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Abstract— UAV-based 3D LiDAR mapping has received increasing
interest from both the research community and industrial
operations for the 3D reconstruction of large and dangerous
environments. When a LiDAR sensor is rigidly mounted to a UAV,
one usually orients it such that the LiDAR’s upward direction
coincides with the UAV’s flight direction. For a spinning LiDAR
this fully specifies the mounting orientation because of circular
symmetry. However, we argue in this paper that this configuration
is suboptimal, especially when the LiDAR’s full horizontal field of
view is not important, either because of a limited field of view of
other sensors in case of sensor fusion, or because the scene to
(swath) map via LiDAR is less wide than the LiDAR’s field of view.
Indeed, in this situation many of the points the LiDAR samples are
not of interest. Additionally, in the usual configuration the UAV’s
movement can compensate for the limited elevation resolution
of the LiDAR, but much less so for the azimuth resolution. For
a simplified theoretical model we introduce a quality metric for
mounting angles. Using a simulation we then derive the optimal
mounting angle, which we validate via real world flights. We
suggest to rotate this standard mounting orientation over an angle
of −84.5◦ over the UAV’s vertical direction.

Index Terms— LiDAR, Remote sensing, Swath mapping, UAV

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs), colloquially known
as drones, have become ever more important in the field

of remote sensing. They allow cost-effective yet sufficiently
detailed surveying of scenes on the scale of small forests,
fields and buildings. In addition they are ideally placed for
infrastructure inspection of hard to reach places [1]–[6].

LiDAR (Light Detection And Ranging) systems measure
distances and can be used for 3D mapping purposes.
Commonly used are spinning LiDARs, which contain a
number of rotating lasers to determine these distances over
multiple azimuth and elevation angles (because of the rotation
and presence of multiple lasers, respectively). For example,
the Ouster OS1-128 LiDAR has 128 lasers, and hence 128
corresponding elevation angles. Multiple settings are possible,
but for the one we will focus on the most, it samples during
each 360◦ sweep for each elevation at 1024 azimuths, and
this at 20 sweeps per second. Thus every 50ms we obtain
128 ·1024 = 131 072 distances, which can be mapped into 3D
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Euclidean space. By combining different sweeps we can get a
very dense point cloud. Compared to other 3D reconstruction
approaches such as photogrammetry, LiDAR point clouds are
not only denser, but typically more accurate and much less
time consuming to compute [7]–[9]. A downside is they do
not contain RGB information. If this is desired, sensor fusion
with an RGB camera will be needed.

It is natural to equip UAVs with LiDARs for airborne 3D
mapping. This mounting can occur via a gimbal, where the
LiDAR can rotate independently of the UAV, or via a rigid
construction. In this paper we will only consider the latter
case, although the conclusions are still useful for the gimbal
situation. If we introduce right-handed reference frames for
the UAV and the LiDAR, where the UAV’s x(U)-direction
points forward and the z(U)-direction points upwards, and
the LiDAR’s z(L)-direction points upwards (and the x(L)−
and y(L)-directions are of less importance due to circular
symmetry), the usual way to rigidly mount the LiDAR is to
make the LiDAR’s z(L)-direction coincide with the UAV’s
x(U)-direction, as illustrated in Figure 1. Indeed, this is
the configuration used in e.g. [9]–[12]. To the best of our
knowledge, this is the first paper examining other nadir
configurations.

A downside to this standard configuration is that while we
can compensate for the LiDAR’s limited elevation resolution
and vertical field of view in a controlled manner by
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Fig. 1. The UAV (·(U)), LiDAR (·(L)) and ground (·(G)) reference
systems, in blue, yellow and cyan, respectively. The image shows our
DJI M600 UAV with payload, containing in particular an Ouster OS1-128
spinning LiDAR, mounted in the standard orientation. Note that in our
mathematical description below we will ignore the spatial extent of the
UAV and LiDAR and let the origins of their reference systems coincide.
Also the origin of the ground reference system will be placed differently.

adjusting the UAV’s speed as the UAV’s movement direction
corresponds to the LiDAR’s elevation direction, the same
cannot be said for the LiDAR’s azimuth resolution. The UAV’s
instability in flight will help to some extent, but this mostly
lies beyond the pilot’s control.

