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Faster and cheaper computers have been constantly demanding technological and architectural improve-

ments. However, current technology is suffering from three technology walls: leakage wall, reliability wall,

and cost wall. Meanwhile, existing architecture performance is also saturating due to three well-known ar-

chitecture walls: memory wall, power wall, and instruction-level parallelism (ILP) wall. Hence, a lot of novel

technologies and architectures have been introduced and developed intensively. Our previous work has pre-

sented a comprehensive classification and broad overview of memory-centric computer architectures. In this

article, we aim to discuss the most important classes of memory-centric architectures thoroughly and evalu-

ate their advantages and disadvantages. Moreover, for each class, the article provides a comprehensive survey

on memory-centric architectures available in the literature.
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1 INTRODUCTION

For several decades, CMOS down-scaling and architecture improvements have doubled com-
puter performance following Moore’s law [28, 80, 90]. However, existing technology suffers from
three main walls: leakage wall, reliability wall, and cost wall [75, 189], while computer architec-
tures also face three walls: memory wall, power wall, and instruction-level parallelism (ILP)

wall [62, 152, 192]. To address these walls, a lot of novel technologies and architectures are under
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research to improve the performance [89, 123, 141]. As a result, an enormous amount of archi-
tectures have been proposed so far. Therefore, a comprehensive survey on those architectures is
needed to maintain a systematic view on these architectures.

Since the first Von-Neumann architecture in early 1950s, computer architectures have been
evolved to various complex organizations, including pipelined, superscalar, multicore, and so
on [69, 80, 96]. Since the energy and performance costs to move data between the memory sub-
system and the CPU dominated the total costs of computation, architects and designers are forced
to find breakthrough in computers architecture. Memory-centric computing paradigms such as
Processing-in-memory (PIM) have evolved as promising solution to circumvent the aforemen-
tioned challenges [102, 135]. PIM, a concept of integrating memory and processing units, so-called
Logic-in-Memory (LIM), was invented in 1970 [178]; however, it was only applied to cache/on-
chip memory and was soon abandoned due to the reduced performance during non-local mem-
ory accesses [150]. Since 2000, big data and embedded applications have been on the rise and
demand new computing systems with not only higher performance but also energy efficiency. To
fulfill these requirements, several architectures were explored with the concept of LIM applied
for main memories, and regarded as PIM architectures (i.e., FlexRAM [99], DIVA [47], intelligent
RAM [105] etc.). However, the PIM architectures were also shortly dismissed due to the limita-
tions of embedded DRAM technology [91, 100, 101]. From the year 2008, emerging non-volatile
memory technologies (e.g., memristor) have revived the concept of Processing-In-Memory under
the new name In-Memory Computing [43] or Computation-In-Memory [76]. The novel architec-
tures together with new memory technologies promise a lot of potential in terms of area, perfor-
mance, and energy-efficiency improvements [44, 74, 76, 125, 169–171]. In this regard, there are
several works that can be labeled as In-memory computing, such as Computation-In-Memory

(CIM) [51, 60], ReVAMP [17], Pinatubo [117], and so on. All these architectures have common and
distinct features, and these properties were addressed at least partly in the community. This leads
to confusion in differentiating these architectures and hence, limiting the exploration potential of
novel architectures.

To assess the developments in Computation-In Memory (a.k.a. memory-centric architectures)
and determine the innovation potentials, it is essential to classify and evaluate the existing
memory-centric architectures. In this regard, our previous work presented a classification method-
ology and broad overview of memory-centric computing [140]. As follow-up of that earlier work,
this article refines the classification metrics and presents a comprehensive set of classification met-
rics for memory-centric architectures. The metrics are then used to classify the existing memory-
centric architectures. Then, for each class, based on the classification metric, a comprehensive
survey on existing memory-centric architectures available in the literature is provided. Therefore,
the main contribution of this article is a comprehensive survey on existing memory-centric archi-
tectures by thoroughly discussing and evaluating the advantages and disadvantages of different
memory-centric architectures belonging to the main classes of the classification. Thus, the article
contributions are summarized as follows:

• Presenting main characteristics and working principles of existing memory-centric
architectures.
• Discussing and evaluating main advantages and disadvantages of each architecture.
• Comprehensive survey and comparison of different existing architectures and provide an

outlook on the characteristics of the future architectures.

The rest of this article is structured as follows: Section 2 summarizes the metrics used for the clas-
sification, the overview of different classes, namely, Computation-In Memory Array (CIM-A),

Computation-In Memory Periphery (CIM-P), and Computation-Out-of-Memory (COM).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 4, Article 79. Pub. date: October 2022.



A Survey on Memory-centric Computer Architectures 79:3

Section 3 presents summary of architectures in the CIM-A class. Similarly, Section 4 presents ar-
chitectures in CIM-P class followed by the COM class architectures in Section 5. Each section de-
scribes and evaluates the architectures in their respective classes qualitatively. Section 6 discusses
the prospect and challenges of memory-centric architectures. Section 7 concludes the article.

2 CLASSIFICATION CRITERIA FOR MEMORY-CENTRIC ARCHITECTURES

Evaluation and classification of modern computing systems is a complex process, as several met-
rics can be used to classify and evaluate computing systems [165]. Among the various metrics,
performance, computing power, and resource utilization-based classification and evaluation of
computing systems has been widely used in the literature [85, 165]. However, classification of
computing systems based on computation location and computing resource technology, such as
memory technology, has not been explored so far due to the universal adoption of Von-Neumann
architecture and CMOS technology dominance. Memory is the main storage unit in any comput-
ing platform, as shown in Figure 1(a); it can include only memory core with memory arrays and
its supporting peripheral circuits, or memory core with extra logic circuits, which is called mem-
ory System-in-Packages (SiP). The computations are performed traditionally using computation
cores, however, they can also be performed using extra logic circuits, peripheral circuits, and mem-
ory array of the memory SiP. With the abundance of Memory-centric architectures, it is becoming
increasingly important to define efficient classification and evaluation metrics that can be used to
analyze different memory-centric architectures. For this purpose, in our earlier paper, we devel-
oped two classification metrics, namely, computation position/location and memory technology.
These classification metrics are summarized in the following subsections.

2.1 Computation Position

Computation position defines where the result of the computation is produced. A computation
includes a primitive logic function (e.g., logical operations) or arithmetic operation (e.g., addi-
tion, multiplication). The possibilities of computation position can be seen at the four circles in
Figure 1(a). If the result is produced within the memory core (labeled as 1 in Figure 1(a)), then
the computer architecture is referred to as Computation-In-Memory Array (CIM-A); if the
result is produced within the memory array periphery (labeled as 2 in Figure 1(a)), then the archi-
tecture is referred to as Computation-In-Memory Periphery (CIM-P); otherwise, the result is
produced outside the memory core (labels 3 and 4 in Figure 1(a)) and the architecture is referred
to as Computation-Out-of-Memory (COM).

• CIM-A: In CIM-A, the computation result is produced within the memory array (noted as
position 1 in Figure 1(a)). Note that this is different from a standard write operation. Typi-
cal examples of CIM-A architectures use memristive logic designs such as MAGIC and im-
ply [104, 108]. CIM-A architectures mostly require a modification at the cell-level to support
such logic design, as the conventional memory cell dimensions and their embedding in the
bit- and wordline structure do not allow them to be used for logic. In addition, modifica-
tions in the periphery are sometimes needed to support the changes in the cell. Therefore,
CIM-A architectures can be further subdivided into two groups: (1) basic CIM-A, where only
changes inside the memory array are required. An example of basic CIM-A is an architec-
ture that performs computations using implication logic [112]; (2) hybrid CIM-A, where, in
addition to major changes in the memory array, minimal to medium changes are required in
the peripheral circuit. An example of hybrid CIM-A is an architecture that performs compu-
tations using MAGIC [108]. In this case, multiple memory rows are written simultaneously;
due to the high write currents, modifications are required to the cell and medium changes
in the peripheral circuits are needed to activate the multiple rows.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 4, Article 79. Pub. date: October 2022.



79:4 A. Gebregiorgis et al.

Fig. 1. Computer architecture and proposed classification.

• CIM-P: In CIM Periphery (CIM-P) architectures, the computation result is produced
within the peripheral circuitry (noted as position 2 in Figure 1(a)). Typical examples of
CIM-P architectures contain logical operations and vector-matrix multiplications [39, 117].
CIM-P architectures typically contain dedicated peripheral circuits such as DACs and/or
ADCs [63, 164] and customized sense amplifiers [117, 203]. Note that more radical changes
in the peripheral circuit can be made in the future (e.g., changing in control voltages leads
to radical changes in voltage drivers and sense amplifiers, or including a full functional pro-
cessor inside memory banks). Even though the computational results are produced in the
peripheral circuits for CIM-P, the memory array is a substantial component in the computa-
tions. As the peripheral circuits are modified, the currents/voltages applied to the memory
array are typically different than in the conventional memory. Hence, similar to the CIM-A
sub-class, the CIM-P architectures are also further divided into two groups: (1) basic CIM-P,
where only change in the peripheral is required, which means the current levels should not
be affected. An example of basic CIM-P is Pinatubo logic [117]; (2) hybrid CIM-P, where the
majority of the changes take place in the peripheral circuit and minimal to medium changes
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in the memory array. An example of hybrid CIM-P is ISAAC [164]. ISAAC activates all rows
of a memory array at the same time during read operations to perform a matrix vector multi-
plication using an ADC readout circuit. This architecture accumulates currents in the bitline
that impose higher electrical loading in the memory array; hence, not only is the periphery
circuit heavily modified but also the cell requires changes due to the high bitline current.
• COM: In Computation-Out-of-Memory (COM) architectures, the computation is per-

formed in the extra logic circuit available inside the memory SiP (noted as position 3 in
Figure 1(a)). If the computation is performed by off-memory computational cores (noted as
position 4 in Figure 1(a)), then the architecture is similar to the classical Von-Neumann archi-
tecture and hence, it is not discussed in this article, as the article focuses on memory-centric
architectures.

2.2 Memory Technology

Memory technologies can be classified as charge-based memories and non-charge-based memo-
ries. In charge-based memories such as Dynamic Random Access Memory (DRAM), Static

Random Access Memory (SRAM), and Flash, information is stored through the presence of
charge [67, 121, 122, 134]. Whereas, the non-charge-based memories include different types of
storage elements distinguished by their physical mechanism; these include resistive [16, 23, 59,
159, 196], “magnetic” memories [18, 20–22, 37, 68, 138, 159] and other types of memories such as
molecular memories [71, 114, 115, 155] and mechanical memories [31, 73]) that can currently not
be used for computing and are not discussed further in this classification.

2.2.1 Charge-based Memories. The SRAM and DRAM memories are largely adopted by the
semiconductor industries. Both of these memories are volatile in nature, which means they require
power supply to maintain their state. A six transistor bit-cell design is commonly used in SRAM,
whereas DRAM bit-cell comprises a capacitor and a transistor. Although SRAM has faster accesses,
its bit-cell size is much larger and consumes more leakage than DRAM. Despite the fact that DRAM
has a significant advantage in terms of density, it requires periodic refresh to retain its data. Due
to their volatility, both of these memories are facing serious power dissipation problems. On the
contrary, Flash is a non-volatile memory that uses a floating gate transistor that has a charge
trapping mechanism. Since flash uses only a single transistor, its density is significantly higher
than that of DRAM. However, it requires high voltage and considerably long duration to write a
value. Moreover, it has limited endurance due to gate oxide degradation under strong electric field,
meaning it can be only employed for applications where a few write operations are required.

2.2.2 Non-charge-based Memories. RRAM, MRAM, and PCAM store information in the form
of resistance states; these devices are thus also termed as memristors. These devices can be pro-
grammed in high resistance or low resistance states using reset or set electrical pulses. The RRAM
cell consists of a top-electrode and a bottom-electrode that is separated by an oxide layer. Based on
the formation/ disruption of a Conductive Filament (CF), the resistive switching of RRAM de-
vices takes place. The size of the CF determines the resistance state of the device. When a suitable
positive voltage is applied, the breakage of ionic bonds increases the size of the CF, leading to a
low resistance state of the device. However, when a suitable negative voltage is applied, some ions
move back into the oxide region, thus reducing the size of the CF, resulting in a high resistance
state. RRAMs are capable to perform multi-level bit storage.

