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Abstract

In this paper, we propose a novel data-driven prediction system for Multivariate Time Series (MTS)
in an industrial context, where classic relational data contain key information in order to properly
interpret the MTS. Particularly we focus on the accurate endpoint prediction of temperature and
chemical composition at the basic oxygen furnace, which is a step in the steel production pipeline
where liquid iron is refined to steel. The precise prediction of temperature is important for proper
process control while reaching the target chemical composition is essential for quality control. Our deep
learning methodology employs two modules followed by an aggregation block; a Convolutional Neural
Network (CNN) handles the MTS, while in parallel, the static data is processed by a Fully Connected
Network (FCN). We enhance the CNN performance by adding two Squeeze-and-excitation (SE) blocks,
which act like an attention module over the different channels. By taking the MTS data into account
we improve the prediction by up to 10% relative over the models which only consider the static data.
The hybrid FCN-CNN-SE architecture slightly improves the state-of-the-art MTS approaches by 2%,
with less outliers on the prediction of final temperature and phosphorus concentration, while being
easier to implement and more scalable to larger datasets and input space than current solutions.

Keywords: basic oxygen furnace, data-driven prediction models, multivariate time series, neural networks,
steel production

1 Introduction

In basic industry, such as steel production facto-
ries, the whole process pipeline is heavily instru-
mented and constantly monitored by means of
numerous sensors. In the past, the main pur-
pose of sensors at a production installation has
been to provide process control, monitoring and
automation. Nowadays and as a result of the
recent revolution in big data warehousing, log-
ging of this sensory data is becoming a norm
and time series are omnipresent in automated

industrial processes. This opens an astonishing
opportunity for data analysis and enables the
development of data-driven models that are usu-
ally faster than physical models and can augment
classic approaches, with the aim of improving
performance.

The Basic Oxygen Furnace (BOF) process, the
focus of this work, is an essential step in steel
production pipeline in which the hot metal is
refined to liquid steel. We consider this process
as a use case to demonstrate the feasibility of
advanced analytics in the optimization of highly
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2 Static-Sensory Data Modeling in BOF

instrumented industrial processes, based on large
amounts of historical data.

These processes are traditionally modelled
based upon the so-called “static data”, which are
usually measured or calculated prior blow. Static
data are single variables that remain constant dur-
ing the production of a batch, such as amount of
iron ore used, types of recycled scrap, coolants and
other additions.

In this paper, the aim is to enhance the above
approach by including so-called dynamic data
which is frequently captured during the BOF pro-
cess by potentially hundreds of sensors to be used
in control systems and steer the process. These
Multivariate Time Series (MTS) are expected to
contain real-time information that is not grasped
within the static data, and potentially enhance the
modelling of the process.

In the BOF process, conventional control sys-
tems are designed to automatically predict end-
points of the crucial variables (such as tem-
perature, phosphorus and carbon concentrations)
which will determine the final quality of the steel.

Although these models play an important role
in controlling the BOF process, developing them
is usually a big challenge due to the complexity of
the process.

Prediction takes place in two phases: (1) prior
blow to set up the parameters of the process based
on approximately 50 selected static values, and (2)
at about 80% progress of the blow phase to verify
or rectify the initial setup based on a fraction of
the dynamic data collected during the process so
far.

Despite the quantity and diversity of the avail-
able data, most of the current prediction systems
still rely only on a few selected static and very
small portion of the logged data. Model-driven
techniques rely on a deep understanding of the
system and usually benefit from a scientifically
established knowledge. However, such models can-
not accommodate large complexities, hence, must
be simplified and usually do not handle the noisy
data and the possible influence of unincluded vari-
ables is not accounted for. On the other hand,
data-driven models based on machine learning are
data hungry, requiring large amounts of historical
data to produce meaningful results.

The objective of our work is to improve
the performance of the second prediction phase
using fully data-driven models and by taking into

account a larger portion of the available time series
data.

Several time series regression and classifica-
tion algorithms have been developed throughout
the years. Classical regression approaches in time
series data analysis usually include autoregressive
models to predict the next few values, based on
the history of the same time series. Prediction of
prices in the stock market is a common example
in this field. Typical approaches are autoregressive
integrated moving average (ARIMA) models and
lately more advanced techniques such as neural
networks [1] are used. However taking into account
correlations among the multivariate time series
is much less common, even though multivariate
extensions to these classic techniques do exist [2].
Distance based metrics, such as Dynamic Time
Warping, alongside K-nearest neighbors have suc-
cessfully been used for classification tasks based
on multivariate time series [3]. Other possible
approaches are traditional feature extraction algo-
rithms allied with a classification or regression
models [4]. Little research [5] was found for sin-
gle value regression that combines inputs from
multivariate time series and static data on large
datasets.