We will restrict ourselves to situations where in the default
mounting configuration the horizontal field of view is not
fully utilised, as we are limited by the field of view of other
sensors, or as we are only interested in mapping a narrow
strip. Examples of the latter situation include the mapping of
(rail)roads, rivers, aqueducts and power lines. In both cases
we can still make use of the large horizontal field of view
by rotating the LiDAR ±90◦ about the z(U)-axis. However,
this will also have a similar problem as before, where we can
now only compensate for the azimuth resolution. Therefore,
we intuitively expect a rotation with an angle ‘close to’, but
still somewhat short of ±90◦ to work best. This intuition will
be rigorously investigated in this paper.

Our main contributions are as follows.
1) We introduce a quality metric to measure the

performance of each LiDAR mounting angle, at least
in a simplified mathematical model.

2) By optimising the mounting angle we find that angles
close to −84.5◦ up to sign are ideal.

3) We validate these results using real-world flights, which
confirm the superiority of the suggested mounting angles
over the standard one, in the case of single-pass flights
(e.g. for swath mapping).

This paper is structured as follows. In section II we will
properly define the mounting angle and derive mathematically
how it impacts the LiDAR samples, at least in an idealised
flight model. We will also see that we should avoid certain
mounting angles such as the default one in Figure 1. In
section III we will define a cost function, so that we can detect
problematic angles. This of course also allows us to minimise
the cost to find optimal angles. This is done in section IV.
Having a (range of) optimal mounting angle(s) we then put

Fig. 2. The definition of the mounting angle α. The figure shows the
LiDAR (grey rectangle) when looking along the UAV’s negative z(U)-
direction (i.e. downwards from the UAV’s point of view). Note that from
this view point the cylindrical LiDAR would indeed appear as a rectangle.
The LiDAR’s y(L)- and z(L)-directions are shown in grey. The UAV’s
x(U)- and y(U)-directions are drawn in black and placed to intersect
at the LiDAR’s centre. Not shown are the LiDAR’s x(L)-direction, which
points in to the page (away from the reader), and the aforementioned
UAV’s z(U)-direction, which points out of the page (towards the reader).
Note that we use signed angles, and that in this illustration we have
α < 0.

the theory to the test in section V where we describe the
results from actual flights performed with the recommended
and default mounting angles to see if we indeed notice an
improvement in practice. We finish in section VI with our
conclusion and further research directions.

II. THE MOUNTING ANGLE

For land surveying one can usually fly directly over the area
of interest, so it makes sense to mount the LiDAR at nadir, i.e.
the LiDAR’s z(L)-axis should be perpendicular to the UAV’s
z(U)-axis. But we can still rotate the LiDAR about the UAV’s
z(U)-axis. We define the mounting angle α as the oriented
angle from the UAV’s x(U)-direction to the LiDAR’s z(L)-
direction as shown in Figure 2. Thus, an angle of α = 0
corresponds to the standard orientation.

Before demonstrating the effect of changing the mounting
angle, we first completely fix the LiDAR reference frame
by declaring that the x(L)-axis is the negative UAV z(U)-
direction, i.e. points towards the ground during stable flight.
The LiDAR reference frame’s origin is naturally at the centre
of the LiDAR, where we also place the origin of the UAV
reference frame (as was already the case in Figure 2). To
model the effect of the mounting angle we make the following
simplifying assumptions.

• The LiDAR’s n ∈ N lasers (e.g. n = 128) are
uniformly spaced in terms of elevation angle (in the
LiDAR reference system), within the range of [−βv, βv],
where βv ∈ (0, π/2) hence is half the vertical field of
view (e.g. βv = π

8 = 22.5◦).
• The LiDAR samples m ∈ N points per laser per full 360◦

sweep (e.g. m = 1024), at a constant rate so that also the
corresponding azimuth angles are uniformly spaced. The
azimuth at time t = 0 is θ = 0.

• The LiDAR system rotates at a frequency of f ∈ R>0

sweeps per second (e.g. f = 20Hz), in the clockwise
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direction when viewed along the negative z(L)-direction,
i.e. from above in the LiDAR frame. This spinning
direction is chosen to be consistent with the Ouster OS1-
128.

• The UAV flies at a constant speed s ∈ R>0 in its
x(U)-direction, at a constant height of h ∈ R>0, in a
completely stable fashion over a perfectly flat plane.