In MRAM technologies, the value is stored in a Magnetic Tunnel Junction (MTJ) cell that
consists of an oxide layer that is sandwiched between two ferromagnetic layers. Out of these two
ferromagnetic layers, one is reference layer in which the magnetization is always fixed. The other
one is known as free layer, whose magnetic orientation can be freely rotated, depending on the
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Table 1. Design Metrics for Various Memory Technologies

(Data Obtained from References [147, 158])

Comparison
metric

SRAM
(6T)

DRAM
(1T1C)

Flash
(1T)

RRAM
(1T1R)

MRAM
(1T1R)

PCRAM
(1T1R)

Size (F 2) 120–150 10–30 10–30 10–30 10–30 10–30

Volatility Yes Yes No No No No

Write energy ∼fJ ∼10fJ ∼100pJ ∼1pJ ∼1pJ ∼10pJ

Write speed ∼1ns ∼10ns 0.1–1ms ∼10ns ∼5ns ∼10ns

Read speed ∼1ns ∼3ns ∼100ns ∼10ns ∼5ns ∼10ns

Endurance 1016 1016 104–106 107 1015 1012

Scalability medium medium medium high high high

direction of current flowing through it. When the magnetic orientation of these two layers are
parallel and anti-parallel to each other, the cell exhibits low and high resistance states, respectively.
Reading a value from the MTJ cell applies the principle of Tunneling Magneto-Resistance effect.

PCRAM exploits the large resistance contrast between the amorphous and crystalline states of a
chalcogenide glass. The change from a high resistive amorphous phase to less resistive crystalline
phase is induced by heating the material above its crystallization temperature for a certain dura-
tion. The reverse switching can be realized by melting and quenching the material using a reset
electrical pulse. Due to these switching mechanisms, PCRAM devices have the capability to achieve
a number of intermediate distinct states, enabling the feature of multi-bit storage similar to RRAM.

The unique characteristics associated with each memory technology are illustrated in Table 1.
Besides to the regular memory operations, a range of in-memory logic and arithmetic operations
can also be performed using these memory technologies [3, 58, 76, 172].

2.3 Computation Parallelism

Computation parallelism defines the level of parallelism that can be exploited in a computer sys-
tem; i.e., task-, data-, and/or instruction-level parallelism. In task-level parallelism, a system has
multiple independent control units and data memories; examples include multi-threading [54, 185]
and multicore systems [69]. In data parallelism, a system has a single control unit used to apply the
same instruction concurrently on a collection of data elements; examples include data elements
with constant sizes (e.g., vector and array processor [52, 61]) and varying sub-word sizes (e.g.,
SWAR (SIMD Within A Register) processor [154]). In instruction-level parallelism, a system
has a single control unit used to execute various instructions concurrently; examples include intra-
instruction (e.g., pipe-lined processor [184]) and inter-instruction (e.g., VLIW processor [198]) par-
allelism. Additionally, they can be combined together as in speculative processor [124].

Based on the above discussed metrics, 36 classes can be differentiated by combining computa-
tion location with memory technology as shown in Figure 1(b); among those classes, 11 classes are
occupied by the existing architectures, which are located in red and pink planes (see Figure 1(b)).
The red plane demonstrates that a lot of work has been done for that particular class. The pink
plane demonstrates a moderate number of work has been done. The cyan plane demonstrates ei-
ther unexplored classes due to the lack of attention from the research community or non-existing
due to current restrictions of memory technologies. The developments in memory-centric com-
puting are shown in the timeline of Figure 2; this shows the trend of computing moving from
processor-centric to memory-centric architectures (CIM-A, and CIM-P). In the figure, a larger cir-
cle indicates that more work has been proposed in that year. As it can be seen from the figure, the
concept of merging computation and memory was introduced back in 1970.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 4, Article 79. Pub. date: October 2022.



A Survey on Memory-centric Computer Architectures 79:7

Fig. 2. Evolution timeline of memory-centric architectures.

Table 2. Comparison among Architectures of CIM-A Classes

Hierarchy

level

Computations
Memory

Technol-

ogy

Overheads
Sneak

path

current

Destru-

ctive

read

Require

read-

out*

Copy

scheme

Evaluation

Logic

style
Available

func-

tions

Periphery Controller Simulator App.

DRISA-3T1C [116] Accelerator DRAM Boolean DRAM Modif. Simple No No No Both CACTI-
3DD,
in-house

CNN

CRS [167] Accelerator CRS Logical, + RRAM Conv. Complex No Yes Yes Indirect Hspice No

CIM [51, 74, 76] Accelerator Varied Logical, +,
x

RRAM Conv. Varied Yes No Varied Both Analytical Parallel
adder and
multiplier

PLiM [5] Main memory Majority Majority
gates

RRAM Conv. Complex Yes No Yes Both Analytical Encryption

MPU [83] Main memory MAGIC Logical, +,
x

RRAM Conv. Simple Yes No No Both Analytical Image pro-
cessing

ReVAMP [17] Main memory Majority Majority
gates

RRAM conv. Complex Yes No Yes Both Analytical EPFL
bench-
marks

+: n-bit addition, Conv.: Conventional, (*): Required read-out during computations.

x: n-bit multiplication, Modif.: Modified, App.: Applications and benchmarks.

In the following sections, we will discuss the existing architectures classified based on their
computation position. Please note that each computation position-based classes are consisting of
architectures implemented using different memory technologies.

3 COMPUTATION-IN-MEMORY - ARRAY (CIM-A)

The CIM-A class contains mostly resistive computing architectures that use memristive-based logic
circuits [50] to perform computations and resistive RAM (RRAM) as memory technology. Few
architectures have been proposed in this category. Table 2 shows a brief comparison among the
architectures that will be explained in each subsection.

On one hand, all these architectures have several common advantages:

• Low memory access/bandwidth bottleneck due to computing inside the memory.
• High data parallelism due to the possibility of performing concurrent operations inside the

crossbars.
• Low leakage due to the usage of non-volatile memory technology and small footprint when

compared to conventional memory technologies, but only in the case of very large memory
array.
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On the other hand, they all share several limitations:

• High computing latency per access due to the high latency of writing memristors and the
need of multiple write steps to perform Boolean functions. Note that despite a high comput-
ing latency, the performance can be still high when sufficient parallelism is exploited.
• Higher endurance requirement due to the need of multiple write steps to perform Boolean

functions.
• The cell designs are mostly modified to make the computing feasible.

The following subsections discuss the details and characteristics of each architecture. In this
subsection, DRAM-based architecture is presented first, and the remaining RRAM-based architec-
tures are discussed in a chronological order of their date of publication. This ordering technique
is also reflected in Table 2.

3.1 DRISA-3T1C: A DRAM-based Reconfigurable In Situ Accelerator with

3 Transistors and 1 Capacitor (3T1C) Design

DRISA-3T1C was proposed in 2016 by S. Li et al. from University of California [116]. It is a DRAM-
based architecture that exploits data parallelism by performing NOR gate inside DRAM cells [166].
The architecture consists of a DRAM memory organized in a hierarchy of banks, sub-arrays, and
mat; each levels is controlled by their corresponding controllers as shown in Figures 3(a), (b), and
(c). The banks are connected through global bus (gbus), while communication among subarrays
is carried out using bank buffers (bBuf). The mats perform both data storage and computations.

The memory mats consist of cell regions for both data and computations and peripheral circuits
including calc-SA (Sense Amplifier), intra/inter-lance shifter, and lane forwarding unit. The cell
regions contains multiple DRAM cells that consist of three transistors connected to form a NOR
gate and one capacitor to store the data value (see Figure 3(d)). To perform computations, two
DRAM cells (Rs and Rt) to be activated simultaneously and one DRAM cell (Rr) to store the com-
putation result (as shown in Figure 3). Read voltages are applied to the sources DRAM cells (Rs and
Rt) through the wordline (rWL), while write voltage is applied to the result DRAM cell (Rr). The
voltage collected by the sense amplifier (SA) is used to control the transistor in the Rr DRAM
cell as shown in Figure 3(d). Due to the NOR organization of these transistors, a NOR operation
is realized and produces results in DRAM cells. The SA (also called calc-SA) cooperates with extra
logic circuitry such as SHF and FWD to perform complex functions such as addition, copy, and in-
ner product. DRISA-3T1C has the following advantages on top of the general advantages of CIM-A
architectures:

• The latency of NOR primitive functions is fixed.
• The data transfer may include both direct and indirect schemes.
• The architecture does not suffer destructive read as in the case of CRS architecture [167],

hence the write energy might be less due to the absence of write-after-read.
• The controller is simpler than for the CRS architecture, as each operation consists of a fixed

number of steps while fewer control voltage values are used.
• The architecture uses DRAM technology, which has several benefits, such as: high matu-

rity and endurance, no sneak path currents, and the accessibility to optimized architectures,
technology, and tools.

In spite of those advantages, DRISA-3T1C also has its own set of limitations that impact its effec-
tiveness. The limitations of DRISA-3T1C include:

• The latency of complex functions varies, depending on the functional complexity, as each
function needs to be converted into multiple NOR gates.
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Fig. 3. A DRAM-based Reconfigurable In Situ Accelerator (DRISA) [116].

• The architecture uses DRAM technology, which suffers from low performance, high energy
consumption, large footprint, and is difficult to scale down.

The architecture is simulated and evaluated against GPU TITAN X [146] using four CNN appli-
cations, including 8-layer AlexNet [106], 16-layer VGG-16 [168], 19-layer VGG-19, and 152-layer
ResNet-152 [79].

3.2 CRS: Complementary Resistive Switch Architecture

Complementary Resistive Switch (CRS) architecture was proposed in 2014 by A. Siemon et
al. from RWTH Aachen University [167]. It is a memristor-based architecture that exploits data-
level parallelism using implication logic. The architecture shown in Figure 7 consists of multiple
crossbars and a control unit. The crossbar stores and performs logic operations using CRS cells; a
CRS cell consists of two resistive switches or resistive RAMs. The control unit distributes signals
to the intended addresses (wordlines and bitlines) to perform operations on the crossbars.

The crossbar is controlled by a sequence of operations including: write-in (WI), read-out (RO),

write-back (WB), and compute (CP). Before the operations can be performed, the crossbar part
used for computation is entirely reset to a logic value 0. The WI operation writes a logic value into
a memristor. The RO operation reads a logic value from a cell; the logic output value is determined
by the sense amplifier. The RO operation is destructive and changes the value of the memristor
to logic value 1. The task of the WB operation is to recover the destroyed value. Finally, the CP
instructions are used to execute the implication logic gates [118, 167]. The data transfer between
CRS cells is carried out through the control unit using a RO and WB operations; in other words, the
control unit reads a value of the source CRS cell and writes it into the destination cell. In addition
to the general advantages of CIM-A architectures, CRS has the following advantages:

• It is less impacted by the sneak path currents due to the usage of CRS cells. The cell’s re-
sistance is always equivalent to high resistance, hence, sneak path currents are eliminated.
However, variations in resistances will make such paths practically unavoidable unless a
1T2R cell is used.
• CRS logic requires fewer cells to perform computations than Fast Boolean Logic (FBL),

which is required to express the sum-of-product format.
• It is possible to use sufficiently large crossbar arrays, meaning effective overhead due to

control circuits can be minimized.

However, it also has the following limitations:

• The latency of the primitive functions varies and requires extra read-out instructions to
determine the voltages that have to be applied.
• The RO operation is destructive, hence, a WB operation is required after each RO operation,

which increases the latency and energy of computations.
• The data transfer method is indirect, as it is based on the read-out and write-back scheme.

As all cells have high resistance, direct copying of cells in the crossbar is not applicable.
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Fig. 4. The Computation-In-Memory Architecture (CIM) [51].

• The control unit imposes a high overhead, as it is responsible for both controlling the cross-
bar (requiring a large number of states) and transferring data (which involves the usage of
buffers/registers to store temporary values).
• The area of CRS cells is larger than those based on single memristor cells.
• The architecture requires additional compiling techniques and tools to convert conventional

Boolean logic functions to implication logic.

