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Due to the ever growing population of elderly people, there is a dramatic increase in fall accidents. Currently, multiple ideas exist
to prevent the elderly from falling, by means of technology or individualised fall prevention training programs. Most of them are
costly, difficult to implement or less used by the elderly, and they do not deliver the required results. Furthermore, the increasingly
older population will also impact the workload of the medical and nursing personnel. Therefore, we propose a novel fall detection
and warning system for nursing homes, relying on Bluetooth Low Energy wireless communication. This paper describes the
hardware design of a fall-acceleration sensing wearable for the elderly. Moreover, the paper also focuses on a novel algorithm
for real-time filtering of the measurement data as well as on a strategy to confirm the detected fall events, based on changes in
the person’s orientation. In addition, we compare the performance of the algorithm to a machine learning procedure using a
convolutional neural network. Finally, the proposed filtering technique is validated via measurements and simulation. The
results show that the proposed algorithm as well as the convolutional neural network both results in an excellent accuracy

when validating on a common database.

1. Introduction

Fall accidents are a large risk in the life of elderly people and
form one of the most important public health problems in
the ageing population [1]. Research shows that, from the
age of 65 on, the number of fall accidents rises dramatically
[2, 3], often with a lethal ending. Furthermore, it is found
that individualised fall prevention training programs [4, 5]
do not have the intended results. All these fall injuries have
a large influence on the health system [6]. Moreover, they
definitely impact the workload of the medical and nursing
personnel, since they have to constantly check if an elderly
person has fallen. This causes stress for the personnel and
can lead to mental or physical problems. The current litera-
ture proposes multiple solutions to lower the number of fall
accidents with lethal endings, by alerting the personnel fas-
ter. Accordingly, the workload of the medical and nursing
personnel is lowered as well. However, many of these solu-
tions are very expensive, difficult to implement, or hindered

by privacy regulations. Therefore, we propose a low-cost fall
detection and warning system for nursing homes based on
Bluetooth Low Energy 5.1 (BLE 5.1) [7]. The proposed sys-
tem consists of four different nodes, all using BLE 5.1 or
Bluetooth Mesh as a wireless communication platform.

The novel contributions of this paper are as follows. A
truly wearable node for fall detection is developed, comple-
mented with victim localization and staff alerting functional-
ity and based on a single-chip solution, exploiting BLE 5.1.
Thereby, a novel reliable physics-based fall detection algo-
rithm that does not require any training is conceived, and
the proposed algorithm is compared with machine learning
(ML) using convolutional neural networks (CNN).

This paper describes the design and implementation of a
fall detection wearable for the elderly. First, an overview is
presented of the current literature, followed by a detailed
explanation of the hardware implementation and algorithm
used to reliably detect and confirm a fall. The detection is
triggered by acceleration, and the conformation is based on
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FiGure 1: Classification of fall detection systems.

orientation change. Next, there is an overview of all mea-
surements and simulations that are used to construct and
validate the algorithm, followed by measurement analysis
and conclusions.

2. Related Work

In the current literature, multiple fall detection systems are
proposed [8-14]. These detection systems can be split up
in three different groups, as can be seen in Figure 1.

A first group is formed by camera-based systems
[15-19]. By means of a camera implemented in a room or
on a person, a fall is detected based on an extensive algo-
rithm that runs on a PC. Even though these systems work
well, they have some disadvantages. Most of them have a
limited coverage area, have a very high cost, and can be hin-
dered by privacy regulations. Furthermore, it is important to
notice that none of these systems communicate to provide
the necessary help when a fall occurs. Since these systems
rely on a different principle, we do not go into further detail.

A second group consists of ambient device systems [8-10,
20-23]. This group can be split up into two subgroups. The
first subgroup utilises vibration to determine whether a fall
occurred. Sensors are mounted in a room, on a floor [21],
etc., to monitor the environment and to detect a fall. Acceler-
ometers are integrated into the walls [20] and continuously
scanned for vibration, while an algorithm detects a fall based
on these wall sensors. The second subgroup attempts to fuse
audio and visual data. The system proposed in [23] combines
accelerometer and camera data to determine whether a fall has
occurred. Just like camera-based systems, these have an even
higher implementation cost. Moreover, they can only detect
a fall, but they cannot determine which elderly person has
fallen, nor can they send vital parameters to the nursing per-
sonnel. Most of these systems are prone to generating false
alerts, which is stressful for the personnel and can lead to
carers paying less attention to the alerts.