We now consider the sampling pattern we obtain on this
ground plane, for which we introduce a third (and final)
reference frame, where the x(G)-direction corresponds to the
UAV’s negative y(U), and the y(G)-direction to the UAV’s
x(U). This is also shown in Figure 1. In Figure 2 the ground
plane’s x(G)- and y(G)-directions would thus be in the usual
orientation: x(G) points to the right of the page and y(G)

towards the top. The origin of the ground place reference
system is the location on the ground beneath the UAV at time
t = 0. Note that this does not indicate the start of the flight,
and that we allow negative times and indices, as this will prove
more convenient mathematically. Under these assumptions and
conventions one can show that at the k-th (k ∈ Z) discrete
laser firing time step the LiDAR samples the n points Q(k, l)
with ground plane coordinates

Q(k, l)x(G) =
h

cos
(
2k
m π
)(cosα sin

(
2k

m
π

)

− sinα tan

(
−βv +

2βv

n− 1
l

))
,

Q(k, l)y(G) =
h

cos
(
2k
m π
)(sinα sin

(
2k

m
π

)

+ cosα tan

(
−βv +

2βv

n− 1
l

))
+

sk

mf

Q(k, l)z(G) = 0
(1)

for l ∈ [0, n − 1]Z (where this notation denotes the interval
of integers). Indeed, these equations are derived as follows.
Consider a LiDAR azimuth-elevation pair (θ, φ) at a specific
time t. The LiDAR fires a laser in this direction, which
hits a ground point a distance r ∈ R≥0 away. Transforming
the spherical coordinates (r, θ, φ) into Euclidean coordinates
(x(L), y(L), z(L)) can be done using the standard formulas and
by observing that x(L) = h, which will allow us to express r
in terms of h, θ and φ. This way we obtain

x(L) = r cos θ cosφ = h

y(L) = r sin θ cosφ = h tan θ

z(L) = r sinφ = h
tanφ

cos θ
.

To switch over to the ground reference system we use that
the directions x(G), y(G) and z(G) correspond to −y(L), z(L)

and −x(L) when ignoring the mounting angle, i.e. if α = 0
(see Figure 1), and that the mounting angle induces a z(G)-
rotation. We also need to add the movement term and origin

offset which combined is simply (0, st, h). This results in

x(G) = −y(L) cosα− z(L) sinα

= − h

cos θ
(cosα sin θ + sinα tanφ)

y(G) = −y(L) sinα+ z(L) cosα+ st

= − h

cos θ
(sinα sin θ − cosα tanφ) + st

z(G) = −x(L) + h

= 0.

Finally, firing step k ∈ Z corresponds to an azimuth θk =
− 2π

m k as the LiDAR spins clockwise, and to a time step tk =
k

mf (so that it takes a time of 1/f for m firings and azimuth
angles, i.e. a for a full sweep). Since the l-th elevation angle
(l ∈ [0, n − 1]Z) is φl = −βv + 2βv

n−1 l ∈ [−βv, βv] (which
includes the distinct boundary angles), we then obtain (1).

However, this obviously is only correct when a laser
pulse actually reaches the ground plane, i.e. has azimuth and
elevation indices k and l such that the corresponding azimuth
θk and elevation φl lie in (−π/2, π/2). For the elevation this is
guaranteed by the limited vertical field of view of the LiDAR
system. But for the azimuths we need to artificially restrict the
horizontal field of view.

We could use a horizontal field of view of (−π/2, π/2), but
azimuths close to ±π/2 will travel a long time, which means
that the returns from the laser pulses might not be registered by
the LiDAR system. Additionally we have in mind flights where
the horizontal field of view of the LiDAR is not important
since the scene is small (e.g. in case of swath mapping), or
the LiDAR data is to be fused with for example a camera with
a smaller field of view. Therefore, we artificially introduce a
smaller effective LiDAR horizontal field of view [−βh, βh]
(which corresponds to a swath width of 2h tanβh). To be
more precise, we specify some β̃h ∈ R>0 and only consider
time and azimuth indices

k ∈ K := {k0 + jm | j, k0 ∈ Z,−k0,max ≤ k0 ≤ k0,max}

where k0,max :=
⌊
mβ̃h

2π

⌋
is the maximal azimuth index in the

sweep around time t = 0 (|θk| ≤ β̃h). Now the effective half
horizontal field of view βh is the discretised version of β̃h,
namely the azimuth corresponding to k0,max:

βh =
∣∣θk0,max

∣∣ = 2π

m

⌊m
2π

β̃h

⌋
.

In principle we allow β̃h to be any value in (0, π/2). But in
practice it depends on the intended swath width, or the angle
of view in case of sensor fusion with a camera.

