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Extended liquid state machines
for speech recognition

Lucas Deckers*, Ing Jyh Tsang, Werner Van Leekwijck and

Steven Latré

imec IDLab, Department of Computer Science, University of Antwerp, Antwerp, Belgium

A liquid state machine (LSM) is a biologically plausible model of a cortical

microcircuit. It exists of a random, sparse reservoir of recurrently connected

spiking neurons with fixed synapses and a trainable readout layer. The LSM

exhibits low training complexity and enables backpropagation-free learning

in a powerful, yet simple computing paradigm. In this work, the liquid state

machine is enhanced by a set of bio-inspired extensions to create the extended

liquid state machine (ELSM), which is evaluated on a set of speech data sets.

Firstly, we ensure excitatory/inhibitory (E/I) balance to enable the LSM to

operate in edge-of-chaos regime. Secondly, spike-frequency adaptation (SFA)

is introduced in the LSM to improve the memory capabilities. Lastly, neuronal

heterogeneity, by means of a di�erentiation in time constants, is introduced

to extract a richer dynamical LSM response. By including E/I balance, SFA,

and neuronal heterogeneity, we show that the ELSM consistently improves

upon the LSM while retaining the benefits of the straightforward LSM structure

and training procedure. The proposed extensions led up to an 5.2% increase

in accuracy while decreasing the number of spikes in the ELSM up to 20.2%

on benchmark speech data sets. On some benchmarks, the ELSM can even

attain similar performances as the current state-of-the-art in spiking neural

networks. Furthermore, we illustrate that the ELSM input-liquid and recurrent

synaptic weights can be reduced to 4-bit resolution without any significant

loss in classification performance. We thus show that the ELSM is a powerful,

biologically plausible and hardware-friendly spiking neural network model that

can attain near state-of-the-art accuracy on speech recognition benchmarks

for spiking neural networks.

KEYWORDS

spikingneural networks, liquid statemachine, reservoir computing, soundprocessing,

E/I balance, spike-frequency adaptation, neuronal diversity

Introduction

The last decade has witnessed the advent of power-efficient, neuromorphic hardware

(Davies et al., 2018; Tang et al., 2019) and phenomenal advances in the accompanying

software. Specifically, spiking neural networks (SNN; Gruning and Bohte, 2014) have led

to great successes, matching the performance of deep neural networks on a selected set of

classification benchmarks, at only a fraction of their computational demands (Yin et al.,

2021). These results encourage research in neuro-inspired computing systems, especially
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given the growing demand for low-power inference at the edge

(Cao et al., 2020). Backpropagation-through-time (BPTT) with

surrogate gradients (Neftci et al., 2019) is the most widely

used technique for training SNNs. The surrogate gradients

provide a solution to overcome the non-differentiable threshold

mechanism in spiking neurons, and allow gradients to propagate

back through the network to update the weights. Recently,

enhanced BPTT training methods have been introduced, such as

modified loss functions for improved, online learning in SNNs

(Yang et al., 2022b), robust, continual, meta-learning (Yang

et al., 2022c), and backpropagation, based on temporal coding

(Kheradpisheh et al., 2022).

Another popular and straightforward approach that enables

learning with SNNs relies on reservoir computing, more

precisely a liquid state machine (LSM; Maass et al., 2002). An

LSM was originally presented as a biologically plausible model

for a cortical microcircuit as it consists of a random, sparsely

connected, recurrent, high-dimensional spiking reservoir with

fixed synapses and a trainable readout layer. Considering the

low training complexity and speed, as well as their compatibility

with deployment on efficient neuromorphic hardware (Li et al.,

2020; Wang et al., 2022), LSMs have become an attractive SNN

model for low-power edge computing. Furthermore, despite

their simple setup, LSMs have been established as a powerful

spatio-temporal feature extractor with remarkable results on

various tasks (Al Zoubi et al., 2018; Soures and Kudithipudi,

2019) even surpassing the performance of a large CNN+LSTM

model on a radar-based gesture recognition benchmark (Tsang

et al., 2021).

Recently, several approaches to improving the performance

of LSMs have been proposed. Task-agnostic, data-driven

training of the recurrent liquid weights (Jin and Li, 2016; Ivanov

and Michmizos, 2021), continuous neuronal adaptation

based on intrinsic neuronal plasticity (Zhang and Li,

2019a), reservoir autoregulation (Balafrej et al., 2022),

liquid ensembles (Wijesinghe et al., 2019), and evolutionary

optimization (Zhou et al., 2020) have all been shown to

improve the basic LSM design, keeping its sparse properties.

However, these enhancements come at the cost of increased

(training) complexity and data-dependent tuning of the LSM

parameters, eliminating some of its inherent advantages. None

of these approaches have, however, reached state-of-the-art

performances on benchmark data sets in comparison with SNNs

trained with BPTT.

In this work, we propose the extended LSM (ELSM).

All presented extensions to the base LSM are inspired

by features commonly found in biological neurons and

also known to improve feature encoding in biology. The

first extension covers E/I (excitatory/inhibitory) balance.

