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Within the context of Internet of Things (IoT), many ap-
plications require high-quality positioning services. As opposed
to traditional technologies, the two most recent positioning
solutions, Ultra-Wideband (UWB) and (unmodulated) Visible
Light Positioning ((u)VLP) are well-endowed to economically
supply centimetre to decimetre level accuracy. This manuscript
benchmarks the 2D positioning performance of an 8-anchor
asymmetric double-sided two-way ranging (aSDS-TWR) UWB
system and a 15-LED frequency-division multiple access (FDMA)
received signal strength (RSS) (u)VLP system in terms of feasi-
bility and accuracy. With extensive experimental data, collected
at 2 heights in a 8 m by 6 m open zone equipped with a precise
ground truth system, it is demonstrated that both VLP and UWB
already attain median and 90" percentile positioning errors in
the order of 5 cm and 10 cm in line-of-sight (LOS) conditions.
An approximately 20 cm median accuracy can be obtained with
uVLP, whose main benefit is it being infrastructureless and thus
very inexpensive. The accuracy degradation effects of non-line-of-
sight (NLOS) on UWB/(u)VLP are highlighted with 4 scenarios,
each consisting of a different configuration of metallic closets.
For the considered setup, in 2D and with minimal tilt of the
object to be tracked, VLP outscores UWB in NLOS conditions,
while for LOS scenarios similar results are obtained.

Index Terms—Indoor Positioning, Indoor Localization, Ultra-
Wideband, UWB, Visible Light Positioning, VLP, Unmodulated
Visible Light Positioning, uVLP, Experiments

I. INTRODUCTION

With the all-pervading Internet of Things (IoT) paradigm
enabling consumer location-based services, Industry 4.0,
Smart Architectures, Health 4.0, Agriculture 4.0 and Fifth-
generation technology applications that all demand high-
quality positioning services, Indoor Positioning Systems (IPS)
are garnering significant interest [|1]. Besides for applications
such as asset tracking, navigation and virtual reality, accurate
localisation plays a vital role in IoT devices offering preference
management, privacy, security and safety. However, with the
legacy IPS unable to ensure a sufficient quality of positioning
service (QPoS), the indoor location market’s vast potential
remains largely untapped [?2].
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Particularly, the tracking of (unmanned) vehicles, such as
the robots or forklifts found in industry, the hospital beds
or equipment carts in healthcare and the shopping carts in
retail, is still demanding IPS that either deliver decimetre-
level accurate tracking at a very low cost or couple a highly-
available centimetre-level navigation with a low to medium
price tag. The traditional radio frequency-based IPS do not
accuracy-scale due to self-interference and/or interference with
the (existing) communication infrastructure. The two most
recent competitors, ultra-wideband (UWB) and Visible Light
Positioning (VLP) are better suited. The former scales com-
paratively well due to its interference minimisation, the latter
by virtue of its vast license- and congestion-exempt spectrum.

UWB minimises interference by transmitting (sub)-
nanosecond modulated pulse signals that have a low and well-
regulated effective isotropic radiated power. The high temporal
resolution allows to accurately measure the signal’s time of
flight (TOF) and to finely resolve the multipath components
in the channel impulse response (CIR). The associated real-
time, centimetre-order positioning renders UWB one of the
most promising IPS technologies to date [3]], as attested by its
sprouting commercial deployments and its integration in high-
end smartphones. The latter enables a swift interfacing with
IoT devices. Moreover, UWB-enabled location-aware sensor
networks dispose of a power-efficient, jamming and intercep-
tion resilient, encrypted communication means that permits
both collaborative localisation and localisation with respect to
a quickly-deployed reference infrastructure. For UWB, ToF-
based asymmetric double-sided two-way ranging (aSDS-TWR)
is the dominant localisation principle, trading-off practicality,
latency and accuracy [3]]. It mitigates the degrading effect of
clock drift, without requiring time synchronisation and without
a large message overhead.

As a smart lighting application, VLP profits from both light-
emitting diodes (LEDs) becoming ubiquitous, i.e. the solid-
state lighting revolution [4], and the advent of the Light(ing)
as a Service (LaaS) business model, i.e. introducing service
differentiation in a provider-maintained lighting infrastructure.
VLP inexpensively infers accurate positioning by demultiplex-
ing the unnoticeably (intensity) modulated LEDs’ photocur-
rent contributions. Its main economic driver is based on the
concurrent use of (part of) the existing illumination infras-
tructure. Already supporting pulse-width dimming, LEDs can
easily be wielded for square waves-based frequency-division
multiplexing access (FDMA) [5]. VLP’s benefits include its
minimal contribution and relative immunity to electromagnetic
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interference, and its limited transmission range that entails
safety and privacy [4]]. The wide applicability, high coverage,
aptitude for energy efficiency and harvesting, smartphone-
compatibility, and substantial receiver-side scalability are also
appealing to IoT applications.

Unfortunately, the dual lighting-positioning functionality
frequently necessitates infrastructure modification, generally
by means of a LED driver retrofit, and/or the addition of
VLP-enabled or illumination-specific infrastructure. The idea
behind Unmodulated VLP (uVLP) is to work with light sig-
nals of opportunity (LSOOP) [6]], i.e. with unmodified light
sources, to target decimetre-level accuracy applications where
the economics matter most. In fact, as LEDs are prevalent in
indoor spaces [4] and used as-are, uVLP’s pricing is restricted
to the receiver’s cost, which is in itself a bargain.

Weight, cost and energy-constrained (u)VLP systems fre-
quently resort to received signal strength (RSS) positioning
with a single photodiode (PD), instead of camera-based angle
of arrival (AOA). A PD’s larger bandwidth is well-suited to
demodulate the LEDs’ characteristic frequency in uVLP, and
for applications in need of a significant location refresh rate
and stroboscopic effect-robustness [7]. Moreover, (u)VLP’s
limited receiver complexity permits its use as either a ded-
icated or Li-Fi-inherent location service with IoT devices. Its
broadcasting nature enables the constrained IoT devices to
query their location at their own incentive.

Although both UWB and (u)VLP show promise, it is
arduous to diligently benchmark the two based on literature
results. This is a problem well-known in indoor localisation
[8]], where the results depend on the irreproducible roll-out
and where vital parameters are not necessarily disclosed. The
roll-out environment, how many anchors of what type it is
equipped with, which calibration is performed, the localisation
parameters, and even the used result metric, all affect the
positioning outcome [9]. Furthermore, the localization data
generally have been collected sparsely and/or in a small
lab setup [10]. This is especially the case for (u)VLP. The
organisation of indoor positioning competitions [/11]] helps, but
these have only recently started to incorporate UWB tracks and
have yet to consider VLP.

