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Digital volume correlation (DVC) is a 3D image-based technique for

displacement and strain computation. Traditionally, both (digital image

correlation) DIC and DVC are methods based on two individual time frames;

the estimation of the displacement and strain field is done using one reference

and one moving frame as input. However, dynamic experiments generate

more than two temporal frames. Therefore, with classical DVC techniques,

only a subset of the available data is used. In this study, we propose a novel

DVC method that can rely on more than two frames for the displacement and

strain computation. The proposed method aims to be as general as possible;

there is no constraint regarding the nature or the rate of the displacement

(e.g., cyclic or linear). The aim of this method is to impose a temporal

regularization that improves the self-consistency of the algorithm. The multi-

frame DVC improves the quality of the registration in challenging situations.

As an example, we investigate the dissolution of a pharmaceutical tablet in

water, which undergoes three processes: swelling, gel formation, and material

erosion. The accuracy of the registration—quantified by the sum of square

differences (SSD)—has improved by 23% on an average with respect to the

classical two-frame method. Classical DVC methods fail in registering images

with structures that change appearance through time, such as the tablet that,

in contact with water, reacts chemically, changing phase and becoming a

gel. Moreover, we proved that multi-frame DVC is more robust in registering

images with severe but realistic motion artefacts. As an example for this case,

we apply the method to a series of μ-CT datasets of aluminum foam during a

compression experiment. As seen with the tablets, we are in a situation where

the appearance of the structures in the images changes through time, but in

this case it is because of motion artefacts. Finally, the use of more than two

frames makes the method more robust against noisy images, with an average

improvement of 35% in registration accuracy obtained using the three-frame

DVC method compared to the classical two-frame DVC method.
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1 Introduction

Digital volume correlation (DVC) (Bay et al., 1999) is an
image-based technique for full-field displacement and strain
computation derived from the theory of digital image correlation
(DIC) (Bruck et al., 1989). DVC is a powerful method to study
the dynamics of 3D objects that were imaged in a non-
invasive way. Traditionally, DVC is a two-frame method; the
correlation occurs between two volumes, the reference and
the moving one. If more than two frames are available (4D
dataset-multiple 3D frames), the correlation occurs between each
consecutive couple of 3D frames and the resulting deformation
fields are concatenated or between each frame and the reference
frame.

Examples of groupwise image registration, where two or
more images are registered in the same optimization step,
already exist.They have been mainly developed for atlas creation
of medical images where the choice of a reference frame
might affect the result of the registration (Geng et al., 2009),
introducing bias towards the selected frame (Wu et al., 2012).
Such methods, therefore, are symmetric because all the images
play the same role in the registration process. The groupwise
methods can be divided into three categories (Wu et al., 2012):
pairwise registration derived groupwise registration (PDG),
population center guided groupwise registration (PCG), and
hidden common space based groupwise registration (HCSG).
The PDG method performs pairwise registration between each
couple in the image population. Namely, the method developed
by Seghers et al. (2004) registers each couple in the image
population, changing reference images, and then warps the
reference images with the average displacement. In total, it
performs N(N− 1) registrations (with N the number of time
frames available) and, for this reason, it is computationally
demanding. Other PDG methods, instead, after registering all
the images with each possible template in the population, create
a distance matrix to choose the image that is closest to the
population center as a reference. Once the reference image is
selected, all the other images are registered with it. In this case,
since the matrix is symmetric, only N(N− 1)/2 registrations
are needed (Park et al., 2005). PCG methods, instead, consist
of registering all the images with a population center. The
methods developed aim to find the population center by
following different procedures and then registering all the
other images with the population center. These methods have
some limitations. They might fail when they try to register
sharp images with blurry images (Wu et al., 2012). Moreover,
the found population center may differ from the actual
population center, and this can lead to some inaccuracy in the
registration (Wu et al., 2012). To overcome such a limitation,
hidden common space groupwise methods have been developed
(Huizinga et al., 2016; Guyader et al., 2018). In this case, the aim
is tominimize the variation within the population. However, this

set of methods does not suit our applications. Indeed, because
the population center does not coincide with a physical frame
the problem results to be unconstrained (Metz et al., 2011).
To solve this issue some constraints must be imposed on the
transformation. To register frame A to frame B, for instance,
two transformations must be computed, which respectively link
frame B to the population center and the population center to the
frame A. The transformations are often forced to be the inverse
of each other (Aganj et al., 2017), or they may be constrained
to have zero-sum displacement field (i.e., cyclic motion) (Metz
et al., 2011; Aganj et al., 2017).

The applications of DVC we are interested in differ for
two reasons from the applications we described so far; the
displacement of the temporal image sequence we need to
measure is not compatible with the aforementioned dynamic
constraints. Moreover, groupwise methods are used for a
simultaneously alignment of all the images, without taking in
consideration the temporal continuity of the data (Metz et al.,
2011).The temporal data continuity is rather an important factor
for our applications. Indeed, the main objective we want to focus
on is the improvement of the self-consistency of DVC in order
to improve the accuracy of the registration of images that change
appearance through time.