Neuroscientists have uncovered that the neural coding efficiency

is maximized when excitatory and inhibitory presynaptic

currents are balanced (Zhou and Yu, 2018). The resulting

E/I balance is related to an optimized dynamical network

chaos (Van Vreeswijk and Sompolinsky, 1996), called the edge

of chaos. In previous research (Ivanov and Michmizos, 2021;

Balafrej et al., 2022), edge-of-chaos dynamics were shown to

improve the neural coding in an LSM in comparison with

a randomly initiated liquids. The balance of excitatory and

inhibitory currents can thus be seen as an often neglected

heuristic for optimized coding in LSMs. Following on from the

E/I balance, the second extension is to update the neuronal

model by adding spike-frequency adaptation (SFA). This is a

passive neuronal mechanism that updates the spiking threshold

based on its previous spiking behavior. In previous research

(Salaj et al., 2021), SFA was shown to improve the memory

capabilities in an SNN, trained end-to-end with e-prop (Bellec

et al., 2020). The third and final extension is to include

neuronal heterogeneity (Perez-Nieves et al., 2021). This concept

was shown to enhance the computational requirements and

robustness in SNN classification tasks. The effect of these brain-

inspired modifications on an LSM have currently not been

addressed in research. In this work, generic benchmark speech

recognition applications were selected for evaluation of the base

LSM as well as the proposed extensions. These were selected

since on-device computing is crucial for the privacy and security

of sensitive speech data. The proposed extensions are however

independent of the task at hand.

We show that each of our LSM extensions: achieving

E/I balance, spike-frequency adaptation and neuronal

heterogeneity, improve the general speech recognition

capacity of an LSM, in terms of classification accuracy,

throughout four data sets: Spiking Heidelberg digits (SHD),

TI-46-Word, N-TIDIGITS, and Google Speech Commands

(GSC). Furthermore, we illustrate that the optimal E/I balance

can be found by regulating the random distributions of the

input-liquid weights. The extensions presented in this work are

shown to consistently improve the performance of the LSM

and reach toward state-of-the-art accuracy, without the need of

fine-tuned weights via BPTT. Lastly, we show that the resolution

of the synaptic weights in the ELSM can be scaled to a 4-bit

representation without significant loss in performance, making

the ELSM a powerful and biologically plausible alternative to

BPTT-trained networks.

Materials and methods

In this section, we review the neuron and synapse models as

well as the baseline LSM structure and training procedures used

in this work. In addition, we discuss the proposed extensions,

namely the addition of E/I balance, spike-frequency adaptation

(SFA), and the diversification of the neuronal parameters

in comparison with the baseline LSM model. To run our

experiments, we used Python and the Brian2 neural simulator

(Stimberg et al., 2019).
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Neuron and synapse model

In our LSM model, the neuronal dynamics are modeled

based on conductance-based leaky integrate-and fire (LIF)

neurons. In this standard model, similarly to the neuronal

dynamics in our reference LSM (Maass et al., 2002), the

membrane potential is described by (1).

τ
dV

dt
= (Erest − V)+ ge(Eexc − V)+ gi(Einh − V) (1)

where Erest , Eexc, and Einh denote the resting membrane

potential and the excitatory and inhibitory synapse equilibrium

potentials, respectively. Other neuron parameters are ge(gi),

the conductances of the excitatory (inhibitory) neurons and

the membrane potential time constant, denoted by τ . If the

membrane potential V crosses a fixed firing threshold Vth, the

neuron generates a spike. Then, the membrane potential is set

to its reset potential Vreset and the neuron enters the refractory

period, tref , during which no further spikes can be emitted. The

initial membrane potential is uniformly distributed as U[13.5,

15)mV and the neuronal conductances are initialized with zeros,

as there were no previous spikes.

Synapse dynamics are modeled by changing conductances

over time. When a presynaptic spike arrives, the neuron

conductance is instantaneously increased by the synaptic

strength, modeled by a fixed weight, w. Otherwise, the

conductance exponentially decays over time, as denoted in (2).

τge
dge

dt
= −ge (2)

Here τge indicates the time constant of the conductance

of the excitatory neurons. Inhibitory neurons are modeled

identically. The time constant τge is typically longer for

inhibitory neurons than for excitatory neurons. This is also

supported by computational models that neuroscientists used to

model real biological neuronal behavior (Destexhe et al., 2001;

Brette and Gerstner, 2005). All neuron parameters were fixed

over all our experiments and directly taken from a reference LSM

implementation (Maass et al., 2002), apart from the conductance

time constants, specified above. The neuron parameters used in

this work are shown in Table 1.

Liquid state machine

The liquid state machine (LSM) is a biologically plausible

model of a sparse, recurrent cortical microcircuit. An LSM

consists of three main layers: the input, the liquid, and the

readout/output layer. The input layer is sparsely connected in a

random fashion to a reservoir of recurrently connected neurons,

called the liquid. These input-liquid synapses are always

excitatory and the probability of constructing the synaptic input-

liquid connections, denoted by pin, is equal for the excitatory and

TABLE 1 Conductance-based leaky integrate-and-fire neuron model:

Parameter names and corresponding values.

Name Value

Membrane rest potential, Erest 13.5 mV

Reset potential, Ereset 13.5 mV

Excitatory rest potential, Eexc 0 mV

Inhibitory rest potential, Einh 0 mV

Firing threshold, Vth 15 mV

Membrane potential decay time constant, τ 30 ms

Excitatory decay time constant, τge 3 ms

Inhibitory decay time constant, τgi 10 ms

Excitatory refactory period, tref ,exc 3 ms

Inhibitory refactory period, tref ,inh 2 ms

inhibitory liquid neurons. The choice of the optimal pin usually

depends on the task at hand and is discussed in detail in the

results section. The input-liquid synaptic weights are randomly

sampled from a uniform distribution, U[0, 0.4], (U[0, 0.2]) for

excitatory (inhibitory) synapses. The LSM parameters used in

this work, were taken from our reference work (Maass et al.,

2002), unless specifically stated otherwise. The synaptic delay for

the input-liquid synapses, δin, is equal to 1 ms.