A final group of solutions consists of wearable systems.
We have opted to divide these systems in two subgroups.
The first and biggest subgroup consists of systems that are
based on a smart device with integrated accelerometer or
gyroscope sensors [24-29]. In a next step, these systems
can be divided into categories, based on where most of the
processing is performed. In the systems proposed in [24,
26], the accelerometer data are transferred to the cloud or
to a PC, where a postprocessing algorithm detects a fall. In
the cloud, multiple algorithm types can be used to determine

whether a person has fallen. In the current literature, a lot of
research is performed on machine learning algorithms
[30-39] that detect falls. However, these systems require a
lot of training data, which is difficult to obtain. Furthermore,
such systems consume a lot of power. Secondly, there are the
smart device systems that perform all necessary calculations
on the device itself [27, 28]. In this way, there is no unneces-
sary transfer of data to the cloud.

The second type of wearable device is the simplest in its
form. Note that research confirms that elderly people prefer
not to wear (obtrusive) smart devices [40, 41]. A truly unob-
trusive wearable [42-46] generally only contains a micro-
controller (MCU) and an accelerometer or gyroscope
sensor. The MCU will determine whether a fall has occurred,
based on movement or posture changes of the person wear-
ing the device. The device is energy-efficient and consumes
little energy, and the wearable does not hinder the elderly
people. Since these wearables do not look like smart devices
or do not require any input actions from elderly people, the
likelihood of acceptance increases. However, such wearables
often do not communicate with the carers. A selected group
of fall detection systems uses a gyroscope [47-52] to detect a
fall or even the typical movements just before a fall occurs.

There are also several commercially available products.
Most of these products [53-55] will make a call to the emer-
gency services when a fall event is observed. In most situations,
the detection is based on accelerometer or gyroscope data that
are fused together. The detection occurs with a smartphone,
smartwatch, or dedicated wearable. Disadvantages of these sys-
tems are the smart technology. It is a known fact [40, 41] that
elderly do not like to wear smart devices, especially when they
are not unobtrusive. There are also some radar-based solutions
[56, 57]. These are placed inside the room and detect falling
persons. When a fall occurs, the system calls the emergency ser-
vice. Radar solutions have promising effects but can suffer
image clutter caused by furniture in the room. Other products
do not only detect when a person falls but also try to prevent a
serious fall. The product proposed in [58] is a belt worn around
the waist that uses a fusion of different sensors to detect if a per-
son is going to fall. If so, an airbag is deployed and a predefined
phone number is called. Compared to our solution, it is very
difficult to wear this wearable in an unobtrusive way.

Since the system proposed in this paper only has to
detect whether a fall occurred, we opted to use only an accel-
erometer instead of a gyroscope. The paper will further
explain how the accelerometer detects the fall acceleration
as well as changes in orientation of the falling person.
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FIGURE 2: Ground plan of a room in a nursing home with the different nodes mounted. The patient wearable (green dot) is worn by an
elderly person who has fallen. The detection node (red dot) is mounted in a central position and communicates with the network nodes
(blue dot) mounted in the hallway. These nodes transfer messages to the carers equipped with a wearable/smartphone (magenta dot).

3. Design

Based on the advantages and disadvantages of the previously
mentioned systems, the following system requirements for
the patient wearable were adopted:

(1) More than 90% of the falls detected
(2) Less than 10% false alerts
(3) Compact and unobtrusive

(4) Battery lifetime of up to 7 days

The proposed system consists of four different nodes,
Figure 2 provides a ground plan of a typical room in a nurs-
ing home that is equipped with the system, and Figure 3
illustrates the communication steps between the different
nodes. The first node, the patient wearable (green dot), is
worn around the waist. This node uses BLE 5.1 as a wireless
communication platform and contains an accelerometer for
measuring the movements of the elderly person. As soon as
the node measures a fall, it starts advertising alert messages.
For each alert, five subsequent advertisement packets are
transmitted to ensure reliable reception. With this approach,
system pairing and self-healing are not necessary.

The second node is the detection node (red dot) and is
placed in a central position of the room and scans for alert
messages from the wearable. When detecting an alert, it
pushes a message on the mesh network. This network is rea-
lised by the network nodes (blue dots) that are placed in the
corridors. These nodes transfer the alert messages to the
closest carer wearable (magenta dot), alerting the carer that
patient X has fallen in room Y. Since each room is equipped
with its detection node, it is easy to map each node to a floor
and room number. Additional information can be added to
these alert messages or a continuous stream can be setup
to visualise the vital parameters from the elderly person.
Furthermore, by implementing the proxy feature [59, 60]
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FIGURE 3: Graphical representation of the communication steps.
The patient (P) wearable, represented in green, will detect a fall
and send a message to the detection (D) node, represented in red.
The number of the detection node corresponds to the room
number. This node transmits an alert message to the network (N)
nodes, shown in blue. These nodes forward the message to the
closest carer (C) node, shown in magenta. The carer can then
perform the necessary actions.

in the mesh network, every BLE device can communicate
on the network. In this way, the carer’s wearable can be
replaced by a smartphone application.

