
makes them more environmentally friendly and suitable for
operating in large-scale deployments.

Besides all advantages and improvements, there are still
gaps and challenges that these devices face. Harvestable power
sources are usually weak and unreliable with the amount of
generated energy depending on current environmental condi-
tions (e.g., solar energy is unavailable at night) [6]. During
the inactive period (i.e., sleep state) the device replenishes its
stored energy, which is scarce, especially when the capacitor is
small. When sufficient energy accumulates, and the operating
threshold is reached, the device starts executing tasks. A device
works undisturbedly as long as there is enough stored energy.
Once the energy is depleted and the device turns off, the
volatile state (e.g., stack memory and register contents) and
data are lost, and forward progress is interrupted. To ensure
forward progress, the program must save the volatile state
to non-volatile memory (e.g., FRAM or Flash) before the
energy runs out. In the end, all these things cause intermittent
execution, as shown in Figure 1, where the device turns on and
off frequently, as it depletes and replenishes the stored energy
in the capacitor. The charge and discharge cycle intervals

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

TIME [s]

C
A

PA
C

IT
O

R

V
O

LT
A

G
E

[V
]

Minimum operating voltage

Maximum operating voltage

OFF ON OFF ON

Fig. 1: Battery-less intermittent on/off behavior

depend on the considered hardware, capacitor size, and energy
conditions [8].

The crucial issue to effectively use battery-less IoT devices
is to find a way of enabling the successful cycle of task
handling with their intermittency and reducing the possibility
of power failures. Conventional computing models and static
sequential applications cannot handle such behavior, as they
lose forward progress assuming a stable power supply during
execution [1]. This problem can be solved with task-based
models [10] [11], where each task performs some atomic
function, and its output is saved in non-volatile memory after
it successfully completes. However, almost none of them
consider the energy awareness. In this paper, we present an
energy-aware task scheduler for battery-less IoT devices that
can intelligently decide when to execute a specific task con-
sidering the harvested and available energy, energy consumed
by the task, as well as its priority. Before each execution,
the scheduler selects the task with the highest priority to be
executed. To preserve the forward progress, after the task
execution the output data, together with all dependent succeed-
ing tasks will be stored in non-volatile memory. Considering
the energy awareness, our approach can avoid power failures,
improving the overall performance of the scheduler.

The main contributions in this paper are: (i) the proposed
scheduling framework that is able to consider energy-related
information in decision making, including the mathematical
description of application tasks and the energy-aware task
scheduling algorithm, as well as its implementation; (ii) accu-
rate device profiling methodology of different application tasks
and device states, determining the impact of the scheduler on
current draw; (iii) realistic evaluation of our approach based
on a real implementation in a battery-less prototype device,
and validation using two types of power management units
(PMUs).

The remainder of this paper is structured as follows. Sec-
tion II reviews the state of the art on battery-less computing
and scheduling. In Section III, the energy-aware task scheduler
for battery-less IoT devices, along with the application imple-
mentation, metadata, and scheduling algorithm is described.
Section IV presents the accurate device profiling methodology
to determine the current consumption and execution time
of different application tasks and device states, as well as
the impact of implemented scheduler. Section V shows the
evaluation and validation results, together with discussion.

Finally, conclusions are provided in Section VII.

II. RELATED WORK

The main characteristic of battery-less IoT devices is their
intermittent on/off behavior, where they can lose power at any
point of time. As traditional computing models and approaches
cannot handle such behavior, new strategies that can enable
battery-less devices to operate under unstable power supply
are required. Different models and schedulers that can handle
battery-less intermittency have been proposed. They are mostly
based on two main strategies, checkpointing and task-based
models.

Checkpointing-based models capture a system state peri-
odically and after reboot continue with the execution starting
from the state captured by the checkpoint [12]. Mementos [13],
Clank [14] and Ratchet [15] have tried to preserve the forward
progress, but increasing the size of checkpoints and volatile
memory, the program’s time and energy overhead grows.
With this behavior the possibility of depleting the available
energy increases, which makes these approaches unsuitable
for battery-less devices. Even considering the dynamic check-
pointing approach [16], there is a possibility that the code
operates with inconsistent values, which makes the memory
consistency uncertain.

On the other side, task-based models split the program
into different atomic subtasks, saving the output data in non-
volatile memory after each execution. These models are more
suitable for battery-less devices showing better performance
in preserving forward progress. Alpaca [9] is a low-overhead
programming model for intermittent computing on battery-less
IoT devices, which decomposes the program into a sequence of
user-defined tasks preserving forward progress despite power
failures. Memory consistency is guaranteed through the pri-
vatization of shared data between connected tasks. Another
task-based scheduling approach, based on task granularity,
was presented by Colin et al. [12]. Similar to Alpaca, Chain
guarantees memory consistency, but with higher overhead due
to its channel-based memory model. The forward progress
is ensured as long as the energy demand never exceeds the
total energy storage capacity of the device. Hester et al.
[11] presented Mayfly, a language and runtime for timely
execution of sensing tasks on tiny, intermittently powered,
energy harvesting sensing devices. Their approach ensures the
forward progress and defines different types of constraints
which keep the data consistency, freshness and utility across
multiple power failures. All three mentioned approaches are
based on static task flows and if the task cannot be finished
due to lack of available energy, it will be executed again.
The main problem here is the risk of task starvation because
these schedulers do not advance any other task if the previous
one cannot be completed. Also, in the first two scheduling
approaches the selection of tasks based on their priorities has
not been included.

Yildirim et al. [10] proposed an event-driven approach
for battery-less IoT devices, introducing building blocks and
abstractions that can enable reacting to changes in available
energy keeping the sense of time and memory consistency.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

InK always tries to execute the event/task with the highest
priority, without considering energy availability, and if the
available energy depletes during the execution, the task fails.
Considering its dynamic strategy along with the predefined
task priorities, the issue of task starvation can be avoided.
However, none of aforementioned approaches take energy
awareness into account. Compared to them, our study allows
us to schedule tasks in an energy-aware fashion, taking into
account energy harvesting budget and current consumption of
the tasks, as well as their priorities. We consider and evaluate
the real measured energy cost of every specific state of the
device, including the impact of the scheduler. Based on current
consumption, execution time, harvesting rate, and capacitor
size, we can determine the required starting voltage for every
specific task avoiding power failures.

AsTAR [17] is an energy-aware task scheduler that rapidly
identifies optimum task scheduling rates and adapts quickly
to environmental changes ensuring extremely low performance
overhead in terms of memory, energy, and execution time. It is
fully autonomous and requires no pre-configuration, delivering
sustainable operation on heterogeneous platforms. In their
work, they considered larger super capacitors (between 1 and
5 Farad) and only single-task applications without priorities or
dependencies. Yang et al. [18] presented the updated version of
AsTAR, which supports multi-tasking and selects tasks based
on their priorities. However, they still focused on using only
larger super capacitors, which are not necessarily the most
optimal solution for battery-less IoT devices, as shown in
[19]. Large capacitors can reduce performance as they need
more time to charge, decreasing the total number of executed
application cycles. Instead, we focus on smaller capacitors and
consider different application tasks that are scheduled based
on their priorities but also interdependencies. Majid et al.
[8] presented an adaptive task scheduler that can adapt its
execution to the incoming energy conditions at runtime. It sup-
ports a variety of capacitors and ensures forward progress by
grouping tasks together when more energy is available. During
the program execution the task priorities are not defined. Two
scheduling algorithms for intermittent systems that schedule
computational and energy harvesting tasks have been proposed
by Islam et al. [7]. They define the equal priority for all
considered tasks assuming that computing and harvesting tasks
are separate and do not execute simultaneously. For validation,
only a 680mF super capacitor has been considered, and task
dependencies were not considered. In contrast, we allow the
harvester and the device to work simultaneously and define
different task priorities along with specific constraints enabling
power-hungry tasks to be executed for the specific use case.
Maeng et al. [20] presented an event-driven energy harvesting
system, named CatNap, which splits the program into time
critical code, for which energy must be reserved, and time
insensitive code. CatNap executes events atomically without
interruption by a recharge or a power failure. In their work,
they consider only the worst case while charging the capacitor,
and not for every event specifically, which can cause wasting
time on useless full capacitor charging periods. Delgado et
al. [1] presented a paper on such a theoretical analysis of
an energy-aware task scheduling algorithm that is able to

optimally schedule application tasks taking into account the
energy available in the capacitor and the expected energy to
be harvested, avoiding power failures and providing insights
on the optimal look-ahead time for energy prediction. They
provided theoretical insight into the performance of an energy-
aware task scheduling and compare their solution against InK
[10], an energy-unaware task scheduler, considering different
parameters such as a number of power failures and task
priority success rate. Their work is complementary to ours,
and provides the theoretical insights that are used in the design
of our practically feasible energy-aware scheduling solution.
In contrast, we focused on devising a scheduling framework
that enables the deployment of such energy-aware scheduling
algorithms on real IoT devices. Based on this theoretical
analysis, we developed a computationally feasible scheduling
strategy, as calculating the optimal solution is NP-hard and
thus infeasible to calculate on a real IoT device.

Finally, we have also presented an energy-aware task
scheduling approach on battery-less LoRaWAN devices with
energy harvesting [21], where we considered two different
strategies allowing the device to sleep and turn off between the
execution of application task cycles. We defined an optimiza-
tion problem that determines the optimal capacitor voltage at
which the device should start performing its tasks avoiding
the possibility of power failure. In this paper, we extend
the previous work in several ways. Our new energy-aware
task scheduler is more generic and can be used with dif-
ferent applications and technologies, considering the generic
dependencies among tasks. Also, after each task execution the
output data is saved in non-volatile memory, which was not
considered before. The model validation is performed based
on an implementation in a real battery-less prototype device.

III. ENERGY-AWARE BATTERY-LESS IOT DEVICES

In this section, the brief overview of the energy-aware
approach for battery-less IoT devices is provided. We start with
the description of our energy-aware task scheduler for these
devices, along with the application implementation, metadata,
and scheduling algorithm. In the end, we describe different
stages when power failures can occur, and how our energy-
aware task scheduler handles them.