The recurrent reservoir is modeled as a three-dimensional

grid. Similarly to neural circuitry (Tsodyks et al., 2000) and as

is common in LSM literature, the excitatory/inhibitory neuron

ratio is set to 80/20%. The topology of the LSM is defined by

P(i,j), the probability of a synaptic connection from neuron i to j,

which depends on the Euclidean distance, D(i,j), between them:

P(i, j) = C ∗ e−(
D(i,j)

λ
)
2

(3)

where λ regulates the average number of synapses per

neuron and the average distance between 2 neurons that are

connected. The parameter C regulates the synaptic connection

probability, which depends on the synapse type. The full

parameter setup of the LSM is shown in Table 2. The synaptic

delay, δ, in the reservoir is typically longer for EE (excitatory-

excitatory) synapses than for the other types. The Euclidean

distance-based design of the LSM topology, with a low λ

naturally leads to a sparse reservoir, where every neuron is

connected to another by ∼9.5 recurrent synapses for a liquid

that contains 2000 neurons. Similarly, the synaptic weights

depend on the type of synapse. More precisely, the recurrent

liquid-liquid weights are randomly sampled from a uniform

distribution, depending on the type of synapse: U[0, 0.6] (EE),

U[0, 0.4] (IE), U[0, 1.2] (IE), U[0, 0.4] (II). Note that spikes

originating from inhibitory neurons decrease the membrane

potential in the post-synaptic neuron. All synaptic weights are

fixed after creation. An overview of the full LSM setup is shown

in Figure 1.
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TABLE 2 Liquid state machine model setup: Parameter names and

corresponding values.

Name Value

Global connectivity parameter, λ 2

Excitatory-excitatory parameter, CEE 0.3

Excitatory-inhibitory parameter, CEI 0.2

Inhibitory-excitatory parameter, CIE 0.4

Inhibitory-inhibitory parameter, CII 0.1

Input-liquid delay, δin 1.0 ms

Excitatory-excitatory delay, δEE 1.5 ms

Excitatory-inhibitory delay, δEI 0.8 ms

Excitatory-inhibitory delay, δIE 0.8 ms

Inhibitory-inhibitory delay, δII 0.8 ms

The readout layer consists of a classifier, which is

supervisedly trained. In general, the readout is memoryless and

thus does not retain any memory of the previous states in the

dynamical system. In this implementation, the readout is trained

on the spike counts of the excitatory neurons for the duration of

any sample. The resulting feature vector thus has size equal to

the number of excitatory neurons and contains integer count

values. A Logistic Regression classifier was selected because

of its simplicity and to showcase the power of the non-linear

separation carried out by the LSM.

Bio-inspired liquid state machine
extensions

In this section, we discuss three novel extensions to the

baseline LSM model. These extensions are generic and not

specifically tailored to one specific application. The methods

in this work differ from current trends in liquid state machine

research, where mainly the liquid is trained through local

learning rules or optimized via evolutionary optimization

methods. In these methods, the liquid is adapted to the task of

interest at the cost of increased training time and complexity.

Furthermore, in this work, all proposed modifications to the

baseline liquid state machine are based on insights from

neuroscience. The extended liquid state machine (ELSM) thus

remains a biologically plausible model of cognition.

E/I balance

The first extension covers the neuronal excitatory/inhibitory

(E/I) balance. In biological sensory processing, the interplay

between synaptic excitatory and inhibitory stimulation is found

to be well-balanced. This E/I balance, measured through the

average ratio of excitatory to inhibitory synaptic conductances

over time, plays a crucial role in efficient neural coding,

information processing and network feature selectivity (Zhou

and Yu, 2018). Moreover, in Kim and Sejnowski (2021), the

authors show that strong inhibitory signaling is crucial for

temporal processing in the cortex. In previous work (Van

Vreeswijk and Sompolinsky, 1996), network balance, in form of

the net synaptic input mean current and its fluctuations, was

related to deterministic chaos. In more recent work (Ivanov

and Michmizos, 2021), the authors describe E/I balance as a

predictor for edge-of-chaos and therefore optimal liquid state

machine dynamics.

In this work, we will focus on the effect of strong inhibitory

signaling, in relation to E/I balance. We evaluate the influence

of the input-liquid inhibitory synaptic weight strength on the

E/I balance and consequently on the classification performance.

By increasing the input current to the inhibitory liquid neurons,

the total network activity becomes more sparse, leading to a

more efficient coding scheme and a decrease in the number of

spikes in the reservoir. Following results from the research works

mentioned above, we presume that E/I balance is achieved at

the point where the average net current over time approximates

zero. At this point, the edge-of-chaos dynamics should lead

to improved neural processing. The resulting classification

performance, in comparison with results from the baseline LSM

setup, is studied.

Spike-frequency adaptation

The second extension is called spike-frequency adaptation.

Many of our daily tasks, such as speech recognition, include

computing on features that are temporally distanced and thus

require retaining memory in some way. These tasks are thus

based on integration and processing on different timescales.

Current spiking neuron models do not include any methods for

such processing at a neuronal level for longer timescales, since

spikes, and membrane potentials are updated at millisecond

levels and leakage prevents any memory capabilities. From

neuroscience (Gutkin and Zeldenrust, 2014), it is however

known that both neurons and synapses exhibit slower dynamical

processes, such as adaptation. These mechanisms can be related

to processing at longer timescales. One of these processes

is called spike-frequency adaptation (SFA), where the past

firing activity of a neuron leads to an increase of the firing

threshold Vth. SFA can also be modeled by including an

adaptation current. From a computational point of view, we

chose to include the simpler adaptive threshold model for

our experiments.