As far as the more modern data-driven mod-
els concern, there is evidence that Deep Learning
is a competitor to the conventional multivariate
time series classification [6]. The main advantage
of Deep Learning approaches is that instead of
heavy feature engineering to extract the informa-
tion from the data, only a small preprocessing step
is needed and the model is expected to extract and
learn the most informative features automatically.
Consequently, the model is less biased towards
the domain-expert’s prior knowledge and investi-
gating the extracted features could even provide
a new insight to the domain knowledge. On the
other hand, such techniques usually require much
larger labeled training data to learn the features
effectively. It is possible to extend these set of tech-
niques for regression tasks and by adding further
complexity, such models can handle static data
along with the MTS.

With the continuing growth of computing
power, graph computations on GPUs have enabled
the deployment of larger and more complex mod-
els. A very recent research [2] presents the poten-
tial of deep learning architectures based on Feed
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Forward Neural Networks, Recurrent Neural Net-
works (RNN) and Convolutional Neural Networks
(CNN) in particular, for multivariate time series
processing. While RNNs have shown great perfor-
mance in the past years, specially brain-inspired
methodologies such as [7], CNNs have shown
higher model explainability in recent studies [8].
Identification of which regions and signals of the
input data that are important for predictions is
highly desirable in industrial applications, as it
might lead to further process insights.

In this paper, we will extend the Neural Net-
work approach on multivariate time series, with
the inclusion of static data. With this approach,
we avoid the time series feature extraction and
engineering downsides, and allow to take into
account valuable global information from the sen-
sors. In particular, we propose a Deep Learning
framework based on Fully Connected Networks
(FCN) and CNN suitable for regression tasks
on real-world, industrial data, containing imbal-
anced, noisy samples that takes into account both
static and multivariate time series information.

The rest of this paper is organized as follows:
Section 2 provides a brief overview of the BOF
process. In Section 3, a literature study on mul-
tivariate time series is provided, covering both
industrial and academic oriented research. The
proposed methodology and model architecture
are presented in Sections 4 and 5, respectively,
followed by results and discussions in Section 6.

2 Basic Oxygen Furnace

The first step for steel production starts at the
blast furnace, where iron ore (mainly composed
of iron and oxygen) is melted in a reducing
atmosphere by lowering its oxygen content. The
exothermic reaction provides the necessary heat
for melting the reduced ores. The liquid metal
is then transported to the steel plant, where the
pipeline begins with the Basic Oxygen Furnace
(BOF), the main focus of this study.

During the BOF process, scrap and hot metal
are charged into the converter vessel and pure oxy-
gen is blown on the metal bath by means of a
water-cooled lance. A diagram depicting this pro-
cess is shown in Fig. 1. Burned lime and other
additives are added during blowing to regulate
the process and achieve targeted composition.
The blowing phase takes 16 minutes on average.

Meanwhile, an inert gas is injected from the bot-
tom of the BOF vessel to maintain the mixture
homogeneous. The blow partly oxidizes the car-
bon, silicon, manganese, phosphorus and iron in
the bath. These transformations liberate a huge
amount of heat, which melts the scrap and raises
the bath temperature. The impure elements are
converted into gas or slag, the latter floating on
the top of the liquid bath. By the end of the
blow, the liquid steel has reached a temperature of
approximately 1650oC. After the blowing phase,
the vessel is tilted, steel is tapped into a steel ladle
and the slag is tapped into a slag pot. The con-
verter is ready for the next batch, while the liquid
steel is further alloyed and casted into slabs in con-
tinuous casting to the slabyard, ready to be hot
rolled.

The target of this case study is to have an
improved performance of models estimating the
chemical composition and the temperature, as
they directly influence the metallurgical proper-
ties of the produced steel. Even though the steel
is alloyed in a later stage, a good performance
in reaching chemical composition at the BOF
reduces the necessity of adding expensive alloys.

Chemical composition has a direct impact
on the steel properties, such as tensile strength,
formability, toughness and weldability, which are
set by the customer to meet the requirements
for the specific application of the end product.
The end-of-blow temperature of the liquid steel
is essential, especially for planning purposes. Too
high temperature requires additional coolants or
cool down time which disturbs the (energetically)
optimal planning. Too low temperature on the
other hand, is even more problematic as the solidi-
fication will occur before the planned casting. This
requires interruption of the tapping procedure and
reheating the converter vessel, with huge impact
on hot metal logistics.