A. Energy-aware task scheduling approach based on depen-
dencies and priorities

The main characteristic of battery-less IoT devices is their
unpredictable behavior due to the highly variable energy
supply. There are different proposed models and concepts
that tried to enable successful task execution on battery-less
devices, but only by considering the complete energy lifecycle
(i.e., harvesting current, stored energy, task and device energy
consumption), it is possible to avoid power failures. Because
of that, in this paper, we propose a new energy-aware task
scheduling concept that takes into account the harvesting
current, current consumption for every specific state of the
device, and is able to determine the minimum required voltage
threshold that the device needs to reach in order to perform
tasks successfully.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Listing 1: Generic JSON representation of application tasks
{” Tasks ” : {

” func t ionName ” : task name ,
” c u r r e n t C o n s u m p t i o n ” : {

” v a l u e ” : measured va lue ,
” u n i t ” : u n i t v a l u e

} ,
” e x e c u t i o n T i m e ” : {

” v a l u e ” : measured va lue ,
” u n i t ” : u n i t v a l u e

} ,
” d e a d l i n e ” : {

” v a l u e ” : s e t v a l u e ,
” u n i t ” : u n i t v a l u e

} ,
” p r i o r i t y ” : s e t v a l u e ,
” i n i t ” : s e t v a l u e ,
” r e q u i r e d V o l t a g e ” : {

” v a l u e ” : measured va lue ,
” u n i t ” : u n i t v a l u e

} ,
” o u t p u t ” : {

” v a r i a b l e ” : o u t p u t v a r i a b l e ,
” t y p e ” : o u t p u t t y p e

}
}

}

1) Application implementation and metadata: Our energy-
aware task scheduling concept considers two main inputs:

i) The application implementation, which consists of a pre-
compiled binary that implements each task as a function,
as well as other functions relevant for the application,
such as configuring the network interface or low power
functionality. The considered application is divided into
connected tasks T = (t0, t1,...,tmax) that need to be
scheduled. Each task t ∈ T is characterized by its name
nt, execution time tet, average current consumption it,
deadline dt that guarantees the freshness and usability
of the data and tasks outputs, priority pt, and output ot.
Based on the task parameters, such as execution time tet
and current consumption it, as well as the harvesting rate
Ih and capacitor size C, the required voltage threshold
V req
t for every specific task t ∈ T can be calculated and

used during the program execution as will be shown in
next sections. Each task t ∈ T has zero or one parent task
pt. Also, all tasks t ∈ T have a set of zero or more child
tasks Ct ⊂ T .

ii) The application metadata, which the user can define in
JSON format. These JSON files are parsed and compiled
by the scheduler when a new application is loaded into
the device. The metadata is provided in two main JSON
structured files, the first file to define task parameters
(Listing 1) and the second one to create a task flow
(Listing 2).

The metadata ensures that the energy-aware task sched-
uler is completely independent of the specific application
or application flow. It can be used with a wide range of
different applications and scenarios, defining different task

Listing 2: Generic JSON representation of task flow
{” TaskFlow ” : {

” p a r e n t T a s k ” : f t a s k s o u r c e ,
” c h i l d T a s k ” : f t a s k d e s t i n a t i o n ,
” c o n s t r a i n t ” : {

” v a r i a b l e ” : c o n s t r a i n t v a r i a b l e ,
” v a l u e ” : c o n s t r a i n t v a l u e ,
” t y p e ” : c o n s t r a i n t t y p e

}
}

}

TASK A

REPEAT EVERY
X SECONDS

TASK B

CONSTRAINT
= TRUE

TASK C

START

YES

Fig. 2: Atomic task order considering constraints

parameters and flows for different cases. In this way, changing
the parameter values, order of tasks or even the complete
task flow becomes much faster and easier, saving time and
decreasing the burden for programmers.

The task flow description contains the task order and
constraints definitions. All tasks are characterized by an order,
which is implemented as a parent/child relationship, as illus-
trated in the example in Figure 2. Task A is the start task, and
has two child tasks, Task A and Task B. Due to its periodicity
that is defined as a constraint type, Task A can be considered
as a parent and child of itself. Task B has only one child task,
which is Task C. Task C cannot be executed if the constraint
is not satisfied.

Constraints can take several forms:
i) Repeat, which defines the periodicity of task execution.

Using this constraint, we can define how frequently
the specific task should be executed (e.g., execute the
temperature measurements every 1 second). Based on
this value, the task will always be rescheduled after a
predefined period. If the available energy is low, it may
not be executed, or execution may be delayed.

ii) Number of samples (Nsample), which defines the re-
quired number of output samples (Nreq) that the device
has to collect in order to execute the next task in the flow
(e.g., the required number of temperature samples is 3).

iii) Data availability (Davb), which checks if the needed
input (inputtn+1) for the succeeding task tn+1 in the
flow is available. In case that this constraint is satisfied

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

the task will be scheduled, but not necessarily executed
first, depending on the scheduling algorithm.

iv) Mathematical comparison on an output (MATH)
(e.g., > , <, =), which checks the output (otn−1) of the
preceding task tn−1, and based on the obtained value the
energy-aware scheduler can decide on the next step. In
case that this constraint is satisfied (e.g., the temperature
value is lower than 25), the scheduler will schedule the
child task for execution. If the constraint is not satisfied,
the task will be skipped.

These constraints are presented in the application metadata
that creates a task flow (Listing 2). Each task constraint is
characterized by its variable, which is associated with the
output from the parent task (e.g., average temperature is the
output variable from the compute task), value, which defines
a specific requirement based on the constraint type (e.g., with
the availability constraint there is no need for a value, as
we always want to check if the data is available), and type,
which defines the constraint type (e.g., available refers to data
availability).

2) Energy-Aware Task Scheduling Algorithm: The main
goal of our energy-aware task scheduler is to maximize the
number of successful task executions based on their prede-
fined priorities, child-parent dependencies, and deadlines. The
energy-aware task scheduler works with two types of lists:
(i) the task list (T) that refers to the general concept, which
contains a description of all considered tasks and flows based
on the application metadata shown in Listing 1 and 2, and
(ii) the list of task instances (I) that refers to a specific task
execution, which includes all parameters from the task list with
an additional start time parameter.

The energy-aware task scheduler will start with the initial
setup by checking the memory status as shown in Algorithm 1
(Lines 1-6). In case there are already some tasks stored in the
memory, the scheduler will retrieve the list of task instances
from the memory and proceed with the next steps. This will
occur if a power failure occurs after the scheduler already
successfully finished the setup procedure before. Otherwise,
it will need to read and parse tasks and task flows from the
JSON metadata, and store them as structures in non-volatile
memory.

The next step is to check the initial parent tasks from the
task list (Line 8). The initial tasks are all tasks that have their
init parameter set to 1 in the JSON metadata (cf., Listing 1).
Once the initial task is selected, it will be associated with a
task instance created from that task (Line 9). The earliest start
time tesi of the selected task instance i is set based on the
current time tcur (Line 10), and as it presents the initial task,
the value is equal to 0. Therefore, the task instance deadline
di is equal to the associated task deadline dt defined in the
JSON metadata (Line 11). After this part is completed, task
instances of all initial tasks will be added to the task instance
list, and stored in non-volatile memory (Lines 12-15).

Our energy-aware task scheduler works based on task
priorities as presented in Algorithm 2. Each task instance is
characterized by its priority retrieved from the JSON metadata,
and the one with the highest priority from the task instance
list will be selected (Line 2). If its deadline cannot be satisfied

Algorithm 1: Task instance initialization

1 if task instances stored in memory then
2 I← retrieve task instances from memory;
3 else
4 T← parse tasks and task flows from JSON

metadata;
5 store T in non-volatile memory;
6 I← [];
7 forall t ∈ T do
8 if initt == 1 then
9 i← create task instance from t;

10 tesi ← tcur;
11 di ← tcur + dt;
12 I← I ∪ {i};
13 end
14 end
15 store I in non-volatile memory;
16 end

(taking into account also the time needed to charge the
capacitor to the task’s threshold voltage), the task instance will
be removed from the list, and the next task instance with the
highest priority will be selected. Otherwise, the device will
sleep until the earliest start time (Line 4). In case that two
task instances have the same priority, the one with the earliest
deadline will be selected first.

As we consider the energy awareness in our scheduling ap-
proach, the required voltage thresholds Vreq for each task must
be calculated, using the mathematical model and equations
presented in our previous work [21]. Based on the obtained
value, the scheduler is aware when the enough energy is
collected to execute the task. The device will measure the
capacitor voltage Vc at predefined intervals (i.e., every tv
seconds) to check if the required voltage threshold of the
selected task instance is reached. As long as the capacitor
voltage is lower than required value, the device will go into
sleep mode, and wait to repeat the measurement task again
(Lines 5-7). This will delay execution, increasing the actual
start time of the task instance based on the number of repeated
voltage measurement cycles. Once the capacitor voltage is
equal or higher than the required threshold, the task instance
can be executed, if it can still be completed within its deadline
(Lines 8-9).

In addition to task priorities, the energy-aware task sched-
uler also includes dependencies, which are implemented as
child tasks. The relationship between the parent and child
tasks are presented in the JSON metadata (cf. Listing 2) in
the form of an application task flow. Each task instance can
have one or more child tasks, which will be added to the list
of task instances, but only if their constraints are satisfied,
and subsequently, the highest priority task instance will be
executed. If the constraint is satisfied, the new task instance
will be created from the child task of the executed one. The
earliest start time of the instance ic of the child task c depends
on the type of the task constraint. In case it is a repeat
constraint, its earliest start time tesic will be based on the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Algorithm 2: Priority-based energy-aware scheduling
algorithm

1 while I ̸= ∅ do
2 i← highest priority task instance from I;
3 if tesi +tei ≤ di then
4 sleep until tesi;
5 while Vc ≤ V reqi and tcur + tv +tei ≤ di do
6 sleep tv seconds;
7 end
8 if Vc ≥ V reqi and tcur +tei ≤ di then
9 execute i;

10 forall c ∈ ci do
11 if constraint of c is repeat then
12 ic ← create task instance from c;
13 tesic ← tcur + tdc;
14 dic ← tcur + dc;
15 I← I ∪ {ic};
16 end
17 else if constraint of c is Nsample and

Nsample ≥ Nreq then
18 ic ← create task instance from c;
19 tesic ← tcur;
20 dic ← tcur + dc;
21 I← I ∪ {ic};
22 end
23 else if constraint of c is Davb and

inputc == true then
24 ic ← create task instance from c;
25 tesic ← tcur;
26 dic ← tcur + dc;
27 I← I ∪ {ic}
28 end
29 else if constraint of c is MATH and oi

is satisfied then
30 ic ← create task instance from c;
31 tesic ← tcur;
32 dic ← tcur + dc;
33 I← I ∪ {ic};
34 end
35 end
36 end
37 end
38 I← I \ {i};
39 end

current time tcur and minimum required delay tdc between
task repetitions (Lines 11-16). Otherwise, the earliest start time
is equal to the current time. The deadline dic in which this task
instance must be executed is based on the current time tcur
and deadline specific to that task dc, which is defined in the
JSON metadata (cf. Listing 1). Once this part is finished, the
child task instances will be added to the list of task instances,
and stored in non-volatile memory (Lines 15, 21, 27 or 33,
depending on the selected task constraint).