τ
dV

dt
= (Erest − V)+ ge(Eexc − V)+ gi(Einh − V) (4)

Vth = Vth,base + Vth,sfa (5)

τsfa

Vth,sfa

dt
= −Vth,sfa (6)
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FIGURE 1

The liquid state machine: input data, spread across a number of channels, is projected via fixed, sparse, random synapses onto a sparse,

high-dimensional, recurrent reservoir of spiking neurons. Training of the synaptic weights only happens in the dense output layer, modeled by a

logistic regression.

In biology, the SFA is known to enhance short-term

memory (Marder et al., 1996; Turrigiano et al., 1996). Generally,

the inclusion of SFA in the neuron model reduces the

firing activity, which leads to an improved coding efficiency.

Moreover, in previous works (Salaj et al., 2021; Shaban et al.,

2021), SFA showed to improve the memory capacity of a

recurrent spiking neural network, trained with e-prop, a

biological approximation of the backpropagation algorithm.

The authors have also shown that the classification results

are optimized when the time constant of this decaying

threshold, τsfa, is equal to the expected duration when memory

is required.

In this work, the LIF neuron model is adjusted to

include SFA. As shown in Equation (4), the baseline

spiking neuron model is updated by adding a variable

threshold. Whenever an excitatory neuron fires, its firing

threshold Vth is increased by a fixed value, which was set

to 1. Otherwise, the threshold decays back to its original

value, equal to the original Vth,base, 15 mV. There is thus

both a constant baseline and a variable, spike-dependent

component. Since the expected duration is unknown for the

features in our classification benchmark tasks—i.e., speech

recognition—the time constant τsfa, is uniformly set within

the expected range where memory can be required. Similarly

to biological neuronal networks, SFA is only applied to

excitatory neurons.

Neuronal heterogeneity

The last extension is the inclusion of liquid heterogeneity—

i.e., dissimilar neurons in the recurrent reservoir. As was

previously shown (Maass et al., 2002), biological neural

microcircuits behave like ideal liquids for computing with

spatio-temporal features because of their large variety in neuron

and synapse properties, as well as the variety of time constants,

that characterize their interactions (Gupta et al., 2000). The

diversity of computational elements improves the variety in

the dynamical neuronal behavior and its subsequent feature

extraction capabilities. In this work, instead of employing a

range of different neuron or synapse models, which would lead

to a more complex hardware implementation, we explore the

heterogeneity of time constants. Similar to the work in Perez-

Nieves et al. (2021), where heterogeneity is exploited in BPTT

learning, we focus on the heterogeneity in τ , the membrane

potential time constant. A shorter τ leads to a more responsive

neuron, which means that the neuron will react stronger to

incoming spikes, but it will also leak faster. This diversity will

be compared to the original baseline, where τ is fixed.
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Experimental setup

Data sets used for validation

In order to show that the effects of the proposed LSM

extensions are generic and robust, we selected four speech data

sets for evaluation: (1) The Spiking Heidelberg Digits data set,

a commonly used benchmark for SNN; (2) TI-Alpha, an LSM

benchmark data set; (3) Google Speech Commands, a more

demanding, noisy speech data set; (4) N-TIDIGITS, a spoken

digits data set, recorded on neuromorphic hardware.

• The Spiking Heidelberg Digits (SHD; Cramer et al., 2020) is

a SNN benchmark data set, where spikes are directly given

as input data. The data consists of German and English

spoken digits (0–9 for both languages), converted into spike

trains based on a detailed cochleamodel. As in Cramer et al.

(2020), two speakers were held out for the test data set, and

5% of samples from 10 other speakers were also added into

the test data set. The resulting training and test sets consist

of 8,156 and 2,264 samples, respectively, as provided with

the data set.

• TI 26-word “alphabet set,” a subset of the TI46-word corpus

(Liberman et al., 1993). The “alphabet set” (TI-alpha)

consists of utterances from 16 speakers each speaking 26

utterances consisting of the letters “a” through “z.” There

are 4,142 and 6,628 instances in the training and test data

sets, respectively, as provided in the speech corpus.

• The Google Speech Commands (GSC) data set (Warden,

2018), is a classical speech recognition data set. Version

2 has 105,829 utterances from 2,618 speakers in total.

This speech corpus consists of 35 different commands. In

literature, different splits are typically made: the full 35

words task and 12 words subset task, where a couple of

commands are selected. We validated the ELSM on the full

35 words task for comparison with the state-of-the-art in

spiking neural network models. Each utterance is 1 s long,

and the sampling rate is 16 kHz. The data set is divided into

a training, validation and test sets based on the validation

and testing file lists provided with the data set.

• The N-TIDIGITS data set (Anumula et al., 2018), contains

the spoken digits from the TIDIGITS data set, recorded

on neuromorphic hardware, the spiking CochleaAMS1b

sensor. In this work, only the spike trains from the single

digits were used. There are two samples per for each of the

11 digits for every speaker. and the train and test sets are

used as provided with the data set. They consist of 2,464

and 2,486 samples, respectively.

Sound processing and spike encoding

The preprocessing for the SHD data set was done similarly

to previous work (Yin et al., 2021). All samples were aligned to

1 s by cutting and padding with zeros and thereafter binned in

4ms bins to create 250ms long samples, thus creating samples

with equal lengths. The data is presented as spikes, so no further

preprocessing is required. The spike trains in the N-TIDIGITS

data set were downsampled and aligned to create 1,000ms event

streams for every sample.