In general, registration of image sequences has gained
high interest for meteorology (Héas and Mémin, 2008),
security (Wu et al., 2019), military, industrial, medical, and
transportation purposes (Huang and Tsai, 1981). When an
image sequence is available, instead of using the groupwise
methods described above, it is possible to use methods
based on joint estimated camera pose and matching among
multiple frames (Jo et al., 2018; Ngeljaratan and Moustafa, 2020;
Zona, 2020; Wani et al., 2022). Other temporal sequence DIC
methods, instead, estimate the motion incrementally using
two frames with temporal constraints. In the past, it was
done using recursive temporal filters (Fleet and Langley, 1995;
Fejes and Davis, 1999; Clifford and Langley, 2000). More
recently, algorithms based on data conservation constraint
and temporal coherence constraint (Irani, 2002; Ricco and
Tomasi, 2012; Garg et al., 2013) or based on temporal integration
(Irani et al., 1992; Sundaram et al., 2010) or deep learning
techniques (Qin et al., 2018; Bae et al., 2021) were implemented.
The listed techniques have the downside of accumulating
error when the motion is computed between successive time
frames. To overcome those limitations, the motion might be
estimated from image sequences using simultaneous multi-
frame estimation, where multiple frames of the sequence are
considered simultaneously (Zelnik-Manor and Irani, 2000;
Cofaru et al., 2012). Suchmethods are implemented for temporal
sequences of 2D images (a (2 + 1)D dataset), and in the
study by Cofaru et al. (2012), the main assumption is that the
displacement rate between each pair of consecutive time frames
is approximately the same and small.
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In our work, we developed a multi-frame DVCmethod built
for 4D (or (3 + 1)D) datasets, without any constraint concerning
the similarity of the displacement rate between two consecutive
time frames.

The novel method introduces a temporal regularization,
improving the self-consistency in the image domain and the
accuracy of the results. Moreover, enforcing consistency over
more than two frames makes the algorithmmore robust to noise
(Stiller and Konrad, 1999; Cofaru et al., 2012), which is a regular
source of errors in registration algorithms (Powierza et al., 2019).
The self-consistency constraint plays an important role in the
applications we will present in this paper. Indeed, classical DVC
techniques are traditionally designed to estimate the deformation
field from images, acquired by the same or by different imaging
techniques, of materials that simply deform while holding their
appearance. For the experiments reported in this study, we
require a DVC algorithm that is able to cope with structures
that change their appearance through time as a consequence
of a chemical reaction and therefore material transformation
(i.e., gel formation) or because of motion artefacts that cause
image blurring. The solution to this problem has been found by
considering the entire, or part, of the image sequence in the same
optimization process and adding a consistency term to the cost
function.

2 Multi-frame method

DVC estimates the three-dimensional displacement field
d:Ω→ℝD, that maps the moving image I1:Ω→ℝ to the
reference image I2:Ω→ℝ, minimizing the cost function S

d̂ = argmin
d
(S (d; I1, I2)) (1)

where, Ω = {[x,y,z]T|0 ≤ x ≤ X,0 ≤ y ≤ Y,0 ≤ z ≤ Z} is the image
domain. The classical cost function includes two frames.
However, dynamic experiments often yieldmultiple time frames.
To register, for instance, three time frames (I1, I2 and I3),
using the classical DVC method, there are two possibilities.
One is to register pairs of consecutive time frames (Figure 1).
In this case, the algorithm minimizes two cost functions, one
to find d1→2(r), and one to find d2→3(r). Alternatively, only
I1 and I3 are registered, ignoring the frame in between. In
both cases, the algorithm uses for each individual minimization
66% of the available data. In the first case the quality of the
registration is compromised by the accumulation of the total
error, in the second case, by the insufficient usage of the available
data. The idea behind this work is to use one or more extra
frames in the optimization process. Such a solution, indeed,
represents a regularization term enforcing the self-consistency of
the algorithm.The novel method presented aims to includemore
than two frames of the available data in the cost function to allow

FIGURE 1
Schematic overview of the multi-frame method, with number of
frames equal to 3.

regularization through time and to enforce self-consistency of the
estimated deformation field.

2.1 Cost function

The proposed DVC method uses sequences of N frames
through time. Let us consider the following frames Ii:Ω→ℝ,
Ii+1:Ω→ℝ where, i is the number of frame and r ∈ Ω = (x,y,z).
The unknown displacement vector field di→i+1(r)maps Ii+1(r) to
Ii(r) such that Ii(r) ≈ Ii+1(r+ di→i+1(r)).