This architecture was only evaluated at circuit level using adders. Therefore, it is hard to make
general conclusions on the performance and the applicability of this architecture.

3.3 CIM: Computation-In-Memory

CIM was proposed in 2015 by H. A. Du Nguyen et al. from Delft University of Technology [51, 74,
76]. It is a memristor-based architecture that exploits data-level parallelism by using any memristor
logic style; the authors have showed the potential of this architecture using Fast Boolean Logic

(FBL) [202] and implication logic [167]. The architecture consists of a memristor crossbar and a
control and communication block as shown in Figure 4 [74]. The memristor crossbar stores data
and performs computations. The control and communication block applies appropriate voltages
to the memristor crossbar.

The architecture uses state machines stored in the control and communication block to compute
and transfer data in the crossbar. Once triggered, the state machine applies an appropriate se-
quence of control voltages to the rows and columns of the memristor crossbar. Depending on the
memristor types, the data transfer occurs directly inside the crossbar (for single RRAM cells) or
indirectly through the control and communication block outside the crossbar (for CRS cells) using
the CRS read-out/write-back scheme. In addition to the general advantages of CIM-A architectures,
CIM comes with the following set of advantages:

• The architecture can accommodate any type of memristor logic design due to the flexibility
of the control and communication block.
• In case FBL is used, the latency of primitive functions (i.e., addition, multiplication) is a

constant number.
• The data transfer using both direct and indirect schemes has been intensively explored in Ref-

erences [49, 200].
• The control block of FBL is less complex than the control block of implication logic due to a

fixed number of write steps and a simpler control voltage scheme [202].
• Compared to CRS architecture, CIM architecture has significant area and write energy ad-

vantage, as these values are much less at a single respective cell level.
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However, it also has the following limitations:

• The architecture has to deal with sneak path currents in case a single RRAM cell (0T1R) is
used, as multiple rows and columns are activated simultaneously. Possible solutions to alle-
viate the problem consist of isolating each FBL circuit, or the usage of a transistor-memristor
(1T1R) structure to actively control each memristor using a transistor [126, 204], or isolated/
half select voltages [27, 201].
• In case FBL is used, typically a lot of cells are required due to LUT-based computing.
• In case CRS cells are used, the same drawbacks of CRS architecture apply, i.e., a larger cell

area, the control unit imposes a high overhead, as the controllers are responsible for both con-
trolling the crossbar and transferring data, and it requires additional compiling techniques
and tools to convert conventional Boolean logic functions to implication logic.

The potentials of the architecture are demonstrated using a case study of a binary-tree-based par-
allel adder and multiplier [51, 77]; the architecture is compared with a conventional multicore
architecture. CIM architecture achieves at least one order of magnitude improvement in terms of
delay, energy, and area.

3.4 PLiM: Programmable Logic-in-Memory Computer

Similar to the DRAM-based bit-serial addition using majority logic [5], PLiM was proposed in
2016 by P. Gaillardona et al. from EPFL [65]. It is a memristor-based architecture that exploits data
parallelism using majority logic [166] to perform elementary Boolean logic such as OR and AND

operations within the memory array. The architecture consists of a resistive memory organized
in banks and a Logic-in-Memory (LiM) controller block as shown in Figure 5. The memory is
a memristive crossbar that stores both instruction and data. The LiM controller is composed of a
number of registers and a finite state machine (FSM). The controller functions as a simple pro-
cessor; it fetches instructions from the memory array, decodes and executes the operation inside
the memory.

The LiM controller operates in two modes: conventional memory read/write mode and in-
memory instruction mode. In the read/write mode, the FSM is deactivated, and the memory array
is read or written in the same manner as a standard memory. In the in-memory instruction mode,
FSM is activated, and an instruction is performed using majority logic gates inside the memory.
Once the FSM is enabled, the following operations are performed: First, the FSM resets all regis-
ters in the LiM controller. Second, an instruction is read from the address in the program counter

(PC) and decoded to obtain the addresses of the two operands and output; the addresses of the two
operands are stored in registers @A and @B, while the output address is stored in register @Z.
Third, the values of the two operands are read using the addresses in registers @A and @B; the
obtained values are stored in registers @A and @B, respectively. Fourth, depending on the logic
values (0 or 1) of the operands, appropriate voltages are applied to the crossbar at address @Z
to perform a majority logic gate. Finally, the PC is incremented by one. On top of the general
advantages of CIM-A architectures, PLiM has the following additional advantages:

• The data transfer may include both direct and indirect schemes.
• The write energy and area of a memristor cell is smaller as compared to a CRS cell.

Similarly, it also has its own limitations that are stated as follows:

• The latency of majority primitive functions varies, depending on the functional complexity,
and some read-outs are required to determine the voltage values to be applied.
• The architecture has to deal with sneak path currents. Possible solutions are mentioned in

Section 3.3.
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Fig. 5. The Programmable Logic-in-Memory Computer (PLiM) [65].

• The LiM controller is complex, as it has to determine the control voltage values based on the
operands’ values.
• The architecture requires additional compiling techniques and tools to convert conventional

Boolean logic functions to majority logic gates.

The architecture is evaluated with a PRESENT Block Cipher algorithm [24], which encrypts a 64-
bit plain text with an 80 or 128-bit key. The algorithm is compiled into a sequence of majority logic
gates and executed on PLiM. Unfortunately, the results show that PLiM’s performance is almost a
factor of two slower than a 180 nm FPGA implementation [24].

3.5 MPU: Memristive Memory Processing Unit

MPU was proposed in 2016 by R. Ben Hur et al. from Technion-Israel Institue of Technology [83].
Similar to the DRAM-based architecture proposed in Reference [66] and SRAM-based solutions
in References [1, 53, 64, 130, 156, 194], MPU is a memristor-based architecture that exploits data-
level parallelism using Memristive-Aid loGIC (MAGIC) [108]. The architecture consists of a
conventional processor, MPU controller, and a memristive memory as shown in Figure 6. The pro-
cessor contains a control unit, an arithmetic and logic unit, and a memory controller. The MPU
controller includes a Processor-In/Out block to interface to the conventional CPU, control blocks
to execute specific commands (arithmetic, set/reset, read and write block) and an output multi-
plexer to apply appropriate voltages to specific rows/columns of the memristive memory. The
conventional processor sends an instruction to the memristive memory using its own memory
controller and the MPU controller. The memory controller of the processor recognizes the mem-
ristive memory instructions in a similar manner as conventional memory operations, while the
MPU controller determines whether to treat the memristive memory as a storage element or a
processing element. Based on that, the MPU controller applies read/write signals or a sequence of
signals to perform logical or arithmetic operations.

The MPU controller uses the Processor-In unit to divert the instructions to specific blocks
(such as arithmetic, read and write blocks) responsible for the execution of those operations. Each
block determines the appropriate voltages that have to be applied to the memristive memory. The
set/reset, read and write block have a latency of 1 cycle, while the arithmetic block requires multi-
ple cycles to execute a vector operations using MAGIC logic [108]. Data movements in the crossbar
are performed directly using copy (double negation) or single NOT operations. In addition to the
general advantages of CIM-A architectures, MPU has the following advantages:
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Fig. 6. The Memristor Memory Processing Unit (MPU) [83].

• The latency of MAGIC primitive functions is fixed.
• The data transfer may include direct (based on copying) and indirect (based on read-

out/write-back) schemes.
• The MPU controller is simpler than for the CRS architecture, as each operation consists of

a fixed number of steps while less controlling mechanisms are used.
• The write energy of a single MAGIC cell is smaller in comparison to those of a CRS cell.
• MAGIC requires in comparison to FBL fewer cells to perform computations.
• MPU can perform many MAGIC gate operations in parallel, which makes it very efficient in

terms of throughput.
• MPU is compatible with the conventional Von-Neumann machines, meaning it can perform

load/store/compute) operations.

In spite of the above-mentioned benefits, MPU also has its own set of limitations, which include:

• The architecture has to deal with sneak path currents. Possible solutions are mentioned in
Section 3.3.
• The control voltages used in MAGIC have to satisfy the constraint 2Vr eset <Vw <Vset , where
Vset is the minimum voltage required to switch a memristor from RH to RL , andVeset is the
minimum voltage required to switch a memristor from RL to RH ; in other words, it requires
that the memristors have a higherVset thanVr eset , leading to an unbalanced hysteresis loop.
This limits the types of memristors that can be used for MAGIC.
• The architecture requires additional compiling techniques and tools to convert conventional

Boolean logic functions to MAGIC gates.

The potential of the architecture is demonstrated by performing a logical bit-wise OR operation
of two 8-bit vectors in 20 steps. The latest research has shown that MAGIC can be used for sev-
eral arithmetic operations, such as addition, multiplication, and so on [72, 87, 109]. In this context,
there is an architecture named SIMPLE MAGIC that automatically generates a defined sequence of
atomic memristor-aided logic NOR operations [84]. In the same line, a SIMPLER flow is developed
that additionally optimizes the mapping executions that reduce complexity and improve through-
put [15]. Note, a lot of research on cell minimization and cell reuse has been done in the context
of MAGIC and other basic cells.

3.6 ReVAMP: ReRAM-based VLIW Architecture

ReVAMP was proposed in 2017 by D. Bhattacharjeeet al. from Nanyang Technological Univer-
sity [17]. It is a memristor-based architecture that exploits data parallelism using majority logic.
The architecture consists of an Instruction Fetch (IF), Instruction Decode (ID), and Execute
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Fig. 7. ReRAM-based VLIW architecture (ReVAMP) [17].

(EX) stage. The IF block fetches instructions from the Instruction Memory using the program

counter (PC) as address and stores it in the Instruction Register (IR). The ID block decodes the
instruction and generates control signals that are placed in the control registers of the EX block.
The EX stage finally executes the instruction.

The IF and ID stages are similar to those of the traditional five-pipelined RISC architectures. The
IF stage includes an Instruction Memory (IM) and a Program Counter (PC). The ID stage con-
tains registers (IR and Primary Inputs) and an Instruction Decode and Control Signal Generation.
The EX stage consists of several registers (i.e., Data Memory Register (DMR), Primary Input

Register (PIR), Mux control (Mc ) register, Control (Cc ) register, Wordline (Wc ) register), as
well as a crossbar interconnect, wordline select multiplexer, data Source Select multiplexer, and a
Write circuit to control the crossbar that stores data. Once an instruction is fetched and decoded in
IF and ID, respectively, the control registers in EX stage are filled with suitable values. These values
control the multiplexers that are responsible for applying the right control signals to the crossbar.
Depending on the operation, primary inputs from PIR or data retrieved from the crossbar stored in
DMR can be used for the next operation. The crossbar interconnect permutes the inputs and con-
trol signals (indicated by Cc ) to generate the voltages that need to be applied to the memory cross-
bar. The Write circuit applies these voltages to the targeted wordline address (indicated by Wc ). In
addition to the general advantages of CIM-A architectures, ReVAMP has the following advantages:

• The data transfer may include direct (within the crossbar based on copying resistance values)
and indirect (based on read-out/write-back) schemes.
• The crossbar is based on only one device per cell, resulting in a more compact architecture

as compared with other architectures that make use of two devices per cell (i.e., Comple-

mentary Resistive Switch (CRS) [167]).

However, it also has the following limitations:

• The latency of majority primitive functions varies, depending on the functional complexity;
in addition, before any operations are applied to the cells, these cells first have to be read-out
to determine the appropriate control voltages.
• The architecture has to deal with sneak path currents. Possible solutions to alleviate the

problem consist of isolating each tile/crossbar, or using a transistor-memristor (1T1R) struc-
ture to actively control each memristor using a transistor [126, 204], or using isolated/half
select voltages [27, 190, 201].
• The EX stage is complex, as it integrates control signals for memory and computations.

Therefore, it is not easy to pipeline this architecture, as the EX stage will consume more
time than the other stages; i.e., the stages IF, ID, and EX are not balanced.
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• The architecture requires additional compiling techniques and tools to convert conventional
Boolean logic functions to majority logic gates.

The architecture is simulated and evaluated using EPFL benchmarks [10] and compared against
PLiM [65], which is based on a resistive memory with the same logic style. The compiler level of
execution for such architecture can be performed as demonstrated in Reference [175].