3 Related work

In this section, we will first review the current
state of the art on data-driven prediction tasks
in the industry, especially steel production and
BOF applications, where most works focus on
static features and analytical models. We then
provide a brief overview of the current progress in
multivariate time series regression and classifica-
tion solutions, thus creating the link required to
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Fig. 1: The Basic Oxygen Furnace process where
high speed oxygen is blown into a metal bath to
reduce its carbon concentration.

elaborate our proposed approach, in which time-
series and static data are combined to improve the
prediction.

3.1 On the Steel Industry

In [9], a hybrid model based on Fuzzy C-Means
clustering (FCM) and Support Vector Machine
(SVM) is trained to predict the endpoint tem-
perature and carbon content of the BOF steel
making process. It was shown that the proposed
method performs better than the conventional
solutions such as multi-layer perceptron (MLP),
classical SVM and Case-based reasoning (CBR).
The experiments are conducted on a small and
closed dataset that contains only static informa-
tion from each batch, such as, amount of scrap
and iron, carbon content and temperature after
the first blow, coolant. More recently, a similar
solution based on support vectors was presented
in [10].

A multivariate solution is presented in [11],
where a search algorithm is used to select rele-
vant static features (from a total of 52 features)
for predicting the endpoint concentrations of Fe,

Mn, P and S within the BOF process for evaluat-
ing different recycled steel mixtures. The authors
trained a distinct model for each of the seven
possible steel mixes and endpoint target. The pre-
diction performance of the models are reasonably
good but a high variance is observed, which the
authors explained by the high uncertainty in the
input variables on the different mixes of recycled
steel.

Also, a model for predicting the endpoint
phosphorus content on the BOF process is pre-
sented in [12]. The study employs 21 hand-selected
static input variables, which are used to cluster
the training data using k-Means (k is empiri-
cally determined). Each cluster is then considered
to develop a Polynomial Neural Network regres-
sor. Their experiments show that clustering the
data can have a positive impact on the results
compared to a single regressor model, improve-
ments were approximately 2% better when using
clustering.

Different classical machine learning techniques
such as SVM, Artificial Neural Networks (ANN),
Regression Trees and Fuzzy inference are used
in [13] to predict the yield in the steel-making pro-
cess using 10 static relevant variables as input. The
authors report SVMs as the best predictor. A dif-
ferent study [14] employs multivariate polynomial
regression to predict the endpoint content of Fe,
Mn, P and S. The authors trained the proposed
model on a dataset collected over three years. Hav-
ing used 56 static variables as the input to the
model, the reported results show Fe as the most
difficult target to predict, while Mn, P and S have
a high correlation but with a significant variance.

Novel machine learning methodologies are usu-
ally applied on industrial use-cases only after
being well established in academic research. Time-
series have several applications in within industry
sectors, such as quality control, soft sensing and
predictive maintenance. Although several novel
and complex techniques have been applied for pre-
dicting BOF endpoint targets, they mostly focus
on static features that are only available prior
blow.

In our previous study [5] we have shown that
multivariate time series can be used to enhance
the endpoint prediction of temperature and con-
centrations of C, S, P and Mn in the BOF phase
of steel production. The TSFresh [15] framework
was used to automatically extract the features
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from the multivariate time series, which are then
combined with the static data to form the input
features to the model. Although such automatic
feature extraction techniques are convenient, they
usually lead to too many redundant and/or unnec-
essary features with negative influence on the
performance of the model. In order to avoid this
a feature selection step, based on statistical sig-
nificance, was applied which only keeps the most
relevant features. Regression techniques such as
Gradient Boosted Regression Trees were used to
fit a model on two years of data. Results show that
using time series information can help to improve
the prediction of temperature, P and Mn by 8%,
10% and 20%, respectively.

More recently, in [16] the authors combined 33
static variables with 81 engineered features from
sensory data obtained during blow to predict the
BOF endpoint using a support vector approach.
Several machine learning methods were tested on
a production-size dataset. Their results are com-
petitive with the previous presented literature and
reinforce the idea of introducing time series for a
more accurate endpoint prediction.

Despite the significant growth of deep learning
and its applications in many domains of expertise,
the relevant studies in the field of steel industry
are still rather scarce.

