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Preface

“I suppose it’s like the ticking crocodile, isn’t it?
Time is chasing after all of us”

- J.M. Barrie, Peter Pan
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for your valuable feedback and your help navigating the more precarious parts of the academic
world such as handling inappropriate reviewer comments. Bruno, thank you for the incredible
amount of trust and support you gave me. It was incredible to work with you and it’s inspiring to
see someone so dedicated to both amazing research and high quality education. Although I was
initially hesitant about whether I would be able to fit into the academic world, hearing about your
story quickly put that to rest. I also want to thank Piet Demeester, director of IDLab, for creating
such a professional and respectful environment that is a delight to work in.

I want to thank Gregory Van Seghbroeck for initially proposing the idea of doing a PhD and guiding
my research during the early days. Our many late-afternoon brainstorms always left me with an
incredibly amount of motivation and hundreds of new ideas for my research. Similarly, Thomas
Vanhove was there from the beginning to help me think about the more practical applications of
my research and to help me develop my professional communication. I also want to thank my
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co-authors Mays AL-Naday for the intense discussions resulting in an incredible article, and Tim
Wauters for his valuable feedback on my work. I also want to thank Tom Goethals for the many
fruitful collaborations. Fun fact: three out of four papers that we authored together received a
“best paper” award.

The open source software and communities I worked with over the past seven years have been
invaluable. I still have fond memories of the Ubuntu Juju community. There are too many to
mention, but I specifically want to thank Cory Johns, Alex Kavanagh and Stuart Bishop for letting
me join the charms.reactive core team and for the many long discussions about improving code
sharing between charmers. Fun fact #2: Long before my PhD, Ubuntu was my first introduction to
Linux. Jorge O. Castro’s infinite wisdom on AskUbuntu was invaluable to help me get started, so it
was mind-blowing to be able to work with him on Juju, years later.

Special thanks goes to my coworkers for the incredibly stimulating lunch conversations about life,
the universe and everything. I still fondly look back at the discussions with people like Leandro
Ordonez, Stefano Petrangeli, Thijs Walcarius, Jerico Moeyersons, Laurens Van Hoye, Vincent Bracke,
Maxim Claeys, Jeroen Van der Hooft and Femke De Backere. Also thanks to Wim Van de Meerssche
specifically, for teaching me a lot about Linux, fielding endless questions about the intricacies of
C and C++, and for his thoughtful and kind conversations. I also can’t thank Sander Borny enough
for the years of fruitful collaborations both in teaching and in research.

I was blessed to have had amazing support from friends during this period. Anne Fonteyn deserves
an enormous amount of praise for helping me manage my stress during these final months of
my PhD. Additionally, she went through great lengths to understand my work in order to help
brainstorm the structure, title, and cover of this dissertation. Special thanks to Lies Warlop, for
single-handedly pullingme throughmymaster’s and Ewaut VanWassenhove for his unconditional
support throughout the years. Thanks to Philip Vanloo and Rafael Mindreau to keep me sane
throughout the COVID-19 pandemic, and thanks to all the “kiekens”, who made sure I actually got
away from my computer and socialized every once in a while.

I also want to thank my gigantic family for their support as well. Heidi, Pieternel, Simon, Mechtild,
Pepijn and Amos Sebrechts; thank you for the many great family gatherings and inspiring discus-
sions. Of course, I couldn’t have done it without the support of my father, Hans Sebrechts and my
mother Marianne Verstichel. Thank you for inspiring me to follow my passions and do great work,
and thank you for cheering me on along the way.

Finally, thanks to my cats Simba and Panda. Although your contributions to my research were
limited to drooling on my drafts, your truly unconditional love lifted me up every single day since
you entered my life seven years ago.
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Samenvatting
– Summary in Dutch –

Samenwerking overheen organisatorische grenzen wordt steeds belangrijker. Dit gaat zowel over
samenwerking tussen teams onderling, als tussen organisaties en bedrijven. De vierde industriële
revolutie speelt hier een grote rol in doordat deze in gang gezet wordt door het verbinden van di-
gitale systemen die de fysieke wereld manipuleren. In een industrie 4.0 bedrijf, bijvoorbeeld, zijn
de machines van een productielijn onderling verbonden zodat ze informatie kunnen delen en hun
gedrag aanpassen op basis van hun omgeving. Dergelijke productielijn wordt ook geconnecteerd
met andere delen van een bedrijf om automatisch te rapporteren en met de bedrijfssoftware te
integreren. Als laatste gaat de vierde industriële revolutie ook over het verbinden van de IT sys-
temen van verschillende bedrijven om zo beter te kunnen inspelen op elkaars noden.