We conclude that the points sampled on the ground plane
have coordinates given by (1), for time and azimuth indices
k ∈ K and elevation indices l ∈ [0, n − 1]Z. We denote the
full point cloud, i.e. the set of all such points Q(k, l) by L(α).
From now on we will work exclusively in 2D ground plane
coordinates, and thus we will no longer include the z(G)-
component, nor write the superscripts ·(G). Figure 3 shows
an example of the 2D point clouds from a single LiDAR
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Fig. 3. Sampled LiDAR point clouds from a single sweep (a) or a
number of consecutive sweeps (b). More precisely we consider k ∈
[−k0,max, k0,max] + jm for j = 0 in (a) and −7 ≤ j ≤ 7 in
(b). The points are coloured according to the scan index j, with the first
scan (j = −7) being dark blue and the last scan (j = 7) bright green.
One can observe that the full point cloud consists of shifted copies of
the point cloud from a single sweep, which also follows from (1). The
parameters used here are α = π/6, β̃h = π/4 (= βh), βv = π/8,
m = 256, n = 16, f = 10 Hz, h = 5m and s = 15m/s. These
values are chosen for illustrative purposes. Note that the absolute size
of the point cloud is not important here (or in Figure 4 below): we are
only interested in its shape.
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Fig. 4. Part of two combined point clouds at a high zoom level. In (a) we
use α = 0 and observe line patterns, in (b) we use α = π/4 = 45◦

and get a more uniform sampling pattern. The parameters used here
are realistic: β̃h = βh = π/4, βv = π/8, m = 1024, n = 128,
f = 20 Hz, h = 20m, s = 5m/s. The colours again indicate sweep
number, in the Winter (blue to green) colour map.

sweep, and from 15 consecutive sweeps, for a mounting angle
of α = π/6 = 30◦.

Although (1) in principle shows the effect of the mounting
angle α, the issue with α = 0 is easily shown by examining a
part of the full sampled point cloud up close, as in Figure 4a.
The problem is that in the α = 0 case the UAV’s movement
can compensate for the LiDAR’s limited vertical field of view,
but the resolution along scan lines (i.e. lines of constant
elevation (index l)) cannot be improved. Using α = ±π/2
would roughly reverse the situation: we can get excellent
sampling across scan lines, but poor sampling in between
them. Other angles allow for more uniform sampling, as shown
in Figure 4b where α = π/4.

III. QUALITY OF A MOUNTING ANGLE

Figure 4 shows that certain angles are clearly suboptimal for
most use cases. This raises the question which angle would be
best, which in turns begs the question how we would measure
the quality of an angle. Although multiple criteria are possible,
we will only present a single one. We will focus on a smaller
region of interest of the entire point cloud, our choice of which
will be explained in the second subsection. For now, simply
assume it is a bounded representative region of the part of the
ground plane relevant for the full (infinite) point cloud.

1) Quality metrics: To ensure uniform density, we want
every (not necessarily LiDAR-sampled) point S in the region
of interest to be close to a LiDAR point, i.e. the distance to
S’s nearest neighbour in the LiDAR point cloud should be
minimised. This ensures we avoid gaps such as in Figure 4a.

We now take p ∈ N uniformly random samples in the region
of interest R, yielding the set Sp ⊆ R. Then we choose some
aggregation function As : Pf (R) → R, i.e. a function that
summarises a finite set of numbers into a single one. Here
Pf (R) denotes the set of finite subsets of R. Possible examples
are the mean or a quantile. Then our cost for mounting angle
α is

cAs
(α; p) = As ({d(S, L(α)) | S ∈ Sp}) , (2)

where

d(S, L(α)) = min {∥S−Q∥2 | Q ∈ L(α)}

and we switched from quality to cost terminology to indicate
we want to minimise cAs

.
Note that this is how we would calculate this in practice

(given R), but from a theoretical point of view we can also
use random variables. For example, if we use the mean E for
As, then we get

cE(α) = ES∼U(R) [d(S, L(α))] ,

where U(R) denotes the uniform distribution on R. By the
law of large numbers, cE(α; p) → cE(α) as p → ∞. However,
such a probabilistic analysis is beyond the scope of this paper
and could form the basis for future work.

2) Region of interest: As region of interest we will take a
rectangle with width wR and height hR centred at the origin
of the ground plane:

R =
[
−wR

2
,
wR

2

]
×
[
−hR

2
,
hR

2

]
.