The proposed system is very energy efficient, allowing
the patient wearable and carer node to be powered by batte-
ries, it does not cause any issues with privacy, the installation
costs are minimal, and it is much cheaper than camera sys-
tems or extensive individualised training programs. Addi-
tionally, there is no need for advanced positioning systems
or cellular communications, which would make such a sys-
tem more expensive. Furthermore, since this network allows
connection to smartphones, the nurses do not have to carry
extra devices. The following subsections describe the hard-
ware design and the detection algorithm that is executed in
the wearable, worn by the elderly person.



3.1. Hardware Design. A number of specific requirements
are imposed during the design process of the wearable. First,
the wearable has to be unobtrusive to the end-user. Studies
show that elderly do not easily adopt novel technology, espe-
cially when devices are too big or too complicated to use [40,
41]. Furthermore, based on research performed in [61, 62],
the ideal position to mount this wearable is on the waist,
which makes the unobtrusiveness even more important.
Furthermore, the wearable needs to be energy efficient. The
final requirement is the versatility. If the wearable is easy
to configure with different sensors, it is more useful for doc-
tors and carers to track or monitor patients in critical condi-
tions. As mentioned before, BLE5.1 is an excellent choice as
a wireless communication platform, given its high energy
efficiency [63]. Next, the use of the Generic Attribute
(GATT) profiles [64], which are part of the BLE stack, makes
it very easy to add more functionality. Furthermore, BLE 5.1
has a high message capacity and can operate over a larger
range compared to previous versions of BLE.

Figure 4 displays the layout of the printed circuit board
(PCB) of the designed wearable. The design relies on the
BGM13P wireless module from Silicon Laboratories [65].
This device uses the BLE 5.1 stack and contains an on-
board 32-bit 38.4 ARM [66] Cortex-M4 MCU with DSP
instruction set. The ARM Cortex-M4 is a modern general-
purpose microcontroller employed in many low-power sys-
tems. 32-bit processing enables efficient execution of the
complex procedures necessary to deploy current-day wire-
less communication standards such as BLE. The ARM can
handle this in a very power efficient way, compared to
low-end 8-bit processors, which need much more instruc-
tions to achieve the same result. Moreover, modern ARM
controllers also provide many power saving modes. Hence,
in this application, the processor goes into sleep mode for
a relatively long time between short bursts of activity, result-
ing in an energy efficient solution.

The BGM13P unit also includes an integrated antenna.
The complete module has an overall size of 15x 13 mm,
which makes the wearable unobtrusive and much smaller
than most smart devices, as is shown in Figure 5. To
achieve an optimal communication range, the data sheet
of the BGMP13P prescribes an empty space of at least
17mm near the antenna. To ensure that the device
remains unobtrusive to the wearer, the width of the PCB
at both lateral sides of the SoC was reduced to 9.5mm,
yielding a decrease by 10% in maximum communication
range, according to the data sheet. Furthermore, a TAG-
connect [67] connector was used to program all different
nodes via the Serial Wire Debug (SWD) protocol [68].
The power supply is a standard small battery of 3.3V; a
power analysis follows in Section 5. Based on previous
experience, these modules have been selected to implement
this proof of concept.

To measure the movements of the patient, the ultra-
small, low-power, triaxial Bosch BMA280 [69] accelerome-
ter was added. This sensor features an integrated low-pass
filtering with a filtered-output data rate up to 500 Hz and
an unfiltered data rate of 2kHz. Furthermore, it possesses
a resolution of 4096 LSB/g in the +2g range, can be used
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FiGure 5: Fabricated PCB with a size of 32 x 23 x 10.

in +2g, +4g, +8g, and +16g range, communicates via an
SPI 3-wire communication link, and contains an inte-
grated temperature sensor. These properties make the
accelerometer excellent to detect when a patient has fallen.
The integrated temperature sensor is a valuable extra fea-
ture because if an elderly person falls and is lying on a
cold floor, the body temperature can drop to a critical
value and lead to hypothermia. By wearing this wearable
under clothing, close to the body, the body temperature
significantly influences the on-board temperature sensor
and a decreasing body temperature can be detected. Tak-
ing all these measures into account, the patient’s wearable
is compact and unobtrusive. Hence, the third design
requirement is met.

3.2. Algorithm Design and Filtering Procedure. Since the
node is constantly receiving the X, Y, and Z acceleration
values from the accelerometer at a high sample rate, filtering
is necessary to reduce the amount of data. Figure 6 illustrates
the flowchart of the applied filtering and decision tree. The
algorithm can be split up in two branches. The first branch
in red decides whether a fall occurred, based on the ampli-
tude of the accelerometer data, and is called the acceleration
branch. The second branch in green takes a decision based
on the change of the spatial orientation and is called the
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Ficure 6: Flowchart of two branches used to filter accelerometer data and determine fall alerts. Acceleration branch coloured in red,
orientation branch in green, and decision tree in blue. Note that orientation change alone can never trigger an alert.

orientation branch. At the end of each branch, in the deci-
sion tree, a measured fall is classified as a possible or con-
firmed fall, visualised in blue.