3) Deadline based task selection: In the current energy-
aware task scheduler implementation, the rate-monotonic

scheduling (RMS) policy with the priority assigned algorithm
is considered. Each task is characterized with a predefined
priority and the one with the highest priority will always be se-
lected first. We consider hard task deadlines, to avoid wasting
energy on collecting, processing, or transmitting outdated data.
We thus assume that if the selected task misses its deadline,
it will affect the data freshness, and executing the task would
only waste energy as the data is no longer useful.

The proposed energy-aware task scheduling framework can
be adapted by integrating different task selection policies (i.e.,
by replacing Line 2 in Algorithm 2):

1) Changing the task priority - instead of removing the task
from the list if the deadline cannot be satisfied, its priority
can be adjusted and it can be executed with lower priority
based on the scheduling policy. In this case, the task will
be kept in the task queue and executed after the higher
priority task(s) of which the deadline has not expired. The
potential risk of this scheduling strategy is that the data
freshness can be affected, and the data will no longer be
relevant.

2) Earliest Deadline First (EDF) - the algorithm will assign
priorities to the task according to its deadline. The task
with the earliest deadline will be selected first as the
highest priority task. It must be noted that these priorities
can be adjusted and changed, which causes that any task
can be preempted by any other periodic task with an ear-
lier deadline. The potential issue of the EDF scheduling
algorithm is that if one task has missed the deadline, all
upcoming tasks will miss their deadline too [22].

3) Priority-based joint EDF-RMS - this scheduling algo-
rithm has been presented in [23] [22] as a hybrid of the
RMS and EDF algorithms that reduces the weakness of
both. Similar to EDF, the joint EDF-RMS is a dynamic
priority-based scheduling algorithm where priority can be
changed at run time, which results with less tasks that
will miss the deadline. Additionally, it is implemented
in a global scheduler that maintains all arrived tasks and
executes a task migration mechanism when tasks that are
not able to be executed on the source processor will be
migrated to another one. The main problem that can occur
using this scheduling strategy is that running tasks can be
preempted with higher priority new tasks, causing them
to miss the deadline [23].

4) Power failures and time-keeping: The important part of
our energy-aware task scheduler is that all the necessary data
is stored in flash, preventing their loss in case of a power
failure. There are different stages when a power failure can
occur. These are as mentioned below:

i) After the JSON files are read and parsed - after
reading and parsing JSON files, all the necessary data
related to the defined application tasks is stored in the
flash as an array of C structs. Then the scheduler selects
the initial tasks and saves them as task instances. In case
that a power failure occurs immediately after this part is
finished, the device needs to wait until it collects enough
energy to turn on again and check if there is any content
in the flash. The flash is not empty, and the scheduler is

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

ready to continue with the next phase, without having to
reparse the JSON files.

ii) Before task execution - the next phase is to select the
highest priority task. When the scheduler selects the task,
it is ready to be executed. If a power failure happens just
before the execution, the relevant data is still safe in the
flash, because after each task execution, the task instances
must be updated with new values (dependent child tasks)
and stored. After reboot, the scheduler will again pick the
task, if its deadline has not passed, and continue with the
execution.

iii) During the task execution while some tasks are pend-
ing - In case that a power failure occurs during task
execution, after the reboot the device checks its flash and
repeats the task, if it can still be completed within the
deadline. In order to ensure task deadlines are met, it is
necessary to keep time across power failures.

Time-keeping is also important, to keep track of deadlines
accros power failures. There are different solutions for this
problem, such as (i) the approach based on a mathematical
model that represents the elapsed time estimated by measuring
how much voltage decayed across a small capacitor upon
reboot [24], and (ii) a more accurate multi-tier timekeeping
architecture based on a high-resolution remanence timekeeper,
capable of tracking time across power failures, featuring
an array of different RC circuits to be used for dynamic
timekeeping requirements [25].

Our energy-aware task scheduler tries to avoid power fail-
ures as much as possible. A power failure is expected to only
occur if the harvested energy is insufficient to keep the device
powered in its lowest power state (i.e., during sleep).

IV. DEVICE AND APPLICATION PROFILING

In this section, we describe the implemented IoT sensor
application, including all defined tasks and the order of their
execution. Two types of PMUs used for the validation of
our energy-aware task scheduler, along with different task
scheduling approaches used for comparison, are presented. A
brief overview of the used device and application profiling
methodology to get the current consumption and execution
time of the different states of the devices, as well as the actual
results, is provided. In the end, we explain how the harvesting
current can be estimated, taking into account different possible
cases.

A. IoT sensor application

For evaluation purposes, we implemented an IoT sensor
application composed of five main tasks: temperature measure-
ment, store the temperature values, calculate and transmit the
average temperature, and in the end confirm the transmission
by briefly turning on a LED.

Figure 3 shows the IoT application flowchart, which in-
cludes all defined tasks and their relation. The first task in the
flow is temperature measurement, which is a periodic task,
and can be repeated every X seconds. In our experiments,
the sensing task was executed every 1 second and its first
start time was considered to be 0 seconds. When the device

f_temp()

REPEAT EVERY
X SECONDS

temperature

f_store()

temperature_array[]

num_temp_values >= Y
f_compute()TRUE

f_transmit()

average
temperature

f_led()

Fig. 3: IoT application flowchart including the defined tasks

measures the temperature, the value is put in a temperature
array, with a predefined size Y, and stored. After the store
task is finished, the scheduler selects the compute task that is
able to calculate the average temperature based on input values
from its predecessor, but only if the constraint is satisfied. In
this case, as constraint, we assumed the required number of
sampled values to be 3. When the device collects 3 samples
and calculates the average value, it is ready to transmit the
data to the receiver node. After the successful transmission,
as a confirmation, the LED will turn on for 500 milliseconds.

B. Power Management Units

There are different types of Power Management Units
(PMUs) available in the market. These boards can have an
internal mechanism to control charging and power supply
periods, or some of them just act as a charger for the capacitor
and always supply power to the external device requiring an
external trigger to stop the supply. The proposed energy-aware
task scheduling approach was validated using two PMUs: (i)
Environment Emulator (EE) [26], and (ii) Intelligent-Power
Management Unit based on the AEM10941 chip [27] designed
by e-peas for solar and thermal harvesters.

1) Non-Intelligent PMU (Environment Emulator): The non-
intelligent PMUs present a power source where the control is
given to the external entity. As the device is normally powered
via USB or batteries, the EE was used to emulate the energy
harvesting environment and capacitor. The EE board was
developed by De Mil et al. [26]. It acts as a virtual capacitor,
and is able to emulate a wide range of energy harvesting
and energy storage configurations. The EE is connected to
the device under test (DUT) via expansion connectors. It
measures the current consumption of the DUT and, based
on a configured capacitor size and harvesting current, the EE
provides a variable voltage to the DUT in line with the voltage
that would be provided by a real capacitor.

2) Intelligent PMU based on the AEM10941 chip: The
power management is performed using a single inductor
boost/buck regulator. The boost regulator harvests energy from
the solar panel to charge the on-board storage using maximum
power point tracking. This system uses an RG trigger circuit

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE I: Current consumption and time values of nRF52840 DK board used with the EE

Current Consumption Execution Time

State APP
EAS

-
FLASH

EAS
+

FLASH

InK
-

FLASH

InK
+

FLASH
APP

EAS
-

FLASH

EAS
+

FLASH

InK
-

FLASH

InK
+

FLASH
Temperature measurement 0.61 mA 0.66 mA 1.38 mA 0.64 mA 1.37 mA 1.15 ms 1.96 ms 12.31 ms 1.91 ms 11.76 ms

Store 1 1.31 mA 1.4 mA 1.4 mA 1.37 mA 1.37 mA 5.49 ms 7.39 ms 7.39 ms 6.81 ms 6.81 ms
Store 2 1.31 mA 1.4 mA 1.51 mA 1.37 mA 1.46 mA 5.49 ms 7.39 ms 11.98 ms 6.81 ms 11.61 ms

Compute 1.33 mA 1.41 mA 1.54 mA 1.37 mA 1.48 mA 6.31 ms 7.64 ms 12.1 ms 7.22 ms 11.81 ms
Transmit 0.31 mA 0.34 mA 0.57 mA 0.32 mA 0.55 mA 32.43 ms 33.81 ms 35.75 ms 32.74 ms 34.7 ms

Blinking LED 5.87 mA 5.97 mA 5.97 mA 5.95 mA 5.95 mA 502.6 ms 508 ms 508 ms 504.7 ms 504.7 ms

which makes the capacitor charge only when its voltage is
lower than a specific value. The battery-less IoT device is
turned on when the capacitor voltage reaches the turn-on
threshold (Vturnon) and it is turned off when its capacitor
voltage drops below the turn-off threshold (Vturnoff).

The AEM10941 [28] is an integrated energy management
circuit designed by e-peas [27], for solar and thermal har-
vesters, which extracts DC power from up to 7-cell solar
panels to simultaneously store energy in a rechargeable el-
ement (e.g., capacitor). This solution can supply the system
with two independent regulated voltages, the low-voltage
output (LVOUT) and high-voltage output (HVOUT). LVOUT
generates 1.2V or 1.8V providing a maximum load current of
20mA whereas the HVOUT pin can generate from 1.8V to
4.1V providing a maximum current of 80mA. The evaluation
board works with an input voltage ranging from 50mV to 5V,
and starts harvesting energy at 380mV with an input power of
only 3µA.

The board can be logically divided into four different modes
depending on the capacitor voltage:

i) Voltage below Vturnoff (Discharged), where the PMU
only charges the capacitor without providing supply to
the DUT (LVOUT and HVOUT are deactivated).

ii) Voltage between Vturnoff and Vturnon, where there are
two possibilities. First, when the capacitor charges from
Vturnoff (Discharged), then the PMU only charges the
capacitor without providing supply, and the second one,
when the capacitor already reached Vturnon (Ready-
Charged), then the PMU provides the output voltage
supply and charges the capacitor.

iii) Voltage between Vturnon and the maximum allowed
(Vmax) (Charged), where in the availability of harvesting
current, the PMU charges the capacitor up to Vmax and
continues supplying the output voltage.

iv) Voltage above Vmax (Overcharged), where the capacitor
charging will be deactivated and the output voltage sup-
plying is continued.