De complexiteit van IT systemen neemt toe door de vergaande digitalisering van de maatschappij.
Softwaretoepassingen bestaan uit meer en meer componenten die samenwerken om een dienst
te verlenen. Deze complexiteit maakt het lastig om applicaties stabiel te laten draaien en een-
voudig uit te breiden. Microservice architectuur probeert hierop een antwoord te bieden. Het is
een manier om applicaties te ontwikkelen waarbij één applicatie achterliggend bestaat uit een
hoop kleine componenten die elk door een apart team ontwikkeld kunnen worden. Het nadeel
aan microservice architectuur is dat deze de complexiteit zelf niet oplost. Meer nog, deze manier
van werken voegt zelfs nog meer complexiteit toe, bijvoorbeeld door de verhoogde communica-
tie tussen verschillende componenten van een applicatie. Hierdoor wordt het steeds moeilijker
om grote applicaties te installeren en te beheren. Er is dus een hoge nood aan oplossingen om
dit proces eenvoudiger te maken. Deze thesis pakt vijf specifieke moeilijkheden aan omtrent het
beheren van applicaties die samengesteld zijn uit verschillende componenten die samenwerken.

De eerste moeilijkheid gaat over het vastleggen en hergebruiken van de kennis die een systeem-
beheerder heeft over welke componenten moeten opgezet worden voor het oplossen van een
bepaald probleem. Huidige technieken om applicaties te beheren hebben het moeilijk om ken-
nis van een systeembeheerder te encapsuleren. Deze zijn namelijk gebaseerd op declaratieve
modellen die het gewenste eindresultaat heel uitgebreid beschrijven. Echter, indien de systeem-
beheerder niet weet wat er precies nodig is, dan kunnen deze tools niet helpen. Het is dus niet
mogelijk om een model te ontwikkelen dat zelf beslist hoe de applicatie er moet uitzien. Hoofd-
stuk 2 van deze thesis stelt de “orchestrator conversation” voor. Dit is een framework waarmee
systeembeheerders software kunnen ontwikkelen die zelf beslist wat er moet opgezet worden
om bepaalde functionaliteit te voorzien. Het stelt het idee van een “orchestration agent” voor.
Deze vertaalt abstracte modellen die op een hoog niveau beschrijven wat er nodig is, naar meer
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concrete modellen die in detail beschrijven wat er moet opgezet worden. Dit hoofdstuk sluit af
met een evaluatie van een prototype dat aantoont dat deze vertalingen gebeuren met minimale
overhead.

De tweede moeilijkheid ligt in het vastleggen en hergebruiken van de kennis die een systeembe-
heerder heeft over wanneer welke beheersactiesmoeten uitgevoerd worden. Declaratievemodel-
len kunnen enkel de gewenste staat van een applicatie beschrijven. Echter, draaiende applicaties
hebben ook onderhoud en updates nodig. Daarom bieden veel beheerstools de mogelijkheid aan
om ook verschillende beheersacties te definiëren. De beheerstool beslist echter wanneer iedere
actie wordt uitgevoerd op basis van een interne levenscyclus. Dit zorgt voor problemen omdat
deze levenscyclussen zelden overeen komen met de echte levenscyclus van een service. Deze
aanpak maakt het ook moeilijk om delen van een levenscyclus binnen één service te hergebrui-
ken voor een andere applicatie. Hoofdstuk 3 stelt het “reactive pattern” voor om dit probleem
op te lossen. Dit laat systeembeheerders toe voor iedere applicatie een levenscyclus op maat te
maken. Deze aanpak maakt het ook mogelijk om delen van een levenscyclus te groeperen in een
herbruikbare bibliotheek die gedeeld kan worden met andere systeembeheerders. Dit hoofdstuk
eindigt met een evaluatie van het ecosysteem dat ontstaan is doorheen de twee jaar na initi-
ële uitgave van het “charms.reactive” framework, dat het reactive pattern implementeert. Deze
evaluatie toont aan dat deze aanpak inderdaad samenwerking tussen systeembeheerders en het
delen van code stimuleert.

De derdemoeilijkheid draait rond het vastleggen en hergebruiken van een kennis die een systeem-
beheerder heeft over hoe microservice applicaties opgebouwd worden. Cloud-native beheers-
programmas zoals Kubernetes bieden geen effectieve manier aan om de communicatie tussen
microservices expliciet te modelleren en te configureren. Hoofdstuk 4 stelt “orcon” voor om dit
probleem aan te pakken. Dit is een extensie van Kubernetes die systeembeheerders de mogelijk-
heid bied om relaties tussen microservices te modelleren. De extensie gaat dan de communicatie
tussen die microservices configureren en automatisch aanpassen indien er wijzigingen zijn. De
evaluatie in dit hoofdstuk toont aan dat de extensie relaties tussen microservices automatisch
kan opzetten en updaten zonder dat er interactie tussen mensen nodig is. De evaluatie toont
ook dat deze herconfiguratie gebeurt in maar 44 milliseconden per service, wat veel beter is dan
vergelijkbare beheerstools.