The general cost function is defined as

C (di,di+1) = ∑
r∈Ω

N−1

∑
i=1
((Ii (r) − Ii+1 (r+ di→i+1 (r)))

2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Classical 2−frame SSD

+ (I1 (r) − IN (r+ d1→N (r)))2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Consistency term

(2)

where, d1→N(r) is computed by concatenating recursively
the displacement fields (di→i+1) such that dN−2→N =
dN−1→N(r) + dN−2→N−1(r+ dN−1→N(r)),dN−3→N = dN−1→N(r) +
dN−2→N−1(r+ dN−1→N(r)) + dN−3→N−2(r+ dN−1→N(r)dN−2→N−1
(r+ dN−1→N(r))).

Eq. 2 is an extension of the corresponding classical 2-
frames sum of squared differences (SSD). SSD optimizes the
displacement fields to enforce a constancy of brightness after
registration. The first term of Eq. 2 defines the similarity criteria
between each two consecutive time frames of the temporal
sequence, the last term defines the similarity metric between the
first and the last frame of the temporal sequence, I1 and IN . The
last term is the consistency term.

The principle of multi-frameDVC can be applied using other
metrics (e.g., normalized cross correlation, mutual information).
In the case of low contrast and low signal-to-noise ratio, indeed,
the accuracy of the registration computed using SSD might
decrease. Other similarity metrics like mutual information,
for instance, can be used in the case of multi-modal image
registration.
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2.2 Algorithm

In this section, the optimization process to obtain a
final estimation of di→i+1(r) will be illustrated. As already
mentioned, themethoduses temporal sequences ofN frames. For
convenience of notation we set N = 3. Therefore, the unknown
displacement fields will be d1→2(r) and d2→3(r). The algorithm
is based on the principle of alternating optimization, which is
an iterative procedure to minimize the cost function over all
the variables (Bezdek and Hathaway, 2003). The optimizer is
a gradient based method, namely the Quasi-Newton Broyden-
Fletcher-Goldfarb-Shanno algorithm (BFGS) (Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).

The algorithm consists of three steps. In the first step, a coarse
approximation of d1→2(r) and d2→3(r) is computed separately.
The displacement fields are obtained by registering the two
volumes at low resolution (scaling factor = 0.25) by using the
classical two-frame method. The outputs of the first step are the
coarse displacement fields d̃i→i+1(r). d̃i→i+1(r) are computed to be
used as initial guess of the displacement fields for the following
optimization steps. This makes the algorithm more robust and
the convergence faster. Typically, the displacement fields given as
input to the optimization process are initialized to zero. ForN = 3
the cost function is defined as follows

d1→2 (r) ,d2→3 (r) = arg min(SSD1→2 + SSD2→3 + SSD1→3) (3)

where, SSD1→2 = ∑r∈Ω(I1(r) − I2(r+ d̃1→2(r)))
2, SSD2→3 = ∑r∈Ω

(I2(r) − I3(r+ d̃2→3(r)))
2, and SSD1→3 = ∑r∈Ω(I1(r) − I3(r+ d̃1→3

(r)))2. d̃1→3(r) = d̃2→3(r) + d̃1→2(r+ d̃2→3(r)).
In the following steps, each displacement field is updated

sequentially. In the second step, d̃2→3(r) will be optimized in
order to obtain its final estimation d2→3(r), therefore, SSD1→2 can
be considered constant. At this step, the cost function is defined
as follows

d2→3 (r) = arg min(const+ SSD2→3 + SSD1→3) (4)

At the third step, d̃1→2(r) will be optimized in order to obtain its
final estimation d1→2(r). The cost function is defined as follows

d1→2 (r) = arg min(SSD1→2 + const+ SSD1→3) (5)

where, d̃1→3(r) in SSD1→3, at this step, is equal to d2→3(r) +
d̃1→2(r+ d2→3(r)). When the third step is completed, the final
d1→2, d2→3 and d1→3 are obtained.

2.3 Parametric multi-resolution
displacement field

In this work, the displacement is modelled using
a tensor product of cubic B-spline functions in x, y,
and z direction d(r) = Bx(x)By(y)Bz(z). Because of their

properties of local support and smoothness and because
they are computationally efficient, cubic B-splines are
widely used in image deformation (Rueckert et al., 1999;
Xie and Farin, 2004). B-spline-based deformation models
are classified as parametric transformation (Szeliski and
Coughlan, 1997; Rueckert et al., 1999; Tustison et al., 2009).
The parametrization of the displacement field allows for a
reduction in the dimensionality of the optimization problem.
The parametrization is imposed on amesh nx × ny × nz of control
points Φi,j,k that are equally spaced.

Multi-resolution of non-rigid parametric transformation
can be modelled by changing the distance between control
points. By increasing the number of control points, better local
control of the deformation is possible (high degree of non-
rigid deformation), but the computational cost increases. In
order to reach a good compromise, a multi-resolution approach
is used. The multi-resolution approach involves multiple levels
of subsampling and smoothing of the images, in addition
to a reduction of the B-spline node spacing resolution. The
displacement field at each level of the pyramid is initialized by
linearly interpolating the control point weights from the previous
level of the pyramid. Other than reducing the computational
time, the multi-resolution method reduces the influence of noise
(Thirion, 1995; Kovacic and Bajcsy, 1998).