For the height we observe that the point cloud is periodic along
the y-direction. Indeed this follows from (1) which also shows
that the period is s/f , as can also be observed in Figure 4b
where s/f = 0.25m. Therefore we can take hR = s/f (or
any multiple thereof). Next, we want to avoid that our region
of interest has ‘empty’ regions at the sides (extreme x-values),
devoid of LiDAR points for certain angles α, as this would
mean that such angles automatically get high costs. In other
words, we want to avoid penalising angles closer to ±π/2 for
the resulting reduced field of view. This can be achieved by
taking wR = 2h tanβv , which is the minimal (x-)width of the
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point cloud of a single sweep for α = π/2. In conclusion the
region of interest is

R = [−h tanβv, h tanβv]×
[
− s

2f
,
s

2f

]
.

IV. SIMULATION

If we fix a LiDAR sensor (and its settings), we fix βv , m, n and
f . We can also fix β̃h, say to π/4. The remaining parameters
are h and s, which depend on the UAV flight. The LiDAR
sensor mounted on the UAV will normally not change, but the
UAV will be used for different areas, requiring different flight
heights and speeds. Therefore, we will determine the optimal
mounting angle α as a function of h and s. But note that
scaling h and s by the same factor will result in a point cloud
scaled by that factor (i.e. Q(k, l;λh, λs) = λQ(k, l;h, s) in
(1), for all λ ∈ R>0). Similarly, also the region of interest will
be scaled with the same factor, and finally the same holds for
the cost. This implies that the optimal mounting angle α only
depends on the height-speed ratio h/s.1

We then computed the cost of all angles between −90◦ and
90◦ (inclusive) using a step size of 0.25◦ for a total of 721
angles, and all height-speed ratios between 0.1 and 50 using
a step size of 0.1 for a total of 500 height-speed ratios. For
the other LiDAR system related parameters we had an Ouster
OS1-128 in mind with m = 1024, n = 128, f = 20Hz,
βv = π/8 and used β̃h = π/4. We used p = 105 uniform
samples and aggregated them using the mean, median (50%-
quantile), 95%-quantile and maximum as aggregation function
As. For each height-speed ratio, the optimal angle is then the
one minimising this aggregate. However, we will focus on the
results for the 95%-quantile, as this is a more robust version
of the worst-case analysis (the maximum).

These computed costs have a huge peak for α = 0, with
values on average about 11 times larger than the median cost
at a specific height-speed ratio. To avoid saturating our figure
with this peak, we removed it by clipping the costs. These
clipped costs are presented in Figure 5. We observe some
complicated patterns, but in general see, consistent with our
intuition from the introduction, that the minimal costs for each
height-speed ratio are reached for angles near, but not at ±90◦.
This becomes clearer in Figure 6 where we present the optimal
mounting angle for each height-speed ratio.

The results for the other aggregation functions are quite
similar. However, we do want to mention that when using the
maximum function for sample aggregator the local maxima for
α = ±90◦ are almost as pronounced as the peak for α = 0.

Since in practice the height-speed ratio is not completely
constant during a flight, and might be slightly different than the
planned value, it is more useful to provide a single mounting
angle that works well for all height-speed ratios. We approach
this by defining another optimisation function. For each height-
speed ratio r := h/s we can find the optimal mounting

1This of course also speeds up the optimisation considerably. Although this
is not the focus of this paper, we mention that we also decreased the execution
time by exploiting the symmetry of the point cloud, and by reasoning about
upper bounds of the nearest neighbour distances in the cost function. The fact
that such reasoning was already quite complicated, leads us to believe that
analytical optimisation of the cost function is intractable.
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Fig. 6. The optimal mounting angle for each height-speed
ratio, according to the 95%-quantile sample cost. To avoid the
incorrect interpretation that the height-speed ratio represents time, we
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mz/(my/s) = mz/my · s instead of just seconds.

angle αopt(r) (as in Figure 6). The relative performance
qAs

(α, r) of a mounting angle α at height-speed ratio r is then
(well-)defined as the inverse quotient of α’s cost cAs

(α;h, s)
at any height h and speed s with h/s = r, to the optimal
(angle’s) cost cAs(αopt(r);h, s) = minα′ cAs(α

′;h, s):

qAs(α, r) =
cAs(αopt(r);h, s)

cAs
(α;h, s)

∈ [0, 1]

(where compared to (2) we made the dependence on the
number of samples p implicit, and the dependence on the
height and speed explicit). For any aggregation function Ar

we can then compute the global relative performance

q̄Ar;As(α) = Ar ({qAs(α, r) | r})

by aggregating over all considered height-speed ratios r. The
globally best mounting angle αopt, independent of the height-
speed ratio, is then obtained by maximising this relative
performance:

αopt = argmax
α

q̄Ar;As(α).