De vierde moeilijkheid zit in het beheer van dataverwerking stromen die over organisatorische
grenzen heen gaan. Serverless platformen hebben veel potentieel om het beheer van dataver-
werking stromen te vereenvoudigen. Deze platformen bieden echter geen effectieve tools aan
om met meerdere individuele teams éénzelfde datastroom te beheren. Hoofdstuk 5 stelt “Plum-
ber” voor om dit probleem op te lossen. Verschillende onafhankelijke partijen kunnen doormiddel
van Plumber samen een dataverwerking stroom ontwikkelen en updaten. Het biedt een gebruiks-
vriendelijke interface aan en ondersteunt geavanceerde eigenschappen zoals atomaire updates
van een draaiende opstelling zonder dataverlies. Deze maakt het ook mogelijk om vorige versies
van de verwerkingscode eenvoudig terug te zetten. De evaluatie op het einde van dit hoofdstuk
toont dat een draaiende verwerkingsstroom kan geüpdatet worden in 12 seconden zonder enig
dataverlies.

De vijfde en laatstemoeilijkheid die in deze thesis behandeldwordt, gaat over het beheren van ap-
plicaties die op een mix van cloud en edge infrastructuur draaien. Deze mix, die de “fog” genoemd
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wordt, zorgt er voor dat een aantal assumpties van bestaande beheerstools en methodologieën
niet meer kloppen. Er is dus een nood aan het aanpassen van deze tools en methodologieën
om met deze nieuwe omgeving te kunnen omgaan. Om dit probleem aan te pakken introduceert
Hoofdstuk 6 een visie van een “fog native” methodologie. Het idee van intentie-gebaseerd beheer
van applicaties staat hier centraal. Dit is een radicale verandering tegenover het traditionele idee
van declaratief beheer van services. In plaats van een declaratieve beschrijving van de gewenste
staat van de applicatie, werkt dit met een beschrijving van de intentie van de applicatie. Dit geeft
het systeem de mogelijkheid om zelf de gewenste staat aan te passen op basis van welke in-
frastructuur op dat moment beschikbaar is en waar de gebruikers van een applicatie zitten. Dit
hoofdstuk eindigt met een evaluatie die aantoont wat de impact is van microservice applicaties
te distribueren over een mix van cloud en edge infrastructuur.

De methodes en platformen voorgesteld in deze thesis pakken een aantal belangrijke problemen
aan op het gebied van beheer van applicaties. Daarnaast geeft dit onderzoek ook een leidraad
om de uitdagingen rond het beheer van services in de fog aan te pakken. Toekomstig onderzoek
kan, bijvoorbeeld, de aanpak van de orchestrator conversation gebruiken om services in de fog
eenvoudiger te beheren. De overhead die gepaard gaat met dergelijke oplossingen kan aange-
pakt worden door on-demand besturingssoftware te ontwikkel door middel van WebAssembly.
Een tweede interessante toekomstige onderzoekspiste is om samenwerking bij Kubernetes con-
trollers aan te sporen, door het reactive pattern te implementeren voor Kubernetes. Er zijn ook
oplossingen nodig om de vertrouwelijkheid en veiligheid van services in de fog de verzekeren,
bijvoorbeeld door middel van “device attestation” en “confidential computing”. Als laatste zijn er
een aantal open onderzoeksvragen betreffende intentie-gebaseerd beheer van services, zoals het
vertalen van intentie-modellen naar gewenste-staat modellen, en het gebruik van kunstmatige
intelligentie voor verdere optimalisaties.
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Collaboration across organizational boundaries, whether it is between teams, organizations or
companies, is becoming increasingly important. The fourth industrial revolution is one of the
driving factors for this because it is characterized by widespread interconnection of cyber-physical
systems. As an example, an industry 4.0 manufacturing company might interconnect each man-
ufacturing machine on a production line so they can share data, learn, and adapt their behavior.
Moreover, this production line would be connected to other parts of the organization to auto-
matically report and integrate into various IT systems. Furthermore, the entire IT system of the
company would connect to IT systems of other companies in their supply chain in order to ensure
further integration.

Complexity of IT systems increases as digital transformation touches more andmore parts of soci-
ety. Applications become composed systems consisting of multiple components interacting with
each other to achieve the required objective. Although microservice architecture is often posi-
tioned as a way to address the complexity of monolithic applications, it also increases complexity
by introducing additional communication between microservices and additional frameworks to
manage them. The rising complexity of composed applications makes them increasingly chal-
lenging to deploy and operate. As such, there are a number of open questions in the field of
service orchestration, which investigates the process of designing, deploying and managing such
applications.