In this paper, a Gaussian pyramid approach has been used;
the coarsest levels of the pyramid are obtained through a
subsequent Gaussian filtering of the images based on local
convolution and subsampling (by a factor of 2).The total number
of levels for both experiments has been set to 3. The mesh size at
the coarsest level was set to 32× 32× 32 voxels and for each of
the next levels of the pyramid the resolution was incremented
by a factor of 2. At the last level, it reaches the size of 8× 8× 8
voxels. For the first coarse approximation of the displacement
fields (d̃i), using sequences with different number of time frames
the subsampling image factor was set to 0.25 and the B-spline
grid spacing was set to 32× 32× 32.

3 Experimental applications

3.1 Dataset

The algorithm has been tested on two datasets with very
different dynamics: erosion of a pharmaceutical tablet and
compression of aluminum foam.

3.1.1 Pharmaceutical tablet
This experiment aims to study the dynamics of a

pharmaceutical tablet during an in-vitro dissolution experiment.
The tablet undergoes three processes: swelling, gel formation, and
material erosion.The last two processes occurmainly at the edges
of the tablet, where the water is in direct contact with the tablet.
The erosion process causesmaterial within one voxel to dissipate,
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FIGURE 2
(A) Central slice (658×658 voxels) of the pharmaceutical tablet
before the experiment (dry condition) and during the
experiment. The images show the presence of gel at the edges
of the tablet. (B) Volumes and central slices (401×601 voxels) of
the aluminum foam sample before and during the compression
experiment. The aluminum foam dataset is an artificially slowed
down dynamic acquisition of the sample during compression,
which is why motion artifacts are present in the images.

resulting in a meaningless tracking of image intensity. The most
challenging process to address by using DVC is the swelling of
the area where the tablet changes its phase, becoming gel. From
the image point of view, the change in phase corresponds to a
change in the gray level of the voxels. The volume fraction of gel
at the edges of the tablet increases through time, see Figure 2A.
At t = 0, there is no gel, and as the time progresses, the gel layer
around the tablet becomes thicker.

For the acquisition of the dataset, the Environmental
Micro CT scanner (EMCT) (Dierick et al., 2014) was used.
For each μ-CT scan, 600 projections were taken over 360°
at 80 kV acceleration voltage and 8 W output power. The
acquisition time for one scan is 120 s. The voxel size is
20.18μm. For the volume reconstruction, the Octopus software
(Vlassenbroeck et al., 2007) was used.

3.1.2 Aluminum foam
The aluminum foam open-cell has been scanned during

a dynamic process of compression. The sample size is
20mm× 20mm× 22mm, the total compression is 35% (∼7mm
displacement). The experimental data was acquired using
TESCAN CoreTOM at an acceleration voltage of 120kV,
output power of 20W, and a voxel size of 32μm. The temporal
resolution was 20 s per revolution, for 200 revolutions in
total.

At these very fast acquisitions and the low compression
speed, barely any motion artefacts are present in the data.
However, such short acquisitions produce large volumes of
data and a good contrast-to-noise ratio is difficult to achieve
in more complex data. In many experiments, motion artefacts
are therefore present (De Schryver et al., 2018). To test our
proposed method in challenging situations, we introduced
motion artefacts in the data by simulating a faster acquisition.
The compression has been accelerated by a factor of 32 by
updating the sample 32 times per revolution in a simulated CT
scan. The simulated CT scan was reconstructed again with one
time step per revolution, which now contained severe motion
artefacts due to the accelerated dynamics.

The resulting images are strongly affected by motion
artefacts, Figure 2B. The first image of the triplet shown in
Figure 2B was acquired at the start of the experiment, where the
effect of compression jaws was not as strong as the later stages,
which is why it does not have motion artifacts.

4 Results

In this section, we demonstrate that multi-frame DVC can
improve registration quality in the case of dynamic experiments
(4D data) with changes in structural appearance. Such changes
can be both due to real changes in the sample, for example, in
the case of chemical reactions, or due to acquisition artefacts in
the images, i.e., motion artefacts. In this section, the results of
the image registrations using different numbers of time frames
are compared. For every dataset, the comparison was done
considering all the frames belonging to the considered temporal
sequence. This means that if we considered, for instance, a
temporal sequence composed of four frames, to register the last
frame to the first frame of the sequence, we compared the three
methods defined as follows:

• Two-frame-conc method: concatenating 2-frames
registration computed between each consecutive frames
couple, Figure 3A.
• Three-frame-conc method: concatenating 3-frames
registration computed between the first three frames, Eq. 2,
and 2-frames registration computed between the last two
frames, Figure 3B.
• Four-frame method: using four-frame method, Eq. 2 and
Figure 3C.