The analysis starts when the samples of the accelerome-
ter are received. The acceleration branch calculates the Sig-
nal Magnitude Vector (SMV) as used in many related
publications [8, 26-29, 32, 70] based on formula (1) and is
expressed in mg = [per mode = symbol]9, 81e — 3, where ay,
ay, and a, are the measured accelerations expressed in mg
along the X, Y, and Z axis, respectively. The calculated
SMYV is stored in a buffer. When this buffer is full, the max-
imum SMYV value is selected. This value has to be larger than
a certain threshold value, which will be determined in Sec-
tion 4.2. When this conditions is valid, the acceleration alert
flag is set.

(1)

SMV = /a% + a} + a%.

The orientation branch calculates the average ay, ay, and
a, based on a single exponential smoothing algorithm, as is
expressed in formula (2) [71-73], with Gyxisavg,i the average
calculated for sample i along a certain axis expressed in
mg, with @, ..; 1 the previously calculated average along
that axis, with a,,;; a new sample along the same axis, and
with « a damping factor, which is set to 0.1. Based on formu-
las (3) and (4), for the given sample rate (Section 4.2), this «
value results in a time constant 7 of 47.45 ms, which leads to
a cut-off frequency of 3.35 Hz. Hence, (2) implements a low-

pass filtering operation to reduce the noise of the accelerom-
eter samples.

aaxis,avg,i = (1 - (x)'aaxis,avg,i—l + (x'aaxis,i’ (2)
AT -AT
a=1-€7 7= — " =47,45ms, (3)
In (1-a)

1

= ——=3,35Hz. 4
fe 2.1.T 4)

For every 250 ms of captured data, the calculated aver-
ages dy g dyayg and az,,, determine a vector Vj as in
equation (5). Next, based on equation (6) the angle AOj

between of the new vector v; and the previous vector v,

is calculated. When this AGj is larger than or equal to 60°,
the orientation alert flag is set, but only if the acceleration
flag was set earlier. In a final step, the alert flags are checked.
When both flags are set, the person definitely fell. Hence, a
confirmed fall alert is sent to the carer’s wearable. When
only one of the flags is set, a normal fall alert is sent. Note
that the latter case should still be interpreted as a very high
probability of a fall event, although the fall is potentially less
severe.

(5)

— — — —
V= ax oy X+ Ay avg * Y + A7 avg " Z,

— —
A0 ViV
| =arccos ———r. (6)
ViV
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[70]. Both falls represent acceleration data of a test person standing

before a fall, during the fall, and lying down after a fall occurred.
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FI1GURE 8: Moving average of the calculated 6 in a window size of 250 ms. € is the angle between the spatial orientation vector of a test person
and the gravitational vector, sampled at an interval of 5ms. This figure illustrates that 6 is fluctuating during a fall, but has a stable value

before and after a fall occurred.

The main idea behind these branches and the associated
conditions originates from looking at the amplitude flow of a
fall (Figure 7) and the change in spatial orientation
(Figure 8). Figure 7 illustrates the calculated SMV of a mea-
sured fall, with a theoretical fall profile fitted on the mea-
surement data. The theoretical fall profile was described in
[70]. Under normal conditions, the SMV is around 1 g or
9.81 m/s>. When a fall occurs, the SMV first drops, followed
by a steep positive peak, followed by a smaller peak, and
ending near 1 g again. Nearly always, the fall results in a dif-
ferent orientation, as can be seen in Figure 8.

The purpose of this wearable is to provide reliable fall
detection without false positives. This is achieved by taking
into account that the new maximum value should be larger
than the previous maximum and that the difference between
the two values should be larger than a predefined threshold
expressed in mg. Employing this method, we are able to reli-
ably find the peak and set the acceleration alert flag.
Research performed in [70] illustrates that while walking,
ascending, and descending stairs, there will never be a peak
as large as when a fall occurs.

The main idea of the orientation branch is to confirm a
fall by determining the different spatial orientations of the
person before and after the fall event. The peak of the angle

between two vectors measured before and after the fall with
a time interval of 1 in between is used to determine this con-
dition. It is important that this time separation is large
enough in order not to include accelerations measured dur-
ing the fall, as this will disturb the orientation measurement.
During the orientation measurement, the total acceleration
should be predominantly caused by gravity, which can be
confirmed by an SMV value approaching 1 g.

By calculating the moving averages of ay, ay, and a,
with a window size of 250 and transforming it to a vector,
a more reliable orientation angle is obtained. This angle
approaches the orientation of the gravity vector and is con-
sidered a measurement of the gravity vector. The angle
between two measured gravity vectors, taken 250 before
the fall and 250 after the fall, provides valuable information
to confirm the fall event.