The first difficulty is in capturing and reusing a system administrator’s knowledge about when to
deploy what. Current state of the art configuration management tools are not great at encapsu-
lating knowledge because they are based on declarative models. Although thesemodels are great
at describing the desired state of an application, they cannot be used to create logic that decides
what that desired state should look like. Solving this challenge means system administrators can
more easily share knowledge and create software that helps them better manage the complexity
of composed applications. Chapter 2 proposes the orchestrator conversation as a way for system
administrators to capture their knowledge about when to deploy what. It introduces the concept
of an “orchestration agent” as a way to translate abstract higher-level models into more con-
crete lower-level models. Similarly, while the application is running, orchestration agents also
translate low-level information about the running infrastructure and services into a higher-level
abstract status of the complete application. Evaluation of a prototype implementation shows this
approach is able to translate higher-level abstract models into lower-level concrete models with
minimal overhead.

The second challenge is capturing and reusing a system administrator’s knowledge about when
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to perform which management actions during the lifecycle of an application. Declarative models
can only capture part of a system administrator’s tasks: after the application reaches the desired
state, they still require frequent maintenance and updates in order to ensure their correct execu-
tion. Therefor, cloud modeling languages like the OASIS Topology and Orchestration Specification
for Cloud Applications (TOSCA) allow a system administrator to define management actions in a
declarative workflow model. The orchestrator then decides when to run which actions based on
an internal predefined lifecycle. This approach is very limited, however, since all applications are
locked into the lifecycle supported by the orchestrator. Moreover, this approach makes it difficult
to reuse actions acrossmultiple services. Chapter 3 proposed the reactive pattern tomake it easier
to create custom lifecycles to manage a single component of a composed application. Moreover,
it is specifically designed to enable an ecosystem where developers share reusable collections of
lifecycle steps to use between services. The reactive pattern is an event-based systemwhere each
management action defines their pre- and post-conditions using “flags”. Using these properties,
actions are chained into emergent workflows which manage the complete lifecycle of a service.
The chapter ends with a reflection on more than two years of using this pattern in production
as part of the charms.reactive framework built for the Juju orchestrator. This shows the pattern
indeed fostered an ecosystem of sharing.

The third difficulty concerns encapsulating and reusing system administrator’s knowledge about
composing cloud-native microservice applications. Although cloud-native orchestrators such as
Kubernetes provide battle-tested APIs to manage containerized applications, they fail to provide
comprehensive methods to automatically manage dependencies between individual microser-
vices. As a result, such dependencies are often managed using ad-hoc solutions that provide
very little design-time insight and are prone to break. Chapter 4 addresses this challenge by
proposing orcon, an extension to the Kubernetes API inspired by the orchestrator conversation.
It allows declarative modelling and automatic (re-)configuration of dependencies between mi-
croservices. It does this in a Kubernetes-native way so it integrates with the existing ecosystem
of tools for Kubernetes. A functional evaluation shows orcon removes the need for human-to-
human interactions when microservice dependencies change. A performance evaluation shows
it takes 0.44 seconds per service to propagate changes in dependencies, greatly outperforming
traditional agent-based orchestrators using cloud modeling languages.

The fourth difficulty concerns the management of stream processing pipelines that cross organi-
zational boundaries. Although the serverless paradigm aid in this endeavor, they lack in support
for cross-domain collaboration. Specifically, they do not provide cohesive facilities for multiple
collaboratively develop a stream processing pipeline where each party is responsible for a differ-
ent part of the pipeline. Chapter 5 addresses this challenge by proposing Plumber, a framework
for building and running serverless stream processing pipelines that cross organizational borders.
It has a specific focus on enabling collaborative creation of such pipelines, a focus that is lacking
in current state of the art. It goes beyond that focus, however, to deliver a user-friendly UI and
advanced features such as atomic upgrades, automatic scaling and seamless roll-back to previ-
ous versions. Like the orcon solution from Chapter 4, it is also a Kubernetes-native framework
ensuring high compatibility with the existing ecosystem. The evaluation at the end of this chapter
shows it can update a running cross-domain analytics pipeline in 12 seconds without any data loss.