The TI-alpha and Google Speech Commands data sets are

presented in .wav format. The first step in the preprocessing

pipeline consists of converting the raw sound files into

cochleograms. We used Librosa (McFee et al., 2015) to read out

the raw sounds. As is common in LSM literature (Verstraeten

et al., 2005), audio feature extraction was based on the Lyon

Passive Ear model (Lyon, 1982), a model of the inner ear and

the cochlea, which firstly transforms the acoustic energy into a

neural representation and then acts as a non-linear filterbank.

The extracted signal is then passed through a half-wave rectifier

and an automatic gain module. The resulting cochleogram,

containing floating-point intensities, consists of 78 channels

for TI-Alpha and 86 channels for GSC. The cochleograms

are normalized between 0 and 1. The subsequent step in the

preprocessing pipeline is converting the cochleograms into spike

trains. The spike encoding used in this work is the step-forward

encoding. In this algorithm, if the next value in the sequence

is above or below a baseline plus-or-minus a fixed threshold

value, a positive or negative spike is registered and the baseline

is adjusted to the upper and lower limit of the baseline plus-

or-minus threshold. Following Petro et al. (2019), this encoding

scheme is seen as the most versatile and robust among the most

popular spike encoding methods and therefore our preferred

method. In this work, the encoding is run separately for every

frequency channel to generate the spike trains. In both the TI-

Alpha and GSC data sets, the threshold parameter is empirically

set to 0.005. The resulting bipolar spike encoded channels

(consisting of −1, 0, or 1) are then binarized by doubling the

number of channels, creating the unipolar spike encoding. The

first and last half of the channels are used to represent the

positive and negative spikes, respectively. In Figure 2, the full

preprocessing pipeline is shown for a sample from the TI-Alpha

data set.

Results

This section discusses the results of our experiments and

is organized as follows: First, we discuss the effect of increased

input-inhibitory liquid neuron weights on the E/I balance

and the classification performance. Next, the SFA-extended

neurons are studied and, lastly, we evaluate the effect of

the neuronal diversity. The Spiking Heidelberg Digits (SHD)

data set is used to benchmark these results. Afterwards, the

results of all extensions, called the extended LSM (ELSM), are

verified on real-life speech applications (TI-Alpha and GSC

data sets), and speech recorded on neuromorphic hardware (N-

TIDIGITS). Lastly, the influence of the ELSM reservoir size
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FIGURE 2

Preprocessing pipeline shown on a training sample of the TI-Alpha data set. First, the sound files are transformed into a cocheogram, where the

relative intensities are shown for various frequency bins. Next, the output of the step-forward encoding is shown, a bipolar spike encoding. The

last step consists of a transformation to a unipolar encoding scheme, where the positive and negative spikes are split between di�erent

channels. The unipolar encoding can directly be used as input spike trains for the LSM.

and the computational demands are discussed for all data sets.

In all experiments on all data sets the input-liquid connection

probability, pin, was empirically set so that every liquid neuron

is connected to seven input neurons. Optimizing this value was

beyond the scope of this study.

E�ect of E/I balance

In this section, the effect of optimizing for the E/I

balance, based on the input-liquid synaptic weight strength,

is explored and compared to the LSM initialization from

our reference model. Based on insights from neuroscience,

E/I balance — i.e., balanced excitatory and inhibitory input

currents — should lead to efficient coding and information

processing. More precisely, E/I balance means that the net

neuronal current, averaged over time, approaches zero. We

validated this assumption for our LSM model by inspecting

the per-neuron net current by means of the excitatory and the

inhibitory neuron conductances for different input-inhibitory

liquid neuron weight distributions. The net neuronal current

is calculated by adding up the excitatory and inhibitory

conductances and averaging them over time. The mean net

current as well as its standard deviation are evaluated. In

the reference model, the relative input-inhibitory/excitatory

weight distribution ratio is equal to 1/2. In other words,

the mean input-inhibitory weights are half as strong as the

excitatory weights.

Since the LSM is randomly built, our results were averaged

over 5 random LSM initializations, similarly to previous work

on LSM by Wijesinghe et al. (2019). The weight distributions

were randomly sampled from a uniform distribution. We

explore various input-inhibitory neuron weight distributions

U[0,factor ∗ 0.4], where factor indicates the width of the

inhibitory weight distribution, relative to the excitatory weight

distribution. The input-excitatory neuron weight distribution is

kept to the original baseline values of U[0,0.4]. Both the mean

of the five independent runs as well as the standard deviation

are shown for the different input-liquid weight distributions

in Figure 3. Here, the classification accuracy on the test set,

the mean net current, the standard deviation and the number

of spikes per neuron are shown for a 2000-neuron LSM on

the benchmark SHD data set as a function of the input-

inhibitory weights, relative to the input-excitatory weights.

Naturally, since the LSM consists of random projections, we

expect some variance in our results over multiple runs. It can

be seen that with increasing input-inhibitory synapse weights,

the E/I balance, shown by the mean net current, decreases

from about 0.15–0, the point where E/I balance is found. It

should also be noted that when E/I balance is in place, the

accuracy on the test set reaches its optimal value. This optimum

correlates with a nearly zero net mean current. This result

clearly improves over the results from the baseline relative

weight distribution of 1/2, which was previously used in a single-

channel use-case (Maass et al., 2002). Furthermore, we note

that the standard deviation further increases with the inhibitory

strength, which is also found to be necessary for a deterministic

chaotic dynamic regime (Van Vreeswijk and Sompolinsky, 1996)

and in combination with a net zero averaged current, a predictor

of edge-of-chaos dynamics in an LSM (Ivanov and Michmizos,

2021). Lastly, it is also shown that the average number of spikes

per neuron is decreased by ∼12% in comparison with the

baseline LSM, leading to more efficient neuromorphic system.