In response, this manuscript compares the current 2D po-
sitioning performance of aSDS-TWR UWB [12], [13] and
RSS-based (u)VLP [6]]. Hereto, a 11 m x 8 m open zone
is equipped with 15 VLP-enabled point source-like LEDs, 8
UWB anchors and 8 motion capture (MoCap) cameras that
supply the highly-accurate ground truth. With both the (u)VLP
PD receiver and the UWB tag placed on a height-adjustable
cart, stateless (i.a. multilateration) and stateful (Kalman filter)
localisation is performed at 2 heights in line-of-sight (LOS)
conditions. In addition, the open zone is furnished with various
configurations of metallic closets to study the performance
degradation of UWB and (u)VLP in the presence of non-line-
of-sight (NLOS). The influence of anchor selection and the
prior calibration effort is also studied.

Concretely, this paper’s contributions are summarised to:
« An extensive experimental evaluation of the 2D position-
ing performance of aSDS-TWR UWB and RSS-based
(w)VLP with a single PD in the same LOS and NLOS

conditions with respect to a highly-accurate MoCap
ground truth system.

« Both the accuracy and precision of ranging, stateless and
stateful localisation is investigated.

II. RELATED WORK
A. UWB research

UWRB positioning is mostly associated with time difference
of arrival (TDOA) and TOF. Though standalone/hybrid AOA
appears [3]. Despite TOF’s higher energy consumption, it is
generally favoured to TDOA, which has anchor synchronisa-
tion via a timing cable as prerequisite. Building on advance-
ments in transceiver design, low-level communication proto-
cols and propagation models [14]]-[16], UWB research has/is
mainly focussed on both autocalibration [17], and improving
the ranging and localisation accuracy by accounting/correcting
for range bias and for NLOS contributions.

Originating from non-ideal antenna radiation patterns, di-
verging transmitter power, pulse shape distortion, clock drift,
hardware timing inconsistencies, installation errors, ... [18],
range bias can be RSS and/or distance-dependent and is nor-
mally calibrated to great effect. The performance degradation
effect of NLOS, of multipath, obstructions and excess delay,
is combated by adequate LOS path detection algorithms [19],
and NLOS estimation and compensation [20], [21]] by means
of signal statistics [22], manual calibration [23]], models of the
expected ranging error [24]] or machine learning [25].

Though open-source UWB platforms are emerging [13],
most UWB systems in literature are of commercial nature.
These (commercial) UWB solutions typically claim a sub-
decimetre and a 10 — 30 cm positioning accuracy in indoor
LOS and NLOS conditions, respectively. Scientific literature
learns that in larger, NLOS-harsher environments their ac-
curacy curtails, with the extent dependent on the type of
environment and UWB solution [21]], [26]], [27].

B. VLP research

The nascence of VLP is apparent from the diversity in
the positioning system principles being developed, the limited
offering of commercial systems and the lack of evaluations
of large-scale deployments [28]. Positioning can be offered
as part of a communication network [29] or preferably as a
standalone service with a camera [30] or PD [7] receiver, and
with either an RGB-composed or a phosphor-based LED, or a
diffused laser diode. VLP systems are generally simplex, i.e.
broadcasting signals from the LEDs to a PD receiver.

Though T(D)OA is possible for VLP, it is not prevalent due
to both the limited LED bandwidth restraining the achievable
timing resolution and the required synchronisation effort as-
sociated with typically dense transmitter deployments. Helped
by the absence of small-scale fading and the more spatially-
confined NLOS influence, RSS-based VLP is capable of centi-
to decimetre accuracy, only needing a single PD.

Range/location bias manifests for RSS VLP as well, in the
form of non-ideal (Lambertian) acceptance [7]] or radiation
patterns [31f], of tilting and of time-variations on the radiant
power, whether present purposefully with dimming or not
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Fig. 1.
equipped with 15 VLP-enabled LEDs, 8 UWB anchors and a MoCap
infrastructure. The evaluation zone is indicated in purple in (a).

[32]. The bias factors are frequently (arbitrary) calibration
fitted at once [33| or indirectly learned with machine learning
models based on tedious in-situ measurements [34]. However,
these manual measurements are superfluous when properly
modelling [7]. Range/location errors are also incurred due
to LOS blockage, attenuation/refraction with partially opaque
objects, and reflections-induced NLOS that is moreover not
easily mitigated being devoid of an accurately determined CIR.

Evaluations of VLP are principally constricted to small lab
setups, with (some of the) more detailed PD-based evaluations
showing a mean positioning error in either the 1.5 — 6 cm or
the 10 — 34 cm range depending on how closely the setup
resembles a practical environment [7]], [33]—[36].

C. uVLP research

uVLP systems that combine DC illuminance measurements
with dead reckoning provide metre-level positioning [37].
However, their feasibility hinges on the presence of an illumi-
nance gradient. As in lighting design a uniform illuminance is
strived for, it is beneficial to decompose the total illuminance
into its individual LED contributions by identifying distin-
guishable characteristics of light sources [6]], [38]l, certainly
when external ambient (sun) light is present. In [38]], it was
demonstrated that the fluorescent light’s inverter induces a
resonance, a characteristic frequency (CF), that allows a opth
percentile pgg = 37 cm accurate smartphone localisation. A
CF also manifests for (switched-mode) constant current LED
lamps [6]]. Depending on the required update rate, either a
decimetre median error psg or a psg = 5 cm (pgg = 10.6 cm)
can be obtained. The same demodulation and positioning
techniques can be applied for (u)VLP, but reaching optimal
performance may require tailoring, as uVLP typically deals
with a lower signal-to-noise-ratio (SNR) and requires more
robust localization due to the time-instability of the CF.

III. MATERIALS AND METHODS

The UWB testbed under consideration is located in the
industrial Internet of Things (IIoT) lab [[10] and is equipped
with additional illumination LEDs, to assess and compare
the positioning performance of RSS-based (u)VLP and aSDS-
TWR UWB. The testbed is schematically and photographically
visualised in Fig. [I] The localization benchmarking is limited
to the 8 m by 6 m open space-zone of the lab as only there
accurate ground truth is available [10].