Finally, the fifth difficulty concernsmanaging applications that run on amixture of cloud and edge



Summary xxvii

resources called “fog computing”. This breaks a number of assumptions of traditional and cloud
native service orchestration approaches. To solve this issue, the practices to deploy and manage
services must adapt to this new reality of a cloud-edge continuum. Chapter 6 proposes a vision for
addressing this challenge by introducing a “fog native” architecture and a set of design patterns.
The architecture is centered around intent-based workflow construction. This is a radical change
compared to the traditional desired-state based methods for managing applications. Instead,
developers specify the desired behavior of the application using intents. A workflow manager
interprets these intents and creates a desired state model which ensures the desired behavior.
This gives the system flexibility to dynamically update the desired state based on user demand,
location and available infrastructure. It also introduces the concept of a Fog mesh, which handles
communication betweenmicroservices and to external users. The chapter ends with an evaluation
showing the impact of running microservice-based applications in a fog ecosystem.

To conclude, the approaches proposed in this dissertation address important challenges in the
field of service orchestration in the cloud, and carve a path towards facilitating service orches-
tration in the fog. Future research can build on this work by, for example, adapting the agent-
based orchestration approach of Chapter 2 to the fog. Addressing the overhead of agent-based
approaches might be possible by creating on-demand control planes using technologies such as
WebAssembly. A second direction for future research is to improve collaboration in the creation of
Kubernetes controllers, for example by adapting the reactive pattern to Kubernetes. Furthermore,
the realities of the cloud-edge continuum demand new approaches to security of infrastructure
and workloads. Novel approaches are needed to ensure service orchestration platforms integrate
with device attestation methodologies and confidential computing. Finally, there are a number
of open challenges concerning intent-based approaches for service orchestration. Research is
needed into the structure and form of intent models, translating intent models to desired-state
models, and using AIOps to further optimize service orchestration in the fog.





1
Introduction

“The operatingmechanism [of the analytical engine] can even be thrown into action independently
of any object to operate upon (although of course no result could then be developed). Again,
it might act upon other things besides number, were objects found whose mutual fundamental
relations could be expressed by those of the abstract science of operations, and which should
be also susceptible of adaptations to the action of the operating notation and mechanism of the
engine. Supposing, for instance, that the fundamental relations of pitched sounds in the science
of harmony and of musical composition were susceptible of such expression and adaptations, the
engine might compose elaborate and scientific pieces of music of any degree of complexity or
extent.”

- Ada Lovelace, 1843

1.1 Collaborative Compositions

Collaboration across organizational boundaries, whether it is between teams, organizations or
companies, is becoming increasingly important. Gartner predicts that by 2023, organizations
which have the technology and processes to enable inter-enterprise data sharing will outper-
form those that do not [8]. One of the driving factors for this is the fourth industrial revolution,
characterized by widespread automation and interconnection of cyber-physical systems. Not only
are the technological challenges rooted in enabling collaboration [6], but collaboration is also a
key factor in adopting industry 4.0 across sectors [17]. As an example, in an industry 4.0 factory,
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manufacturing machines on a production line are cyber-physical systems that communicate de-
tailed properties of each produced component to each other. This allows each machine to slightly
adapt its behavior to reduce production faults or to create slight variations of the same product.
Furthermore, by integrating the IT systems ofmultiple companies across the value chain of a prod-
uct, machines can take into account evenmore details of a component, and entire production lines
can change their behavior based on the behavior and requirements of other entities in the chain.
As such, the value of the fourth industrial revolution becomes even more apparent when multiple
companies across a value chain collaborate to set this transition in motion [17].

Complexity of IT systems increases as digital transformation touches more andmore parts of soci-
ety. Applications become composed systems consisting of multiple components interacting with
each other to achieve the required objective. For example, in 2018, a survey of CIOs reported a sin-
gle web or mobile transaction would cross an average of 35 different technology systems or com-
ponents [9]. This complexity negatively impacts service reliability, performance [9], and release
time. Although microservice architecture is often positioned as a way to address the complexity
of monolithic applications, it also increases complexity by introducing additional communication
between microservices and additional frameworks to manage them [11].

1.2 Facilitating Service Orchestration

The rising complexity of composed applications makes them increasingly challenging to deploy
and operate. Thismanagement of applications is referred to as service orchestration in the context
of this work, in line with the taxonomy of Weerasiri et al. [25]. It encompasses the entire process
of selecting, describing, deploying, configuring, monitoring and controlling the infrastructure and
services that make up that application.

Configurationmanagement is one of the first efforts to facilitate this process. Burgess et al. intro-
duced the concept of convergence towards a desired state, also called the “desired state princple”:
a system administrator defines the desired state of the application in a declarative model, and the
system iteratively changes the application to get to this desired state [5]. One of the advantages
of this method is that it is more resilient because the system makes no assumptions about the
initial state of the application. This is in contrast to managing applications using imperative shell
scripts which inherently make a lot of assumptions about the initial state of the system before
they run. A second advantage of this approach is that the current state of an application is easily
visible and auditable using the declarative model.