4 COMPUTATION-IN-MEMORY - PERIPHERALS (CIM-P)

The CIM-P class consists of architectures that perform computations during read-out operations
(i.e., two or more word lines are activated simultaneously) using special peripheral circuitry.
Earlier memory-centric works explored the potential of shifting data-intensive computations to
the memory system with/without reconfigurable logic includes Active Pages [26, 95, 149, 180].
These works utilized conventional DRAM and magnetic bubble memories to realize memory-
centric architecture. However, as there are less restrictions on the functionality of the cell, various
memory technologies can be used in this category, such as DRAM, SRAM, and non-volatile
memory technologies. For instance, a medium number of architectures have been proposed in this
category. Table 3 shows a brief comparison among the architectures that will be explained in each
subsection.

On one hand, these architectures have several common advantages:

• Low memory access/bandwidth bottleneck, as the results are produced in the peripheral
circuitry that is connected directly to the memory array.
• High parallelism due to the the possibility of performing multiple concurrent operations.
• High performance, as computations are performed in a single read step.
• Relatively simple controllers, as the operations are constructed in a similar manner as for

conventional memory (read/write) operations.
• Higher compatibility with available memory technologies, because redesigning cells would

induce a huge cost for the vendors.
• Lower endurance requirement, as operations are based on reading instead of writing [203].

On the other hand, they all share the following limitations:

• Overhead to align data; note that each operation requires the data to be aligned in the mem-
ory. Therefore, if the operands are not located in the same crossbar, then data transfer oper-
ations are required.
• Additional write overhead when the results have to be stored back into the memory. Note

that the outputs are produced as voltages in the peripheral circuit, and therefore, if the results
have to be stored back in the memory, then extra write operations would be necessary.
• Parallelism is possible, but it is achieved at the cost of area and power overhead.

Similar to CIM-A architectures, the following subsections discuss the details and characteristics
of each CIM-P architecture. In this section, architectures that utilize charge-based memory tech-
nology (DRAM and SRAM) are presented first, followed by the discussion of architectures based
on non-charge-based memory technology (e.g., Resistive, Magnetic, etc.). Both charge and non-
charge-based memory technology architectures are discussed in chronological order of their date
of publication. This ordering technique is also reflected in Table 3.

4.1 Ambit: In-memory Accelerator for Bulk Bitwise Operations Using Commodity

DRAM Technology

Ambit was proposed in 2017 by V. Seshadri et al. from Carnegie Mellon University [163]. Ambit
is a DRAM-based architecture that performs in-memory instructions using modified peripheral
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Table 3. Comparison among Architectures of CIM-P Classes

Hierarchy

level

Computations
Memory

Technol-

ogy

Overheads
Sneak

path

current

Destructive

read

Required

read-out*

Copy

scheme

Evaluation

Logic

style
Available

functions

Periphery

Controller

Simulator App.

Ambit [163] Accelerator Bool. Logical DRAM Modif. Simple No No No Both Rambus Bitwise

S-AP [181] Accelerator Bool. Logical,+ SRAM Modif. Simple No No No Both VASim ANMLZoo
&Regex

ReAP [205] Accelerator CAM LUT-based RRAM Modif. Simple Yes No No Both Analytical Arithmetic

Pinatubo [117] Main memory Bool. Logical RRAM Modif. Simple No No No Both In-house Bitwise

ISAAC [164] Accelerator NN. MM. RRAM Modif. Simple Yes No No Both Analytical CNN&
DNN

PRIME [39] Main memory NN. MM. RRAM Modif. Simple Yes No No Both Analytical Arithmetic

ReGP [131] Main memory Bool. Logical,+,x RRAM Modif. Medium No No No Indirect Analytical MM.

CIMA [50] Accelerator Bool. Logical RRAM Modif. Simple Yes No No Both Analytical Bitwise

STT-CiM [92] Accelerator Bool. Logical,+ MRAM Modif. Simple Yes No No Both STT-CiM
Sim.

(1)

DPP [63] Accelerator Bool. Logical,+,x RRAM Modif. Simple Yes No No Both TensorFlow,
CACTI

PARSEC

R-AP [206] Accelerator MM. Logical,+,x RRAM Modif. Simple No No No Both Hspice No

+: n-bit addition, CNN: Convolutional Neural Network, (*): Required read-out during computations.

x: n-bit multiplication, Modif.: Modified, App.: Applications and benchmarks.

LUT: Lookup Table, MM.: Matrix Multiplication, Analytical: Analytical model.

NN.: Neural Network, Bool.: Boolean, MRAM: Magnetic Random Access Memory.

STT-CiM Sim.: STT-CiM device to architecture evaluation framework.

(1): string matching, text processing, low-level graphics, data compression, bio-informatic, image processing, and

cryptography.

Fig. 8. In-memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology (Am-

bit) [163].

circuits to exploit data-level parallelism, which is achieved by computing all bits in a row(s) in
parallel. This architecture can be plugged into a computer system as an accelerator in a similar
manner as a GPU. The architecture consists of an Ambit controller and a 3D-stacked DRAM mem-
ory with modified sense amplifiers as shown in Figure 8. After receiving an instruction from the
host processor, Ambit determines whether a normal memory operation or an in-memory instruc-
tion should be performed. After performing the required operations, the results are transferred
back to the host processor for further processing. Depending on the type of operation, the Ambit
controller activates single or multiple rows in the DRAM memory. AMBIT architecture can per-
form any bit-wise operations at column level using basic set of operations such as AND, OR, and
NOT. The currents are summed up based on the values stored in the DRAM cells and converted
into a digital value using the modified sense amplifiers. To transfer data, Ambit enables row copy

(RowClone [162]) operations to directly move data inside DRAM memory. Moreover, an indirect
scheme can be used as well by having the Ambit controller performing read and write operations.
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Fig. 9. SRAM Automata Processor(S-AP) [181].

In addition to higher throughput, Ambit has the following advantages on top of the generic CIM-P
architecture advantages:

• Data can be transferred in the memory using both direct and indirect schemes.
• The architecture uses DRAM technology, which has several benefits, such as: high matu-

rity and endurance, no sneak path currents, and the accessibility to optimized architectures,
technology, and tools.
• Since the pitch of the SRAM bit-cell is more, it can easily accommodate the modified version

of the sense amplifier in a column.

However, it also has the following limitations:

• Computations are currently limited to logical operations. More research is required to map
complex functions on the architecture.
• The architecture uses DRAM technology, which suffers from low performance, high energy

consumption, large footprint, and is difficult to scale down.

The architecture is simulated by Rambus simulator and evaluated against the implementations on
multicore Intel Skylake CPU [88], NVIDIA GeForce GTX 745 GPU [145], and HMC 2.0 [127] using
logical vector operations and bitmap index application [34, 177]. The simulation results demon-
strated that Ambit can deliver higher throughput than Skylake, GTX, and HMC 2.0 architectures.

4.2 S-AP: Cache Automaton

S-AP shown in Figure 9 was proposed in 2017 by A. Subramaniyan et al. from University of Michi-
gan [181]. The architecture targets an automata processor that exploits data-level parallelism by
performing computations using state machines. An automata processor contains two main compo-
nents: the State Transition Elements (STEs) and the routing matrix; the STE stores the accepting
states, while the routing matrix stores the state transitions as shown in Figure 10. The automata
processor accepts one input symbol at a time, generates next active states, and decides whether a
complete input string is accepted or not.

The architecture consists of STEs and a routing matrix that are implemented using SRAM tech-
nology. Each SRAM column corresponds to an STE that stores the accepting states in SRAM cells.
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Fig. 10. General architecture for automata processor [206].

The input symbol is fed to all the STEs simultaneously. The sense amplifiers collect a dot-product
results of a vector-matrix multiplication. The output of the STE together with the routing matrix
are used to determine the next active states; this process is carried on until all input symbols are
processed. In case the one or more final active states are part of the acceptance states, it means
that the input string has been matched with the corresponding pattern of the acceptance state.
Note that data transfer inside the automata processor is carried out using the routing matrix. In
addition to the general advantages of CIM-P architectures, S-AP has the following advantages:

• Computations may include logical and arithmetic operations using automata processing.
• Data can be transferred using both direct and indirect schemes.
• The architecture uses SRAM technology, which has several benefits, such as maturity, high

endurance, no sneak path currents, and may benefit for the the existing optimizing tech-
niques and tools.
• Since the pitch of the SRAM bit-cell is more, it can easily accommodate the modified version

of the sense amplifier in a column.
• The automata processing techniques and tooling are quite mature, hence it is feasible to

explore many applications using automata processing.

However, it also has the following limitations:

• The architecture uses SRAM technology, which suffers from high energy consumption, low
scalability, and large footprint.
• The architecture requires additional compiling techniques and tools to perform conventional

Boolean logic functions using automata processing.

On one hand, S-AP has potential in reducing non-memory components required to implement the
automata processor. The D-AP requires most of its resources for routing matrix and other logic,
while the S-AP can be implemented on processor, which has advantages in realizing logic functions.
On the other hand, S-AP suffers from low frequency, density, and latency due to SRAM intrinsic
properties. The S-AP is simulated using VASim [191] and evaluated against DRAM-AP and x86
CPU using ANMLZoo [191] and the Regex [13] benchmark suites.

4.3 ReAP: Resistive Associative Processor

ReAP was proposed in 2014 by L. Yavits et al. from Technion-Israel Institute of Technology [205].
ReAP is a RRAM-based architecture that exploits data parallelism using LUTs implemented with
Contend Addressable Memories (CAMs) to perform computations. The architecture consists
of a crossbar of resistive CAM cells and peripheral circuits including sense amplifiers and registers
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Fig. 11. Resistive Associative Processor (ReAP) [205].

(as shown in Figure 11). In this architecture, multiple CAM cells are employed to create a look-

up-table (LUTs); together, they implement a specific logic function. A single CAM cell comprises
two resistive RAM cells that store the true and the complementary value of a single bit. When it
is activated, it performs a compare operation with the inputs stored in register KEY to the LUT
words and produce in case a match occurs the corresponding outputs in TAG registers.

The compare operation is performed in a similar manner as in conventional CAMs. First, the
Match/Word line is pre-charged. Thereafter, the values in KEY are applied to the bit-lines, depend-
ing on the MASK value; if a bit is masked, then it is kept floating. If the KEY matches the content
on a particular wordline, then the TAG will generate the value “1” at the output, otherwise “0.” For
example, in case a key bit is 1, both the true (i.e., low resistance) and complement value (i.e., high
resistance) will keep the floating word line high in case a 1 is stored. In case the cell holds a 0, i.e.,
the true memristor has a high resistance and complement a low resistance value, the complement
path will discharge the Match/Word line. Similar conclusions can be drawn in case the key bit is
0. To execute a more complex function, LUTs can be reconfigured. In such cases, the output of
the LUT is fed back to input of the same LUT but with a different configuration. Another option
is to implement the function using multiple LUTs. ReAP architecture has additional advantages
on top of the generic CIM-P architecture advantages. The incremental advantages of ReAP are
summarized as follows:

• The architecture is used as an accelerator, which has a positive impact on the endurance due
to infrequent use [35, 193]. In contrast, some CIM-P architectures are used as main memory
and they require a much higher endurance.
• Computing based on LUTs is quite mature (e.g., in FPGAs) and can benefit from existing

techniques and tools.
• The architecture uses non-volatile memory, hence consumes a low amount of energy and

has a small footprint.

However, it should also be noted that ReAP has several limitations that can severely affect its
applicability. The limitations of ReAP include:

• Computations using LUTs can be inefficient if the number of inputs per LUT is large. If
multiple smaller LUTs are used, then the latency becomes higher.
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Fig. 12. The Processing-in-Memory architecture for bulk bitwise operations (Pinatubo) [117].

• The data transfer consists of an indirect read-out scheme.
• The architecture has to deal with sneak path currents. Possible solutions are mentioned in

Section 3.3.
• The write operations of this architecture may suffer from high energy consumption, as two

memristors are written per CAM cell.
• The architecture might not exploit the full memory bandwidth, as it is challenging to fit all

sense amplifiers into the memory core.
• The architecture requires additional compiling techniques and tools to convert conventional

Boolean logic functions to CAM-based LUTs.