TABLE I
SPECIFICATIONS OF THE UWB INFRASTRUCTURE

AnchorID| 1 | 2 | 3 | 4 | 5 |6 | 7|8
ws.i[m] |3.983.98]-4.05[-4.05[-3.96-3.96] 3.89 | 3.89
ys,i[m] |543|5.43| 542|542 |-530|-530|-5.31 |-531
zs,i[m] |0.20(2.42] 040 | 2.61 | 0.44 | 2.64 | 0.44 | 2.65

A. aSDS-TWR UWB system

The UWB tracking system under test comprises 1 tag and
N = 8 anchors. The anchors are rectangularly distributed
over the two sidewalls of the testbed forming approximately a
rectangular cuboid (see Fig.[T). Their coordinates, with respect
to the middle of the open zone, are listed in Table [} They are
calibrated with the MoCap system of Section [[TI-C]

The UWB hardware, Wi-PoS, is able to function inter-
changeably as tag and anchor by combining a Decawave
DWlOO(ﬂbased UWB transceiver [13] and a Zolertia RE-
Moteﬂ-based sub-GHz radio for control plane messaging
[12]]. The custom UWB transceiver covers channel 3 of the
IEEE802.15.4a standard with an external monopole antenna,
which betters Decawave’s antenna’s system fidelity factor and
return loss [39]. The aSDS-TWR protocol runs in tandem with
the energy-optimised time-division multiple access scheme
detailed in [12] with no POLL/FINAL optimisation. The
remotely controllable UWB data rate, preamble length, pulse
repetition frequency and antenna delay are set to 850 kbps,
512 symbols, 64 MHz and 16476 ticks, respectively. With
these messaging parameters, a range is available at an approx-
imated 2.6 Hz rate. The antenna delay is taken as an average
of a couple of devices, and no further, not DW1000-included,
calibration is performed.

Upon each ranging update, the UWB location is estimated
both stateless with 2 basic algorithms, namely linear least-
squares multilateration (MLAT) and ranging-based model-
based fingerprinting (MBF) [7|], and stateful with a real-
time extended Kalman filter based on the discrete time white
noise acceleration movement model specified in [40]. The
latter is referred to with ‘KF’. Its standard deviation on the
independent in-plane acceleration and ranging measurement
equals 20 em/s?> and 3-2 cm, respectively. The latter is based
on later static measurements.

The location update rate approximately amounts to 21 Hz.
The employed MBF approach entails finding the closest
match between the vector holding the latest range estimation
[cii], 1 = 1..N per anchor and a map holding the actual ranges
d; per 2.5 cm-spread grid location. The closest match is found
by minimising the mean squared error cost function C(z,y)
=1k Zf{: 1 (di — @)2 Being cumbersome, yet feasible with
sparsity techniques, in terms of storage and matching latency,
MBF serves at the least as a reference for non-linear MLAT
and machine learning.

Not all anchors’ z/i; are required to compute a location
estimate. Selecting a subset with the K (K < N) smallest
ranges might boost the accuracy. In this anchor selection, the

1 https://www.decawave.com/product/dw 1000-radio-ic/
2hllp://zolerlia.io/product/hardwa.re/re— mote
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TABLE II
SPECIFICATIONS OF THE (U)VLP INFRASTRUCTURE

ID|zg ;[m]|ys,: [m]|zs,: [m]| fe,i [kHz] ID‘,’I?S’.L[’HL] ‘yg,1 [m] ‘25.1 [m]| fe,i [kHz]
1| 1.82 -3.58 295 |2.0(81.80)| 9| -240 | -0.01 296 | 4.8 (78.45)
2| 0.10 -3.45 295 |8.0(83.20)| 10| 2.75 1.83 296 |3.2(79.35)
3| 241 -3.64 295 |1.6(89.50) | 11| 1.91 1.93 296 | 1.4 (85.85)
4| 272 -1.86 296 |4.0(83.10) | 12| -1.19 1.76 295 |24 (85.20)
5| -1.17 | -1.78 296 |11.2(83.30) 13| 1.72 3.57 296 |16.0 (92.43)
6| -241 -1.80 296 |1.0(90.32) | 14| 040 3.52 295 | 5.6 (85.00)
7| 271 0.07 296 |2.8(88.95)| 15| -2.40 3.45 296 | 0.7 (79.63)
8| 0.80 0.05 295 | 9.6 (78.05)

dilution of precision was constrained to ensure that the subset
always included anchors on both walls.

B. RSS-based VLP roll-out

The RSS-based VLP system under examination is a larger-
scale version of the roll-out utilised in [6]. With LTMS8005
Demo Boardf)} N = 15 BXRE-35E2000-C-737 chip on board
LEDs are intensity modulated to transmit square pulse trains
(5]. The LEDs’ planned [41] location (zs, ¥s,i, 25,i), § =
1..N (also shown in Fig.[I](a)) and modulation frequencies f. ;
are displayed in Table [} To minimise inter-LED-interference,
fe,i are assigned as to not both be odd harmonics and to
preferably be an even harmonic of a ground frequency [5]. All
fe,s exceed 700 Hz as a safeguard against flicker. 3D printed
holders ensure that the LEDs are hung level at the bottom of
basket cable trays.

A single Thorlabs PDA36A2E| PD-based receiver, in tandem
with the National Instrument USB-6212 DAdﬂ localises itself
based on the per-LED demodulated photocurrent contributions
Ipp,. These Ipp;, i.e. the RSS values, are computed via
peak magnitude identification on the fast Fourier transform-
based spectrum of the, with Ng = 2560 samples at a 256 kHz
rate, discretised photocurrent signal Ipp(t). 4 Ipp,; samples
are averaged to ensure a UWB-comparable 25 Hz update
rate. The PDA36A2 is equipped with Thorlabs® FESH0750
Shortpass Filtelﬂ to negate the infrared contribution of the
MoCap system. Its transimpedance gain is set to 1.51-10° V/a
or 4.75-10% V/a depending on the vertical PD-LED distance.

For a consistent analysis, VLP also employs MLAT, MBF
and KF, in combination with LED selection. The standard
VLP propagation model [28] is modified to accommodate a
square receiver acceptance described by ¥3sp = 0.74 rad for
the PDA36A2-FESHO750 combination, see 7] for details. In
contrast to TWR UWB updating a range at a time, RSS-based
VLP calculates its location estimate at once upon a Ipp ;(%)
measurement. As a consequence, the actual interpretation of
the algorithms differs: (i) MBF’s cost function is the Manhat-
tan distance on {Ipp ;} instead of on {d,}, (ii) the K LEDs
with the largest normalised {Ipp;} i.e. {{Pp.i/(M-P.,;-R,)}
[6]] are selected while avoiding collinear LEDs, and (iii)
UWB’s EKF is replaced by a fading memory linear Kalman
filter with coefficient a [42]]. It strictly acts on an MBF/MLAT

3hllps://WWW.analog.com/en/products/llm8005.html#product—overview
4hllps://www.bridgelux.com/producls/v— series

3 https://www.thorlabs.com/thorproduct.cfm?partnumber=PDA36A2
6hltps://www.ni.com/pdf/mamue:lls/375 196d.pdf

7 https://www.thorlabs.com/thorproduct.cfm?partnumber=FESH0750
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Fig. 2.
platform, placed on top of a height-adjustable cart. In (a), the PD receiver
and UWB tag are indicated with purple and light blue, respectively.

positioning estimate. « satisfies 1.01. The Kalman filter’s
process and measurement noise standard deviation are equal
to 20 cm and what is measured in Section [[V-A4] respectively.
Both the time step and process standard deviation scale with
the number of averaged Ipp ;.