C. Different task scheduling approaches
In our work, we have considered and compared four differ-

ent scheduling strategies:
i) Energy-aware task scheduling with flash storage

(EAS+FLASH) that writes everything to flash, which
is safer when the device fails, avoiding data loss and
ensuring forward progress.

ii) Energy-aware task scheduling without flash storage (EAS-
FLASH) that only stores everything in volatile memory,

which works better if the device does not fail (e.g., when
the amount of harvested energy is high enough). If the
device turns off, the application cycle needs to restart from
scratch.

iii) Energy-unaware task scheduling with flash storage that
includes the flash operations, but does not consider the
required voltage thresholds for every specific task. If a
power failure occurs, the device will try to re-execute the
same task again after the reboot, reading the application
state from the flash.

iv) Energy-unaware task scheduling without flash storage
that executes all tasks in a cycle without looking at the
energy available, based on the flowchart, and without
saving anything to the flash. If a power failure occurs,
the application cycle will reset after the reboot, as there
is nothing stored in the flash.

It must be noted that both considered energy-unaware
scheduling policies, follow the approach proposed by the InK
scheduler, an event-driven approach for battery-less IoT de-
vices that does not consider the energy availability, presented
by Yildrim et al. [10]. Based on that, in the rest of the paper the
InK notation will be used, InK+FLASH in the case when flash
storage is included, and InK-FLASH for the energy-unaware
task scheduling approach without flash storage.

D. Task current consumption and execution time for different
scheduling approaches

To perform accurate experiments, the current consumption
(Is) and execution time (ts) of the different states of the
device, such as sensing, flashing operations, or transmitting
data, are required. The real experiments, validation of our
energy-aware task scheduler, as well as a comparison between
different task scheduling approaches, were performed using
the nRF52840 DK board [29] on which a Bluetooth mesh
application was implemented. The current consumption (Is)
and execution time (ts) of the different states of the nRF52840
DK board were obtained with a Nordic Power Profiler Kit II
[30], a standalone unit that can measure the current level on all
Nordic DKs, in addition to external hardware. The nRF52840
DK board operates in nRF only mode, which tries to isolate
the chip on the board as much as possible, decreasing the total
current consumption and making the low-power application
more suitable for battery-less IoT devices.

Table I shows the current consumption and duration for
different states of the nRF52840 DK board, including all
considered scheduling approaches, as well as the scenario

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE II: Current consumption and time values of nRF52840 DK board used with the Intelligent Power Management Unit
based on the AEM10941 chip

Current Consumption Execution Time

State APP
EAS

-
FLASH

EAS
+

FLASH

InK
-

FLASH

InK
+

FLASH
APP

EAS
-

FLASH

EAS
+

FLASH

InK
-

FLASH

InK
+

FLASH
Temperature measurement 1.12 mA 1.4 mA 2.1 mA 1.2 mA 1.61 mA 1.22 ms 1.73 ms 12.83 ms 1.45 ms 11.81 ms

Store 1 1.9 mA 2.16 mA 2.16 mA 1.97 mA 1.97 mA 5.84 ms 7.69 ms 7.69 ms 7.26 ms 7.26 ms
Store 2 1.9 mA 2.16 mA 2.43 mA 1.97 mA 2.24 mA 5.84 ms 7.69 ms 12.23 ms 7.26 ms 11.2 ms

Compute 1.94 mA 2.18 mA 2.58 mA 2.02 mA 2.3 mA 6.08 ms 7.75 ms 12.4 ms 7.33 ms 11.2 ms
Transmit 0.47 mA 0.61 mA 0.84 mA 0.51 mA 0.72 mA 28.41 ms 34.31 ms 36.5 ms 32.65 ms 34.38 ms

Blinking LED 0.22 mA 0.48 mA 0.48 mA 0.29 mA 0.29 mA 502.6 ms 506.1 ms 506.1 ms 504.8 ms 504.8 ms

without scheduler, used with the EE. These values were
measured at 3.3V, using a TX power of 8dBm and considering
three parts, (i) the application part (APP) that only includes the
defined tasks, (ii) scheduler part without the additional flash
operations (EAS-FLASH and InK-FLASH) that includes the
defined tasks, but also shows the impact of the scheduler’s
overhead, and (iii) the scheduler part with the additional flash
operations (EAS+FLASH and InK+FLASH) that includes the
defined tasks and scheduler’s overhead, but also shows the
impact of the flash’s overhead. Compared to the application
part, the measured current consumption and execution time
are higher when the scheduler and flash features are also
included. The scheduler adds some extra operations, such as
(i) selects the task with the highest priority, (ii) removes it
from the task list when it is finished, and (iii) occupies new
places in the list adding all dependent child tasks related to
the executed one. In case when the energy-aware scheduling
approaches (EAS+FLASH and EAS-FLASH) are used, before
every task execution, the device needs to measure the voltage
in order to check if the required voltage threshold is satisfied,
which also consumes some energy (around 110µA). Including
the additional flash functions before and after each task will
increase the current consumption, but also the availability of
data if a power failure occurs.

The lowest energy cost task is the temperature measure-
ment, but adding the scheduler features, the execution time
and current consumption will increase, especially when the
additional flash operations are added. There are two different
store states: (i) before the required number of temperature
samples is collected, the additional flash’s overhead is not
included in any scheduling approach as the store task in this
stage does not have any dependent child task(s) to be added,
and (ii) after the required number of temperature samples is
collected, the compute task will be added to a list and stored,
which requires additional flashing operations (EAS+FLASH
and InK+FLASH). The compute task calculates the average
temperature, which does not consume much energy, but it
also needs to store that value after the calculation. When this
task is finished, its child task(s) will be added and stored,
which again includes the additional flash part for the specific
scheduling implementations (EAS+FLASH and InK+FLASH).
Before the transmission, the scheduler (EAS+FLASH and
InK+FLASH) will again check the flash status, and select
the transmit task as the next one, which will add some
additional current consumption. The final task in the cycle
is the LED task, and as it does not have any dependent

task that must be stored in the flash or added to the list,
all scheduling approaches show almost the same results. In
this case, compared to the application part, the overhead can
only occur from the scheduler and voltage measurements,
depending on the implemented scheduling strategy.

Using the scheduling approaches with additional flash op-
erations (EAS+FLASH and InK+FLASH) ensures a safer
task execution, avoiding data loss and preserving forward
progress if the device fails, but also increases the current
consumption and execution time of tasks. This overhead can be
reduced by removing the extra flash operations, and based on
that we considered the additional version of each scheduling
approach (EAS-FLASH and InK-FLASH). The InK-FLASH
solution is the lowest energy cost compared to other considered
approaches, but also with the highest risk of power failures and
data loss to occur. On the other side, the energy awareness
aspect of the EAS-FLASH solution that allows it to avoid
power failures as much as possible, makes this approach a
good alternative to the EAS+FLASH in terms of the lower
current consumption.

The current consumption and execution time for different
states of the nRF52840 DK board used with the Intelligent
Power Management Unit based on the AEM10941 chip are
presented in Table II. These values were obtained at 1.8V,
based on the low-voltage output (Section IV-B2), using a
TX power of 8dBm and including all considered scheduling
approaches. In this case, the device is not able to directly
read the voltage from the power management unit, as is a
case when the EE is used. In order to enable our device to
read the voltage, an additional voltage divider with resistors
is added that increases the current consumption of this task
(around 1.5mA), which in the end has the impact on the total
current consumption of each task when the energy-aware task
schedulers are used (EAS+FLASH and EAS-FLASH). This
full setup will be described in more detail in Section V-B.

E. Harvesting current

In addition to the current consumption (Is) and execution
time (ts) of the different states of the device, we also need
to know the harvesting current (Ih). Using these values, the
required voltage threshold calculations can be performed accu-
rately, reducing the possibility of power failures. Considering
these parameters for every specific task, the energy-aware task
scheduler knows when to start with the execution.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

There are different ways how to calculate the required
voltage threshold Vreq based on Equation 1 presented in [21]
(V0 is replaced with Vreq):

Vreq =
Vmin − Ihρ(Is)(1− e(

−ts
ρ(Is)C

))

e(
−ts

ρ(Is)C
)

(1)

where Vt is replaced with Vmin, the minimum voltage
on which the task ends, and Ih is the estimated harvesting
current. Based on how Ih is estimated, we can obtain different
estimates for Vreq, referred to as V ′

req:
i) Worst case estimate (Ih = 0) -

V ′
req =

Vmin

e(
−ts

ρ(Is)C
)
, V ′

req > Vreq (2)

Huybrechts et al. [31] presented insights into the Worst-
Case Energy Consumption (WCEC) of each schedulable
task on the device. They have proposed a hybrid method-
ology that combines machine learning-based prediction
on small code sections with static analysis to combine
the predictions to a final upper bound estimation for
the WCEC. Their work relies on an automated test-
bench that measures and profiles the upper bound energy
consumption from annotated code blocks on the target
device. These measurements are then used to train WCEC
estimation models that need to predict these upper bounds.
As a baseline for comparison, the harvesting current can
simply be estimated as 0, resulting in the highest possible
voltage threshold, but the lowest chance of a power
failure occurring. However, this approach shows some
disadvantages, especially with higher harvesting currents
when the required amount of energy for task execution
can be collected much faster. In this case, the device will
waste time waiting to reach the worst-case threshold, even
if a lower value can ensure the successful task execution,
affecting the data freshness and missing deadlines.

ii) Perfect prediction (Ih = known) -

V ′
req = Vreq (3)

Considering the perfect prediction, the harvesting current
is constant and defined before the experiment starts, which
makes the calculation of required voltage thresholds much
easier. However, it is not realistic to assume the future
short-term harvesting current is known, as it fluctuates
rapidly over time.

iii) Predicted estimate (I ′h) - energy harvesting predictions
can help determine after how long the energy-aware
scheduler will have the required energy to execute a task.
However, there are still two possible scenarios: (i) if the
predicted harvesting current I ′h is higher than the real one,
the calculated voltage threshold V ′

req will be lower than
required, and a power failure will occur, and (ii) when
the predicted harvesting current I ′h is lower than a real
one, the calculated voltage threshold V ′

req will be higher
than required, which is not optimal.

In this work, we have performed experiments both consid-
ering a perfectly predicted Ih, and the worst-case estimate
approach. We did not consider a predictive approach, due

to the difficulty in accurately predicted harvested energy. We
consider this a separate topic, and subject of future work.