An orientation difference around 90 is expected when a
person’s orientation changes from standing to lying down.
However, a lower threshold value of 60 is proposed in order
to account for situations where the elderly person falls on a
nearby object and is not lying entirely flat. Note that the ori-
entation alert flag is only set if an acceleration alert flag had
already been set. Hence, an orientation change alone can
never trigger a fall alert.
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Figure 9: Convolutional neural network architecture.

3.3. Convolutional Neural Network Design. To compare the
performance of the proposed rule-based algorithm with
machine learning (ML), we use a convolutional neural net-
work (CNN), of which the architecture is shown in
Figure 9. The CNN has shown tremendous performance in
various classification problems such as image classification
[74], modulation classification [75], and wireless technology
classification [76-78]. In this work, the CNN is trained with
three publicly available fall datasets presented in [79-81].
These datasets consist of the accelerometer data in the form
of X, Y, and Z acceleration values, which were captured on
the human body. The proposed rule-based algorithm iden-
tifies every event as either “Fall” or “Not Fall.” In order to
have a fair one-to-one comparison, the CNN is trained with
70 of each dataset that is categorising the events in a similar
way. All the data classes corresponding to falls are combined
in the “Fall” category, and all the activities of daily living
(ADL) classes are combined in the “Not Fall” category.
Therefore, the CNN also identifies the “Fall” and “Not Fall”
events in a comparable way.

For the input to the CNN, we consider the SMV values
of the raw X, Y, and Z accelerometer data computed accord-
ing to formula (1). Furthermore, we consider a window size
of 20 x 30 = 600 SMV values, which represents 3 in the time
domain. The architecture of the CNN is composed of three
2D convolutional layers and four fully connected layers as
shown in Figure 9. The last fully connected layer of the
architecture is the softmax layer with two neurons, repre-
senting that the CNN is able to classify the two classes.

The total numbers of examples in KFall, SisFalll, Sis-
Fall2, and FallAIID are 5036, 4500, 4500, and 1798, respec-
tively. Note that each example is of size (1 x 600), hence
containing 600 SMV values computed according to formula
(1) from (3 x600) values of X, Y, and Z. Since we use
Conv2D in the CNN architecture, we transformed each
example from (1,600) to (1,20,30). For training and testing
the classifier for each dataset, we divided the data into train-
ing, validation, and testing data sets with a split of 70/15/15.

For the optimiser, the Adam optimiser was used as it
provided the best accuracy. In addition, ReduceLROnPlateau
was used from the Tensorflow platform, because it helped in
reducing the learning rate from 0.001 to 0.0001 when the
validation loss stopped improving. In order to have a fine
balance between overfitting and underfitting, a batch size

f

g

Y

FIGURE 10: Graphical representation of the measurement setup: a
person, approximately 1.8 m tall and wearing the wearable with
integrated accelerometer around the waist, is falling forward on a
mattress. The orientation of the accelerometer’s axes is visualised.

of 512 and a dropout of 0.40 were used. The CNN classifier
was trained on a NVIDIA GTX 1080Ti Graphics Card,
which is available in our in-house Virtual Wall [82]. The
classifier was implemented in an abstract level library Keras
[83] with Tensorflow [84] as a back-end.

4. Measurement and Analysis

4.1. Measurement Setup. To validate the algorithm, a set of
simulations was performed based on the measurement setup
in Figure 10. A person, approximately 1.8 m tall and wearing
the device around his waist, falls on a mattress. Note that
when a fall on a mattress is detected, a fall on a hard floor
would certainly be detected as the acceleration at the
moment of impact is certainly higher. During these mea-
surements, the accelerometer measures negative values along
the Y-axis, as shown in Figure 10. The MCU reads the accel-
erometer samples at a sample interval of 200 Hz and contin-
uously transfers them to a PC used for data collection. Note
that this is only necessary for the analysis and is not required
in the actual application. The accelerometer was initialised
to operate within a range of +4g and the integrated low-
pass filtering was selected. Before sampling, inline acceler-
ometer calibration [85] was performed according to the
start-up procedure described by the manufacturer.

4.2. Fall. Multiple simulations are performed, to obtain the
best sample rate for both detection branches, as well as the
optimal buffer size and threshold values. The first parameter
is the sample rate. Research proposed in [29, 32, 33] suggests
a sample interval of 20 ms. However, taking into account
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fall profile.

that the peak of the fall only exists for approximately 50, we
decided to sample at a higher interval of 5.

In Section 3.2, Figure 7 illustrates the measured fall at a
sample interval of 5ms or a sample rate of 200. The peak
consisted of multiple samples above 3 g, which clearly illus-
trated that the peak cannot be missed at this sample rate.

The next parameter is the buffer size of the filter that
determines the maximum SMV. A buffer size of 5 will lower
the detection time but will increase the noise of the measure-
ment. Utilising a buffer size of 15 will slow down the detec-
tion time but has a large influence on the noise filtering. A
buffer size of 10 clearly provides the best result, approaching
the theoretical fall profile as illustrated earlier in Figure 7,
preserving the important information while at the same time
reducing noise in the measurement. The result of filtering
the measurement accordingly is displayed in Figure 11.