VLP requires the calibration of (i) the LED locations by
the MoCap system (Section [[II-C)) tracking a marker on a cord
suspended from the LED, and of (ii) the LEDs’ weighted radi-
ant power M - P, ; - R, with {Ipp ;} measurements performed
directly under each LED for a 0.5 m receiver height.

During uVLP, the LTM8005 Demo Board is bypassed and
no explicit modulation is performed. In uVLP, the calibration
therefore also serves to chart the f.; used for demodulation,
which are listed between brackets in Table |lI} As Ng is dou-
bled to better separate the f. ;, only 2 {Ip D,,;} measurements
are averaged to maintain the 25 Hz update rate. Our previous
analysis [|6] already showed that this update rate in conjunction
with the time-varying nature of uVLP does not allow a sub-
decimetre accuracy.

C. Ground truth via Motion Capture (MoCap)

8 Qualisys Miqus M3 infrared motion capture (MoCap)
camerasﬂ provide the millimetre-level accurate ground truth
for the (u)VLP-UWB localisation experiments [10]. Their
approximated locations are shown in Fig. [I] (a). The to be
tracked objects, namely the PDA and the UWB tag, are fitted
with Qualisys” white markers, as can be seen in Fig. [2] (a).
Both the VLP and the UWB receiver are simultaneously and
accurately tracked across a zone exceeding 8 m by 6 m with an
update rate of 100 Hz and a typical precision of about 60 pum.

D. System Integration on Drone

The MoCap ground truth system, in the form of the Qualisys
Track Managelﬂ the UWB tag and the (u)VLP receiver all
interface with the Intel Aero Compute Board of an Intel Aero
Ready to Fly Drone running the Kinetic Kame distribution
of the Robot Operating System on top of Ubuntu Xenial Xerus
(16.04). Fig. 2] visualises this interfacing and the associated
data streams, both schematically and via a photograph. The
UWB tag is mounted directly on the drone. Only supported
from Ubuntu Bionic Beaver (18.04) on, rather than upgrading

8hllps://www.qualisysx:om/cameras/miqus/
9hllps://www.qualisys.com/ software/qualisys-track-manager.
Whttps://www.dji.com/be/matrice 100
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Fig. 3. Visualisation of the considered (a) route and (b) zigzag (LOS) evaluation trajectory, and of (c)-(f) the 4 NLOS scenarios with metallic closets. In the
former two, the purple arrows indicate the walking direction. The boxes in (a) represent the static measurements’ locations.

operating system, at this time, the DAQ for VLP was addressed
with a laptop and connected to ROS via Rosbridge. To limit
Wi-Fi traffic, for (u)VLP, instead of the raw Ipp ;(t) or Ipp ;,
a synchronisation (sync) packet is published to the ROS master
on the drone with i.a. the measurement epoch and an identifier.
Python 2.7-based publish/subscribe scripts gather/generate the
UWB ranges, the VLP sync packet, and the location data.
All this measurement data are then collected and stored in a
Rosbag.

The reason behind the on-drone integration is threefold: (i)
all data is timestamped by the same system, (ii) ROS allows
easy migration to other robotic platforms and (iii) it provides
a wireless and extendible flight platform (see Section [V).

E. Evaluation Method

The drone, with the UWB tag and the VLP receiver chain,
is placed on top (see Fig. 2] (a)) of the height-adjustable cart,
visible at the right-hand side of Fig. |I| (b). Furthermore, as
seen in Fig. 2] (a), to counter a significant height difference
between both receivers, the PD is placed on a K’nex tower.

The UWB and VLP estimates are collected during repeated
slow-paced strolling with the cart along both the winding route
(R) and the zigzag (Z) trajectory visualised in Fig. |§| (a)/(b).
These trajectories are designated with tape on the floor for
reproducibility. Attaching a string with about a 1.5 m length
to the cart allows minimizing the influence of the human
body when manoeuvring. The positioning accuracy is eval-
uated at approximately 0.5 m and 1.15 m receiver height,
ie. 0.52m/1.17m for VLP and 0.55 m/1.17 m for UWB,
both in LOS dominated conditions and in environments where
NLOS is purposely introduced through the addition of metallic
closets. To study the impact of reflections and obstructions, the
4 configurations of Fig. [3| are considered:

@) Three closets in series outside of the positioning zone

and close to two anchors.

(ii))  Two linked closets at the side of the zone.

(iii)  An extension of (ii) with a third closet to form a
wide corridor.
@iv) A closer hallway with the third closet moved closer

to the 2 linked closets.

Adhering to good practices [9]], the employed accuracy
metrics are the 50"/75%/90%/95" percentile pso/prs/poo/pos
of the 2D Euclidean distance between the estimated and
the closest-in-time ground truth locations. As there is no
exact synchronisation, per location estimate, the two closest-
in-time ground truth locations are interpolated based on the

timestamps involved. In characterising the NLOS influence,
spatially-confined versions of the positioning metrics will be
reported that only account for the 1 m neighbourhood of the
obstacles. To evaluate the similarity between the actual and
estimated trajectory, the Euclidean distance on the dynamic
time-warped trajectories (denoted by DTW) and the related
discrete Fréchet distance (FD) are utilised. In addition, with
21 static measurements taken along the route trajectory at
the locations indicated in Fig. [3] (a), the proportion of the
positioning error that can be attributed to noise, i.e. the
precision, rather than to bias errors, i.e. the accuracy, is studied
as well. In line with [8], it is specified that in the testbed
(Fig. |I[) a Wi-Fi network is active, that no ambient light is
present, and that the left and right wall are made up from
brick and wood, respectively.

IV. EXPERIMENTAL RESULTS
A. UWB and (u)VLP in LOS-dominated conditions

Fig. [] visualises the dynamically measured spatial distribu-
tion of the UWB (in Fig. E| (a)/(b)) and VLP (in Fig. E| (©/(d))
MLAT/MBF and KF LOS positioning estimates for the route
(R) trajectory with the receivers being located approximately
(@/(c) 0.bm and (b)/(d) 1.15m above the ground. The
MoCap-based ground truth trajectories are coloured in black.
Tablemlists all the LOS experiments’ associated pso, P75, Poo
and pgs when UWB’s K is fixed to 8 and VLP’s K amounts
to 3 and 4 for MLAT and MBF/KEF, respectively.