The architecture was evaluated analytically using several benchmarks [40] such as N-pairs Black-
Scholes option pricing, N-point Fast Fourier Transform, and Dense Matrix Multiplications. They
compared the results of these benchmarks on ReAP with two other platforms: a CMOS equivalent
of ReAP denoted by CMOS-AP and GTX480 GPU. The results show that ReAP outperforms GTX480
in terms of performance (8 GFLOPs/W for ReAP versus 5 GLOPs/W for GTX480), while it is being
outperformed by CMOS AP (18 GFLOPs/W).

4.4 Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise Operations

Pinatubo was proposed in 2016 by S. Li et al. from University of California [117]. Pinatubo is a non-
volatile memory-based architecture that exploits data-level parallelism by performing bulk bitwise
operations using modified sense amplifiers. The architecture consists of a processor with caches, a
non-volatile main memory, and modified sense amplifiers (as shown in Figure 12). The processor
sends in-memory instructions to the main memory and also handles the operations that cannot
be performed on the main memory. After an instruction is sent to the main memory, single or
multiple rows of the memory are activated simultaneously, depending on the type of instructions
(i.e., normal read or in-memory instructions). The modified sense amplifiers thereafter perform a
read-out operation to produce the results, which can be a normal read or a bitwise vector operation.
In case needed, the results are transferred back to the processor for further processing.

The main memory architecture is shown in Figure 13; it consists of multiple banks that are
further divided into mats. Note that the modified sense amplifiers can only perform bitwise vector
operations on data residing in the same mat. For operations where the data resides in different
mats whether on the same bank or not, extra logic gates (e.g., AND, OR) are used to perform
the operations. Communication can be performed by enabling two memory rows for direct copy
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Fig. 13. Main memory of Pinatubo [117].

operations or using the buffers and read-out operations for indirect data transfer. In addition to
the general advantages of CIM-P architectures, Pinatubo has the following advantages:

• Data can be transferred in the memory using both direct and indirect schemes.
• The architecture uses non-volatile memory, hence consumes low energy and has a small

footprint.

However, Pinatubo has its own limitations, which are listed as follows:

• The architecture uses non-volatile memory as main memory, which may impact the lifetime
due to limited endurance [35, 193].
• Computations currently include only logical operations. More research is required to map

complex functions on the architecture.
• The architecture has to deal with sneak path currents. Possible solutions are mentioned in

Section 3.3.
• As the sense amplifiers are complex, a tradeoff between area and bandwidth has to be made.
• Efforts are required to use this architecture with a host processor. For example, the instruc-

tion set of the host processor has to be adapted and additional software support is needed
to maximally exploit the performance.

The architecture is simulated using an in-house cycle accurate simulator modified from Sniper [32]
and evaluated using three applications: vector OR operations, bitmap-based BFS for graph process-
ing [12], and bitmap-based database using Fastbit [199].

4.5 ISAAC: A Convolutional Neural Network Accelerator with In Situ Analog

Arithmetic

ISAAC was proposed in 2016 by Ali Shafiee et al. from University of Utah [164]. ISAAC is a
memristor-based architecture that performs dot-product computations using the memristor cross-
bar and CMOS peripheral circuitry to exploit instruction-level parallelism. The architecture con-
sists of multiple tiles connected through an on-chip concentrated mesh and an I/O interface, as
shown in the left part of Figure 14. The architecture is only used during the inference phase of
machine learning applications, i.e., the phase after training; the inference phase consists of dot
product operations to compute convolutions, shift and add operations, and sigmoid operations.
ISAAC processes inputs from the I/O interface in multiple tiles. After processing, the outputs are
communicated through the I/O interface to the outside world or a different ISAAC chip. Each
tile of ISAAC contains multiple In Situ Multiply Accumulate (IMA) units that are connected
through a bus, an eDRAM buffer, output register (OR), and computation units (max-pool, sig-
moid, and Shift-and-Add (S+A)). Each IMA contains multiple memristor arrays with their DAC
and Sample-and-Hold (S+H) units, an Input and Output Register (IR, OR), S+A, and multiple
ADC units. Inputs from the I/O interface are delivered to the memristor arrays and are used to per-
form a dot product computation with the weights that are already stored in the memristor array.
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Fig. 14. A convolutional neural network accelerator with In Situ Analog Arithmetic (ISAAC) [164].

The results thereafter go through the S+H units (to temporarily store data before feeding them
to ADCs) and S+A units (to accumulate data) if applicable. Finally, if multiple inputs are fetched,
then a pipeline is created using IR and OR of the IMAs and tiles. To transfer data within a single
memory array, a controller can be used to apply appropriate voltages to move data directly inside
the memory crossbar or use read-out and write-back schemes. The additional merits of ISAAC
over the generic CIM-P architecture benefits can be summarized as follows:

• The architecture is used as an accelerator, which has a positive impact on the endurance due
to infrequent use [35, 193]. In contrast, some CIM-P architectures are used as main memory
and therefore require a much higher endurance.
• The computations for neural networks are quite mature and can benefit from existing neural

network techniques and tools.
• The computations for neural networks do not require a high precision; hence, they are more

resilient against device variation.
• Data can be transferred in the crossbar using both direct and indirect schemes.
• The architecture uses non-volatile memory, hence consumes low energy and has a small

footprint.

However, ISAAC also has different limitations that need to be addressed properly. Some of the
limitations are:

• The architecture has to deal with sneak path currents. Possible solutions are mentioned in
Section 3.3.
• The architecture might suffer from a high overhead due to the need of ADC and DAC

converters.
• As the sense amplifiers are complex, a tradeoff between area and bandwidth has to be made.
• In case general purpose computing is desired, the architecture requires additional compiling

techniques and tools to perform conventional Boolean logic functions using neural network
computations.

The architecture is evaluated analytically and compared against DaDianNao architecture (which
is an ASIC design with embedded DRAM) using a suite of CNN [78, 168] and DNN workloads
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Fig. 15. A Processing-in-Memory architecture for neural network computation (PRIME) [39] (a) PRIME

banks organization, (b) architecture of PRIME bank.

[86, 183]. Their analytical result demonstrated that it potentially outperforms DaDianNao in terms
of throughput, energy, and computational density. NEWTON introduced techniques to improve
the energy efficiency by adapting ADC precision to improve the energy efficiency by adapting
sub-block based ADC precision as well as an algorithm to reduce computations [136].

4.6 PRIME: A Processing-in-Memory Architecture for Neural Network Computation

in ReRAM-based Main Memory

PRIME was proposed in 2016 by C. Pinga et al. from University of California [39]. PRIME is a resis-
tive RAM-based architecture that exploits data-level parallelism to perform computations for neu-
ral networks (i.e., weighted vector-matrix multiplication) using high-precision multi-level sense
amplifiers and some extra logic circuits. The architecture consists of a CPU and multiple RRAM
banks; each RRAM bank contains multiple memory crossbars (mem subarrays), full function

(FF), and buffer subarrays, as shown in Figure 15(a). The CPU sends instructions to the resistive
RAM banks; an instruction is either a memory operation (read/write) or a neural network compu-
tation. The memory bank performs the request without blocking the CPU, i.e., the CPU continues
executing (different) instructions simultaneously. The results are returned to the CPU for further
processing.

In the resistive RAM banks, the memory crossbars store data in multiple mats, while the FF and
buffer subarrays serve for computation. Special subarray structures are used to enable both neural
network computations and memory operations (blue blocks in Figure 15(b)) feasible. The neural
network computations are mainly performed in the FF subarray, while the buffer subarray stores
temporary data that needs to be processed; this enables a parallel execution between CPU and
FF subarrays. Neural network computations are performed using a vector matrix multiplication
between a weighted matrix stored in the FF subarray and a vector stored in the buffer subarray.
Additional logic gates such as subtraction and sigmoid units are used to compute negative weights
and sigmoid activation functions before the results are sensed by the multi-level sense amplifiers.
To communicate between the memories, a controller can be used to apply appropriate voltages to
the crossbar to move data directly inside it or use read-out and write-back schemes. On top of the
generic advantages of CIM-P architectures, PRIME has the following set of unique advantages:
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• The computations for neural networks are quite mature and can benefit from existing neural
network techniques and tools.
• The computations for neural networks do not require a high precision; hence, they are more

resilient against device variations.
• Data can be transferred in the crossbar using both direct and indirect schemes.
• The architecture uses non-volatile memory, hence consumes a low energy and has a small

footprint.

However, the above-mentioned merits of PRIME architecture also come with their own challenges
and limitations. The limitations of PRIME include:

• The architecture uses non-volatile memory as main memory, which may impact the lifetime
due to limited endurance [35, 193].
• The architecture has to deal with sneak path currents. Possible solutions are mentioned in

Section 3.3.
• As the sense amplifiers are complex, a tradeoff between area and bandwidth has to be made.
• In case general purpose computing is desired, the architecture requires additional compiling

techniques and tools to perform conventional Boolean logic functions using neural network
computations.

The architecture is synthesized using TSMC CMOS library 60 nm and modeled using NVSIM,
CACTI-3D and CACTI-IO. It is evaluated using MlBench benchmarks [113] and compared against
a CPU-only solution. Their comparison shows that the architecture achieves significant improve-
ments in terms of performance and energy consumption over CPU-only-based solution.

4.7 ReGP: Resistive GP-SIMD

ReGP was proposed in 2016 by A. Morad et al. from Technion-Israel Institute of Technology [131].
ReGP is a RRAM memory-based architecture that exploits data parallelism by attaching a SIMD-
like processing unit to the resistive memory. The architecture consists of a sequential or conven-
tional processor, its L1 and LLC cache, shared memory array, and SIMD processor. The sequential
processor executes traditional code and controls the SIMD processor in a master-slave mode. The
SIMD processor executes parallel instructions on the data stored in the shared memory array.

The SIMD processor contains multiple processing units (PUs), a sequencer, and a Network on

Chip (NoC) with reduction tree. Each PU contains registers, a single bit full-adder, and a function
generator to perform arithmetic and logical operations. The sequencer receives instructions from
the sequential processor and assigns them to PUs. The PUs load data from the shared memory
array and perform the requested operations. If required, the NoC and reduction trees are used to
perform more complex functions. In addition to the general advantages of CIM-P architectures,
ReGP comes with the following advantages:

• The parallelism is high due to multiple parallel processing units.
• The architecture uses non-volatile memory, hence consumes low amount of energy and has

a small footprint.
• The architecture can reuse compilers, programming languages, and tools from SIMD

architectures.

However, the operations within the processing units are simple; complex functions such as float-
ing point operations can cause a high overhead. Thus, scalability is the main limitation of ReGP
architecture.

The architecture is evaluated analytically against CMOS GP-SIMD [130] using the dense matrix
multiplication benchmark [129].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 4, Article 79. Pub. date: October 2022.



A Survey on Memory-centric Computer Architectures 79:25

Fig. 16. Computation-in-Memory Accelerator (CIMA) [50].

4.8 CIMA: Computation-in-Memory Accelerator

CIMA was proposed in 2017 by H. A. Du Nguyen et al. from Delft University of Technology [50].
CIMA is a resistive-based accelerator that exploits data-level parallelism by performing computa-
tions with custom sense amplifiers. The architecture consists of a conventional processor, caches,
CIM accelerator, main memory DRAM, and external memory (as shown in Figure 16). The proces-
sor fetches, decodes, and executes non-intensive memory parts of an application and off-loads the
memory intensive parts to the CIM accelerator. Similarly as in Pinatubo, the CIM accelerator per-
forms operations by activating one or multiple wordlines. The difference with Pinatubo, however,
is that CIMA is used as an accelerator and has more efficient sense amplifiers. In case needed, the
results are transferred back to the processor for further processing.