Karim et. al. [6] present a multivariate
approach using Long-Short Term Memory-Fully
Convolutional Networks (LSTM-FCNs) designed
to process and classify multi-input data. The work
presents better results than state of the art solu-
tions on several datasets from the UCI repository,
which contains MTS data from real world prob-
lems. The main contribution of this work is the
addition of ’squeeze and excite’ blocks in the
model, extracting more relevant information from
the different data input channels. Such studies
focus on classification problems, but the intro-
duced techniques can often be used for prediction
tasks, given the proper adaptations. The main
gap, however, is that such models are designed to
incorporate (multivariate) time series data only
and not to process both static and time series
data, which is commonly present in the industrial
processes.

3.2 Novelty

The literature study reveals that the steel industry
heavily relies on analytical models or data-driven
approaches that do not take advantage of all
the available sensor information, that is mostly
available as multivariate time series. Despite the
significant advances on multivariate time series
analysis, the industrial sector tends to stick to
classic and well established methodologies. One of
the main reasons is the necessity for backlogging
MTS data through long periods of time requiring
much more data storage capacity when compared
to only static data.

Fortunately, the advancements of Industry 4.0
have tackled some of these issues within the
industry, with a more data oriented mindset. As
a consequence, backlogging of sensor data has
become more common and larger datasets are
readily available. Recent literature [5, 16] focus
on classic machine learning models that combine
static process information and aggregates feature
engineering or extraction methods for incorporat-
ing time-series information. We propose a novel
approach based on the use of parallel CNNs and
MLPs for handling both time-series and static
information at once. Our model have several
incremental advantages over feature extraction
approaches. It is a more scalable solution of easier
implementation that requires less pre-processing
of the MTS data. Results have shown overall bet-
ter prediction performance while also reducing
the amount of outliers, which is highly desirable
at the BOF. Also, Squeeze-and-excitation blocks
are incorporated in our convolutional layers as
an attention module, which might also be used
later on for model explainability, to evaluate which
convolutional filters and Input channels are more
important.

In order to better understand the architec-
ture of our framework, the next section briefly
describes the concepts of neural networks and
CNNs, further expanding on the use of Squeeze-
and-excitation networks.

4 Neural Networks

Training of ANN is the procedure of finding the
values of all weights and hyper-parameters such
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that the desired output is generated to corre-
sponding input. It can be viewed as the minimiza-
tion of an error function computed between the
output of the network and the desired output of a
training observations set.

In this section we firstly discuss the Fully Con-
nected Network (FCN), also known as Multi Layer
Perceptron (MLP) [17], including how the data
is processed, the architecture of the MLP and
how the learning is conducted. Secondly we intro-
duce the one dimensional Convolutional Neural
Networks (CNN) and Squeeze-and-excitation (SE)
[18] for temporal series. The SE block provides
an attention-like mechanism and can be easily
integrated into other neural blocks such as CNN
(referred to as CNN-SE in this work).

4.1 Fully Connected Network

A fully connected neural network (FCN) consists
of a series of fully connected layers, in which the
neurons of each layer are connected to all activa-
tions of the previous layer. The activations can be
computed with a matrix multiplication followed
by a bias offset.

In FCN, information flows in a one-directional
manner, among three types of matching layers:
input, hidden, and output layers. Each layer is a
function that maps an input yk ∈ RNk to the an
output yk+1 ∈ RNk+1 . The inner product and acti-
vation function from the k-th layer to (k + 1)-th
layers can be performed as follows:

S(k+1) = f∗(Wkyk + bk) (1)

where f∗ is an activation function which
receives the product between the input vector yk

of Nk×1 and the weight matrix Wk of Nk+1×Nk,
plus the bias vector bk of Nk+1 × 1. Nk and
Nk+1 are the number of neurons in the (k)-th
and k+1-th layers respectively. Among the differ-
ent possible activation functions, in this work we
employ the Sigmoid function σ(x) = 1

1+1e−x and

Rectified Linear Unit (ReLU) δ(x) = max(x; 0).
The weights and biases are learned using the
back-propagation algorithm [17] using gradient
decent.

4.2 The CNN-SE network

In this section, we briefly review the concept of
the Convolutional Neural Network (CNN) as well

as the Squeeze-and-excitation (SE) blocks [18]
adjusted for one dimensional convolutions, to
match our time-series data.

The CNN block can be given by the convolu-
tion transformation Ftr : X → U that maps an
input X ∈ RT ′×C′

to feature maps U ∈ RT×C ,
where T and T ′ are time-dimensions, while C and
C ′ are the number of channels,

uc = vc ∗X =

C′∑
s=1

vs
c ∗ xs (2)

where U = [u1,u2, . . . ,uC ] results from
the convolution between input vector X =
[x1,x2, . . . ,xC′

] and spatial kernels vc =
[v1

c ,v
2
c , . . . ,v

C′

c ]. vs
c is a spatial kernel represent-

ing a single channel of vc, that acts on the
corresponding channel of X.