Both UWB and VLP show a good correspondence with
the ground truth. However, comparing their respective figures,
a different error profile can be remarked. While UWB’s
error profile is largely irrespective of the location, the VLP
trajectories exhibit a select few small areas where the position
estimates consistently diverge from the ground truth. An exam-
ple of the latter is located near the bottom of Fig. E| (©)/(d), i.e.
near LED 2 (Table [II). These location-dependent bias errors
mainly result from the actual propagation differing from the
modelled, e.g. due to tilt of the LEDs, inter-LED-interference,
etc.

1) One-shot Localisation

Table [ allows comparing one-shot UWB and VLP, i.e.
without tracking the receiver state. UWB scores around 5 cm
and 10 cm in terms of the pso and pgg, respectively. There
is no clear receiver height-dependence. For a fixed K, MLAT
improves/worsens upon MBF’s accuracy for the route/zigzag
trajectory. Based on these measurements, overall, MBF seems
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TABLE III
UWB AND (U)VLP LOS ACCURACY FOR THE ROUTE/ZIGZAG
TRAJECTORY (‘MLAT’ = MULTILATERATION, ‘MBF‘ = MODEL-BASED
FINGERPRINTING, ‘KF’ = KALMAN FILTERING)

UWB [cm] VLP [cm] uVLP [cm]
Height 1 Height 2 Height 1 Height 2 Height 1

*pso| 48753 4576.0 521755 62/7.1 33.8/334

MLAT « p75| 69/7.7 6.7/8.8 87/98 133/151 111.2/809
*poo| 94/109 89/129 147 /24.1 27.1/121.4 2269 /2127

*pso| 5.5/50 51753 39/3.1 3.1/4.0 243 /243

MBF P75 8.0/72 72175 55746 48/62 35.7/36.1
*poo| 106/97 94/99 77163 7417193 65.1/79.2
* pos | 124/119 108/11.3 9.1/75 9.6/11.0 103.5/115.8

*pso| 471747 4.1/74.7 371729 29740 21.3/22.1

KF e prs| 69770 6.2/17.1 49741 4376.1 31.2/34.1
*poo| 93796 8.6/95 71755 6.5/8.717 60.1 / 68.6

* pos | 11.1/11.5 10.2/10.8 87/64 89/10.8 83.0/103.5

slightly more robust. Another advantage is that its cost func-
tion can be (dynamically) tuned per application. However, both
do not outweigh the additional complexity requirement.

Within VLP, MBF vastly outscores MLAT (Table , in
terms of accuracy and robustness. This gain is a consequence
of MBF pairing a noninvertible propagation model, which i.a.
incorporates a well-modelled receiver acceptance [6] to more
closely fit with the actual propagation, with an RSS-based,
instead of a range-based, cost function. MBF-based VLP is
able to supply a psg and pgy accuracy significantly better than
5 cm and 10 cm, respectively. On average, the pso and pgg
amount to 3.5 cm and 7.7 cm. In contrast, MLAT with the
ideal Lambertian propagation model proves to be inapt for
navigation. Positioning outliers manifest as ‘jumps’ due to
handover (associated with K = 3). Its p75 already nears or
exceeds 10 cm.

MBF does not clearly manifest a height-dependence despite
that theoretically, within bounds, the higher SNR and the lower
impact of limited tilts should enable more accurate estimation
when the receiver is closer to the lamp. This suggests that
the performance is dictated by both the receiver tilt variation
between tests and the inter-LED-interference present. For

MLAT, the significant disparity between the modelled and
actual propagation being more pronounced at larger incidence
angles effectuates a larger positioning error at height 2 [6].

Three additional remarks about VLP have to be made. (i)
The presence of MLAT (handover) outliers can be reduced by
utilising a larger K. However, the mentioned divergences of
the propagation model then cause an overall accuracy degra-
dation. (ii) The latency and complexity of MBF may prohibit
its use for high-update applications. Instead, multilateration
based on a fitted power law version of the propagation model,
comes at an acceptable pso/p75 cost of 0.6 cm/0.9 cm/1.7 cm
with respect to MBF, for the winding route trajectory and
the 0.5 m height. (iii) In this analysis, the PD’s minimal tilt,
invariably present by its installation, was not compensated.
When the propagation model accounts for a 1° rightwards
tilt, perpendicular on the movement direction, MBF’s p50/p7s5
improves to 2.5 cm/5.0 cm for the route trajectory and height
0.5 m. The associated pgo/pgs equals 5.6 cm/7.9 cm. The
MBEF estimates now visibly better match the ground truth (not
shown), certainly in the neighbourhood of LED 2.

2) Stateful Localisation

Fig. A and Table [[T]] show the accuracy-boosting effect of the
(extended) Kalman filtering on the psg and p75. Averaged over
both heights and both trajectories, for UWB, KF effectuates a
substantial pso/p75 reduction of approximately 11%/9% over
MLAT. At larger moving velocities and with tailored filters,
this reduction will be even more pronounced. Filtering the
VLP MBF’s estimates also unambiguously brings pso/p7s
and pgp benefits of 5%/8% and 10%. Kalman filtering also
generally enlarges the similarity between the estimated and
the ground truth trajectories. For VLP, at height 1 and 2,
respectively, KF reduces MBF’ cumulative DTW error by 9%
and 18%, while the associated Fréchet distance (FD) drops
by 23% (to 19.9 cm) and 36% (to 20.1 cm). In regions with
several consecutive outliers, the KF may locally accentuate the
following non-bias errors in the immediate vicinity. It should
be remarked that the swapping of the filter approaches of UWB
and VLP does not offer benefits. Hence, nor using a batch
version of the EKF with the VLP ranges, instead of the VLP
locations-based linear KF, nor the linear KF (o = 1.01) with
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the UWB location estimates, instead of the UWB ranges-based
EKEF, improves the positioning.

In 2D and without receiver tilt, both VLP and UWB thus
definitely attain the prototypical 5 cm median and 10 cm pgg
accuracy bounds in LOS conditions, frequently demanded by
the envisioned applications. Though, in a practical deployment,
a pso/pgo penalty will likely be incurred due to the inaccurate
charting of the anchor coordinates [41]. This partially explains
why this manuscript’s LOS errors are lower than, or compa-
rably to, those reported in calibrated small-scale lab setups
[3[1, (6], [10]], [28]]. Whereas at this point, VLP (marginally)
outscores UWB, a detailed UWB/VLP aptitude assessment
still necessitates a quantification of both the accuracy in
harsher environments and the other QPoS [2] indicators.

Nor current UWB nor contemporary VLP roll-outs are
suited for the very cost-constrained applications. That is where
unmodulated VLP will come into play.