Infrastructure as Code is the next step of this paradigm, where both the application and the under-
lying infrastructure are described using cloud modeling languages [4]. Many of these languages
embrace the composed nature of modern applications by describing them as topologies of re-
sources, services and relationships. Although most tools, such as Juju [7], use a custom modeling
language [4], there are also efforts to create a standardized modeling language such as the OASIS
Topology and Orchestration Specification for Cloud Applications (TOSCA) [18].
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The advent of containerization creates an interesting shift in service orchestration. By contain-
ing each service inside of a container, the scope of service orchestration is reduced to container
orchestration. Individual services do not have to be installed and configured anymore. Instead,
developers provide standardized containers in which these services are already preinstalled. This
effectively disconnects the challenge of installing and configuring a single service from that of
orchestrating multiple services. As a result, container orchestrators such as Kubernetes can treat
every single container in a standardized manner, regardless of what service and technologies are
running inside of it.

1.3 From Cloud to Edge

The question of where these applications are running is changing rapidly. The industry as a whole
has been going through an extensive transition from private data centers and on-premise servers
to the cloud. As such, the nature of software development has changed to adapt to this trend,
creating new paradigms such as cloud native and serverless. The cloud native paradigm, centers
around turning monoliths into microservices [12] designed from the ground up to take advantage
of the benefits of the cloud [2, 16]. This allows teams to release faster, increase reliability, and
expedite operations by taking full advantage of cloud resources and their elasticity. Serverless is a
paradigm that simplifies operating an application by providing an opinionated abstraction over all
layers except the core business logic [3]. Users only need to supply their business logic and mini-
mal configuration to create a running, production-ready application. Many operational concerns,
such as scaling, scheduling, and observability, are taken care of by the serverless platform [10].
Simultaneously, serverless approaches have the potential to reduce resource usage [1][20]. For
this reason, serverless is also gaining traction in the IoT settings [24][21], and in the edge with
offerings such as Cloudflare Workers [23].

At the same time, however, more companies are combining cloud applications with edge com-
puting [15]. The Netflix Open Connect program, for example, invites ISPs to place Netflix caching
servers in the edge, in order to improve user experience and decrease strain on the network. The
cloud and edge have historically been regarded as vastly different ecosystems, with vastly differ-
ent approaches to developing, deploying and managing applications. The idea of “fog computing”
or the “cloud-edge continuum” shown in Figure 1.1 aims to break this dogma by extending the
concepts and methodologies of the cloud towards the edge. The resulting fog allows developers
to seamlessly run applications on a mixture of cloud and edge resources. This enables them to
increase privacy [26] and reduce latency [19], and helps ISPs to ensure more efficient resource
usage.
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Figure 1.1: The fog extends from the cloud to the edge, creating a single cloud-edge continuum on which
applications can be deployed.

1.4 Research Questions

1.4.1 Deciding what should be deployed

Encapsulating and reusing knowledge is difficult using the state of the art in configuration man-
agement tools. This issue stems from the foundational theory behind this field: the idea that
infrastructure code should be a declarative description of the desired end-state of your applica-
tion, as posited by Burgess et al. [5]. Declarative models are great at describing the desired end
result. Where they fall short, however, is in describing how to decide what the end result should
be. As a result, declarative models are great at encapsulating a system administrator’s knowl-
edge about how to deploy something, but are insufficient for encapsulating the knowledge about
deciding what to deploy. As such, the first research question investigates how to address this limi-
tation. Solving this challenge means system administrators can more easily share knowledge and
create software that helps them better manage the complexity of composed applications.

RQ 1. How to encapsulate and reuse system administrator’s knowledge about when to deploy
what?

1.4.2 Deciding when to run management actions

Declarative models allow a system administrator to codify the desired end state of a service. After
initial deployment, however, there are a number of day-2 operations which need to be performed
such as maintenance, integration and updates. Therefor, cloud modeling languages like TOSCA
allow a system administrator to specify management and orchestration actions in a declarative
workflow model. The orchestrator defines a lifecycle for each service, and the workflow model
specifies for each step in the lifecycle what action should be taken. This workflow model allows
a system administrator to encapsulate their knowledge about how to manage a service. This
approach has two issues, however. The first being that the lifecycle provided by the orchestrator
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does not match the actual lifecycle of the managed service. In reality, many services have much
more lifecycle steps than those provided by the orchestrator. The second issue resides in the reuse
of individual aspects of a service’s lifecycle. Many services share multiple lifecycle steps, but the
knowledge about when to perform that step cannot be reused acrossmultiple services. As a result,
creating a lifecycle generally requires complete knowledge of when each individual step of each
aspect of the service should be taken.