The last parameter is the threshold value that triggers an
alert. From research performed in [70], we know that, while
ascending or descending stairs, the SMV will never reach a
peak as high as 1.7 g. Note that in nursing homes the elderly
will generally not even use staircases.

Measurements were also performed to assess the SMV
values when an elderly person falls back in a seat. The mea-
surement setup was as described before, but now, the test
person was standing in front of a seat, “fell” into the seat
and stood up again. Figure 12 illustrates five measured “sit
events” sampled at a rate of 200 Hz. As is shown in the
graphs, the sit events did not cause any accelerations above
1.7 g whereas potential harmful fall events easily cause accel-
erations above a threshold of 2.5 g. This threshold value is
chosen at a level that guarantees detection of dangerous fall
events, while at the same time avoiding false alerts due to
other harmless events.

After determining the optimal parameter values, we
combined the acceleration and orientation branches.
Figure 13 illustrates the complete algorithm applied to a fall
measured at a sample interval of 5ms. It can be seen that
around 1.4, the acceleration alert flag is set. When taking a
closer look, this flag is set at the peak of the fall, which
proves the effectiveness of the acceleration detection. After
a delay of 1.1, this fall is confirmed by the difference in spa-

tial orientation, as can be seen in Figure 8. The confirmed
fall alert will be sent at 2.5s.

4.3. Validation with Open-Source Dataset. To verify the algo-
rithm, we have selected three online fall detection databases.
The first dataset is the SisFall dataset [79]. This dataset was
created in 2017 and contains accelerometer data of two dif-
ferent accelerometer and gyroscope data from units
mounted at the waist level. This dataset was created with
38 subjects ranging from young to old; the adults/elderly
(>60 year) distribution is 23/15. Furthermore, it contains
34 ADL/falls that were repeated 1 or 5 times. In total, this
dataset contains two times 4500 ADL/fall events.

The second dataset is the FallAIID dataset [80], which
contains accelerometer, gyroscope, magnetometer, tempera-
ture, and barometer data measured around the waist, neck,
and right hand. The 15 test subjects range from young to
elderly adults, with 44/35 ADLs/falls at variable times per
ADL/Fall. In total, this dataset contains 4760 ADL/Fall
events. The third dataset, KFall [81], contains accelerometer,
gyroscope, and magnetometer data captured also at the waist
level. It is based on 32 young male test subjects performing
36 ADLs/falls variable times per ADL/fall. In total, this data-
set contains 5075 ADL/fall events. A summary of the test
subjects and ADL/Falls per dataset can be found in
Tables 1 and 2, respectively.

Since the data in these datasets is captured with different
accelerometers and since test subjects are falling in a differ-
ent way with sometimes less representative falls, some
parameter values of the proposed rule-based algorithm need
to be adjusted. The first adjustment is the amplitude thresh-
old. Since some measured ADL/Fall datasets contain more
noise than others, it is important to set the threshold level
above the noise level in order to suppress false alerts. To find
the best suitable threshold, the histogram gives the maxi-
mum value of an ADL/fall event for each database, as can
be seen in Figure 14. From this figure, it can be concluded
that a threshold between 2 and 3 g suppresses most noise
and will result in good performance of the algorithm.

Figure 15 illustrates the results of the proposed algo-
rithm for different amplitude thresholds ranging from 1.75
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FIGURE 12: Graphical representation of five sit events measured at a sample interval of 5ms.
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FIGURE 13: Results of the final algorithm applied to the fall from Figure 7, which was measured at a sample interval of 5. The red vertical line
represents the acceleration alert and the green vertical line the orientation alert. Since both alerts are set, this is a confirmed fall event.

TaBLE 1: Summary of the test subjects used in three datasets.

Subjects Age (yrs) Weight (kg) Height (cm) Gender (M/F)
SisFall (2017) 38 (22-70) (51-142.9) (152-188) 19/19
FALLAIID (2021) 15 (21-53) (48-85) (158-187) 8/7
KFall (2021) 32 (21-29) (60-79) (168-180) 32/0

TaBLE 2: Summary of the ADL/falls per dataset.
Position Times repeated ADL/falls Total events

SisFall (2017) Waist lor5 19/15 4500x2
FALLAIID (2021) Waist, neck, right hand Variable 44/35 4760
KFall (2021) Waist Variable 21/15 5075

to 3.5 g in steps of 0.25 g, with a constant timeslot of 1 and
an orientation threshold of 45°. It can be concluded that a
threshold of 2.5 g gives the best F,-score for each dataset,
proving that the previously chosen threshold performs well.