3) Unmodulated VLP (uVLP)

Previously investigated for a controlled 4 LED roll-out [6],
Table Ml and Fig. ] (e) attest that the uVLP principle extends to
a larger scale. With the exception of LEDs 2 and 4, the LEDs’
fe,i are adequately spread in frequency to support update rates
exceeding 100 Hz. On account of employing LSOOP, i.e. time-
varying spurious signals with a low SNR, uVLP is distinctively
more inaccurate and imprecise than VLP/UWB, as is shown
in Table Nevertheless, analogous to [[6] and at height
1, MBF-based uVLP’s ps5p, p7s and pog still equal 24.3 cm,
35.7 cm and 65.1 cm, respectively. The zigzag trajectory sees
similar results, e.g. a pso = 24.3 cm. Stateful localisation
even ameliorates the psg, p7s and pgg by 12% (to 21.3 cm),
13% (to 31.2 cm) and 8% (to 60.1 cm). Importantly, uVLP
then enables a pr5 around 30 cm, a typical target for tracking
applications.

These experimental accuracies are hindered by the presence
of a spatial region with substantial positioning outliers, not co-
incidentally located around LEDs 2 and 4. Both are indicated
in red in Fig. [4] (e). There, the accuracy degradation is caused
by Ipp, leakage between both LEDs as a consequence of
the Ng required for a 25 Hz update rate not being sufficient
in the presence of the time-varying nature of both f.; and
the Ipp; magnitude at f.;. It should be noted though,
as is outlined in [6], that both lowering the update rate
and tailoring the demodulation, i.a. the measurement interval
(INs) and the number of Ipp ; to average, have a significant
accuracy boosting benefit (to a 5 cm psg [6]). Even with a
prs ~ 30 cm, uVLP’s differentiation in cost represents its
application potential, especially for low-cost tracking.

4) Localisation Precision via Static Measurements

By means of the static measurements at both heights, Fig. [3]
provides insight regarding the location o (%) and ranging o (d;)
precision of UWB/(u)VLP. Hereto, at the 21 measurement
locations, a o (&)/o(d;) value is computed for each of the
100 data points, which are collected every 1s. Fig. ] (a)
shows that UWB’s o(%X) distribution is slightly algorithm-
dependent, but Rayleigh-like. The mean of o(X) amounts to
1.5 cm and 1.9 cm for MBF and MLAT, respectively. As can
be viewed from the light blue curve (purple) in Fig. [5] (b), the
UWB ranging o(d;) (o(|d;|)) exhibits a (folded) Gaussian-like
distribution with an approximately zero, i.e. —5.7-1071° cm
(1.5 cm) mean and a 2 cm (1.3 cm) standard deviation. It
is hence well-suited for Kalman filtering (Section [[V-A2).
The skewed distribution of UWB’s corresponding (absolute)
3D ranging error is depicted in Fig. [3 (c). With a 9.7 cm
(10.1 cm) mean and a 5.9 cm (5.1 cm) standard deviation,
d; are typically underestimates, as opposed to the overesti-
mates reported at longer d; due to NLOS [21]]. Furthermore,
Fig. [5] (d) conveys that the distance-dependent ranging error
bias across all anchors is limited for the d; common to this
roll-out.

VLP’s mean o(X) (Fig. 5| (¢)) equals 2.4 cm at height
1 and 2.0 cm at height 2, respectively. It thereby exceeds
UWB’s values. Important to note herewith is that VLP’s
o(X) manifests a substantial spatial dependence, which is
not restricted to the receiver’s height. A significant variance
across the 2 times 21 static measurements is observable.
Comparing Fig. [3] (e)/(a) allows concluding that VLP’s o(X)
distribution has a more pronounced tail, further diverging from
a Gaussian error profile. As a side note, the positioning error
data of the static measurements is in agreement with those of
Section with VLP’s still (slightly) better than UWB’s.
The relatively large positioning deviation of VLP can (partly)
be attributed to the imperfect clock, and thus waveform, of
the transmitter. Ensuring a modulator with less clock jitter,
or employing a similar oscillator in the transceiver hardware,
should ameliorate VLP’s precision.

Finally, Fig. 5] (f) demonstrates that noise, in the form of a
lower SNR and a time-varying Ipp ;, can be identified as the
main responsible for uVLP’s accuracy degradation compared
to VLP. Its mean o(X) at height 1 totals 26.7 cm with the
standard deviation on o(X) being of comparable magnitude.

B. Tracking in the presence of NLOS

The introduction of different constellations of matte metallic
closets allows studying the accuracy degradation caused by ob-
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Fig. 6. Spatial distribution of the UWB (in blue) and VLP (in green) MLAT/MBF and KF position estimates in the presence of (a)-(d)/(g)-(j) the 4 NLOS
configurations at height 1 and (e)-(f)/(k)-(1) of NLOS configurations (iii) and (iv) at height 2. NLOS configuration (i)’s three closets form a line segment, which
falls outside the view of (a)/(g), with their fronts and the present storage rack. Its start and end point are (—3.86 m, —4.48 m) and (—3.86 m, —0.81 m).

structing, refracting and/or reflecting obstacles. Fig. [6] depicts
the UWB/VLP reconstructed trajectories when MLAT/MBF
and KF positioning, in the presence of the 4 NLOS configura-
tions of Section [[II-E] with the receiver being located at height
1 (approx. 0.5 m). To additionally highlight the interplay with
the receiver height, two of those 4 NLOS configurations are
visualised for height 2 (approx. 1.15 m) in Fig. [6] as well.
Table lists the scenario’s KF-based performance metrics:
the psp, pgo, Pes and FD with their associated pso, n, Poo, N,
pos, v and FDp variants that are similarly computed but only
consider the data within a 1 m bounding box around the
obstacles.

a) UWB: The extent of the NLOS accuracy degradation,
to which both (u)VLP/UWB are subject to, highly depends
on the distribution of NLOS-inducing objects and on the
localisation systems’ roll-out. The top row of Fig. [f] avouches
this for UWB. In Fig. [f] (a), NLOS configuration (i), with
the 3 closets close to anchors 5 and 6 (Table [I), represents
a well-known arduous case of obstacle placement for UWB.
The limited path length, path loss and hence timing difference
impedes accurately resolving the LOS from the multipath
components in the anchors’ CIR. As a result, the positioning
significantly worsens. Though, (dynamic) anchor selection
may provide an error reducing effect. (Re)moving those closets
further (Fig. |§| (b)) leads to a very dissimilar error profile.
There, the errors are more confined to the region around the
closets, with local pgs_n errors as large as 42.7 cm. The overall
pso still rises by 13% over the LOS case.