The SE block consists of a convolutional unit
followed by the squeeze function, using global
average pooling to generate channel-wise statis-
tics (see Fig. 2). Statistic information z ∈ RC

is provided by squeezing U through its tempo-
ral dimension T , the c-th element of z is then
calculated as follows:

zc = Fsq(uc) =
1

T

T∑
t=1

uc(t) (3)

The aggregated information obtained by the
squeeze computation is followed by an excite oper-
ation, aiming to capture channel-wise dependen-
cies,

s = Fex(z,W) = σ(W2δ(W1z)) (4)

Where the weights W1 ∈ RC
r ×C and W2 ∈

RC×C
r are trainable parameters, σ refers to the

activation function sigmoid, δ gating function
ReLU. The dimensionality reduction factor r is
used to limit the complexity of the model and can
be optimized as a hyper-parameter. The experi-
ments in [18] show that a r = 16 is a good trade-off
between complexity and accuracy when using lay-
ers of 128 to 512 filters. The c-th channel of the
output block is then rescaled as follows:

x̃c = Fscale(uc, sc) = scuc, (5)

where X̃ = [x̃1, x̃2, . . . , x̃C ] and Fscale(uc, sc)
refers to channel-wise multiplication between the
scalar sc and feature map uc ∈ RT .
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Fig. 2: Computation of the squeeze-and-excitation
block following a CNN.

The SE block can be easily integrated into
standard convolutional architectures which adap-
tively adjusts the input feature maps. This is
comparable to a self-attention module, where the
inputs values are used to calculate their own
importance. It is shown that by adding SE blocks
to ResNet-50 [18], a performance close to ResNet-
101 can be achieved. This is impressive for a model
requiring only half of the computational costs. The
number of extra parameters P required to learn
these SE maps can be computed as,

P =
2

r

S∑
s=1

Rs ·G2
s (6)

where S is the number of total stages, a stage
is a group of consecutive layers with the same ker-
nel size. Rs is the number of blocks repeated for
stage s and Gs denoted the number of feature
maps for stage s. For example, in a network with
two stages, the first with two convolutional layers
of 128 filters each and the second with three lay-
ers of 256, adding SE with a reduction ratio of 16
would require P = 2

16 (2 · 128
2 + 3 ∗ 2562) = 28672

new trainable parameters. This means an increase
of roughly 10% on the total number of parameters.

5 Methodology

In what follows, we describe the model architec-
tures, dataset, and evaluation metrics used.

Two baselines are considered, namely, (1) the
analytical model based on the physical behav-
ior of the process which is currently being used
in the factory and (2) an MLP trained only on
static data. With regard to the FCN model, we
define two input tensors, one for the time series
and one for the static data. The former has a
shape of (N,T,M) where N is the maximum num-
ber of samples (batches) in the dataset, T is the
total number of time steps amongst all samples
and M is the number of time signals of our MTS
dataset, whereas the latter is shaped as (N,K)

where K is the total number of static features
used. Figure 3 depicts the proposed model, where
a fully convolutional block processes the temporal
data (N,T,M), while the FCN handles the static
features (N,K). The output of both blocks are
then concatenated and passed to a last activation
layer.

In our proposed topology both time series and
static data are processed in parallel by the CNN
blocks and FCN block, respectively. The convolu-
tional blocks contain three 1-dimension convolu-
tional layers used as feature extractors, with kernel
sizes of 8, 5 and 3 and number of filters are 128,
256, 128, respectively. Each layer is followed by
batch normalization and a ReLU activation func-
tion. Initialization of convolution kernel’s weights
was made using Uniform He [19]. Type of padding
used for the convolutional blocks was ”same”,
padding with zeros evenly to both sides of the
input such that output has the same width dimen-
sion as the input. Moreover, the first two blocks
are followed by SE blocks in which the reduction
ratio was set to r = 16, as suggested in the original
paper [18]. This only increases the model complex-
ity by P = 10240 parameters (roughly 5% relative
increment in this case). The SE enhances the per-
formance on multivariate data, as each feature
map can impact the result on different degrees.
This self-learned form of channel-wise attention
incorporates the information of inter-correlation
between multiple variables.

The FCN block is composed of a hidden layer
with 64 neurons and a dropout rate of 50% to
avoid overfitting, followed by a ReLU activation
layer. The output from both blocks are then con-
catenated and are supplied to the final dense
layer with a ReLU activation function. The model
was trained in 250 epochs using Mean squared
logarithmic error as loss function and Stochas-
tic gradient descent as optimization function with
initial learning rate of 1e−3.