RQ 2. How to encapsulate and reuse system administrator’s knowledge about when to perform
which management actions?

1.4.3 Deciding how to connect microservices

Microservice architecture fully commits to the idea of an application as a composition of small,
independent services. This revolution resulted in a number of interesting solutions for orchestrat-
ing such an application, with Kubernetes being the most widely used one. Although Kubernetes
provides very flexible APIs to manage containerized applications, it fails at providing comprehen-
sive explicit management of dependencies between individual microservices of an application.
As a result, such dependencies are often managed using ad-hoc solutions that provide very little
design-time insight and are prone to break. Although service meshes aim to solve a number of
operational issues concerning dependencies between services, they do not allow explicit mod-
elling and automatic configuration of these dependencies. This makes it challenging for system
administrators to encapsulate their knowledge about how to configure dependencies between
microservices and how to compose microservices to get the desired application.

Although some cloud modeling languages support encapsulating this knowledge about regular
services, adapting them to microservice applications results in sub-optimal solutions. The first
issue is that these adaptations do not integrate into the wider cloud native ecosystem; they just
create a new abstraction layer on top of existing orchestrators, greatly limiting compatibility with
existing tools. Secondly, since these tools have not been developed for containerized microservice
scenarios, they often have an unacceptable per-microservice overhead which is sometimes larger
than the actual running microservice itself.

RQ 3. How to encapsulate and reuse system administrator’s knowledge about composing mi-
croservice applications and (re-)configuring their internal dependencies, in a way that fully inte-
grates into a cloud native ecosystem?

1.4.4 Deciding how to process cross-domain streams

Serverless platforms aim to make it easier for developers to develop and deploy cloud services.
Applied to stream processing, users only need to supply their business logic and minimal config-
uration to form a running topology of stream processing code. One area where these platforms
still lack, however, is in supporting cross-domain collaboration. The current state of the art in
stream processing platforms do not offer cohesive facilities for multiple independent parties to
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collaboratively develop a stream processing pipeline where each party is responsible for a dif-
ferent part of the pipeline. Existing technologies lack methods for collaboratively modelling and
building data processing topologies and lack hands-off change management techniques.

RQ4. Howcanmultiple independent parties collaboratively create serverless streaming pipelines?

1.4.5 Bringing cloud native to the fog

With the advent of fog computing, microservices and serverless functions are now not necessarily
only running in the cloud anymore. Instead, computation is spread across the cloud-edge con-
tinuum, running everywhere from the cloud to the edge. This means the practices to deploy and
manage services must adapt to this new reality. While the cloud native paradigm’s objectives
of faster releases, increased reliability and expedited operations are very useful in the fog, the
paradigm itself is grounded in a number of assumptions which do not hold true anymore in that
environment.

RQ 5. How to adapt the cloud native paradigm to the cloud-edge continuum of the fog?

1.5 Research Contributions and Outline

The research that is part of this dissertation aims to facilitate the management of collaborative,
composed applications in the cloud and the edge. The main contributions made in this area are
the following.

1.5.1 Orchestrator Conversation (Chapter 2)

Chapter 2 proposes the “orchestrator conversation”, a hierarchical agent-based solution for turn-
ing high-level requests for desired applications into low-level declarative models describing the
required services to meet that request. This is in line with RQ 1. The orchestrator conversation ad-
dresses the challenges of creating new abstractions using cloud modeling languages by introduc-
ing the concept of an “orchestration agent”. Each orchestration agent serves as an encapsulation
of knowledge about how to translate high-level abstract request models into lower-level more
concrete desired state models. Similarly, while the application is running, orchestration agents
also translate low-level information about the running infrastructure and services into a higher-
level abstract status of the complete application.

The chapter defines a number of concepts pertaining to how the orchestrator conversation inter-
acts internally and externally:

• Internal communication happens using declarative “request models” to define the desired
state and “runtime models” to describe the current state of the infrastructure and appli-
cation.
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• “Service agents” are used by the orchestrator conversation to communicate with lower
level orchestrators and configuration management systems.

• “Collaborator relationships” are used by service agents to collaborate in a non-hierarchical
fashion.

• “Operator relationships” are used by orchestrator agents to drive the behavior of service
agents in a hierarchical fashion.

Finally, the chapter presents a prototype implementation of the orchestrator conversation and a
functional and performance evaluation. The functional evaluation shows the orchestrator con-
versation succeeds in allowing a user to deploy a Hadoop cluster using a much simpler and ab-
stract model compared to the state of the art. The performance evaluation shows the overhead of
translating the higher-level abstract model into lower-level concrete models (100 milliseconds)
is negligible compared to the time to deploy the application using the Juju orchestrator (20 min-
utes).