The electrical circuit model of a battery-less IoT device
using a current source energy harvester, which was presented
in our previous work [21], is a simplified model of the
EE, and with it we are able to get a match in terms of
the capacitor behavior. On the other side, there are some
differences between the Intelligent Power Management Unit
based on the AEM10941 chip and EE. When the Intelligent
Power Management unit based on the AEM10941 chip is
used, (i) the supply voltage to the DUT is constant, and
(ii) there is different charging/discharging behavior of the
capacitor depending on if the voltage is supplied or not, or
in which mode the board operates (Section IV-B2). Based on
that, we are not able to get a perfect match comparing with
our mathematical model, but we can still use it to determine
the approximate value that will be used as the required voltage
threshold.

V. RESULTS AND DISCUSSION

In this section, we present results and validation of our
energy-aware task scheduling approach described in Sec-
tion III based on real experiments and the task voltage thresh-
olds derived in Section IV. In our scenarios, we have consid-
ered two devices, a battery-less low-power node (nRF52840
DK) on which the application along with the energy-aware
task scheduler is implemented, and a constantly powered
server/receiver node (nRF52840 DK) to receive the sent aver-
age temperature values. In order to enable the communication,
both devices are equipped with a Bluetooth Low Energy (BLE)
radio supporting the Bluetooth mesh features.

Before they can participate in a Bluetooth mesh network,
both nodes must be provisioned. The provisioning process
is used for adding devices to the mesh network, and it is
performed by the provisioner, which can be the same board
as we mentioned above running the provisioning code, or
a smartphone on which the required nRF Mesh application
[32] is installed. In our case, the second option was used,
where devices have been provisioned before the program
started. During the provisioning task, loading and parsing of
the metadata (JSON files) can be done.

A. Non-Intelligent PMU (Environment Emulator)

1) Experimental setup: Based on the defined IoT sensor
application and manually set configuration of the environment
emulator, we defined and performed different experiments to
validate our energy-aware task scheduling approach. Table III
lists the general parameters used in our EE experiments. The
minimum operating voltage Vmin is equal to 2V, and the
maximum allowed voltage based on EE constraints is 3.5V.
The device collects a new temperature value every 1 second,
and after 3 measurements the next task can be executed.
Using the mathematical model described in our previous work
[21], the required voltage threshold for each defined task
can be calculated exactly considering the set capacitor size,
harvesting current, as well as measured current consumption
and execution time. The device needs to wait until the voltage

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE III: Experimental setup with the EE

Parameter Symbol Value
Turn-off Voltage Vturnoff 1.8 V

Min Voltage Vmin 2 V
Max Voltage E 3.5 V
Capacitance C (4.7, 10, 20) mF

Harvesting Current Ih 17.09 - 85.47 µA
TX Power TP 8 dBm
Duration Texp 160 - 250 s

Sensing periodicity ttemp 1 s
Voltage check periodicity tvol 1 s

Required num. of temp. samples Nsample 3

TABLE IV: Application task priorities

Task Priority
Temperature measurement 3

Store 5
Compute 8
Transmit 10

Blinking LED 4

threshold is satisfied to avoid a power failure from occurring.
In case that the measured voltage is below the threshold, the
device sleeps for a predefined time, which is in our case set
to 1 second, and checks the voltage again. Our energy-aware
task scheduler was configured to stay above 2V, with a safety
margin, as the turn off voltage is equal to 1.8V. This can be
done by calculating the voltage threshold for each task with
Vmin set to 2V. As mentioned before, all tasks are selected
based on their priorities, which are summarized in Table IV.
The priority has been set based on the type of application
task; measuring the temperature is not as critical as computing
the average value when the required number of samples is
collected. After each sensing task, the temperature value must
be stored in the flash, which makes this task higher prioritized
than the periodic measurement. The transmit task is the task
with the highest priority and will be executed first whenever
an average temperature is available. In the end, the application
cycle is finished by blinking the LED.

For the EE experiments, we have considered two main
strategies: (i) the constant harvesting current during the full
time of the experiment, and (ii) we defined different harvesting
currents and switched between them every 35 seconds during
the experiment in order to see if our scheduler is able to
dynamically react to environmental changes. Also, it must be
noted that using the EE, experiments start at the maximum
allowed voltage with a fully charged capacitor, and the har-
vester starts to provide energy after 5 seconds, which can affect
the number of executed cycles at the start of the experiment
before the voltage drops to the steady state (around 2.05V) in
all considered cases.

2) Constant harvesting current: In this approach, the
known harvesting current for calculating the required voltage
thresholds of the tasks is considered, which means that the
perfect prediction case is used. This value is constant and
defined before the experiment starts. Figure 4 shows the
capacitor voltage changes when the device executes different
tasks described in Section IV, considering different capacitor
sizes and harvesting currents. The most power-hungry task is
the LED task, which consumes the highest amount of energy

and takes much more time to complete compared to other
tasks that we considered in this work. As the capacitor size
increases, lower harvesting currents can be used. It is expected
that using a smaller capacitor will lead to a reduction charging
time, resulting in more application cycles to be completed.
However, this is not the case, as can be clearly seen when
comparing Figure 4a and 4c or 4b and 4d. This is because
a smaller capacitor requires a much higher voltage threshold
which in turn results in longer charging times.

When using a smaller capacitor (cf. Figure 4a) with a lower
harvesting current, such as 17.09 µA, the device needs to
sleep for a long time in order to reach the required threshold
(above 2.9V) to perform the LED task, which is the highest
energy consumer. This task will deplete almost all the available
energy, and force our device to sleep again in order to reach the
threshold of the sensing task and start a new cycle. The impact
of this behavior can be seen in a total number of successful
cycles (7 cycles in 250 seconds) at the end of the experiment.

As the harvesting current increases (cf. Figure 4b), the
required thresholds are still high (all above 2.4V), but the
number of successful cycles increases (22 cycles in 250
seconds). In this case, the device needs less time to collect
enough energy for performing the LED task, and meet the
next task constraints after finishing it.

As the capacitor size increases (cf. Figure 4c, 4d), the
required voltage threshold for each task will decrease. It can
still be observed that the LED task consumes the most energy
compared to the other tasks, but now the threshold is much
lower (below 2.15V) and the device can reach it faster. Even
when the voltage drops below 2V, the capacitor charges fast,
and the device needs less time to reach the next threshold.
Increasing the capacitor size and harvesting current, the device
will show better performance, until it reaches the point when
there is enough energy to perform all tasks without voltage
variations.

Figure 4b, 4c, and 4d show some unexpected behavior
where huge voltage drops occurred. This can be explained
considering the added scheduler features which are mostly
related to the flash erase and write functions. In our case, the
device needs to execute the flash operations more frequently,
before and after each task execution in order to prevent data
loss, which can occasionally take more time than expected
preventing the chip from going to sleep mode and increasing
the total current consumption. This behavior causes delays
in flash operations and holds the device in the ON state
discharging the capacitor very fast. The voltage drop depends
on the provided harvesting current, capacitor size, and the
starting voltage at which this behaviour occurs affecting the
total number of executed application cycles. To ensure that the
device will not turn off when this behavior occurs, the higher
current consumption and execution time are considered for
calculating the required voltage threshold, taking into account
this worst case energy consumption which occurs sporadically.

The average time needed to complete a full application cycle
(cf. Figure 5), which starts with temperature measurements
and ends with the LED task if all constraints are satisfied,
as described in Section IV (cf. Figure 3), depends on the
capacitor size and harvesting current, as well as the calculated

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

0 50 100 150 200 250

 Time (s)

2

2.2

2.4

2.6

2.8

3

 C
ap

ac
ito

r
vo

lta
ge

 (
V

)

(a) C = 4.7 mF, Ih = 17.09 µA

0 50 100 150 200 250
 Time (s)

2

2.5

3

 C
ap

ac
ito

r
vo

lta
ge

 (
V

)

(b) C = 4.7 mF, Ih = 85.47 µA

0 50 100 150 200 250

 Time (s)

1.8

1.9

2

2.1

2.2

 C
ap

ac
ito

r
vo

lta
ge

 (
V

)

(c) C = 20 mF, Ih = 17.09 µA

0 50 100 150 200 250

 Time (s)

1.8

1.9

2

2.1

2.2

 C
ap

ac
ito

r
vo

lta
ge

 (
V

)

(d) C = 20 mF, Ih = 85.47 µA

Fig. 4: Capacitor voltage behavior when executing different tasks considering different capacitor sizes and constant harvesting
currents

Fig. 5: Average time to complete a full application cycle
considering different capacitor sizes and harvesting currents

required voltage for every considered application task. We
considered different capacitor sizes, and tested their behavior
with different harvesting currents.

Considering smaller capacitors such as 4.7mF, the needed
average time to complete a full application cycle is longer
compared to the other two. The reason for that is because the
required voltage thresholds that the device needs to reach in
order to execute every task are higher, which takes more time

and affects the final number of performed cycles. The same
behavior as with the other two capacitor sizes is observed,
increasing the harvesting current the average needed time for
one cycle decreases and the device shows better performance.

3) Non-constant harvesting current: In the second ex-
periment, the harvesting current was varied throughout the
experiment. We switched the harvesting currents every 35
seconds, considering the values presented in Table III, to check
if our energy-aware task scheduler can react to environmental
changes. Figure 6 shows the capacitor voltage changes during
the task executions for different capacitor sizes and harvesting
currents, which were changed during the experimental time,
starting with the highest value of 85.47µA.

In both shown examples (cf. Figure 6a, 6b) it can be seen
that our scheduler is able to react to environmental changes,
and adapt the execution to the new situation. The capacitor
acts based on the provided harvesting current and set voltage
threshold, and as the harvesting current increases more cycles
will be executed. For the larger capacitor (cf. Figure 6b),
the device shows better performance executing more cycles,
which are presented as black dots on the graph, in almost
all cases except when the harvesting current is the lowest. In
this case, the device executed only one task cycle for both
capacitor sizes due to the higher required voltage threshold
which requires almost all available time to be reached. In
all other cases, the device with the larger capacitor performs
better and executes more application cycles, due to the lower
required threshold that can be reached faster compared to when

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

(a) C = 4.7 mF (b) C = 20 mF

Fig. 6: Capacitor voltage behavior when executing different tasks considering different harvesting currents during the
experimental time

11

14

22

4.7 mF 10 mF 20 mF

 Capacitor size (mF)

0

5

10

15

20

25

 N
um

be
r

of
 e

xe
cu

te
d

ap
pl

ic
at

io
n

cy
cl

es

Fig. 7: Number of executed application cycles for different
capacitor sizes considering variable harvesting current over
time

a smaller capacitor is used (cf. Figure 6a).
The final comparison between different capacitor sizes re-

lated to the total number of a full application cycles is shown
in Figure 7. Again, the larger capacitor of 20mF shows the
best performance allowing our device to execute the highest
number of application cycles due to the behavior and reasons
mentioned above. As the capacitor size decreases, the required
voltage threshold for each task will increase taking more time
to charge and allowing our device to execute the tasks less
frequently.