For similar reasons as mentioned before, we prefer to
use the 5%-quantile for Ar. In combination with the 95%-
quantile for As we then obtained αopt = −84.5◦, with relative
performance q̄Ar;As

(αopt) = 95.12%. In other words, we do
not lose much performance by switching to a fixed mounting
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TABLE I
THE OPTIMAL MOUNTING ANGLE αopt (IN DEGREES) AND ITS

RELATIVE PERFORMANCE q̄Ar;As(αopt) = maxα q̄Ar;As(α) (IN

PERCENT) FOR THE DIFFERENT AGGREGATION FUNCTIONS As AND

Ar

Ar

As mean median 5%-quantile minimum

mean −85.75◦ 86.75◦ −85.00◦ 85.50◦

98.84% 99.04% 97.40% 95.60%

median 86.75◦ −86.75◦ −85.50◦ 85.50◦

99.15% 99.23% 98.21% 96.86%

95%-quantile −85.50◦ 86.75◦ −84.50◦ −84.50◦

97.84% 98.21% 95.12% 92.14%

maximum −85.50◦ 86.75◦ −85.50◦ 83.50◦

90.20% 90.80% 81.56% 70.74%

angle for all height-speed ratios. For different aggregation
functions Ar and As we obtain quite similar optimal angles,
at least up to the sign. The exact numbers can be found in
Table I. So although we advise to use α = −84.5◦ when
possible, all α ∈ ±[82◦, 88◦] (or so) should also work well.

V. EMPIRICAL VALIDATION

To experimentally validate our theoretically optimal (range of)
angle(s), we equipped a DJI M600 UAV with an Ouster OS1-
128 LiDAR and an SBG Quanta GNSS and IMU, used to
register the different LiDAR scans. We then performed the
same test flight twice, once with the LiDAR mounted at 0◦

(see Figure 1), and once with a mounting angle of α = 88◦

(see Figure 7). In an older version of the simulation this angle
was optimal. Its global relative performance in the current
version is 92.15% for 95%-quantile sample and 5%-quantile
height-speed ratio aggregation. The relative performance at the
relevant height-speed ratio 6 (see below) is 96.64% for the
95%-quantile sample aggregator.

The parameters for the Ouster OS1-128 were m = 1024,
n = 128, and βv = π/8, but we now used the default
frequency f = 10Hz, as opposed to the 20Hz used in the
simulation. We also did not artificially limit the horizontal field
of view of the LiDAR, but the sensor’s maximum range of
some 120m will still implicitly limit it. The flight parameters
were set as h = 30m and s = 5m/s, although of course in
practice these fluctuate a bit. This should not be a problem as
our mounting angle is designed to work well for all height-
speed ratios. However, the yaw, pitch and roll are not constant
as opposed to in the simplified model we used in the analysis
and simulation. For the purpose of this validation we restricted
ourselves to a single flight line (Figure 8). The yaw, pitch and
roll for the 0◦ flight are shown in Figure 9.

Figure 10 shows the registered scans using our GPS and
IMU. To measure the performance we opted to take a look at
a 97 cm by 96 cm calibration plate in the centre of these point
clouds. It is pictured in Figure 11 and indicated by the red
arrows in Figure 10. The LiDAR sampled points on this plate
are shown in Figure 12. There are no clear line patterns (which
would go from the bottom-right to the top-left) visible in

Fig. 7. The LiDAR mounted at α = 88◦. This was achieved by 3D
printing with an inclination of 2◦.

Fig. 8. The flight line over UGent campus Sterre, shown in a Google
Maps orthophoto. Time is colour coded using the Turbo colour map,
where blue indicates the start of the flight line and red the end.

Figure 12a, showing that this problem from Figure 4a is largely
eliminated by the slight fluctuations in orientation. These will
also affect the cost landscape. In particular the cost for α = 0◦

will be noticeable lower than for perfectly stable flights.
However, as flight instability is unpredictable, modelling it
stochastically will also lead to a stochastic cost landscape,
and stochastic optimal angles, significantly complicating the
analysis. Therefore we leave dealing with this instability for
future work.