The addition of a third closet (Fig. |§| (c)) only exacerbates
the NLOS-induced error (see Table [[V). Moving that closet

TABLE IV
NLOS ACCURACIES OF UWB AND VLP wiITH KF (IN [CM]) FOR THE
MEASUREMENT SCENARIOS DEFINED IN SECTION [[II=El

Scenario | Tech. | pso (pso,n) P90 (poo,n) P95 (pes,n) FD (FDy)
Gon |UWB[ 930 13.8 () 153 () 1747 ()

: VIP | 30() 6.6 (-) 76 () 124 ()
Goont |UVB| S3@D 98033)  114(27) 2369 (583)
W VLP | 3.125) 6.8 (4.5) 8.3 (9.2) 14.0 (9.5)
G, b |UVB] 566D 113019 141097 2239 (2239)
1 VLP | 4.0 @.1) 77 8.2) 96 (115)  46.1 (46.1)
Go.ni |UVB] 746D 193¢47 259817 1236 (1236)
. VLP | 3.73.7) 7.0 (8.0) 80 (9.3) 150 (124)
G m2 | VB[ 4269 9.4 (68)  11.6(100) 2399 (26.5)
W VLP | 3027 6668  83(154) 196 (21.8)
i he |UWB| 5266 111033 145055) 2561 29)

’ VLP | 3.0 (3.2) 7684  92(107) 513 (51.3)
oo |UVB] 5362 117@00) 176400 2347 (€29)
' VLP | 33 @43)  76(108) 104 (17.2) 248 (26.6)

closer to the other two, i.e. forming the corridor configura-
tion (iv) (Fig. |§| (d)), not only instigates the largest pgo/pos
(and pgo,N/pgs,n) errors found in between the closets (with
Poo/Poo, N up to 19.3/44.7 cm), but also causes degradation
further from the obstacles due to shadowing. Configuration
(iv) is associated with a ps0/pog/pes increase by 55/108/134%.
The same NLOS phenomena occur at the second receiver
height (see Fig. |§| (e)/(f)), but typically with a more limited
magnitude. The propagation paths change beneficially and the



obstacle-impacted area is more confined to the closets that
no longer tower above the receiver. Interestingly and counter-
intuitively, the introduction of NLOS can locally ameliorate
the UWB positioning by compensating the underestimation of
the ranges.

b) VLP: The influence of NLOS on the VLP accuracy
is more spatially-confined to the immediate vicinity of the
obstacles. Fig. [6] (g) is a prime example, the closets at the
side do not affect the VLP estimates in the open zone. The 2
conjunct closets at the side (configuration (ii)) also do not in-
duce large errors. By comparing Fig. [6] (h)/(i) and (j), it can be
concluded that the effect of NLOS on the positioning is vastly
dependent on the (local) deployment of the LED transmitters
(and thus the location of the obstacles) through the propagation
angles. Particularly, the impact of the reflections at the hand
of the solitary closet (Fig. [6] (i) and (j)) varies, resulting for
configuration (iii) and (iv) in a pgs, y = 11.5 cm and 9.3 cm,
respectively. The experiments with the PD nearer to the LED
(Fig. [§ (k) and (1)) show the limited height-dependence of
NLOS influence, when comparing to Fig. [ (i) and (j). In
Table some of the NLOS configurations (Table evinc-
ing improved metrics over the LOS positioning (Table
can be explained by less receiver tilt being present, while a
D50,N/Poo, N/Pgs, N reduction (compared to pso/poo/pgs) can be
attributed to the bounding box coincidently being a local area
of good positioning.

Importantly, in the considered closet configurations, VLP
still manages to attain a pgy ~ 10 cm or better. Its corre-
sponding trajectories are also much more similar to the ground
truths’ than UWB’s, as evidenced by considerably lower FD
(and (FDy)) values. In RSS-based VLP, significant obstacle-
induced accuracy degradation typically only occurs in the
immediate (1 m) vicinity of said obstacle, with the exception
being LEDs that are near the obstacle. There, (i) the path
difference of a selected LEDs’ LOS and (mostly specular)
NLOS components is limited and (ii) obstruction of the LOS
link is more likely to take place. These effects result in a
larger or smaller Ipp ; than expected, which generally cause
the MBF position estimates to be pulled towards and pushed
away from the object, respectively. As VLP is normally asso-
ciated with dense LED deployments (to provide its primary
illuminance function), often at least 3 relatively unaffected
LOS links are available, i.e. except in the immediate vicinity of
obstacles, such that accurate localisation is ensured. Obviously,
this analysis of VLP also applies to uVLP, with the difference
being that uVLP is noise dominated (Section [[V-A4).

c¢) Conclusion: In conclusion, both UWB and (u)VLP
roll-outs need to be planned weary of NLOS obstacles. For the
considered setups, VLP copes well with the objects, certainly
in comparison to UWB. Its pg5 remains bounded by 15.4 cm.
As long as at least 3 unobstructed LOS links are available,
light-based accuracy degradation is found near the obstacles.
Mostly featuring in less dense deployments, UWB systems
tend to suffer more from the multipath and obstruction brought
by the obstacles. Here, a pgs > 25 cm can be induced.

It should be noted that both technologies’ obstacle-added
error can be alleviated with NLOS identification and mitigation
techniques (Section [[I-A) or by fusing them with inertial

measurements. The former for instance involves (i) exploiting
the temporal variance on d;/Ipp; or the location variance
obtained via positioning with different d;/Ipp ; subsets [20],
[43]], [44]], (ii) checking whether the d;/Ipp ; subset coincides
with a positioning cell, or network planning to avoid signifi-
cant NLOS. The benefit of the UWB system is that waveform
signal statistics or CIR-based LOS path detection, NLOS
identification and discarding [20], [45]], [46[], NLOS classifica-
tion and mitigation [47]]-[49] algorithms dispose of additional
multipath components’ information [20], [SO]. Fusion with
inertial navigation should work especially well in areas with
local and abrupt positioning outliers that will smooth out. In
this chapter, additionally to what is DW1000-inherent, neither
technique is applied to quantify the ‘raw’ impact of NLOS.

Overall, whereas VLP arises more favourably accuracy-wise
from these experiments, it must be stated that this conclusion
will not transfer to larger velocity 3D drone localisation with
receiver tilt in industrial-like environments with high ceilings.
In fact, when considering the non-accuracy QPoS pillars [2]]
as well, i.a. the cost/calibration (edge UWB), scalability (edge
VLP) and the availability/robustness (edge UWB), the current
UWB systems can be designated as better suited (and more
ready) for tracking/navigating (unmanned) vehicles.

C. Influence Positioning (Calibration) Parameters

This last result section analyses the influence of both the
anchor selection parameter K and the calibration level. Hereto,
the trajectory data is used.