The decrease in number of spikes per neuron is stabilized for

higher inhibitory-to-excitatory weight ratios due to the increase

in the number of inhibitory spikes.
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FIGURE 3

E�ect of the relative input-inhibitory weight strength on the accuracy, average net current, net current standard deviation, and the number of

spikes in the 2000-neuron LSM. These results were averaged over 5 trials.

E�ect of spike-frequency adaptation

The next experiment consists of extending the baseline LSM

containing E/I balanced input weight distributions, with the

inclusion of spike-frequency adaptation (SFA). In Figure 4, the

impact of SFA is shown for one sample of the SHD data set

(Figure 4A). In Figures 4B,C, the response of a single excitatory

neuron for this sample is shown. Here, the effect of SFA

can clearly be observed around 80ms, where no spike was

generated because of the increased threshold at that time step.

Furthermore, in Figure 4D, the output spikes for 100 random

liquid neurons are shown on this sample, clearly establishing the

sparseness of the LSM response to the input, especially for the

excitatory neurons. In Figure 4E, the total amount of spikes in

the LSM (all neurons) is shown as an evolution over time.

Similarly to the experiments described above, all

experiments including SFA were run for five independent

random LSM initializations, reducing the variance in our

results. More specifically, the baseline setup (B) and an LSM

without SFA but with the optimized input-liquid connections
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FIGURE 4

Impact of the spike-frequency adaptation: (A) Sample from the SHD training data set. (B) The evolution of the membrane potential (black) and

the adaptive threshold (red) over time for one excitatory neuron. (C) The evolution is the excitatory (blue) and inhibitory (orange) conductance

over time for the same neuron. (D) Output spikes for 100 sample neurons. (E) Momentary spike rate for the whole LSM for the SHD sample.

(B + E/I), are compared to an LSM equipped with SFA with

a fixed time constant and with an LSM that utilizes a uniform

range of SFA time constants. As described in Salaj et al. (2021),

the time constant of the adaptive threshold decay, τsfa, should

be equal to the expected time where memory is required.

In this case, where the expected duration of a feature in the

high-dimensional projection is not known, the decay time

constant is thus not evidently chosen. We experimented with

three different setups: one fixed time constant of 250 ms, equal

to the maximal duration of the input samples; the second of

550 ms, longer than the duration of the sample (250 ms); and,

a uniform distribution of U[50,1,050] ms, which has a mean of

550 ms. The uniform distribution of time constants is aimed

at both shorter and longer feature memory capacity but with

the same average as the fixed case of 550 ms. All SFA-based

experiments were performed on E/I optimized LSM designs.

The 5-run averaged effects of the inclusion of SFA on the

recognition performance and the average number of spikes per

neuron for the 2000-neuron LSM are shown in Table 3. Firstly,

the inclusion of SFA in the E/I-optimized LSM significantly
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TABLE 3 E�ect of di�erent SFA setups on the test accuracy and the

number of spikes per neuron.

B B + E/I SFA, SFA, SFA

small τsfa large τsfa (range)

Test accuracy (%) 80.9 82.1 84.1 84.2 85.3

Spikes/neuron 8.56 7.58 5.95 5.94 6.03

B refers to the baseline model, while B + E/I refers to the baseline model with E/I

balanced input-liquid weight distributions. The results for 3 different E/I optimized LSM

setups with SFA are shown: small τsfa , large τsfa,and (range) refer to a time constant

of 250, 550ms and a uniform distribution of time constants between 50 and 1,050ms,

respectively. These results were averaged over five independent trials.

improves the classification accuracy, independent of the chosen

time constant setup, over the baselinemodel (B) and the baseline

model with E/I balanced input-liquid weight distributions

(B + E/I). Secondly, there is a difference of about 1% in

accuracy between one fixed decay time constant and the uniform

distribution, where the bigger time constant (slower decay),

outperforms the smaller one. The distribution is chosen with

the aim of retaining memory for different durations. We have

identified that this diversification of feature memory is useful

in discriminating between different classes, leading to a more

diverse liquid feature extraction than the case with a fixed time

constant, and thus better results. Naturally, by increasing the

spike threshold Vth, the total number of spikes in our system

decreases, making the SFA-enriched LSM even more sparse

and therefore computationally efficient in comparison with the

baseline. The average number of spikes does not significantly

differ between the SFA setups.

E�ect of neuronal diversity—ELSM

The last extension of the baseline LSM consists of further

diversifying the liquid response by randomly sampling the

membrane potential decay time constants instead of picking

one fixed value. Similarly to the effect of the diversified time

constants used in the SFA experiments, this leads to a more

diversified liquid state response, as a neuron with low τ will be

more responsive to incoming spikes, but even so will have more

leak in comparison with neurons with higher τ .

In this experiment, the baseline LSM is compared to the

E/I optimized LSM with and without SFA and a fixed τ of

30 ms, as well as compared to the same LSM with uniformly

distributed membrane potential time constants: U[5, 55]ms,

where themean time constant is equal to the time constant in the

baseline. The last version, containing all previous extensions and

the diverse time constants is called the extended LSM (ELSM).

The results of this experiment, averaged over five independent

initializations, are shown in Table 4 for a liquid with 2000-

neurons.

TABLE 4 The individual impact of all proposed extensions to the

baseline LSM (B) 2000-neuron model.

B B + E/I B + E/I + SFA ELSM

Test accuracy (%) 80.9 82.1 85.3 86.1

Spikes/neuron 8.56 7.58 6.03 6.83

The final model, containing all extensions is called ELSM. These results were averaged

over 5 independent trials.