In this way, regardless of the method used, the amount of
information given as input to the method remains unchanged.
This allowed us to distinguish whether the added accuracy
comes from the multi-frame proposed method or whether it
comes from the fact that we used more information. Indeed,
the alternative to this approach would be to compare either the
multi-frame method to the direct two-frame method computed
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FIGURE 3
(A) Schematic explanation of concatenation of the 2-frames method (2-frames-conc); (B) schematic explanation of concatenation of the
3-frames and 2-frames method (3-frames-conc); (C) schematic explanation of the 4-frames method.

between the first and the last frame of the temporal sequence
or the multi-frame method to the 3-frames method computed
between the three out of four frames belonging to the temporal
sequence. However, for the sake of completeness in Section 5,
the 4-frames method has also been compared with the classical
direct 2-framesmethod (where the first and the last frames of the
temporal sequence are registered).

4.1 Validation of the registration
accuracy

Our analysis was mainly based on data-fit quantification.
Indeed, being a real and non-destructive experiment with a
complex dynamic, we do not have a ground-truth to compare
the displacement field with. Therefore, a quantitative evaluation
of the displacement field was not possible.The validations of the
registration accuracy were done following qualitative methods
and qualitative assessments:

• Sum of Squared Difference (SSD): this expresses the data
fidelity of the solution; it is based on the pixels intensity. For
the SSD definition see Section 2.1.
• Consistency map: it is defined as the difference between
the reference and the warped frame. A small magnitude
difference is indicative of high consistency between
the reference frame and the warped frame. An
ideally estimated deformation would produce perfect
consistency.
• qualitative assessment of the displacement fields.

4.2 Tracking pharmaceutical tablet
dissolution

The multi-frame method algorithm was compared with
the 2-frames-conc method. The parameter evaluated is the
quality of the registration expressed in terms of SSD computed
considering the first and last warped frame of the temporal
sequence.

The algorithm has been applied by using different groups of
three frames:

• T1: 00h10 min - 00h20min - 00h30min
• T2: 00h30 min - 1h00min - 1h30min
• T3: 1h00 min - 1h30min - 2h00min
• T4: 1h30 min - 2h00min - 2h30min
• T5: 2h00 min - 2h30min - 3h00min

and groups of four frames:

• Q1: 00 h30min - 1 h00min - 1 h19min - 1h30min
• Q2: 1 h00min - 1 h30min - 1 h45min - 2h00min

As mentioned in Subsection 3.1.1, the tablet undergoes
three processes through time: swelling, gel formation, and
erosion at the edges.The time step (Ts) between each frame of the
group varies between groups andwithin groups:Ts(T1) = 10min;
Ts(T2,T3,T4,T5,T6) = 30 min; Ts(Q1) = 30, 19, 11 min and
Ts(Q2) = 30, 15, 15 min.

The first set of results Figure 4 shows a comparison
between the 3-frames method and the 2-frames-conc method
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FIGURE 4
(A) Central slices of the consistency map defined as the difference between the reference (i.e., first frame of the temporal sequence) and
deformed volumes (i.e., deformed last frame of the temporal sequence): blue regions correspond to material of t1 does not match material in
the warped t3; red regions correspond to material of the warped t3 does not match material in t1; white regions correspond to material of
warped t3 that fully overlaps material in t1. The first row is related to the 2-frames-conc method and the second row is related to the 3-frames
method. Five triplets have been analyzed, from T1 to T5. (B) Registration accuracy evaluated by SSD metric for the five triplets.

applied to the five triplets. Figure 4A shows the central
slice of the volume given by the difference between the
deformed volume (i.e., deformed version of the last frame
of the sequence) computed using the 2-frames-conc method
(first row) and 3-frames method (second row), and the
reference volume (i.e., first frame of the sequence). The 3-
frames results were computed using our proposed method,
Eq. 2.

The results show an improvement in the quality of the
registration for each group analyzed, but for the groups T2, T3,
T4, and T5 it is more marked. The average improvement in
terms of SSD for the aforementioned groups is 23%, while for
T1 the improvement is limited to 2.3%. Such a result shows,
therefore, that as the gel formation process advances, it effects
the structure and DVC more. Indeed, from Figure 4A, it can
be noted that the difference in terms of registration quality is

mainly evident at the edges of the tablet, where in addition
to the swelling process, the tablet undergoes a process of gel
formation.

On the same dataset, DVC with four frames was performed.
In this case, groups of four frames were analyzed. The quality
of the registration measured by using the 4-frames DVC was
compared to the quality achieved by using the 2-frames-conc
method and the 3-frames-conc and method, see Figure 5. The
experiment was carried out using Q1 (0h 30 min, 1h 0 min, 1h
19 min, 1 h 30 min) which resembles T2 with the addition of
one extra intermediate frame acquired after 1 hr 19 min and
using Q2 (1 h 0 min, 1 h 30 min, 1 h 45 min, 2h 0 min) which
resembles T3 with the addition of one extra intermediate frame
acquired after 1 hr 45 min. The performances achieved by using
the four-frames method have been compared to other possible
registration configurations, Figure 5
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FIGURE 5
(A) Central slices of the consistency map defined as the difference between the reference (i.e., first frame of the temporal sequence) and
deformed volumes (i.e., deformed last frame of the temporal sequence):blue regions correspond to material of t1 does not match material in the
warped t4; red regions correspond to material of the warped t4 does not match material in t1; white regions correspond to material of warped t4
that fully overlap material in t1. The first map is related to the 2-frames-conc method, the second is related to the 3-frames-conc method and
the third is related to the 4-frames method. (B) Registration accuracy evaluated by SSD metric.