5.1 Data Preparation

The desired quality of the steel product deter-
mines the specifications of the raw materials, such
as weight and type of scrap, quantities of hot
metal, iron ore and lime additions, blow time,
chemical corrections and many other BOF con-
trollable inputs and process variables. These are
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Fig. 3: The FCN-CNN-SEModel, static and time-
series information are processed in parallel and
then concatenated followed by one last activation
layer.

calculated using the models for carbon, phospho-
rus and temperature.

Once all the inputs are defined and before the
blow begins, the analytical predictive models are
used to estimate the endpoints of the blow, taking
into account the chemical and physical character-
istics and reactions for each endpoint target. Each
predictive model in this phase is supplied with
around 50 static variables (based on the physical
and chemical behavior of the BOF process). Based
on the prediction, further additions can be made
during the blow to achieve the desired endpoint
values.

The blowing phase lasts on average 16 min-
utes during which, several time-series signals are
recorded. A univariate time series x is a one-
dimensional signal (samples in a time domain)
which can be defined as an ordered list of real val-
ues [x1, x2, . . . , xT ′ ] where T ′ is the total length of
the signal. Usually this is the result of a sampled
sensor output while monitoring a process. When
a process is monitored by more than one sensor,
it can be described as Multivariate Time Series
(MTS), since it has more than one time-dependent
variable. A MTS X consists of different univari-
ate time series [x1,x2, . . . ,xC′

] with C ′ being the
total amount of signals (or channels). The BOF
process is highly instrumented, and several sensor
readings and measurements are available during
the process; usually more than 300 process-related
time signals are available at this point, from which
10 are selected as most relevant by the process
engineers. As data preparation the time signals
are re-scaled to the range of [0, 1] and normalizing
the static features to have zero mean and standard
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Fig. 4: Re-scaled time-series of 10 signals from one
batch. The used signals in this paper are related
to directly controllable variables such as oxygen
flow, lance position and inert gas flow, and output
ones such as amount of off-gases in the chimney,
decarbonization curve and acoustic levels.

deviation equal to one (training and test sets were
normalized based on the values of the training set
only). Fig. 4 shows the scaled signals of one heat
(batch).

The available recorded data consists of the
most recent 7600 heats. The usable dataset after
removing corrupted or incomplete data, is com-
posed of N = 7158 heats. Each sample contains
K = 54 static features and M = 10 time sig-
nals with T ′ = 700 timesteps each. This data was
split into 70% for training and validation, and 30%
for testing. With the aim of keeping the temporal
order, the samples are not shuffled before making
the split. This way, we respect the realistic setup,
in which a model would be deployed into produc-
tion for predicting the next heat batches. It is
important to note that the training set is shuffled
in every epoch during training. Experiments were
run on a 5-fold cross validation setting.

5.2 Evaluation setup

We consider two baselines based on static fea-
tures to compare the proposed multivariate time
series model with the more classic approach. The
first baseline is the current mathematical model
used in production (using only historical data)
and the other one is an MLP block trained on
the static features only. In order to study the
impact of feature learning component (i.e., the
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FCN-CNN-SE) we also trained a feature extrac-
tion method as used in [5], where features from
multivariate time-series signals are extracted using
TSFresh [15] and the 500 most important ones
are joined with the static features. Then a Gra-
dient Boosted Regression Tree (GBRT) is used to
perform the regression task. Hyperparameters for
this model were fine tuned using a Grid Search
method on a 5-fold validation. The best results
were obtained using 250 estimators, 3 maximum
tree depth, 4 minimum sample leaf, 5 minimum
sample split, learning rate of 0.1, and logarithmic
loss as optimizer.

The evaluation metric is the standard Root
Mean Squared Error, given by RMSE =√

1
q

∑q
i=1 e

2
i , where q is the total number of test

samples, i is the sample number and ei is the
difference between the predicted and desired val-
ues for the i-th sample. As a lower spread on
prediction is the most desired outcome of this
experiment, we will also present mean error and
variance. Due to confidentiality reasons, all results
presented here are normalized with respect to the
measured values (training targets).

6 Experimental Results

In this section, we discuss the results obtained
using models described in the previous section.
Our deep learning ’FCN-CNN-SE’ approach and
a more standard approach using feature extrac-
tion and GBRT for regression (referred to as
’Feat. Extr.’ ). The analytical and MLP baseline
models are referred to as ’modelled’ and ’static’,
respectively.