The CIM accelerator consists of a CIM controller, peripheral circuits (including decoder, voltage
driver, and sense amplifiers), and a memristor crossbar. The CIM controller receives instructions
from the processor and performs operations by sensing the current of two or more activated rows
of the crossbar. Based on the type of operation, the customized sense amplifiers compute the output
based on this current. CIMA uses scouting logic [203]; currently, it can only perform bitwise logical
operations. However, more operations such as addition, vector-matrix multiplication, and matrix-
matrix multiplication have demonstrated to be feasible [128]. The data transfer in the memory
can be performed by enabling two memory rows using direct copy operations or using indirect
read-out and write-back operations. In addition to the general advantages of CIM-P architectures,
CIMA has the following advantages:

• The architecture is used as an accelerator, which has a positive impact on the endurance due
to infrequent use [35, 193].
• Data can be transferred in the memory using both direct and indirect schemes.
• The architecture uses non-volatile memory, hence consumes low energy and has a small

footprint.

However, it also has the following limitations:

• Computations currently include only logical operations. More research is required to map
complex functions on the architecture.
• The architecture has to deal with sneak path currents. Possible solutions are mentioned in

Section 3.3.
• As the sense amplifiers are complex, a tradeoff between area and bandwidth has to be made.
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Fig. 17. Computing in Memory Spin-Transfer Torque Magnetic RAM (STT-CiM) [92].

• Additional software support (i.e., profiling and extracting memory intensive kernels) is re-
quired to maximally exploit the accelerator performance.

The architecture is evaluated against a theoretical model of a conventional multicore
architecture.

4.9 STT-CiM: Computing in Memory Spin-Transfer Torque Magnetic RAM

STT-CiM was proposed in 2017 by S. Jain et al. from Purdue University [92]. STT-CiM is a
Spin-Transfer Torque Magnetic RAM-based architecture that exploits data-level parallelism by
performing computations using both modified sense amplifiers and some additional CMOS
gates. The architecture consists of a conventional architecture with an STT-MRAM used as
a scratch-pad memory. This scratch-pad memory is equipped with the capability to perform
in-memory instructions. These instructions are sent from the main processor.

The STT-CiM contains a CiM decoder, an array of memory cells, enhanced address decoder,
and modified sensing circuitry to perform computations, as shown in Figure 17. Based on the in-
memory instruction, the enhanced address decoder activates one (for normal read) or multiple
rows (for computations) of the memory array. The CiM decoder determines simultaneously the
reference currents of the sense amplifiers. For example, in case an addition is executed, the set of
logic gates for addition is enabled. The results are captured by the modified sense amplifiers. Data
transfer can be performed by enabling two memory rows for direct copy operations or using the
buffers and read-out operations for indirect copy operations. In addition to the general advantages
of CIM-P architectures, STT-CiM has the following advantages:

• The architecture is used as an accelerator (i.e., scratch-pad memory), which has a positive
impact on the endurance due to infrequent use [35, 193].
• Computations currently include both logical operations and addition.
• The data transfer may include both direct and indirect schemes.
• The architecture uses non-volatile memory, hence consumes low energy and has a small

footprint.
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Fig. 18. Data Parallel Processor (DPP) [63].

However, it also has the following limitations:

• The architecture has to deal with sneak path currents. Possible solutions are mentioned in
Section 3.3.
• As the sense amplifiers are complex, a tradeoff between area and bandwidth has to be made.
• Additional software support (i.e., profiling and extracting memory intensive kernels) is re-

quired to maximally exploit the accelerator performance.

The architecture is evaluated using the STT-CiM device-to-architecture evaluation framework [92]
and a set of benchmarks including string matching, text processing, low-level graphics, data com-
pression, bio-informatic, image processing, and cryptography.

4.10 DPP: Data Parallel Processor

DPP was proposed in 2018 by D. Fujiki et al. from University of Michigan [63]. DPP is a RRAM-
based architecture that exploits instruction and data-level parallelism by performing computations
using a combination of RRAM-based dot-product operations and LUTs. The architecture consists
of multiple RRAM tiles connected as an H-tree; each tile has multiple clusters and some logic units
(as shown in Figure 18). Tiles and clusters form a SIMD-like processor that performs the parallel
operations. The architecture is considered as a general purposed architecture, as it can perform all
primitive functions such as logical, arithmetic, shift, and copy operations.

In addition to clusters, each tile has several units to support the computations, including instruc-
tion buffer, Shift and Add (S+A), and router. Each cluster additionally has one or more computa-
tional units; they are S+A, Sample and Hold (S+H), DAC and ADC, a LUT and register file (as
shown in the right part of Figure 18). While reading from the high latency RRAM, other units are
simultaneously used for processing. Therefore, the S+H is used to read data (in the form of a cur-
rent) from the RRAM array and temporarily store it. Once that data is needed, it is fed to an ADC
to convert the analog value to a digital value. The S+A is used to perform carry propagation in a
multiple-bit addition. DAC is used to apply a digital value to the RRAM array with an appropriate
control voltage. Some complex functions that cannot be realized with these units are performed
using LUTs and register file in each cluster. Data transfer can be performed by enabling two mem-
ory rows for direct copy operations or using the buffers and read-out operations for indirect copy
operations. In addition to the general advantages of CIM-P architectures, DPP has the following
advantages:

• Computations include both logical operations and simple arithmetic operations (e.g., addi-
tion, multiplication).
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• Data can be transferred using both direct and indirect schemes.
• The architecture uses non-volatile memory, hence consumes low energy and has a small

footprint.
• This architecture is claimed to be general purpose, hence it can exploit the existing instruc-

tion set, compiling techniques, and tools, as well as applications.

However, it also has the following limitations:

• The architecture uses non-volatile memory as main memory, which may impact the lifetime
due to limited endurance [35, 193].
• The architecture has to deal with sneak path currents. Possible solutions are mentioned in

Section 3.
• As the sense amplifiers are complex, a tradeoff between area and bandwidth has to be made.

The architecture potential was simulated and evaluated against CPU Intel Xeon E5-2697 using
a subset of PARSEC benchmarks [19] and against GPU NVIDIA Titan XP using Rodinia bench-
marks [36].

4.11 R-AP: Resistive RAM Automata Processor

R-AP was proposed in 2018 by J. Yu et al. from Delft University of Technology [206]. R-AP is an
automata processor that exploits data-level parallelism by performing computations similarly as
mentioned in Section 4.2. The working principle of R-AP is similar to the S-AP. In contrast to S-AP,
R-AP uses RRAM-based STEs and routing matrice, as shown in Figure 19. In addition to the general
advantages of CIM-P architectures, R-AP has the following advantages:

• The architecture is used as a read-favored accelerator, which has a positive impact on the
endurance due to infrequent use [35, 193].
• Automata processing can be used to perform both logical and arithmetic operations in

general.
• Data can be transferred using both direct and indirect schemes.
• The architecture uses non-volatile memory, hence consumes low energy and has a small

footprint.
• The automata processing techniques and tooling are quite mature, hence it is feasible to

explore many applications using automata processing.

However, it also has the following limitations:

• The architecture has to deal with sneak path currents. Possible solutions are mentioned in
Section 3.3.
• As the sense amplifiers are complex, a tradeoff between area and bandwidth has to be made.
• The architecture requires additional compiling techniques and tools to perform conventional

Boolean logic functions using automata processing.

The architecture has been validated using circuit-level simulations and evaluated against S-AP.

5 COMPUTATION-OUT-MEMORY (COM)

The COM class consists of architectures that perform computation using additional logic units
outside the memory core but inside the memory SiP. These architectures were proposed in the past
and evolved through different memory technologies ranging from embedded DRAM to emerging
memory technologies such as RRAM. A large number of architectures have been proposed in this
category. Table 4 shows a brief comparison among the architectures that will be explained in each
subsection. On one hand, these architectures have several common advantages:
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Fig. 19. Resistive RAM Automata Processor (R-AP) [206].

• Reduced memory bottleneck compared to conventional Von-Neumann architecture, as the
computations take place close to the memory core and therefore can benefit from the on-chip
memory bandwidth.
• A wide variety of high-performance functions can be implemented, as the computing takes

place with mature CMOS technology.
• These architectures do not suffer from endurance requirements, especially as traditional

mature memories can be used.

On the other hand, they all share the following limitations:

• The amount of parallelism is either limited by the bandwidth or the available resources,
which puts much more bandwidth restrictions than what can be achieved in the CIM-A/-
P class. An area tradeoff has to be made between registers and the type and amount of
computing resources.
• There is an additional write overhead when the results have to be stored back into the mem-

ory. Note that the outputs are produced outside the memory core, and therefore, extra write
operations would be necessary in such cases.
• Relative complex memory controllers are needed, as these architectures have to support

COM instructions within the memory SiP and maintain the memory coherency with the
rest of the memory hierarchy.
• Efforts are still required to modify instruction sets, compilers, and tools to support in-

memory instructions.

The following subsections discuss the details of COM architectures. The discussion in this section
is organized as follows: eDRAM and DRAM-based architectures are discussed in chronological
order of publication date first, followed by a chronologically ordered discussion of the architectures
that utilize 3D-DRAM memory. Finally, emerging technology-based architectures are discussed
towards the end of the section. This ordering technique is also reflected in Table 4.

5.1 N3XT: Approach to Energy-efficient Abundant-data Computing

N3XT [9] was proposed in 2018 by Mohamed Sabry Aly et al. from Stanford. N3XT creates new
architecture by tightly integrating computation and memory components with fine-grained and
dense connectivity. The N3XT component technologies features (1) efficient logic devices fabri-
cated at low temperature; (2) dense nonvolatile memory, and (3) fine-grained interconnect between
logic and memory units. N3XT architecture exploits these technology features to enable concur-
rent access to a nonvolatile on chip memory as well as fast and efficient logic unit and memory
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Table 4. Comparison among Architectures of COM Classes

Hierarchy

level

Computations
Memory

Technol-

ogy

Overheads
Sneak

path

current

Destructive

read

Required

read-out*

Copy

scheme

Evaluation

Logic

style

Processor

type
Periphery Controller Simulator App.

N3XT Main memory DNN Flexible Hybrid Conv. Complex No No No Indirect Custom-made HTAP

CoNDA Main memory DNN CPU DRAM Conv. Medium No No No Indirect Gem5 DNN/PARSEC

DIVA Main memory Bool. Vector eDRAM Conv. Medium No No No Indirect Prototype (3)

D-AP Accelerator Bool. Logical,+,x DRAM modif. Simple No No No Indirect Rambus Automata

DaDianNao Accelerator NN. NFU eDRAM Conv. Simple No No No Indirect Booksim2.0 CNN, DNN

DRAMA Main memory Bool. CGRA 3D-DRAM Conv. Complex No No No Indirect Gem5 San Diego Vi-
sion, Parboil

HBM Main memory Bool. - 3D-DRAM Conv. Complex No No No Indirect Product No

AMC Main memory Bool. Vector 3D-DRAM Conv. Complex No No No Indirect Mambo DGEMM,
DAXPY

HIVE Main memory Bool. Vector 3D-DRAM Conv. Complex No No No Indirect SiNUCA (4)

ProPRAM Main memory Bool. Logical,+,x NVM (PCM) Modif. Medium No No No Indirect Multi2Sim,
NVSIM

PUMA

+: n-bit addition, Conv.: Conventional, (*): Required read-out during computations.

x: n-bit multiplication, Modif.: Modified, App.: Applications and benchmarks.

NVM: Non-Volatile Memory, Bool.: Boolean, MM.: Matrix Multiplication benchmarks.

NN.: Neural Network, NFU: Neural Functional Unit.

(1): data mining, protein pattern matching, TCP-D, MPEG-2 motion estimation.

(2): 1,024-point FFT, a 13-tap FIR filter, a 7 × 7 convolution, and an 8 × 8 DCT.

(3): scientific computing, databases, and image processing.

(4): vector search, memory reset/set operations, vector sum, matrix stencil, matrix multiplication kernels.

access circuitry. The N3XT is a vertically integrated architecture with multiple tiers as shown in
Figure 20, where each tier is consisting of circuit layer or memory cell and metal layers for inter-
connect. The individual tiers of N3XT:

(1) Compute tier: Supports CPU cores, GPUs, domain-specific accelerators, and so on. N3XT
architecture assumes the cores in the compute tier to be digital logic with local SRAM blocks,
but it is able to integrate analog circuit blocks.

(2) Memory tier: A memory subsystem consisting of either memory controller, memory access
circuits, or memory cells tiers.

(3) Interconnect tier: Support for uniform memory access (UMA) so each compute unit has
the same access latency to each memory location.