• 4-frames method versus 3-frames-conc method: the 4-
frames method was compared to the results obtained from
the 2-frames-conc method applied to the consecutive image
pairs of the subsets. In the case of Q1, the 2-frames-
conc method was applied between frames acquired at 00 hr
30 min and 1 hr 00 min, 1 hr 00 min and 1 hr 19 min, 1 hr
19 min and 1 hr 30 min. When the three registrations are
completed, the final displacement field is obtained by the
concatenation of the three displacement fields.The samewas
done for Q2, and the registration was performed between
frames acquired at 1 hr 00 min and 1 hr 30 min, 1 hr 30 min
and 1 hr 45 min, 1 hr 45 min and 2 hr 00 min.The 4-frames
method improved the registration quality by 62.3% for Q1
and by 14.9% for Q2 compared to 2-frames method.

• 4-frames method versus 3-frames-conc: the 4-frames
method was compared to the results obtained from 3-
frames combined with the 2-frames method. In this
case, the same subsets of four frames (Q1 and Q2) were
used. For the 3-frames registration, frames acquired at
30 min, 1 hr, and 1 hr 19 min were considered and the
cost function used was Eq. 2. Subsequently, frames at
1 hr 19 min and 1 hr 30 min were registered using 2-
frames method, according to the scheme in Figure 3B.
When the two registrations were completed, the final
displacement field was obtained by the concatenation of
the two displacement fields. In the case of the subset Q2,
the three-frame registration was performed between frames
acquired at 1 hr, 1 hr 30 min, and 1 hr 45 min, and the
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FIGURE 6
In the first row is shown central slices of the consistency map
defined as the difference between the reference (i.e., first frame
of the temporal sequence) and deformed volumes (i.e.,
deformed last frame of the temporal sequence): blue regions
correspond to material of t1 does not match material in the
warped t4; red regions correspond to material of the warped t4
does not match material in t1; white regions correspond to
material of warped t4 that fully overlap material in t1. In the
second row the magnitude of the displacement field computed
using 2-frames-conc and 4-frames in the plane x-y is shown.

2-frames registration was performed between frames
at 1 h45 min and 2 h. 4-frames method improved the
registration by 2.6% for Q1 and by 2.7% for Q2 compared to
three-frame-conc method.

We compared qualitatively the displacement field obtained
by the two-frame-conc and the four-frame method for the
temporal sequence Q1, Figure 6. The displacement field in the
case of the four-frame method is more homogeneous in the
center of the tablet, suggesting homogeneous swelling of the
tablet itself at this point in time. In the displacement field, in the
areas corresponding to the edges of the tablet, there are some
noisy spots. Since they are all located at the edges of the tablet,
this is consistent with the known behavior of tablet dissolution
happening at the edge of the tablet. We therefore assume this to
be a more accurate displacement field. The displacement field
obtained by the two-frame-conc method is less homogeneous
even inside the tablet. This is reflected in a worst data-fit,
Figure 6.

An important aspect to consider is the computational
time for the optimization. It depends on the number of
steps, which in turn depends on the frames number, see
Section 2.2. The results are reported in Computational time
table. The values of computational time reported in the table
are obtained from the average of three measurements done
on the same temporal sequence (i.e., Q1). The computational
time of two-frame method refers to the time needed to
register each frame couple belonging to the temporal sequence.

The exact timing, therefore, depends on the number of
concatenations.

4.2.1 Noise robustness of the algorithm
An additional experiment was performed to test the

robustness of the algorithm to the noise.
For this purpose, in the DVC tablet experiment, random

image noise with a normal distribution of zero mean and a
standard deviation (std) ranging from 0.01 to 0.03 was added
to the images. The intensity of the images’ gray level ranges
between 0 and 1. The PSNR of the simulated datasets, computed
with the original image as the reference, ranges from 35.5
to 35.7dB. In this experiment, a sequence of three temporal
frames (00h30min, 01h00min, 01h19min) was analyzed and
the 2-frames-conc method was compared to with the 3-frames
method. The quality of the registration was evaluated by
using SSD.

The registration accuracy improvement using 3-frames
versus 2-frames-conc became more evident for images with
lower PSNR, see Figure 7. The improvement in SSD for
PSNR = 35.5 dB is 35.7%, for PSNR = 35.6 dB is 35.1%, and for
PSNR = 35.7 dB is 33.0%.