B. Intelligent PMU based on the AEM10941 chip

1) Experimental Setup: Based on the defined IoT sensor
application (cf. Figure 3) and manually set configuration of the
e-peas evaluation board, we performed different experiments
to validate our energy-aware task scheduler and compare it
with different scheduling approaches. Table V lists the general
parameters defined in our experimental setup with the e-peas

TABLE V: Experimental setup with the Intelligent PMU based
on the AEM10941 chip

Parameter Symbol Value
Turn-off Voltage Vturnoff 2.8 V
Turn-on Voltage Vturnon 3.67 V

Max Voltage Vmax 4.5 V
Capacitance C (4.7, 10) mF

Harvesting Current Ih (20, 40) µA
TX Power TP 8 dBm
Duration Texp 5400 s

Sensing periodicity ttemp 1 s
Voltage check periodicity tvol 1, 10 s

Required num. of temp. samples Nsample 3

board. The turn-off voltage, below which the device cannot
operate, is set to 2.8V, and the maximum allowed voltage,
Vmax, is equal to 4.5V. The battery-less IoT device will turn on
when the voltage threshold of 3.67V is reached. These voltage
thresholds can be set in different operating modes from a
range that covers most application requirements through three
configuration pins, without any dedicated component [28].
Compared to the approach where the environment emulator is
used, for these experiments we have considered the real energy
harvesting environment with solar panels. The Panasonic AM-
5608 [33] outdoor solar panel consisting of 6 amorphous
silicon solar cells was used. As the sunlight intensity is
unpredictable, and the harvesting current can change at any
moment, the controllable setup with artificial light which is
placed at some distance above the solar panel was designed,
in order to fairly compare different scheduling approaches. We
have used the Philips 5.5W White LED lamp (470lm) as a light
source. The experiments are performed in a completely dark
room where the light is only produced by the bulb. All tasks
are selected based on their priorities, which were summarized
in Table IV.

For the Intelligent PMU based on the AEM10941 chip
experiments, we have considered four different scheduling
strategies presented in Section IV-C. In both energy-unaware
scheduling approaches, the device tries to execute the next task
immediately after the previous one, which does not guarantee

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

nRF52840
Development Kit

e-peas Evaluation
Board

Solar panel

Capacitor

LED

(a) Energy-unaware

Solar panel

e-peas Evaluation
Board

nRF52840
Development Kit

LED

Capacitor

Mosfets

(b) Energy-aware

Fig. 8: Experimental setup using the e-peas evaluation board

that the task will be finished before a power failure occurs, as
the required voltage thresholds on which the task executions
should start are not taken into account. The hardware setup
for the energy-unaware scheduling approaches is shown in
Figure 8a. In contrast, using the energy-aware scheduling
approach, the battery-less IoT device needs to be able to obtain
the current voltage on the capacitor, in order to compare it to
the calculated voltage threshold of each task. In Figure 8b,
the energy-aware experimental setup with the e-peas board is
shown, where an additional voltage divider is added to enable
our device to read the voltage on the capacitor, and based on
the permitted range of Nordic GPIO act accordingly. As the
voltage measurement circuit contains additional resistors, the
current consumption will increase. To reduce this, MOSFETS
are used as a circuit switch. In this way, the harvested energy
can be used better by determining the usable energy capacity
stored in the capacitor, and the IoT application can be modified
to act in an energy-aware fashion.

In both cases, we have used three power pins on the e-peas
evaluation board:

i) BATT pin that is the connection to the energy storage
element, which is in our case the capacitor, and cannot
be left floating.

ii) SRC pin that is the connection to the harvested energy
source, which is in our case the solar panel.

iii) LVOUT pin that presents the output of the low voltage
LDO regulator. This pin is used as the connection to our
nRF52840 DK board.

2) Comparison between Approaches: We compare our
energy-aware task scheduling approach with the energy-
unaware scheduling strategies using the defined IoT appli-
cation, and the e-peas evaluation board setup that considers
the real energy harvesting environment. In our experiments,
we have followed the behavior of the device under different
implemented scheduling strategies (cf. Figure 9) in terms of
the time the device is turned on and the number of power
failures (cf. Figure 10), and the total number of full application
cycles (cf. Figure 11).

Considering the energy-aware task schedulers, with
(EAS+FLASH) and without additional flash operations (EAS-
FLASH), when a smaller capacitor such as 4.7mF (cf. Fig-

ure 9a and 9b) is used, power failures can be avoided com-
pletely. In both cases, defining the required voltage thresholds
for each application task, the device knows when the needed
amount of energy is stored and the task can be successfully
executed. If the required voltage is not reached, the device goes
in sleep mode, consuming a very low power (around 10µA),
and checks the voltage again after the predefined time tvol (1
and 10 seconds).

For a larger capacitor such as 10mF, considering our energy-
aware task scheduling approaches (cf. Figure 9c and 9d), we
have noticed the same behavior as in the case the capacitor
of 4.7mF is used. Using both of our energy-aware task sched-
ulers, the device stays on for the entire experiment duration
(cf. Figure 10a and Figure 10b), avoiding power failures in all
considered cases (cf. Figure 10c and Figure 10d). However,
this is possible only if we perfectly determine the value of
the harvesting current, which is the case in our controllable
setup. In reality if this knowledge is not perfect, power failures
could occur if the harvesting current (Ih) is overestimated
(Section IV-E).

In contrast, both energy-unaware approaches (InK+FLASH
and InK-FLASH) will try to execute tasks every time there is
energy available, without checking if that amount of energy
is enough for the successful execution. After some time, the
energy in the capacitor will drain and the device will turn
off. After a power failure occurs, the device needs to wait
until the turn-on voltage threshold is reached to repeat the
task execution or reset the full application cycle depending
on the selected energy-unaware approach. This can affect the
data freshness and cause missed deadlines, or even complete
data loss if the solution without flash is used. The total
number of power failures depends on the capacitor size and
harvesting current. As the capacitor grows smaller, it is able
to perform more charge/discharge cycles, especially when
the higher harvesting current is used (cf. Figure 9b), which
increases the number of power failures (cf. Figure 10d).

A larger capacitor such as 10mF will take longer to charge
and reach the turn-on voltage threshold, especially when the
lower harvesting current is considered (cf. Figure 9c). How-
ever, since both energy-unaware solutions do not worry about
the task energy cost, power failures are not avoided in this case

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

0 500 1000 1500 2000 2500 3000

 Time (s)

2.6

2.8

3

3.2

3.4

3.6

3.8

 C
a

p
a

ci
to

r
vo

lta
g

e
 (

V
)

Turn-off voltage

Turn-on voltage
EAS+FLASH
EAS-FLASH
InK+FLASH
InK-FLASH

(a) C = 4.7 mF, Ih = 20 µA

0 500 1000 1500 2000 2500 3000

 Time (s)

2.6

2.8

3

3.2

3.4

3.6

3.8

 C
a

p
a

ci
to

r
vo

lta
g

e
 (

V
)

Turn-off voltage

Turn-on voltage
EAS+FLASH
EAS-FLASH
InK+FLASH
InK-FLASH

(b) C = 4.7 mF, Ih = 40 µA

0 500 1000 1500 2000 2500 3000

 Time (s)

2.6

2.8

3

3.2

3.4

3.6

3.8

 C
a

p
a

ci
to

r
vo

lta
g

e
 (

V
)

Turn-off voltage

Turn-on voltage
EAS+FLASH
EAS-FLASH
InK+FLASH
InK-FLASH

(c) C = 10 mF, Ih = 20 µA

0 500 1000 1500 2000 2500 3000

 Time (s)

2.6

2.8

3

3.2

3.4

3.6

3.8

 C
a

p
a

ci
to

r
vo

lta
g

e
 (

V
)

Turn-off voltage

Turn-on voltage
EAS+FLASH
EAS-FLASH
InK+FLASH
InK-FLASH

(d) C = 10 mF, Ih = 40 µA

Fig. 9: Capacitor voltage behavior when executing different tasks considering different capacitor sizes and harvesting currents

5400 54005400 5400

901 910

1582 1622

4.7 mF 10 mF

 Capacitor size (mF)

0

1000

2000

3000

4000

5000

 D
ev

ic
e

on
 T

im
e

(s
)

EAS+FLASH
EAS-FLASH
InK+FLASH
InK-FLASH

(a) Ih = 20 µA

5400 54005400 5400

1661
1347

2987

2502

4.7 mF 10 mF

 Capacitor size (mF)

0

1000

2000

3000

4000

5000

 D
ev

ic
e

on
 T

im
e

(s
)

EAS+FLASH
EAS-FLASH
InK+FLASH
InK-FLASH

(b) Ih = 40 µA

0 00 0

11

6

9

5

4.7 mF 10 mF

 Capacitor size (mF)

0

5

10

15

20

 N
um

be
r

of
 p

ow
er

 f
ai

lu
re

s

EAS+FLASH
EAS-FLASH
InK+FLASH
InK-FLASH

(c) Ih = 20 µA

0 00 0

18

8

11

6

4.7 mF 10 mF

 Capacitor size (mF)

0

5

10

15

20

 N
um

be
r

of
 p

ow
er

 f
ai

lu
re

s

EAS+FLASH
EAS-FLASH
InK+FLASH
InK-FLASH

(d) Ih = 40 µA

Fig. 10: Total time the device is on and number of power failures for different task scheduling approaches considering different
capacitor sizes and harvesting currents

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

79
99

63
88

155

188

120

166

309 312

494
515

4.7 mF 10 mF

 Capacitor size (mF)

0

100

200

300

400

500

 N
u

m
b

e
r

o
f e

xe
cu

te
d

 a
p

p
lic

a
tio

n
 c

yc
le

s EAS+FLASH (1s)
EAS+FLASH (10s)
EAS-FLASH (1s)
EAS-FLASH (10s)
InK+FLASH
InK-FLASH

(a) Ih = 20 µA

566
615

430

313

1096 1069

566 580
535

477

946

849

4.7 mF 10 mF

 Capacitor size (mF)

0

200

400

600

800

1000

1200

1400

 N
u

m
b

e
r

o
f e

xe
cu

te
d

 a
p

p
lic

a
tio

n
 c

yc
le

s

EAS+FLASH (1s)
EAS+FLASH (10s)
EAS-FLASH (1s)
EAS-FLASH (10s)
InK+FLASH
InK-FLASH

(b) Ih = 40 µA

Fig. 11: Number of executed application cycles considering different capacitor sizes, harvesting currents, and voltage check
periods

either. The energy-unaware solution where the additional flash
operations are added consumes energy very fast, due to the
flash’s overhead, causing the highest number of power failures
(cf. Figure 10c and 10d). Even if the energy-unaware solution
without the flash storing reduces this overhead and enables
the device to be awake for a longer period (cf. Figure 10a and
10b), it is still not enough to manage and avoid power failures.