1) Influence of anchor selection number K

Fig. [7] (a) and (b) depict the UWB and (u)VLP p50/pgo
in LOS conditions as a function of K. Particularly, the UWB
algorithms’ appertaining pso/pgg is contingent on K. Typically,
employing all anchors (K = 8) is favoured. For MLAT-based
(w)VLP, K = 3 is typically best [41]], while the optimal K for
MBF depends on the roll-out, the receiver height, the inter-
LED-interference and even the positioning metric. For these
dense LED deployments, for K > 3, the impact of a nonideal
K selection is rather minor. In uVLP (‘U’ suffix in Fig.[/| (b)),
LED selection is more important, there 5 < K < 8 is best.
5 < K < 8 is a result of the trade-off between averaging the
Ipp,; magnitude variation of the nearby LEDs and avoiding
the Ipp ; of more distant LEDs that have a too small SNR.

Fig. [§] emphasises that near obstacles an adequate anchor
selection is vital as well. For UWB, an elevated K (K = 8
in Fig. [8) causes more outspoken positioning outliers, while
a lower K value (K = 3 in Fig. [) reduces this ‘peaking’
behaviour at the cost of more spread on the positioning
estimates. K = 3 tends to significantly improve the pgs N
(and pgo, ), but effectuates a substantial incrementing pso, n
as well. The optimal K hence depends on the multipath
components’ magnitude and timing difference with the LOS
path. For VLP, K also influences the magnitude and the spatial
extent of the NLOS-induced positioning errors, as attested by
the bottom row of Fig. [§] For VLP, the optimal K strongly
varies with the optical propagation factors, of which LOS
blockage (large-scale fading) is an example. No generally
applicable guidelines can be derived based on the, in this
manuscript, performed measurements.
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with (k) 4 and (1) 15, respectively.

On the basis of this Section [V-C] a CIR- (for UWB) or a
rule-based (for VLP) dynamic anchor selection is advocated
for, in place of employing a fixed, roll-out-dependent K.

2) Influence of the Calibration Process

So far, to ensure scalability, the calibration effort to coun-
teract bias is consciously constrained to the feasible minimum.
Unfortunately, this limits the achievable accuracy. A calibra-
tion effort-accuracy trade-off exists.

With adequate antenna delay-type calibration, only relying
on one to a few measurement(s) that can be collected with a
single off-site setup, UWB’s d; underestimation can be coun-
teracted. With uniform and anchor-individual bias compensa-
tion, emulated by adding Section [[V-A4s mean ranging error
data, the KF-based p5o/pgo gain at height 1 in LOS amounts to
10%/11% (to 4.3 cm/8.3 cm) and 23%/25% (3.6 cm/6.9 cm),
respectively. The former is feasible to a certain degree as it
only requires the bias values of a statistically significant batch
of transceiver pairs. The latter is impractical for large-scale
UWRB roll-outs. Accuracy-prioritising applications would fur-
thermore wield the measurements to fit a more complex ch- —d;
compensation curve. The UWB bias can be well-modelled
as linear (with a 1-1.1 slope). The pso/pgo then reduces to

3.3 cm/6.2 cm, and in the uniform case to 4.1 cm/8.1 cm.

In RSS-based VLP, the variability in the transmitter re-
sponse, which typically vastly exceeds that of both in between
PDs and between the physical and tabulated characteristics,
warrants the use of a well-characterised reference receiver
to preferably a priori calibrate each LED’s FP; ;. Especially
for this cheap and not-optimised transmitter, assuming a
common median P,; worsens the pso/pgo substantially to
13.8 cm/45.7 cm. Only with on-site calibration measurements,
for which supplying the ground truth is a daunting task, can
the d;-dependent bias including transmitter tilt be captured.
Importantly, VLP needs a more elaborate calibration than
UWRB to deliver the (half)decimetre-order positioning.

All in all, for the systems at hand, the associated calibration
effort growth prohibits striving for an enlarged accuracy.

V. CONCLUSION AND FUTURE WORK

This manuscript benchmarks the 2D positioning perfor-
mance of aSDS-TWR UWB and RSS-based (u)VLP in LOS
and various NLOS conditions, based on abundant positioning
data that was collected across a substantial 8 m by 6 m
evaluation area with respect to a highly-accurate ground truth



system. In a LOS-dominated environment, both UWB and
VLP ensure accurate localisation. The median psy and 90™
percentile pgo positioning errors lie in the order of 5 cm
and 10 cm, respectively. With their typical roll-outs, obstacle-
induced path loss and multipath-based ranging outliers are
more spatially confined for (u)VLP than for UWB. As a
consequence, VLP manages a decimetre-order pgg, even near
the obstacles, while UWB displays a pgg in the 10 — 20 cm
range. Attaining a psp = 21.3 cm at a 25 Hz update rate
demonstrated uVLP’s viability outside a lab environment.

The future work consists both of extending the (u)VLP-
UWB comparison to more strenuous environments (i.e. with
human body blockage, outage and storage racks) and to 3D
drone applications (i.e. with tilt and a significant velocity).
Moreover, the potential accuracy improvement of sensor fu-
sion, e.g. with inertial measurements in NLOS conditions,
will need to be investigated. The set of sensors should be
tailored to the engineering budget of the targeted application.
The latter study area can also entail combined (u)VLP and
UWRB localisation.

VI. LIST OF ABBREVIATIONS

2D Two-dimensional

3D Three-dimensional

AOA Angle of arrival

aSDS-TWR Asymmetric double-sided two-way ranging

CF Characteristic frequency

CIR Channel impulse response

DC Direct current

DTW Dynamic time-warped trajectory

FD Discrete Fréchet distance

FDMA Frequency-division multiple access

hl Receiver height 1, approx. 0.5 m

h2 Receiver height 2, approx. 1.15 m

lloT Industrial Internet of Things

loT Internet of Things

IPS Indoor Positioning Systems

K Number of selected anchors

KF Extended (UWB) or linear (VLP)
Kalman filter

Laa$S Light(ing) as a Service

LED Light-emitting diode

LOS Line-of-sight

LSoopP Light signals of opportunity

MBF Model-based fingerprinting

MILAT Multilateration

MoCap Motion capture

NLOS Non-line-of-sight

D50, P55 50, 75t 90t 95t percentile of the

Doo> P95 2D positioning error

Ps50,N> P75,N
P90,N> P95, N

D50, P75, P90, Pos variants only considering
1 m bounding box data around obstacles

PD Photodiode

PDA Thorlabs’ PDA36A2

QPoS Quality of positioning service
R Winding route trajectory

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

RGB Additive of red, green and blue (sub)LEDs
RSS Received signal strength

SNR Signal-to-noise-ratio

TDOA Time difference of arrival

TOF Time of flight

uVLP Unmodulated VLP

UWB Ultra-wideband

VLP Visible Light Positioning

z Zigzag trajectory
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