4.3 Tracking aluminum foam
compression

Themulti-frame algorithmwas comparedwith the 2-frames-
conc method. The parameter evaluated was the quality of the
registration between the first and the lastwarped frame expressed
in terms of SSD. The algorithm was applied by using different
groups of three frames. The first set of results, as shown in
Figure 8 shows a comparison between the 3-frames method
and the 3-frames-conc method applied to two triplets. The
first considered triplet (Figure 8A), composed of frames t1,
t2 and t3, was acquired at the beginning of the compression
experiment. The frame t1, as often encountered in experimental
data, does not contain motion artefacts. The following frames
contain more severe motion artefacts. The artefacts’ severity
changed through the sample and through time. Since the sample
was compressed in the z direction from the bottom to the
top, the artefacts at the first stages (frames t2, t3) are more
severe at the bottom of the sample. The artefacts also propagate
to the top part of the sample over time. In Figure 8B, the
consistency map between frame t1 and the warped frame t3 is
shown after 2-frames-conc and 3-frames DVC. For 2-frames-
conc results, the registration quality drops going from the
top to the bottom of the sample. Such behavior is correlated
with the aforementioned distribution of motion artefacts.
The registration quality obtained by using 3-frames DVC
instead looks more homogeneous through the sample, showing
the robustness of the multi-frame method against motion
artefacts.
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Computational time [min] *

Steps Two frames** Three frames Four frames

Optimization step 1 14.23 14.08 14.12
Optimization step 2 - 7.11 6.27
Optimization step 3 - - 5.23
Total time 14.23 21.08 25.62

*Machine specifications: memory size 32GiB, CPU Intel (R) i7-8086 K at4.00 GHz. Dataset size: 214 × 658 × 658.
**it refers to a single two-frame registration, the exact timing depends on the number of frames.

FIGURE 7
Central slice of the tablet acquired after 30 min, without additional noise and with additional simulated noise. PSNR ranges from 35.5 to 35.7 dB.
In the graph on the right of the Figure, the SSD variation as noise changes is reported for 2-frames-conc and 3-frames method.

The same experiment was carried out with another triplet
composed of frames t4, t5, and t6, acquired at the late stage of
the compression experiment. In this case, the severity of the
motion artefacts is roughly the same throughout the sample
(from bottom to top) and through time. The quality of two-
frame-conc DVC is already high Figure 8B.

For the first triplet, the improvement using 3-frames over
2-frames-conc DVC is 29.2%, for the second triplet it is only
1.0%. Such a difference is in accordance with what has been
observed with the tablet experiment; the registration of frames
with structures with similar appearances does not have a great
benefit from the self-consistency constraint introduced by the
multi-frame method as frames with a big difference in the
severity of motion artefacts.

As in the case of the pharmaceutical tablet experiments, we
did not have ground truth to compare the displacement field
with. Therefore, also in this case, we performed a qualitative
comparative analysis between the displacement field computed
by the 2-frames-conc and the 3-frames method. In this case, we

expected a displacement field mainly oriented in the direction
of the compression that gradually decreases its magnitude going
from the bottom to the top of the sample. This is, indeed, what
we observe from the displacement fields shown in Figure 9.
The main difference we can observe between the displacement
computed by the two-frame-conc method and the displacement
computed by the 4-frames method is that the first one is more
noisy. Such evidence is supported by results reported in the work
by Cofaru et al. (2012). In this work, indeed, the displacement
field computed using themulti-framemethodwas less noisy than
the one computed using the classical 2-frames method and the
data-fit was higher. We therefore assume the 4-frames method to
have produced a more plausible deformation field.

5 Discussion

The results show an improvement using multi-frame
DVC compared to the concatenation of 2-frames DVC. Both
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FIGURE 8
(A) Vertical slices of the frames through time. (B) Central slices of the consistency map defined as the difference between the reference and
deformed volumes: red regions correspond to material of the warped t3/t6 does not match material in t1/t4; blue regions correspond to material
of t1/t4 does not match material in the warped t3/t6; white regions correspond to material of warped t3/t6 that fully overlap material in t1/t4.(C)
Registration accuracy evaluated by SSD metric for the two triplets.

pharmaceutical tablet (Figures 4, 5) and aluminum foam results
(Figure 8) show a greater improvement in areas of the image
where the appearance of the structures changes, because of
chemical reactions (gel formation) or experimental conditions
(motion artefacts). Such situations, indeed, pose a challenge for
classical DVC and for this reason a regularization is needed.
Moreover, for the proposed experiments, the frequency of the
dynamic is unknown. Knowing exactly the dynamic frequency
is, indeed, possible to take as input of the DVC algorithm
those frames that helps to reconstruct the entire trajectory
of the sample. If this a priori information is unknown, any
couple of frames we give as input to the algorithm, generates
a leakage of information. The idea of introducing more than
two frames in the registration process has the purpose of
introducing as much information as possible that otherwise
will not be used. Therefore, the use of more than two frames
permits a temporal regularization that improves the DVC self-
consistency.