Finally, Figure 11 shows the number of full application
cycles executed during the experiments, considering different
capacitor sizes, harvesting currents, and voltage check periods
(1 and 10 seconds), which are used in the energy-aware task
scheduling approaches. Based on the obtained results, we
have concluded that the capacitor size, harvesting current, as
well as a period between two voltage checks, will determine
the number of performed application cycles. If the period
between two voltage checks is too long, the device will reach
the required voltage threshold before the next measurement,
wasting the rest of the time in sleep mode. Otherwise, if this
period is too short, the device will check the voltage too often,
consuming extra power, which can cause the task execution
to be postponed. Therefore, we tested two different voltage
check periods. The device measures the voltage every 1 or 10
seconds to check if the required threshold is reached in case
that it does not have enough energy to perform the specific
task. Between these two checks the device goes in sleep mode
consuming around 10µA. This parameter is only relevant for
the energy-aware solutions, as they consider the energy aspect
when selecting and scheduling tasks, and different voltage
check periodicity will not affect the total time the device is on
or the number of power failures. Therefore, we do not show
results for different voltage check periods in Figure 10.

For a lower harvesting current such as 20µA (cf. Fig-
ure 11a), the energy-unaware approaches, especially the so-
lution without the additional flash operations, show the better
performance compared to the energy-aware approaches. Using
the InK-FLASH solution the device consumes the lowest
energy, as there are no flash operations, and voltage checking,
which enables faster task execution until the turn-off voltage
is reached and a power failure occurs. Since the implemented
application is not too power-hungry, starting at turn-on voltage,
which is in our case equals 3.67V, until it reaches the turn-

off voltage threshold the device can execute a high number
of cycles. This behavior leads the energy-unaware solutions
to show the better results with this configuration compared
to our energy-aware task schedulers. In contrast, considering
our energy-aware approaches, power failures can be avoided,
but the device operates around lower voltages (cf. Figure 9a,
9c). It needs to wait until the calculated voltage threshold is
reached for each task in the cycle, which reduces the frequency
of task execution, especially in case when lower harvesting
currents are considered. When more frequently voltage checks
are implemented (i.e., every 1 instead of 10 seconds), both
energy-aware approaches show better performance, especially
the EAS-FLASH solution where the additional flash operations
overhead is reduced.

As the harvesting current increases (cf. Figure 11b), our
energy-aware task schedulers start to show better performance
compared to the energy-unaware solutions. The needed time
for reaching the voltage thresholds decreases, which results
in more frequent task executions. In contrast, the number
of full application cycles using the energy-unaware solutions
also increases, but as they are not capable of avoiding power
failures, the device still needs to wait for charging periods.
The best results for both cases (4.7mF and 10mF) are shown
by the EAS-FLASH solution, in case when the voltage check
period is set to 1 second. As it reduces the flash’s overhead, the
current consumption is lowered, power failures are avoided,
and the device does not waste time in sleep mode if the
required threshold is already reached. When the voltage check
period is set to 10 seconds, the device sleeps more missing the
opportunity to execute tasks earlier, which results in a smaller
number of performed cycles. Similar behavior can be observed
with the EAS+FLASH approach, where the number of per-
formed cycles is reduced due to additional flash’s overhead.
With the voltage check period of 1 second, the EAS+FLASH
solution shows better performance compared to the similar
energy-unaware implementation (i.e., InK+FLASH).

VI. DISCUSSION AND FUTURE WORK

The main goal of this paper is to showcase the energy-
awareness aspect of our task scheduler for battery-less IoT de-
vices and advantages that come with it. The energy-awareness

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

part of our work consists of two main aspects, the voltage
divider with resistors that enables our device to measure the
voltage, and the energy-aware task scheduling algorithm that
uses this value to calculate when to execute each application
task. It must be noted that both of these additional parts
are very portable and could relatively easily be integrated
into another scheduler implementation. The proposed energy-
aware task scheduler is a heuristic and evaluated based on
a real implementation in a battery-less prototype device. In
[1], the authors showed that the considered energy-aware task
scheduling problem is NP-hard. In that work, they formulated
a Mixed Integer Linear Programming (MILP) model, to op-
timally solve the problem. This optimal solution considered
all possible scheduling orders of known future tasks. They
also studied shorter look-ahead horizons, only considering
a few future tasks with the highest priority and/or nearest
deadline, which showed that even a very small look-ahead
can provide a near-optimal results. As our aim in this paper is
to provide insights into practical energy-aware task scheduling
on actual IoT devices, the computational overhead, and energy
consumption of the used scheduling algorithm are very im-
portant. As such, we implemented a computationally tractable
sub-optimal scheduling algorithm that selects the highest-
priority task among the available tasks. This choice is based
on the observations from [1], that such an approach achieves
near optimal results. Nevertheless, our proposed scheduling
framework is modular, and can easily accommodate different,
more elaborate, and more optimal scheduling algorithms and
logic.

There is potential improvement in the current implemen-
tation in terms of including energy predictions, where the
energy-aware task scheduler will be able to estimate after
how much time sufficient energy is available to execute the
next task. In this way, instead of checking the capacitor
voltage periodically as in the current implementation, the
device will wake up only when it expects the required voltage
threshold is reached, without wasting energy to check the
voltage periodically.

Finally, the current energy-aware task scheduling approach
can be replaced with a more intelligent solution in terms
of memory management decisions, where it will be able to
decide whether to use volatile or non-volatile memory based
on the current energy conditions. Taking this into account,
the additional flash operations can be reduces, which leads to
lower current consumption of the battery-less IoT device.

VII. CONCLUSION

In this article, we presented an energy-aware task sched-
uler for battery-less IoT devices based on dependencies and
priorities, which intelligently schedules the application tasks
avoiding power failures. All tasks are characterized by an
order, which is implemented as a parent/child relationship,
and the task with the highest priority will be executed first,
starting with the initial (parent) task. Each task can have
multiple dependent (child) tasks, which will be selected only if
their execution constraint is satisfied. As we considered energy
awareness, calculating the required voltage thresholds for

every specific application task will ensure safe task execution
without power failures.

First, using an environment emulator and a Nordic
nRF52840 board, we validated our scheduling approach, con-
sidering two main strategies. Our results showed that with
properly defined task voltage thresholds, power failures can
be avoided and more tasks can be successfully executed. Also,
we have shown that our energy-aware task scheduler is able
to react to changes in the harvested current.

Second, based on the defined IoT sensor application and
an e-peas power management board, we performed different
experiments considering a real energy harvesting environment
with solar panels. As the sunlight intensity is unpredictable,
and the harvesting current can change at any moment, a
controllable setup with artificial light was used. We validated
our energy-aware task scheduling approach against an energy-
unaware scheduling strategy in terms of the total number of
full application cycles, the time the device is awake, and
number of power failures. Using the energy-aware task sched-
uler, the device is awake for the entire experiment duration,
completely avoiding power failures. We have shown that with
the properly defined voltage check period, our energy-aware
scheduling approaches were able to execute more application
cycles compared to their energy-unaware counterparts, when a
relatively small capacitor of 10mF or less is used at harvesting
current of 40µA.

ACKNOWLEDGMENT

Part of this research was funded by the Flemish FWO
SBO S001521N IoBaLeT (Sustainable Internet of batteryless
Things) project, the University of Antwerp IOF funded project
COMBAT (Time-Sensitive Computing on Battery-Less IoT
Devices) and the CERCA Programme, by the Generalitat de
Catalunya.

REFERENCES

[1] C. Delgado and J. Famaey, “Optimal energy-aware task scheduling
for batteryless iot devices,” IEEE Transactions on Emerging Topics in
Computing, pp. 1–1, 2021.

[2] S. Bose, B. Shen, and M. L. Johnston, “A batteryless motion-adaptive
heartbeat detection system-on-chip powered by human body heat,” IEEE
Journal of Solid-State Circuits, vol. 55, no. 11, pp. 2902–2913, 2020.

[3] P. Escobedo, M. Bhattacharjee, F. Nikbakhtnasrabadi, and R. Dahiya,
“Smart bandage with wireless strain and temperature sensors and bat-
teryless nfc tag,” IEEE Internet of Things Journal, vol. 8, no. 6, pp.
5093–5100, 2021.

[4] S. Sachdev, J. Macwan, C. Patel, and N. Doshi, “Voice-controlled
autonomous vehicle using iot,” Procedia Computer Science, vol.
160, pp. 712–717, 2019, the 10th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-
2019) / The 9th International Conference on Current and Future
Trends of Information and Communication Technologies in Healthcare
(ICTH-2019) / Affiliated Workshops. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877050919317223

[5] A. Coates, M. Hammoudeh, and K. G. Holmes, “Internet of
things for buildings monitoring: Experiences and challenges,” in
Proceedings of the International Conference on Future Networks
and Distributed Systems, ser. ICFNDS ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3102304.3102342

[6] J. Hester and J. Sorber, “The future of sensing is batteryless,
intermittent, and awesome,” in Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems, ser. SenSys ’17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3131672.3131699

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

https://www.sciencedirect.com/science/article/pii/S1877050919317223
https://www.sciencedirect.com/science/article/pii/S1877050919317223
https://doi.org/10.1145/3102304.3102342
https://doi.org/10.1145/3131672.3131699

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

[7] B. Islam and S. Nirjon, “Scheduling computational and energy harvest-
ing tasks in deadline-aware intermittent systems,” in 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2020, pp. 95–109.