Second, we considered the orientation threshold. During
extensive testing, it appeared as if some test subjects did not
wear the accelerometer unit tight enough to the body. In
these situations, where a person fell when trying to sit or
stand up from a chair, the recorded orientation differences
in the database are smaller than what is realistically possible.
In order to compensate for this underestimation, the thresh-
old was lowered to 45" instead of 60°.

A final adjustment is the timeslot. To have a clear dis-
tinction between a fall and for example a forward jump,
the timeslot is increased. In this way, the algorithm is pre-
vented from calculating the orientation difference during
the fall or jumping. Table 3 gives a short overview of the
parameters that were changed for each dataset. The ampli-
tude threshold differs per dataset since this gives us the best
result for each dataset. Setting this threshold to the same
value results in a minor difference in F,-score, as can be seen
in Figure 15.

Table 4 represents the accuracy, precision, sensitivity,
and F,-score of the developed algorithm applied to all three
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FIGURE 15: Results of the amplitude range simulations of the proposed algorithm.

TaBLE 3: Summary of the adjusted parameters for each dataset.

Paper SisFall FALLAIID KFall
AP 017) (2021) (2021)

Sample rate 5ms 5ms 4.2 ms 10
Amplitude

2.5 2 2.75 2.5
threshold g g 9 9
Orientation o o o o
threshold 60 45 45 45
Timeslot 0.25s 1 1 1

TABLE 4: Summary of the obtained accuracy, precision, sensitivity,
and F,-score for the proposed algorithm per datasets.

SisFall (2017)  FALLAIID (2021) KFall (2021)

Accuracy  91.58% 91.27% 92.65% 84.89%
Precision  87.01% 86.61% 81.87% 85.35%
Sensitivity  92.77%  92.44% 92.06% 80.66%
F-score  89.80% 89.43% 86.66% 82.94%

datasets. It results in an accuracy in the range of 84.89% to
92.65%, representing the percentage of correct decisions. A
precision in a range of 81.87% to 87.01% is obtained, repre-
senting the ratio of true fall detections over all fall detections.
A sensitivity in the range of 80.66% to 92.77% is observed,
corresponding to the ratio of correct fall detections to the

TaBLE 5: Summary of the CNN algorithm for each dataset. The
CNN was trained on 70% data, validated on 15% and tested on
15% of each dataset.

SisFall (2017)  FALLAIID (2021) KFall (2021)

Accuracy  95.85% 96.07% 94.44% 93.44%
Precision  95.38% 93.28% 84.48% 93.43%
Sensitivity  94.34%  96.98% 89.09% 93.30%
F,-score ~ 94.86% 95.09% 86.72% 93.36%

number of actual falls events. Based on these values, the F,
-scores are in a range of 82.94% to 89.8%, confirming the
reliability of the algorithm. One must take into account that
these datasets also contain ADLs such as jogging and jump-
ing. These can trigger false alerts in some situations, even
though they do not occur often in the lives of the elderly.
Table 5 also shows the performance of the CNN algo-
rithm in terms of accuracy, precision, sensitivity and F,
-score. The algorithm was trained on 70% training data
and tested and validated on the 15% data for each dataset.
There can be stated that the results are higher than the
results from the proposed rule based algorithm (Table 4),
but at a much higher power consumption. Furthermore, it
can be stated that CNN is very data dependent. When the
CNN is trained on both SisFall datasets and KFall and later
validated on FALLAIID, we get an accuracy of 90.32%, a
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TABLE 6: Proposed scenario for a day of an elderly person in a nursing home, based on information from a local home.

Time Activity Microcontroller mode  Accelerometer mode
8:00-8:30 Wake-up, getting dressed and walking towards the kitchen for breakfast Active Active
8:30-9:30 Having breakfast and socialising with other residents Deep sleep Active
9:30-935 Walking towards the garden, room or recreation centre Active Active
9:35-12:00 Enjoying the moment Deep sleep Active
12:00-1205 Walking towards the kitchen for lunch Active Active
12:05-13:05 Having lunch and socialising with other residents Deep sleep Active
13:05-13:10 Walking towards room Active Active
13:10-14:30 Sleeping Deep sleep Active
14:30-14:35 Walking towards the garden, room or recreation centre Active Active
14:35-1730 Enjoying the moment Deep sleep Active
17:30-1735 Walking towards the kitchen for dinner Active Active
17:35-18:35 Having dinner and socialising with the other residents Deep sleep Active
18:35-18:40 Walking back to the room Active Active
18:40-21:00 Sitting or lying down in bed watching TV Deep sleep Active
21:00-22:30 Sleeping (time needed to detect elderly person is sleeping) Deep sleep Active
22:30-8:00 Sleeping Deep sleep Low power

precision of 73.40%, a sensitivity of 87.24%, and an F,-score
of 79.72%.