The first and the last time steps hold a larger weight in
the consistency than, for instance, in the groupwise methods
Huizinga et al. (2016); Guyader et al. (2018) mentioned in
Section 1. Therefore, it is good for these frames to be of higher
quality. This happens regularly in μ−CT, where a pre- and post-
scan are acquired at static high resolution conditions to analyze
the dynamic series.

From a result comparison, it appears that an improvement is
visible even if, considering the same temporal range,more frames
are used. Let us consider the results reported in Figures 4, 5.
The group T2 (00h30min - 1h00min - 1h30min) has the same
temporal limits of the groupQ1 (00h30min - 1h00min - 1h19min
- 1h30min), but Q1 contains one frame more (i.e., 01h19min).
The registration quality in registering time frame 00h30min with
time frame 1h30min is higher if more temporal frames are used,
even if it is with the 2-frames-conc method.

Even the registration noise robustness increases upon
increasing the number of frames. The graph in Figure 7 shows
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FIGURE 9
In the first row is shown the central slices of the consistency
map defined by the difference between the reference and
deformed volumes is shown. Red regions correspond to
material of the warped t3 does not match material in t1; blue
regions correspond to material of t1 does not match material in
the warped t3; white regions correspond to material of warped
t3 that fully overlap material in t1. In the second row the
magnitude of the displacement field computed using
2-frames-conc and 3-frames in the plane y-z is shown. The red
circles in the figure highlight peaks of noise.

how the registration accuracy improvement obtained by using
3-frames DVC becomes more evident for images with lower
PSNR.

It is interesting to notice how the computational time does
not increase linearly with the number of frames (see Table
Computational time). Indeed, the convergence of the steps that
follow the first one benefits from the results of the previous steps.

Other cost functions have been implemented in the course of
this study in order to use more than two frames belonging to the
image sequence. The most obvious one was defined by one term
for each possible image couple that occurs:

∑
r∈Ω

N

∑
i=1

N−1

∑
j=1
(Ii (r) − Ii+j (r+ di→i+j (r)))

2 (6)

Compared to Eq. 2, it contains more terms. If we consider
the case of a temporal sequence with four frames, it contains
two more terms, and that means two more optimization steps.
The computational time, therefore, increases. We compared the
results based on computational time and registration accuracy
for the two cost functions, namely Eqs 2 and 6, for a 4-
frames temporal sequence. In terms of computational time,
the average increment is 28% and the SSD improvement
using the cost function (6) is 0.5% for Q1 and 1.1% for Q2.
For these applications, given the little improvement in the
registration quality and the large increase in the computation

time, we decided to use the cost function (2). The computational
complexity is reduced by only one consistency term. However,
we do not exclude that, for other applications, the use of the
cost function (6) might lead to significantly better results in
terms of registration quality. If the number of frames increases
substantially, an alternative solution that includes polynomial
regression to compute the displacement field, taking as input
multiple time frames, might be more efficient in terms of
computational time. However, by imposing the degree of the
polynomial, we would introduce a constraint to the dynamic
we want to measure using DVC. On the other hand, the
method we propose allows the calculation of the instantaneous
displacement field with a higher degree of spatial freedom, at
the cost of computational time. Given the complex dynamics of
the experiments we proposed in this paper, we think that the
proposed method could bring some advantages.

The concatenated 2-frames method has been compared with
the 2-frames method applied between the first and the last time
frames (direct 2-frames method), neglecting all the frames in
between. Despite the amount of information that is greater in
the case of 2-frames-conc, it is possible that because of instability
issues due to concatenation, the result is worse than the result
obtained using the direct 2-frames method between the first and
the last frame of the temporal sequence.However, this is not what
we observed. We compared the 2-frames-conc and the direct 2-
frames method, considering the temporal sequences Q1 and Q2
as input. The 2-frames-conc method gives better results, with an
average improvement of 21.3% compared to the direct 2-frames
method. For the aluminum foam, an improvement of 18.7%
was measured. The registrations of both datasets, therefore,
benefit from the increased amount of information given as
input.

6 Conclusion

In this study we added an extra regularization term that
enforces consistency and thereby improves the quality of the
registration.

Unlike other methods already present in literature, our
method does not impose constraints based on the nature of
the motion: the motion does not have to be cyclic or linear.
This is a substantial advantage because it enables the use of the
proposed method for a wide set of applications, regardless of the
dynamic of the sample. Even if the images are acquired during
a dynamic experiment, and therefore severe motion artefacts are
present, themulti-frameDVChas higher performance compared
to the concatenated 2-frames method. The presented method,
therefore, represents a valuable tool to be used in experiments
where high-speed dynamic behavior of materials needs to be
analyzed. More in general, thanks to the constraint of self-
consistency, such a method has overcome the issues related to
the registration of images with structures that change appearance
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through time, and it opens, therefore, the possibility to register
material during chemical processes.
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