First, to show the effect of the diversification of the

membrane potential time constants, the optimized baseline

(+ E/I + SFA) is compared to the full ELSM. There is a clear

improvement in the reported classification accuracy as well as

an increase in the average number of spikes per neuron in

the LSM. The improvement in the reported accuracy can be

related to the more diverse temporal feature set that is extracted.

The diversification of the time constants was reported to have

a similar effect when these time constants were learned via

backpropagation-through-time (BPTT; Yin et al., 2021) and is

related to the heterogeneity of the LSM, which was shown to

improve robust learning in an SNN (Perez-Nieves et al., 2021).

In our case, these time constants were however randomly picked

from a uniform distribution. The increase in spike activity can be

explained by the addition of “more responsive” neurons, which

will have a higher probability of spiking when a presynaptic spike

arrives. Finally, when comparing the baseline (Maass et al., 2002)

LSM to the ELSM, it is clear that the proposed extensions result

in an improvement both in terms of recognition performance,

with an average increase of 5.12%, and computational efficiency,

by decreasing on average 20.21% of the spikes per neuron, for a

2000-neuron LSM on the SNN benchmark SHD dataset.

ELSM results across speech recognition
data sets

To illustrate that the proposed extensions to the baseline

LSM provide general enhancements, which are applicable

beyond the SHD benchmark data set, all proposed extensions

were validated on other speech data sets (TI-Alpha, N-

TIDIGITS and GSC). As is commonly known in reservoir

computing, the size of the reservoir—i.e., the size of the random

high dimensional spatio-temporal projection — determines the

computational power of the LSM as a whole. Scaling to larger

(>2,000 neurons, our reference size) number of neurons in the

liquid is an easy way to improve the results and even attain

similar performances as BPTT-trained spiking neural networks,

without changing any other LSM parameter. For every data set,

the following procedure was followed: first, the E/I balance was

achieved, then the SFA and diversification of time constants were

introduced to get to the ELSM. This setup remains unchanged
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TABLE 5 Comparison of the baseline LSM to the ELSM and the

state-of-the art in spiking neural networks across di�erent data sets.

Model Learning method Accuracy (%)

Dataset: SHD

2000-LSM Baseline Logistic regression 80.9

2000-ELSM Logistic regression 86.1

16k-ELSM Logistic regression 89.3

Heterog. SRNN (Perez-Nieves

et al., 2021)

Surrogate gradient descent 82.7

SRNN (Yin et al., 2021) Surrogate gradient descent 90.4

Dataset: TI-Alpha

2000-ensemble LSM (Wijesinghe

et al., 2019)

BP on last layer 85.0

2000-LSM baseline Logistic regression 92.1

2000-ELSM Logistic regression 95.0

16k-ELSM Logistic regression 95.5

Sr-SNN (Zhang and Li, 2021) TSSL-BP 95.6

Dataset: N-TIDIGITS

512-LSM (Balafrej et al., 2022) BP on last layer 71.3

2000-LSM baseline Logistic regression 82.9

2000-ELSM Logistic regression 86.3

16k-ELSM Logistic regression 88.1

ST-RSBP (Zhang and Li, 2019b) Spike-train BP 93.9

Dataset: GSC (35 classes)

2000-LSM baseline Logistic regression 66.7

2000-ELSM Logistic regression 69.5

16k-ELSM Logistic regression 83.3

64k-ELSM Logistic regression 87.3

LSNN-SFA (Salaj et al., 2021) E-prop 88.5

when the size of the ELSM is increased. The results of the

baseline LSM, the ELSM, and a scaled ELSM, compared to the

state-of-the-art in spiking neural networks are shown in Table 5.

For the LSM implementations, the number of liquid neurons is

shown in the model name.

First, when comparing the baseline LSM implementation

to the extended LSM (ELSM), with an equal amount of

neurons, there is a clear improvement across all data sets. It

should be noted that the ELSM parameterization, apart from

the E/I balanced input-liquid weights, is always exactly the

same, independent of the data set. The probability of input-

liquid synapses, the recurrent weight distributions, the liquid

topology, neuron, and synapse parameters were kept constant

throughout all experiments. This shows that the proposed

extensions are general improvements upon the theoretical base

LSM implementation (Maass et al., 2002). Unlike our previous

research on LSMs (Tsang et al., 2021), where the optimal

input-liquid connection probability is derived separately for

every data set, in this work an empirically set rule of

thumb is used. The input-liquid connection probability is

fixed in such a way that every liquid neuron is connected

to ∼7 randomly picked input neurons. This rule is used

in all experiments and led to comparable performance to

state-of-the-art models using exactly the same ELSM setup

across data sets. Fine-tuning this probability was beyond

the scope of this work. Only the regularization parameter

(C) in the logistic regression model was updated. There is

thus a clear improvement in terms of accuracy between the

baseline LSM and the ELSM for different data sets. In case

of the more noisy GSC data set, where the task at hand is

more complex, it can see that a larger amount of neurons

is required to attain similar improvements, relative to the

state-of-the-art in SNNs. Since the ELSM applies a random,

spatio-temporal, high-dimensional projection, a larger ELSM is

required to extract all features required for better performances.

This explains the smaller performance increase on the GSC

data set.

Furthermore, across all data sets, scaling the liquid effectively

increases the classification performance in comparison with

the reference 2000-neuron ELSM. For these data sets, by

increasing the liquid size, we were even able to achieve

comparable performance to the state-of-the-art SNN models,

trained with surrogate gradient descent. Many of these state-

of-the-art models were improved with similar ideas as the

ones presented in our ELSM. Spike-frequency adaptation (Salaj

et al., 2021; Yin et al., 2021) and neuronal heterogeneity

(Perez-Nieves et al., 2021) proved to be essential to achieve

these results. In our case, this was achieved without the

biologically implausible concept of backpropagation of gradients

throughout the network. After network creation, the ELSM

is unchanged as the random synapses are not learned.