However, the CNN also exhibits some drawbacks: (a) it
requires training, and (b) it consumes more resources while
executing on embedded platforms as compared to the rule-
based algorithm. Due to the advancement of ML on embed-
ded platforms, the second problem can be alleviated, since
now procedures exist for generating lightweight models
including Tensorflow libraries such as Tensorflow Lite and
TensorRT. The aim of this paper is only to identify “Fall”
and “No Fall” events, and in this case, the proposed algo-
rithm performs similar than the CNN algorithm because
(a) it provides higher accuracy, (b) there is no need for train-
ing, and (c) it yields a lightweight algorithm. However, if the
goal is to identify other “Fall” and “No Fall” events such as
walking, standing, and picking up objects, then developing
a rule-based algorithm for such a case would be extremely
difficult or rather impossible. In that case, ML would be a
nice alternative, because it does not require development of
such rules but rather a CNN must be trained by a labelled
data set and a similar performance as for a rule-based algo-
rithm can be expected.

5. Power Management

In a wearable device, the battery lifetime is an important
property. When the elderly person is walking around, the
MCU and the accelerometer will be in active mode and con-
sume power to perform the programmed tasks. Utilising the
no-motion interrupt of the accelerometer, the MCU is put in
a deep sleep mode, which dramatically decreases the con-
sumed power. To wake up the MCU when the person is
walking again, the High-g interrupt of the accelerometer is
used. To lower the power consumption even more, the accel-
erometer will be put in a low-power mode, for example, when
the elderly person goes to bed and is sleeping for multiple

hours. Based on information from a local nursing home
for the elderly person, the following scenario is proposed
in Table 6.

When both MCU and the accelerometer are in active
mode, there is an energy consumption corresponding to an
hourly charge of 0.45mAh. Putting the MCU in deep sleep
mode decreases the daily required battery charge to
0.13mAh. When the MCU is in deep sleep mode and the
accelerometer is in low-power mode, the total required charge
is 7.9 uAh. Taking these consumptions into account, the total
required charge for this scenario per day is 2.27 mAh.

Furthermore, the wearable is programmed to send a
“standby” signal every 15 minutes in order to inform the sys-
tem that the wearable is still active. One such message con-
sists of five subsequent advertisement packets in order to
assure proper detection by the system. The 5 packets are sent
at a TX-level of 1, which results in a series of peak currents
of 9mA during approximately 20ms for each message
[65]. In a worst-case scenario, the elderly person falls once
a day, which results in another five current peaks of 9mA
during 20 ms for each message.

Taking all of these parameters into account and using a
3V CR2032 battery with a capacity of 230 mAh, this results
in a battery lifetime of 100 days. The CR2032 was chosen for
reasons of compactness and ease of use during development.
In this way, we meet the third and fourth design requirements.
A larger (rechargeable) cell can always be used if a longer
autonomy is preferred. As an example, applying a CR2477N
3V Lithium Battery with a capacity of 950 mAh would extend
the autonomy to more than 414 days maximum, if self-
discharge of the battery is not taken into account.

6. Conclusion

This paper describes the design of a wearable fall detection
sensor for the elderly based on BLE wireless communication,
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providing excellent room coverage at low energy consump-
tion. The wearable relies on a three-axis accelerometer to
find the peak of the fall as well as the change in spatial ori-
entation. This change in spatial orientation is used as a fall
confirmation signal. A false detection resulting in a con-
firmed fall alert is virtually impossible with this approach.

The system is designed, implemented, and validated by
means of a measurement campaign. In order to assess sensi-
tivity and selectivity, not only fall events were measured but
also other harmless conditions causing fairly large accelera-
tions, such as “falling” into a seat.

Based on the measurement results, realistic parameters
were chosen for the algorithms, of which the most important
are the threshold values of 2.5g and 60° for the acceleration
and orientation change, respectively. A sample rate of 5ms
was chosen in order to surely capture all relevant details of
each fall event.

A validation of the algorithm was performed using three
open-source databases containing data for 85 persons, per-
forming 18 835 ADL or fall activities. Based on these data,
the algorithm obtained an F, score in a range of 82.94% to
89.8%, confirming its reliability and illustrating that the first
and second design requirements are met. In addition, the
proposed rule-based algorithm is compared to ML using
the CNN. The results show that the CNN algorithm yields
an F, performance in a range of 86.72% to 95.09%, which
is comparable to the proposed rule-based algorithm. This
way the first and second design requirements are met.

The proposed wearable provides reliable fall detection,
without false acceleration alerts (level 1). The orientation
confirmation system provides a second, independent vari-
able, making false (level 2) confirmed positives extremely
unlikely. The proposed unobtrusive wearable system fits in
a 32x23x10 mm package and autonomously performs
measurements as well as communication employing state
of the art wireless technology. The system is energy efficient
and achieves an autonomy of 100 days on a standard
CR2032 coin-cell battery. In this way, the third and fourth
design requirements are also met.

Data Availability
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