Even though the optimal angles might shift somewhat by
flight instability, we believe our conclusions will still, by and
large, remain valid under general flight conditions. Indeed, in
our test flight the number of points sampled on the calibration
plate was significantly lower for α = 0◦ than for α = 88◦:
1518 versus 2453. This experiment thus demonstrates that we
indeed get a significantly higher sampling density for α = 88◦.
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Fig. 9. The fluctuation of yaw, pitch and roll on the flight line of
Figure 8. In the plot the yaw has been zero-centred by subtracting
its mean of −42.3◦ with respect to true north. For comparison, the
angular resolutions of the LiDAR are 2π

m
≈ 0.352◦ for azimuths and

2βv
n−1

≈ 0.354◦ for elevations.

(a)

(b)
Fig. 10. The LiDAR point cloud from the flight line, for both mounting
configurations: α = 0◦ (a) and α = 88◦ (b). The colour indicates the
z(G)-value, using the Jet colour map. Both images are captured from
the same virtual camera pose, clearly demonstrating the difference in
field of view between the configurations. The red arrows point to the
calibration plate.

VI. CONCLUSION AND FUTURE WORK

In this paper we investigated the optimal way to mount a
spinning LiDAR rigidly to a UAV for use in land surveying of
areas where the horizontal field of view of the LiDAR is of less
importance, either because the scene itself is narrow, i.e. for
swath mapping, or because of limitations of other sensors. We
found that using the default configuration of 0◦ has a number
of flaws. The obvious one is that many of the LiDAR samples

Fig. 11. Our calibration plate, placed on a small table to be able to
detect it easily in the LiDAR data.
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Fig. 12. The (zero-centre shifted WGS 84 / UTM 31N easting (x) and
northing (y) coordinates of) points on the calibration plate, for mounting
angles α = 0◦ (a) and α = 88◦ (b). Note that there is some noise
(the borders of the rectangle are unclear), presumably due to imperfect
calibration. The plate (on the small table) remains clearly distinguishable
from the ground, however, so that the number of points should be
unaffected.

lie outside of the region of interest. A second flaw is that when
ignoring flight instability, we noticed very localised sampling
patterns.

To get rid of both problems the best we can, we found
that a mounting angle of −84.5◦ is optimal, although the sign
is less important and similar angles will also perform well.
This was corroborated by our real-world validation where we
did indeed observe some advantages of angles closer to ±90◦

compared to 0◦. In particular the sampling density in the
region of interest was significantly higher. To get the same
density at 0◦ one would need to fly over the area multiple
times, resulting in a longer data acquisition time, especially
if the UAV’s batteries need to be recharged. As can be seen
in Figure 12(a), the theoretical issue of the line patterns from
Figure 4a is at least partially overcome by the fluctuations in
orientation resulting from the UAV’s flight, which in practice
is not completely steady.

When considering wide scenes where the LiDAR is used in
isolation, the horizontal field of view will matter more. When
using α = 0◦ we will need fewer flight lines to cover the
entire scene, compared to when we would use α = −84.5◦.
But to reach the same sampling density as with our rotated
LiDAR perhaps we might need to perform more flight lines
for 0◦ regardless. Additionally the sampled points at higher
absolute azimuths for α = 0◦ will still have a number of
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issues. For example, if we want to map an orchard or a forest
consisting of multiple rows of trees, we will have occlusion
problems when only performing a single flight line. Therefore,
we would be forced to carry out more flight lines in any case,
just like in the case of α = −84.5◦. Next, assume we have
multiple flight lines and want to perform sensor fusion with
a camera with a more narrow field of view. In this case a
LiDAR point which was not in the camera view at a certain
time, might be encountered again later, on a different flight
line. This can compensate for the lower density of α = 0◦

on a single flight line. However, such LiDAR samples are
actually still of limited use, because of the temporal difference
and possible occlusion issues due to the different poses of
the LiDAR and camera at the time of capturing the point.
Therefore it is not clear which mounting angle should be
preferred in these situations and a future extension of this
work would be to more thoroughly examine the situation of
flight trajectories with multiple (parallel) flight lines.

Another future extension of this work is to validate the
results for various practical use-cases: for instance check that
α = −84.5◦ results in higher quality digital elevation models
or in more reliable object detection than α = 0◦.
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