(4) Cooling tier: Controls the temperature by providing different cooling solutions, such as
phase-change materials and 2-D materials that can spread the heat to the edge of the chip
to alleviate thermal hot spots and decrease the overall temperature.

In addition to the general advantages of COM architectures, VIRAM comes with the following
advantages:

• High parallelism due to its vertically integrated tiers and UMA.
• The computations using optimized conventional processor designs, which have been opti-

mized critically.
• The architecture uses embedded SRAM, which is a matured technology and has some ad-

vantages such as high performance [91, 101].

However, it also has the following limitations:

• The SRAM has some limitations such as leakage power, low density, and tradeoff between
performance and capacity [91, 100, 101].
• The architecture faces the limitation of 3D integration such as interconnect delay.

The architecture was evaluated with domain-specific accelerators for different configurations
and workload applications. For instance, the architecture achieved inference using Deep Neural
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Fig. 20. N3XT architecture with 3-D integration of circuits on different tiers [9].

Networks (DNNs), the architecture was able to achieve a 1,000× improvement in energy-
efficiency for a reduced-precision 8-bit DNN inference acceleration.

5.2 CoNDA: Efficient Cache Coherence Support for Near-data Accelerators

CoNDA [30] was proposed by Amirali Boroumand et al. in 2019. CoNDA architecture (shown
in Figure 21) is a mechanism that lets the Near Data Accelerators (NDA) optimistically start
execution assuming that it has coherence permissions, without issuing any coherence messages
off-chip. CoNDA executes NDA kernels optimistically while recording the memory accesses inside
the NDA to get insight into the portion of shared data that is accessed by the kernel. When it
finishes optimistic execution for the NDA kernel portion, it exploits the recorded information to
check which coherence operations are necessary to avoid off-chip data movement for unnecessary
coherence operations. If the NDA kernel portion does not need coherence operations for any of
its data updates, then CoNDA commits the updates. If the NDA kernel portion actually requires
any coherence operations, then CoNDA invalidates the uncommitted data updates to perform the
needed coherence operations and re-executes the NDA kernel portion.

In addition to the general advantages of COM architectures, CoNDA comes with the following
advantages:

• Optimistic execution enables it to avoid unnecessary coherence requests.
• It provides an interface for programmers to port application to CoNDA.

However, it also has the following limitations:

• The parallelism is limited, as it executes NDA kernels in portions.
• It needs hardware additions to support optimistic NDA execution. The needed hardware

additions impose area and energy overheads.
• CoNDA needs modification of the ISA to incorporate the CoNDA specific macros.
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Fig. 21. Organization of CoNDA architecture [30].

CoNDA is implemented in the Gem5 simulator and it is evaluated with full-system simulation
using x86 ISA. It includes a local coherence directory for the NDAs and sets the CPU coherence
directory as the main point of coherence for the system. Evaluation results show that CoNDA
reduces the overall data movement when compared to prior NDA coherence mechanisms with
average reduction of 30.9%. CoNDA also achieved an average of 1.84× speedup. These results are
achieved at the cost of 0.003% DRAM capacity overhead and 1.6% increase in NDA L1 data cache
size.

5.3 DIVA: Data-intensive Architecture

DIVA was proposed in 2002 by J. Draper et al. from USC Information Sciences Institute [47, 48]
The architecture is based on an intelligent RAM [151], computational RAM [55], or embedded
DRAM [101] and exploits data-level parallelism by performing computations using vector pro-
cessors. The architecture consists of a host processor, host memory interface, and multiple in-
memory computing blocks as co-processors (as shown in Figure 22); the set of in-memory com-
puting blocks (denoted as PIMs) can be accessed as a conventional memory or smart-memory co-
processor. Through the host memory interface, the host processor is responsible for distributing
workloads to PIMs, managing memory, and switching context between different user programs; a
PIM-to-PIM interconnect provides high bandwidth links among PIMs.

A PIM architecture contains a host interface, a PIM Routing Component (PiRC), and several
PIM nodes. Through the host interface, memory accesses and computation-packed parcels are
transferred to PIMs. The PiRC routes parcels among PIM nodes. A PIM consists of processing
logic units, several megabytes of memory, PBUF, and a memory port. The processing unit in a PIM
includes a scalar processor and a special unit called At-the-Sense-Amps Processor (ASAP). The
scalar processor is a single-issue, in-order execution, 32-bit processor with a floating-point unit.
ASAP, also referred to as Wide World Unit, is used for 256-bit wide operations on data objects
stored in a local memory row. PBUF in each PIM is served as local memory.

In addition to the general advantages of COM architectures, DIVA comes with the following
advantages:

• The parallelism is high due to vector processing of multiple 256-bit operations concurrently.
• The architecture uses embedded DRAM, which is mature and has some advantages such as

high performance, high bandwidth, low power [91, 101].

However, it also has the following limitations:

• The architecture has a complex processor design that requires overhead in controlling, com-
munication, and programming.
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Fig. 22. Data-intensive Architecture (DIVA) [47].

• The architecture uses embedded DRAM, which has some limitations such as penalty trade-
offs between performance and capacity, high fabrication cost, low scalability [91, 100, 101].

A DIVA chip prototype was fabricated in TSMC 0.18 um technology. Its performance was mea-
sured using a set of benchmark applications that includes scientific computing, databases, and
image processing.

5.4 D-AP: Micron Automata Processor

D-AP was proposed in 2013 by P. Dlugosch et al. from Micron Technology [143]. D-AP is an au-
tomata processor that exploits instruction-level parallelism based on the same concept as men-
tioned in Section 4.2. D-AP consists of multiple STEs and a routing matrix (as shown in Figure 23).
The STEs are implemented using DRAM technology. The routing matrix contains multiple pro-
grammable switches, buffers, routing lines, and cross-point connections.

Each DRAM column corresponds to an STE that stores for each state the input symbols it accepts.
One input symbol is fed each cycle to all the DRAM columns simultaneously and as a result possible
next states based on the current input symbol are returned. Simultaneously, the routing matrix is
used to calculate the possible next states from the current active states. By AND-ing the results of
both operations, the actual next states can be determined. The program terminates when all input
symbols are processed. In addition to the general advantages of COM architectures, D-AP has the
following advantages:

• The architecture uses DRAM technology, which has several benefits such as a high maturity,
high endurance, no sneak path currents, and may benefit from existing optimizing tech-
niques and tools.
• The automata processing techniques are quite mature and several tools exist already [6, 11,

157], hence it is feasible to explore many applications using automata processing.

However, it also has the following limitations:

• The architecture uses DRAM technology, which suffers from low performance, high energy
consumption, low scalability, and a large footprint.
• The architecture requires additional compiling techniques and tools to perform conventional

Boolean logic functions, as they will have to be mapped to automata’s.

The architecture is fabricated and evaluated and compared against hardware implementations of
automata processing [4, 14, 70, 187, 208] in terms of configurability, throughput, and scalability.
The D-AP shows improvements in comparison to other existing hardware implementations pub-
lished prior to D-AP. However, S-AP (Section 4.2) and R-AP (Section 4.11) outperform D-AP.
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Fig. 23. DRAM Automata Processor (D-AP) [143].

5.5 DaDianNao: A Machine-learning Supercomputer

DaDianNao was proposed in 2014 by Y. Chen et al. from Chinese Academy of Sciences [38]. Da-
DianNao is eDRAM-based architecture that exploits instruction-level parallelism by performing
neural computations using a Neural Functional Unit (NFU). The architecture consists of multi-
ple nodes; each node has its own interconnection to other nodes, multiple tiles, and eDRAM router
that connects these tiles (as shown in the left part of Figure 24). DaDianNao is an improved version
of DianNao; it exploits the interconnect network to reduce data movements.

A DaDianNao tile contains four eDRAM banks and an NFU that can perform multiplications,
additions, and transfer functions of linear interpolation, depending on the type of the neural net-
work. The eDRAM banks store input neurons that are broadcasted through a fat tree interconnect
network and output neurons that are computed using NFU. After computation, the values of the
output neurons are collected by the center eDRAM bank of DaDianNao. In addition to the general
advantages of COM architectures, DaDianNao has the following advantages:

• Computations for neural networks are quite mature and they do not require a high precision
(therefore, they are resilient against device variation), and can benefit from existing neural
network techniques and tools.
• The architecture uses embedded DRAM, which is mature and has some advantages such as

a high performance, high bandwidth, low power [91, 101].

However, it also has the following limitation:

• The architecture uses embedded DRAM, which has some limitations such as penalty trade-
offs between performance and capacity, high fabrication cost, low scalability [91, 100, 101].
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Fig. 24. A machine-learning supercomputer (DaDianNao) [38].

• The architecture requires additional compiling techniques and tools to perform conventional
Boolean logic functions, as they have to be mapped to neural networks.

The architecture is simulated using Booksim2.0 [42, 98] and evaluated by implementing state-of-
the-art machine-learning algorithms (CNNs and DNNs) and is compared against GPU NVIDIA
K20 [144].

5.6 DRAMA: DRAM-Accelerator

DRAMA was proposed in 2014 by A. Farmahini-Farahania et al. from University of Wisconsin-
Madison [56]. DRAMA is based on 3D-stacked DRAM technology that exploits task-level par-
allelism by computating with coarse-grain reconfigurable accelerators (CGRAs). The archi-
tecture includes a host processor, an accelerator-enabled DRAM rank (AEDR), and a DRAM
DIMM interface (as shown in Figure 25). The host processor sends the configuration data, address
generation parameters for the data to be processed, and other kernel parameters to AEDR be-
fore triggering the kernel execution on AEDR. The host processor communicates with the AEDR
through DRAM DIMM.

An AEDR includes CGRAs stacked on top of DRAM devices. The CGRAs operate on data stored
in the DRAM, communicate with the DRAM through TSVs and execute kernels. A CGRA contains
a grid of 32-bit functional units (FUs), small distributed storages, configurable routing switches,
and a memory controller. The FUs perform computational operations. The distributed storages are
used to store immediate results. The configurable routing switches set the connections up between
FUs and storages. They are configured at runtime by the configuration from the host processor.
The memory controller is used to issue memory requests to a DRAM device. In addition to the
general advantages of COM architectures, DRAMA comes with the following advantages:

• The parallelism is high due to multiple parallel cores.
• The architecture uses 3D-stacked DRAM, which has some advantages, such as a high per-

formance, high bandwidth, and high scalability [119, 197].

However, it also has the following limitations:

• The architecture has a complex accelerator design, which has control, communication, and
programming overhead.
• The architecture uses 3D-stacked DRAM, which has a high fabrication cost and high power

consumption [207].

The architecture is simulated with gem5 simulator using San Diego Vision suite and Parboil bench-
marks suites [179, 188] to verify its functional timing and execution. The power is estimated by

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 4, Article 79. Pub. date: October 2022.



79:36 A. Gebregiorgis et al.

Fig. 25. An architecture for accelerated processing near memory (DRAMA) [56].

McPAT model. Components in the architecture such as 3D stacking DRAM with TSVs and CGRAs
are synthesized with 32 and 40 nm to estimate their area.

5.7 HBM: High-Bandwidth Memory

HBM was proposed in 2015 by H. Jun et al. from SK Hynix [97, 111, 120, 176]. HBM is a heteroge-
neous 3D stacked DRAM platform that exploits data-level parallelism by performing near-memory
computations using additional logic circuits in the memory SiP. The architecture consists of one
logic die and multiple DRAM dies that are connected through TSVs and microbumps (as shown
in Figure 26). The logic die performs computations on the data that is stored in the DRAM dies
and tries to avoid data movements to the host processors. In addition to the general advantages of
COM architectures, HBM comes with the following advantages:

• The parallelism is high due to multiple parallel cores.
• The architecture uses 3D-stacked DRAM, which has some advantages such as a high perfor-

mance, high bandwidth, high scalability, and low power consumption [119, 120, 197].

However, it also has the following limitations:

• The architecture has a complex 3D stacked DRAM module, which has a control, communi-
cation, and programming overhead.
• The architecture uses 3D-stacked DRAM, which has a high fabrication cost and high power

consumption [207].