Figure 5 compares the prediction of the data-
driven models with the analytical model for final
blow temperature. The batch samples are sorted
based on their measured values (training targets).
Considering the fact that the target values are
normally distributed, all the data-driven mod-
els perform better for the samples with average
final blow temperature, whereas a negative bias is
observed for the analytical model current in pro-
duction. The reference model temperature is the
one calculated in the beginning of the process,
using the target additions. During the process,
the target temperature can still be adapted, typi-
cally towards higher temperatures, leading to the
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Fig. 5: Prediction results for the endpoint tem-
perature. The black line is the measured value
and the yellow, blue, red and green curves are
the moving average of the results on the test set
for the Analytical, Static (FCN), Feature Extrac-
tion and FCN-CNN-SE prediction models, respec-
tively. The batch samples are ordered according to
the crescent order of the samples target tempera-
ture.

observed bias. Alternative reference model tem-
peratures can also not be considered as a fair
reference due to non-causal influences on these
calculations. The most fair comparison for these
methods is either the standard deviation (σ) or
the static model (FCN). This is due to the fact
that the analytical model is tuned to be more sen-
sitive to a low final temperature rather than high,
because a final temperature that is too low results
in higher costs compared to a high temperature.
We can also observe that all the models struggle
with the samples at both ends, while the Feature
Extraction model performs slightly better on the
high-end of the curve (above 1675◦C).

Figure 6 shows the absolute prediction error
(◦C) for the temperature, while maintaining the
temporal order of the samples (batches realized in
the span of approximately two months). Here we
can easily notice the bias on the analytical model.
We can also observe that all models approximately
follow the same trend, which could point to some
other external parameters that are not consid-
ered during modeling or feature engineering, e.g.
humidity of the scrap, composition of additions
and lance wear, which are inherently extremely
difficult to grasp in any model. A root-cause anal-
ysis on these intervals could be an interesting
research track for further model optimization but
is outside of the scope of current work. It indicates
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Fig. 6: Prediction error for endpoint tempera-
ture. Yellow, blue, red and green curves are the
moving average of the results on the test set
for the Analytical, Static (FCN), Feature Extrac-
tion and FCN-CNN-SE prediction models, respec-
tively. The samples are arranged maintaining their
temporal order
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Fig. 7: Distribution curves of the error on tem-
perature prediction.

that retraining of these models will be an essen-
tial in the deployment strategy, in order to cope
with the concept drift not taken into account in
the model.

The histogram presented in Fig. 7 presents
the distribution of the prediction error between
each model and the measured temperature. A sig-
nificant gain is noticed when using more static
features (MLP Static Features) than only the ones
employed in the analytical model. Moreover, at
the bottom part of the figure we can also observe
that our multivariate time series approaches show
lower spread. The FCN-CNN method has approx-
imately 30% less outliers on the 1st and 4th
quartiles than the Feature Extraction method.

Table 1 lists the RMSE and standard deviation
for the prediction error of Temperature, concen-
trations of Carbon, and Phosphorus of the three
regression-based models along with the analyt-
ical model that is in use at the factory. Both
time-series models show an improvement over the
static approaches. The FCN-CNN-SE overall has
the best performance, showing a slightly smaller
RMSE than the Feature Extraction approach. The
deep learning approach also presented lower bias
(mean), with 2.63% relative improvement on Tem-
perature and 1.95% on Phosphorus predictions.
On the other hand, the performance of the pro-
posed model for Carbon is less appealing. This
is mainly due to the fact that the in-use analyti-
cal model is specifically designed to optimize the
carbon concentration by looking at some related
time series data. Therefore it is not surprising that
analytical and proposed methods show similar
performances on this task.

Finally, Fig. 8 shows the scattered distribu-
tions of the FCN-CNN-SE predictions and mea-
sured values for the endpoint temperature, con-
centrations of carbon and phosphorus. The pre-
dictions present a higher variance at high target
values in all cases (cone shaped). Also in all three
plots, a negative bias at this region is observed
which is inline with the behaviors shown in Fig. 5
where the models struggle to predict values at the
higher-end.