The only learning in the ELSM was performed in the

output layer, where a linearly optimized logistic regression

model was trained on the spike counts of the excitatory

liquid neurons.

Considerations on computational
demands

In this section, we provide some initial considerations on

the ELSM computational demands. The number of neurons in

an ELSM is generally higher in comparison with the BPTT-

learned methods in order to get to a similar classification

performance. The ELSM is sparsely built, as every neuron is

connected to ∼9.5 other neurons on average, independent of

the ELSM size, whereas in state-of-the-art BPTT-based learning

methods all-to-all connected networks are used. Additionally,

the ELSM spiking behavior is sparse as well, where the

number of spikes per neuron per sample is significantly
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FIGURE 5

Recognition performance comparison on the test set between

full 2000-neuron ELSM model (64-bit) and the lower resolution

model (4-bit) across the selected data sets.

lower (order of magnitude less) than the reported average

spike frequency BPTT SNN works (Yin et al., 2021). The

combination of sparse synaptic connections and spiking activity

could lead to an efficient hardware implementation on a

neuromorphic chip.

Similarly to Jin and Li (2017), we investigated whether the

synaptic weight resolution could be based on four bits instead of

the regular 64-bit resolution, both for the input-liquid weights

and the recurrent liquid-liquid synapses. The lower weight

resolution would make the ELSM less computationally intensive

and require less memory. We validated this concept for the

2000-neuron ELSM on all studied data sets.

As can be seen in Figure 5, the reduction to four-

bit weight resolution does not lead to a drastic drop in

performance, in comparison with the original ELSM, on

any of the data sets. This result can be explained by the

random weight initialization. Since these weights are not

trained, the smaller relative differences between them do not

influence the general behavior of the liquid as much as the

weights in an end-to-end trained SNNs could. The four-bit

resolution suffices to differentiate between the different weight

values. These results show that the ELSM weight resolution

can be lowered to four-bit without significant performance

losses. An extensive investigation on low-resolution weights,

including a comparison with state-of-the-art SNN architectures

and their implementation in hardware is a subject of

future research.

Discussion

In this work, we propose the extended LSM (ELSM)

model. The ELSM brings together an optimized E/I balance

leading to edge-of-chaos dynamics, improved memory capacity

through spike-frequency adaptation and liquid heterogeneity.

We showed that these extensions improved the computational

capacity of the LSM, thereby improving the classification

performance on various speech data sets while keeping the

added computational cost to a minimum, even reducing the

spiking activity. In contrast with other works that are focused

on improving the accuracy of LSM by adapting or learning

the neuronal parameters or synapses in the LSM, in this

work a fixed ELSM model is proposed. After a standardized

initialization procedure, the model does not require any fine-

tuning or training, apart from a logistic regression classifier.

This shows that the proposed ELSM model can act as a

general, all-purpose, high-dimensional, spatio-temporal feature

extractor. The straightforward traditional reservoir structure

of and training procedure for the LSM remain unchanged,

retaining the benefit of training speed and simplicity. Our

experiments have thus shown that some of the brain’s

computational principles can be added to the basic LIF and

LSM models to improve the coding efficiency and, therefore,

lead to a superior performance on the selection of benchmark

data sets. This shows that insights from computational

neuroscience can benefit neuromorphic engineering, leading to

novel research results at the crossroads of artificial intelligence

and neuroscience.

Liquid statemachines are seen as one of themost biologically

plausible spiking neural networks but often disregarded because

of their reported inferior classification performance, compared

to the current state of the art in spiking neural networks—

i.e., research based on backpropagation through time via

surrogate gradients. In this work, we show that given an

initialization with E/I balance, spiking LIF neurons with SFA,

neuronal heterogeneity and a liquid with dimensions matching

the requirements of the task at hand, the ELSM consistently

outperforms the baseline LSM and even attains state-of-the-

art performance on all examined speech benchmark data

sets. With the ELSM, these results are achieved without the

biological implausible backpropagation of gradients throughout

the network. In comparison with the all-to-all connected

networks with fine-tuned weights, the ELSM is larger in

terms of number of neurons, yet it has a very sparse

and low-precision connection matrix, as it consists of a

locally connected recurrent microcircuit with sparse activations.

Moreover, we illustrated that the ELSM can be effectively

downsized to lower resolution without significant losses

in performance.

Our study also leaves some elements that could be

addressed in future research. The conductance-based leaky

integrate-and-fire neuron model, introduced in this study

for fair comparison with the base LSM, is more complex

than the commonly used LIF neuron model. A possible

next step is to verify that similar results could be attained

with a simpler neuron model. Another point concerns the

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.1023470
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Deckers et al. 10.3389/fnins.2022.1023470

search for the optimal E/I balanced weight distribution.

This procedure could possibly be automated by learning

the synaptic weights, for instance, based on the concept

of astrocytes (Ivanov and Michmizos, 2021). Additionally,

topological heterogeneity, which could further diversify the

liquid response (Hazan and Manevitz, 2012) and the inclusion

of dendrites to the neuron model (Yang et al., 2022a), could

also be a topic of investigation. Lastly, an extensive robustness

study as well as an investigation on low-resolution weights

and a comparison in terms of computational demands of

the ELSM in relation to state-of-the-art SNNs would be

of interest.
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