The first generation of HBM increases the memory bandwidth dramatically up to 100 GB/s per
stack and reduces the power consumption up to 60% [120]. Later generations of HBM such as
HBM2 and HBM3 realize even bandwidth improvements up to 400 GB/s using new error correction
techniques [97].

5.8 HMC: Hybrid Memory Cube

HMC was introduced in 2012 by J. Jeddeloh et al. from Micron [94, 153]. HMC is a 3D DRAM-based
architecture that exploits data-level parallelism by performing near-memory computations inside
the additional logic layer of the memory SiP. The architecture consists of a host CPU, a DRAM chip
that contains a logic chip and multiple stacked DRAM dies based on TSVs, and a high-speed link
between CPU and DRAM (as shown in Figure 27). The logic layer controls the DRAM as its slaves,
communicates with the host CPU, and is able to perform near-memory computations. There are
two architectures that are based on HMC. They are explained next.
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Fig. 26. High-Bandwidth Memory (HBM) [97].

5.8.1 AMC: Active Memory Cube. AMC was introduced in 2015 by R. Nair et al. from IBM [137].
AMC is an HMC-based architecture that performs vector instructions in the logic die of the HMC.
The architecture consists of a host processor, system network, and multiple AMCs that contain a
base logic layer and multiple DRAM layers (as shown in Figure 28). The host processor communi-
cates to AMCs using the system network that is capable of transferring data with a bandwidth of
256 GB/s for read and write operations. This bandwidth is split in eight lanes (i.e., 32 GB/s) where
each lane is connected to an AMC. Each AMC has an 8 GB capacity with an internal bandwidth of
320 GB/s. The architecture comes with a compiler that analyzes applications, prepares sets of code
that are distributed to the AMCs, and also generates code for the interaction and communication
between AMCs. The host processor handles the interaction code, while each AMC executes the
code containing useful computations.

Each AMC contains multiple AMC lanes, vault controllers, and an interconnect network. Each
AMC lane includes an instruction buffer, registers, control units, a load-store unit to perform con-
ventional memory operations, and arithmetic units to perform either vector operations or long-
instruction-word operations. The vault controller stores data that is loaded from DRAM layers
and performs atomic operations on the data before moving it forward to the host processor or
AMC lanes. Furthermore, the vault controller is also responsible for maintaining the coherence be-
tween AMC lanes. In addition to the general advantages of COM architectures, AMC comes with
the following advantages:

• The parallelism is high due to multiple and concurrent processing lanes.
• The architecture uses HMC, which is mature, already commercialized, and in addition has

some advantages such as a high performance, high bandwidth, low power, and high den-
sity [94, 153].

However, it also has the following limitation:

• The architecture has a complex processor design, which has a control, communication, and
programming overhead.

The architecture was simulated using Mambo simulator [25] and evaluated using two computation
kernels for supercomputers: DGEMM [46] and DAXPY [41].
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Fig. 27. Hybrid Memory Cube (HMC) [153].

Fig. 28. Active Memory Cube (AMC) [137].

5.8.2 HIVE: HMC Instruction Large Vector Extensions. HIVE was proposed in 2016 by M. Alves
et al. from Federal University of Rio Grande do Sul [7]. HIVE is a Hybrid Memory Cube (HMC)-
based [94, 153] architecture that performs large vector operations inside the logic die of an HMC.
The architecture consists of a host processor and an HMC module that is extended with a HIVE,
as shown in Figure 29. The host processor, not shown in the figure, is a pipelined-like architec-
ture with six stages; it fetches, decodes, renames, dispatches, executes, and commits a sequence
of instruction. If an instruction fragment has to be executed using in-memory instructions, then
the processor diverts the instruction fragment to the HMC module. HMC module executes the
fragment and returns the result back to the processor.

HMC module consists of multiple DRAM layers, logic vaults, HIVE controller, a crossbar switch,
and multiple-lane links to host processor (as shown in the left side of Figure 29). The data is stored
in multiple DRAM layers and retrieved by the HIVE. The HIVE controller contains a register bank,
functional units, and a HIVE sequencer (as shown in the bottom right of Figure 29). The logic
vaults contains a vault controller, write and read buffer, and a DRAM sequencer (as shown in the
top right of Figure 29). Once the HIVE sequencer receives an instruction, it locks the involved
memory address space; if the memory has already been locked, then the requested instruction
returns a fail status to processor; otherwise, a memory synchronization occurs by flushing related
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Fig. 29. HMC Instruction Large Vector Extensions (HIVE) [7].

cache data into DRAM. The logic vaults and HIVE subsequently execute the instructions by reading
data to read buffers and register bank, performing operations using functional units, and (optional)
storing into memory using write buffers. The operations in HIVE are based on vector operations
that operate on 8 KB of data at a time executed by the 32 logic vaults and HIVE functional units.
As the amount of data is large, a DRAM sequencer and HIVE sequencer schedule these operations
accordingly. The results can be collected in register banks and sent back to the host processor
through the crossbar switch and links. In addition to the general advantages of COM architectures,
HIVE comes with the following advantages:

• The parallelism is high due to vector processing on 8 KB of data.
• The architecture uses HMC, which is mature, commercialized, and has some advantages

such as high performance, high bandwidth, low power, high density [94, 153].

However, HIVE architecture has a complex HMC module, which has a control, communication,
and programming overhead, which is its main limitation.

The architecture is simulated using SiNUCA [8] and evaluated using some integer (vector search
and memory reset/set operations) and floating-point (vector sum, matrix stencil, and matrix mul-
tiplication) kernels against three baseline platforms; both HIVE and baseline platforms are based
on the Intel Atom processor. Like HIVE, the three baseline platforms also have additional process-
ing capacities; for the baseline platforms they are as follows: (1) HMC instructions using HMC 2.0
memory [127] (HMC+HMC), (2) 128-bit SSE instructions with DDR-3 1,333 modules (SSE+DDR),
and (3) 128-bit SSE instructions with HMC 2.0 (SSE+HMC).

5.9 ProPRAM: A Near Data Computing Architecture Based on Non-volatile Memory

ProPRAM was proposed in 2015 by Y. Wang et al. from Chinese Academy of Sciences [195]. Pro-
PRAM is a non-volatile memory (i.e., PCM)-based architecture that exploits data-level parallelism
by performing computations using computational resources in the peripheral circuitry. The ar-
chitecture consists of a host processor with a modified instruction set and a non-volatile mem-
ory module with its peripheral circuits transparent to the host processor. The host processor
sends instructions to the non-volatile memory module in a similar manner as normal read/write
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Fig. 30. A near data computing architecture based on non-volatile memory (ProPRAM) [195].

instruction but with a modified instruction set. The non-volatile memory receives these instruc-
tions and reuses the computational resources in the memory module to perform the computations
on the data stored in the non-volatile memory.

The non-volatile memory module contains a matrix of memory cells, a conventional periph-
eral circuit consisting of sense amplifiers, word drivers, row buffers, col decoders, and a specific
peripheral circuit consisting of components related to non-volatile memory instructions such as
Data-Comparison Write (DCW), DCW Inversion (DCWI), and Flip-n-Write (as shown in
Figure 30). The non-volatile memory-related peripheral circuit is capable of performing compar-
isons, additions, and logic operations. Therefore, an appropriate addressable scheme can be used
to direct operands (data from non-volatile memory) to these computational units. For example, the
DCW unit in Figure 30 is able to compute different operations using the first input from the row
buffer and the second input from the sense amplifiers; the output is stored back into the memory.
In addition to the general advantages of COM architectures, ProPRAM comes with the following
advantages:

• The parallelism is high due to multiple parallel processing units.
• The architecture exploits existing computational resources, which reduces area and power

consumption.
• The architecture uses non-volatile memory, hence consumes low energy and has a small

footprint.

However, it also has the following limitations:

• The parallelism is low due to limited available computing resources in the memory periph-
eral circuitry.
• The architecture has programming and compiling overhead to make the computation units

transparent to the host processor.

The architecture is simulated using Multi2Sim [186] and NVSIM [45]; it is evaluated using PUMA
benchmark suite [57, 81, 110, 148, 182] and has been compared against a multicore computing
system.

6 PROSPECT AND CHALLENGES

Memories occupy most of the silicon area, and their demand is growing continuously, especially
for data-centric applications. In traditional Von-Neumann architectures wherein memory and
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processor units are separated, various memory technologies are organized in a certain hierarchical
order, depending on their response time and capacity characteristics. However, in such architec-
tures, a large amount of data movement happens during the execution of computational tasks that
incurs significant costs in terms of energy and latency. Computing-In-Memory (CIM) architec-
tures, where computational tasks are performed within the memory itself, eliminate this unneces-
sary data movement. As a consequence, these architectures address the memory bottleneck issue
as well as provide high data parallelism.

Computing with charge-based devices such as SRAM, DRAM, and Flash have an advantage
of technology maturity, nevertheless they are facing leakage-related challenges. However, non-
charge-based memristive devices such as RRAM, PCRAM, and STT-MRAM have low leakage due
to their non-volatile nature of storage [147, 158, 161]. Moreover, the nature of their state dynamics
and small size make them more suitable for multiply-accumulate operations, which is desirable for
the CIM architecture. But these technologies are facing severe problems due to various device-level
non-idealities such as resistance variations, interconnect parameters, endurance/lifetime, sneak
paths, imperfect write behavior and so on, which lead to errors and/or accuracy-loss in the com-
putation [33, 132, 133, 139, 160]. Moreover, there are circuit-level non-idealities and (potentially)
severe area overhead in the periphery, which is due to the need for digital-to-analog converters,
analog-to-digital converters, or sense amplifiers in CIM architecture.

It is important to discuss that memory-centric computing paradigm is not only limited to
academia and research institutes, but industries (from startup to well-established industries) are
also paying significant attention to memory-centric architectures. For instance, UPMEM, a fabless
startup semiconductor company, has developed a DRAM-based processing-in-memory accelerator
for data-intensive operations [142]. Similarly, several SRAM-based computing platforms have been
developed by various industries such as Cerebras [93], CEA-LETI [142]. These computing engines
are useful for data-intensive application segments such as DNNs [93]. It is also important to men-
tion that the systolic architecture adopted by TPU-V3 [107] from Google [29], 3D-stacked mem-
ory [2, 82], and CoNDA [30] can be classified as near-memory computing architectures [173, 174],
as it minimizes data movement by storing the parameters in a grid during computation. GRIM-
Filter [103] is another near-memory architecture that integrates computation within a logic layer
stacked under memory layers to perform processing-in-memory (PIM) for seed location filter-
ing in DNA read mapping. All these developments are a big step into the realization and commer-
cialization of memory-centric computing engines for data-intensive application segments.

The growth of data-intensive applications such as deep neural networks (DNN), data-centric
server applications, image processing, and database query applications, has created a demand for
high-performance and efficient hardware architectures, especially for the edge devices. For that
purpose, CIM-based computation architectures using emerging non-charged-based resistive de-
vices have the potential to improve performance as well as energy/area efficiency compared to the
traditional computing systems, which can play an important role in defining the future of com-
puting. In such architecture, the current-mode of compute function, i.e., multiply and accumulate
operation, is actually the approximation of the given applications whose accuracy can be improved
with the maturity of the manufacturing process and material improvements.

7 CONCLUSION

This article presented a comprehensive survey of memory-centric architectures classified into dif-
ferent classes. The article is based on a classification framework that we have published in earlier
work, and, from there, we have focused on a survey of two classification metrics (i.e., compu-
tation location and memory technologies) and three main related classes, namely, CIM-A, CIM-
P, and COM. Then, nearly 30 selected architectures were presented, evaluated, and compared

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 4, Article 79. Pub. date: October 2022.



79:42 A. Gebregiorgis et al.

qualitatively. The work shows that a potential architecture does not only require to be memory-
bottleneck-free, but also energy- and area-efficient. This can only be achieved through the joint
effort of both architectural improvement and technology development. This work also demon-
strated that architectures are not changing dramatically, but gradually with small changes and
technology developments. Indeed, emerging memory technologies play a vital role in overcoming
the energy, performance, and memory bandwidth challenges of Von-Neumann architecture. How-
ever, one needs to revisit the architectural challenges of memory-centric architectures to harness
the full potential of emerging memory technologies.
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