Processing time

Processing time is an important factor on indus-
trial systems. Once turning point has been reached
(i.e. measured CO2 gas hit a certain threshold),
an updated prediction of all endpoint variables is
needed for any corrections to be made in time.
These calculations are desired to happen in a frac-
tion of a second since the system response time
is 1Hz (sampling time). We compared the prepro-
cessing and inference time of Feat. Extraction and
FCN-CNN-SE on an AMD Ryzen 5 six-core pro-
cessor. While the inference times of both models
were quite similar (approx. 100ms), the prepro-
cessing step of GBRT took 2250ms compared to
only 270ms for FCN-CNN-SE. Because the signals
only need to be normalized for the deep learning
approach while 500 features have to be calculated
for the GBRT.
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Table 1: Experimental Results comparing the different modelling approaches. (0) Analytical: current
models in use, based on historical data. (1) Static: FCN model trained on 57 static features. (2) Feature
extraction: features are extracted from the time series – individually – and used in a data-driven model
(GBRT). (3) FCN-CNN-SE: Deep learning approach using the raw dataset as input, without required
additional selection methods on the extracted features. Values are normalized in respect to the Analytical
values.

Temperature Carbon Phosphorus
RMSE σ RMSE σ RMSE σ

Analytical 1 1 1 1 1 1
Static (FCN) 0.789 0.867 0.947 0.918 0.796 0.801

Feature Extraction 0.759 0.828 0.932 0.931 0.742 0.740
FCN-CNN-SE 0.739 0.814 0.926 0.924 0.727 0.728

(a) Temperature (b) Carbon (c) Phosphorus

Fig. 8: Scatter distribution of FCN-CNN-SE prediction vs measured values for endpoints of (a) temper-
ature, (b) carbon and (c) phosphorus concentrations. Graphs at the top and right sides of each image
present the distribution of each variable (Predicted and Measured).

To evaluate the robustness of our model over
time, training and test data were split respect-
ing the chronological order of produced batches.
We have calculated the linear trend using the pre-
diction error over time (showed in Fig. 6) and
found no significant decay in performance for any
of the models, with the linear coefficient a being
∥a∥ < 0.0003 in all cases (temperature, carbon
and phosphorus), over 1400 samples. Addition-
ally, the dataset contains over 60 types of casted
steel with different chemical compositions, no sig-
nificant difference in error was found between
different grades.

7 Discussion and Conclusion

In this paper we presented a deep learning
approach for endpoint prediction on basic oxygen

furnace (BOF). The goal was to predict the final
temperature of the liquid steel as well as the end-
point concentrations of phosphorus and carbon,
using multivariate time series and static features
incorporated in a deep learning framework.

We first introduced two baseline models, (1)
an FCN trained only on 54 static features and
(2) a GBRT trained on 54 static features and
the 500 most relevant features extracted from the
10 time series. Our proposed approach, the FCN-
CNN-SE model was trained on the same 54 static
features and the 10 time series. The experimental
results show a clear improvement when multivari-
ate time series are aggregated into the models; by
incorporating sensor information in our models we
have improved performance by 10%, relative. Our
model also outperforms the more classic approach
that employs feature engineering by 2.6%. On
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large scale production, this improvement can sig-
nificantly reduce the costs at second metallurgy
and help to avoid delays on a production chain
that is highly optimized.

From an industrial point of view, the proposed
model do not require exceptional computational
power for inference, and can be easily deployed
on a real-time system. A homologous approach as
the one used here for the static features (FCN)
has been recently deployed and is being tested
in production. In our experiments, the pipeline
for extracting the features and inference for one
sample was six times slower, when comparing to
our method that only requires data normaliza-
tion. Given the time constrains of the process
control system, the proposed model would already
comply with the time requirements, while the fea-
ture extraction approach would require further
optimization.

While Feature Extraction and Feature engi-
neering are well established methods, model per-
formance is limited to the chosen features. Even
if an expert agent with process knowledge could
select the most relevant features to be calculated
or an exhaustive list of features is used, important
information might still be neglected during the
feature engineering. The advantage of our method
is that the entirety of the time series is used as
input, hence, the model has the opportunity to
learn the best representations of the data, result-
ing in higher performance by increasing the input
space.

Although outperforming by a small margin,
the FCN-CNN-SE has some advantages over the
feature extraction method. It is quite easy to be
employed since it requires minimal pre-processing
and the only data preparation necessary is normal-
izing the signals. Moreover, the proposed model
showed 30% less diversion (outliers in the 1st and
4th quartiles) in predicting the endpoint parame-
ters compared to the alternative methods.

Since the Squeeze-and-excite blocks act as an
attention module on the network, by analyzing its
scalar output we can infer signal importance[18].
Furthermore, if a FCN is used for prior-blow
prediction, the same network can be used on
the FCN-CNN-SE (transfer learning) for a more
accurate late-blow prediction.

As future work, this framework will be fur-
ther tested on other use cases inside the company,
as it can be easily adapted to solve classification

problems and is scalable to handle more input
information if necessary.
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