[8] A. Y. Majid, C. D. Donne, K. Maeng, A. Colin, K. S. Yildirim,
B. Lucia, and P. Pawełczak, “Dynamic task-based intermittent execution
for energy-harvesting devices,” ACM Trans. Sen. Netw., vol. 16, no. 1,
February 2020. [Online]. Available: https://doi.org/10.1145/3360285

[9] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution
without checkpoints,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
October 2017. [Online]. Available: https://doi.org/10.1145/3133920

[10] K. S. Yildrim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak,
and J. Hester, “Ink: Reactive kernel for tiny batteryless sensors,” in
Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems, ser. SenSys ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 41–53. [Online]. Available:
https://doi.org/10.1145/3274783.3274837

[11] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently
powered batteryless sensors,” in Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems, ser. SenSys ’17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3131672.3131673

[12] A. Colin and B. Lucia, “Chain: Tasks and channels for reliable
intermittent programs,” in Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 514–530.
[Online]. Available: https://doi.org/10.1145/2983990.2983995

[13] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on rfid-scale devices,” in Proceedings of
the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI.
New York, NY, USA: Association for Computing Machinery, 2011, p.
159–170. [Online]. Available: https://doi.org/10.1145/1950365.1950386

[14] M. Hicks, “Clank: Architectural support for intermittent computation,”
in Proceedings of the 44th Annual International Symposium on
Computer Architecture, ser. ISCA ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 228–240. [Online].
Available: https://doi.org/10.1145/3079856.3080238

[15] J. Van Der Woude and M. Hicks, “Intermittent computation without
hardware support or programmer intervention,” in Proceedings of the
12th USENIX Conference on Operating Systems Design and Implemen-
tation, ser. OSDI’16. USA: USENIX Association, 2016, p. 17–32.

[16] B. Lucia and B. Ransford, “A simpler, safer programming and
execution model for intermittent systems,” in Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 575–585. [Online]. Available:
https://doi.org/10.1145/2737924.2737978

[17] F. Yang, A. S. Thangarajan, W. Joosen, C. Huygens, D. Hughes,
G. S. Ramachandran, and B. Krishnamachari, “Astar: Sustainable bat-
tery free energy harvesting for heterogeneous platforms and dynamic
environments,” in Proceedings of the 2019 International Conference on
Embedded Wireless Systems and Networks, ser. EWSN ’19. USA:
Junction Publishing, 2019, p. 71–82.

[18] F. Yang, A. S. Thangarajan, G. S. Ramachandran, W. Joosen,
and D. Hughes, “Astar: Sustainable energy harvesting for the
internet of things through adaptive task scheduling,” ACM Trans.
Sen. Netw., vol. 18, no. 1, oct 2021. [Online]. Available: https:
//doi.org/10.1145/3467894

[19] A. K. Sultania and J. Famaey, “Batteryless bluetooth low energy
prototype with energy-aware bidirectional communication powered by
ambient light,” IEEE Sensors Journal, vol. 22, no. 7, pp. 6685–6697,
2022.

[20] K. Maeng and B. Lucia, “Adaptive low-overhead scheduling for
periodic and reactive intermittent execution,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1005–1021. [Online]. Available:
https://doi.org/10.1145/3385412.3385998

[21] A. Sabovic, C. Delgado, D. Subotic, B. Jooris, E. De Poorter, and
J. Famaey, “Energy-aware sensing on battery-less lorawan devices with
energy harvesting,” Electronics, vol. 9, no. 6, 2020. [Online]. Available:
https://www.mdpi.com/2079-9292/9/6/904

[22] R. Sharma, N. Nitin, M. Alshehri, and D. Dahiya, “Priority-based joint
edf–rm scheduling algorithm for individual real-time task on distributed
systems,” The Journal of Supercomputing, vol. 77, 01 2021.

[23] R. Sharma and N. Nitin, “Performance evaluation of new joint edf-
rm scheduling algorithm for real time distributed system,” Journal of
Engineering, vol. 2014, pp. 1–13, 01 2014.

[24] E. Çürük, K. S. Yıldırım, P. Pawelczak, and J. Hester, “On the
accuracy of network synchronization using persistent hourglass clocks,”
in Proceedings of the 7th International Workshop on Energy Harvesting
and Energy-Neutral Sensing Systems, ser. ENSsys’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 35–41. [Online].
Available: https://doi.org/10.1145/3362053.3363497

[25] J. de Winkel, C. Delle Donne, K. S. Yildirim, P. Pawełczak,
and J. Hester, “Reliable timekeeping for intermittent computing,”
in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 53–67. [Online]. Available:
https://doi.org/10.1145/3373376.3378464

[26] P. De Mil, B. Jooris, L. Tytgat, R. Catteeuw, I. Moerman, P. Demeester,
and A. Kamerman, “Design and implementation of a generic
energy-harvesting framework applied to the evaluation of a large-
scale electronic shelf-labeling wireless sensor network,” EURASIP
J. Wirel. Commun. Netw., vol. 2010, 2010. [Online]. Available:
https://doi.org/10.1155/2010/343690

[27] e-peas semiconductors, “Energy harvesting — making devices energy
autonomous — e-peas,” 2021. [Online]. Available: https://e-peas.com/

[28] ——, “Aem10941 solar harvesting — photovoltaic energy harvesting
— e-peas,” 2021. [Online]. Available: https://e-peas.com/product/
aem10941/

[29] N. Semiconductor, “nrf52840 dk - nordicsemi.com,”
2021. [Online]. Available: https://www.nordicsemi.com/Products/
Development-hardware/nrf52840-dk

[30] ——, “Power profiler kit ii - nordicsemi.com,” 2021. [Online]. Avail-
able: https://www.nordicsemi.com/Products/Development-hardware/
Power-Profiler-Kit-2

[31] T. Huybrechts, P. Reiter, S. Mercelis, J. Famaey, S. Latré, and
P. Hellinckx, “Automated testbench for hybrid machine learning-
based worst-case energy consumption analysis on batteryless iot
devices,” Energies, vol. 14, no. 13, 2021. [Online]. Available:
https://www.mdpi.com/1996-1073/14/13/3914

[32] N. Semiconductor, “nrf mesh - nordicsemi.com,” 2021. [Online].
Available: https://www.nordicsemi.com/Products/Development-tools/
nrf-mesh

[33] Panasonic, “Amorphous silicon solar cells amorphous photosensors,”
2021. [Online]. Available: https://panasonic.co.jp/ls/psam/en/products/
pdf/Catalog Amorton ENG.pdf

Adnan Sabovic received the M.Sc. degree in
telecommunications engineering at Faculty of Traf-
fic and Communications, University of Sarajevo,
Bosnia & Herzegovina in 2018 and B.Sc. degree
in telecommunications engineering at Faculty of
Traffic and Communications, University of Sarajevo,
Bosnia & Herzegovina in 2016. He is currently a
PhD researcher with the University of Antwerp and
imec, Belgium. His research interests lie in field of
sustainable Internet of Things, energy harvesting,
low power and battery-less communications, and

energy optimization of IoT devices and their networks.

Ashish Kumar Sultania received the M.Sc. degree
in Computer Science from the University of Tartu,
Estonia, and Norges teknisk-naturvitenskapelige uni-
versitet, Norway in 2017 and B.E. in Information
Technology from the University of Delhi, India in
2011. He is currently a PhD researcher with the
University of Antwerp and imec, Belgium. His re-
search focuses on optimizing energy consumption of
IoT devices and their networks. Prior to starting his
masters, he worked as a Senior Software Engineer
at NXP Semiconductor, India (2011-2015).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3360285
https://doi.org/10.1145/3133920
https://doi.org/10.1145/3274783.3274837
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/3079856.3080238
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/3467894
https://doi.org/10.1145/3467894
https://doi.org/10.1145/3385412.3385998
https://www.mdpi.com/2079-9292/9/6/904
https://doi.org/10.1145/3362053.3363497
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1155/2010/343690
https://e-peas.com/
https://e-peas.com/product/aem10941/
https://e-peas.com/product/aem10941/
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.mdpi.com/1996-1073/14/13/3914
https://www.nordicsemi.com/Products/Development-tools/nrf-mesh
https://www.nordicsemi.com/Products/Development-tools/nrf-mesh
https://panasonic.co.jp/ls/psam/en/products/pdf/Catalog_Amorton_ENG.pdf
https://panasonic.co.jp/ls/psam/en/products/pdf/Catalog_Amorton_ENG.pdf

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

Carmen Delgado received the M.Sc. degree in
telecommunications engineering, the M.Sc. degree
in biomedical engineering and a Ph.D. (cum laude)
in Mobile Network Information and Communica-
tion Technologies from the University of Zaragoza,
Spain, in 2013, 2014, and 2018 respectively. She
joined the Internet Technology and Data Science Lab
(IDLab) of the University of Antwerp, associated
with imec, Belgium as a post-doctoral researcher in
2018. She is currently working in the i2CAT Foun-
dation as senior researcher. Her research interests

lie in the field of Internet of Things, resource allocation, energy harvesting,
low power communications, energy modeling and performance evaluation of
wireless sensor networks.

Lander De Roeck received the B.Sc. degree in
Computer Science from the University of Antwerp,
Belgium in 2021. He is currently pursuing the M.Sc.
degree in Computer Science: Data Science and Ar-
tificial Intelligence at the University of Antwerp,
Belgium.

Jeroen Famaey is an assistant professor associated
with imec and the University of Antwerp, Belgium.
He received his M.Sc. degree in Computer Science
from Ghent University, Belgium in 2007 and a
Ph.D. in Computer Science Engineering from the
same university in 2012. He is co-author of over
150 articles published in international peer-reviewed
journals and conference proceedings, and 10 sub-
mitted patent applications. His research focuses on
performance modelling and optimization of wireless
networks, with a specific interest in low-power,

dense and low-latency networks.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Energy-Aware Battery-Less IoT Devices
	Energy-aware task scheduling approach based on dependencies and priorities
	Application implementation and metadata
	Energy-Aware Task Scheduling Algorithm
	Deadline based task selection
	Power failures and time-keeping

	Device and Application Profiling
	IoT sensor application
	Power Management Units
	Non-Intelligent PMU (Environment Emulator)
	Intelligent PMU based on the AEM10941 chip

	Different task scheduling approaches
	Task current consumption and execution time for different scheduling approaches
	Harvesting current

	Results and Discussion
	Non-Intelligent PMU (Environment Emulator)
	Experimental setup
	Constant harvesting current
	Non-constant harvesting current

	Intelligent PMU based on the AEM10941 chip
	Experimental Setup
	Comparison between Approaches

	Discussion and Future Work
	Conclusion
	References
	Biographies
	Adnan Sabovic
	Ashish Kumar Sultania
	Carmen Delgado
	Lander De Roeck
	Jeroen Famaey