1.5.2 The reactive pattern (Chapter 3)

Chapter 3 presents the “reactive pattern”, a method to create emergent workflows to manage
individual services. This is in line with RQ 2: the reactive pattern addresses the shortcomings
of managing services using lifecycles by creating a flexible event-based system where lifecycles
emerge from the pre- and post-conditions of individual management actions. Each management
action defines a number of “flags” which need to be on or off, in order for the management action
to run. While an action is running, it turns flags on or off, which might trigger other actions to run
afterwards. Since actions have no direct dependencies on each other, only on flags, they can be
grouped into “layers” regardless of the structure of the emergent workflow. As such, it becomes
possible to group handlers by which aspect of the service they manage. This makes it possible to
create an ecosystem of reusable layers, each of which containsmanagement actions for a different
aspect of a service.

The chapter also discusses the “charms.reactive” framework, which implements this pattern on
top of Juju’s declarative workflows, which are encapsulated in “Charms”. It evaluates the pattern
by investigating the ecosystem of Charms and layers that has arisen during two years after the
initial release of the framework. The results show 1/3 of all active Charms use this framework,
67% of those share parts of their management workflow with at least one other Charm and 73%
of those share parts of their relationship workflow with at least one other Charm.

1.5.3 Orcon (Chapter 4)

Chapter 4 presents “orcon”, an extension to Kubernetes allowing users to model and manage de-
pendencies between microservices, addressing RQ 3. The chapter introduces a definition for what
a service relationship is, and shows a proof-of-concept Kubernetes controller that adds this func-
tionality to Kubernetes. The resulting extension is completely Kubernetes-native: it adds this
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functionality to the existing Kubernetes API so that it is compatible with the existing ecosystem
of tools which use this API.

The chapter also presents a functional and performance evaluation of this prototype. The func-
tional evaluation shows the automatic change management of modeled dependencies removes
the need for human-to-human interaction when changes on one side of the dependency need
configuration adaptations on the other side. The functional evaluation also shows the existing
Kubernetes API is not abstracted to users, and thus all Kubernetes functionality and compatibility
is available. The performance evaluation shows change propagation happens with an overhead of
only 0.44 seconds per service, greatly outperforming traditional agent-based orchestrators using
cloud modeling languages.

1.5.4 Plumber (Chapter 5)

Chapter 5 presents “Plumber”, a serverless framework that supports creating cross-organizational
stream processing pipelines, answering RQ 4. The framework also offers robust change manage-
ment of streaming topologies with the following features.

• Declarative definition of pipelines and seamless rollback to previous versions.

• Horizontal autoscaling out of the box.

• Atomic no-touch upgrades from the standpoint of the stream such that there is a single
upgrade point after which all new messages are processed by the upgraded topology.

• At-least-once processing semantics at all times.

• Kubernetes-native: all interaction with Kubernetes happens using desired state models of
the Kubernetes API.

The chapter also presents a functional and performance evaluation of this framework. The func-
tional evaluation shows the platform makes it possible to collaboratively create stream process-
ing pipelines that cross organizational borders. The performance evaluation shows the framework
can update a running cross-domain analytics pipeline in 12 seconds without any data loss or du-
plication.

1.5.5 Fog-native architecture (Chapter 6)

Chapter 6 introduces a vision for a “fog native” paradigm and architecture which helps developers
create applications that run on a mixture of cloud and edge resources. This addresses RQ 5. The
chapter identifies four fundamental assumptions of the cloud native paradigm which do not hold
true in the fog, and proposes an architecture and a set of design patterns to remedy these issues.
Key aspects of the fog native paradigm the following.

The paradigm is centered around intent-based workflow construction. This is a radical change
compared to the traditional desired-state based methods for managing applications. Instead,
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developers specify the desired behavior of the application using intents. A workflow manager
interprets these intents and creates a desired state model which ensures the desired behavior.
This gives the system flexibility to dynamically update the desired state based on user demand,
location and available infrastructure.

The chapter also proposes the concept of a fog mesh, providing three distinct functionalities.

• Similar to API gateways in a cloud native environment, the fog mesh handles external
connectivity from users to microservices. Each fog mesh proxy acts as an ingest point,
which makes it possible to distribute API gateway functionality in the edge, closer to users.

• Apart from the data plane, the fog mesh proxies are also control-plane ingest points for
the system in that they receive end user requests for workflows and communicate them to
the workflowmanager. This has the advantage of aggregating workflow requests to avoid
overloading the workflow manager each time individual end users change.

• The fog mesh also takes up the role of traditional service meshes, meaning they facilitate
inter-microservice connectivity. In contrast to traditional service meshes, however, the
fog mesh does not require a sidecar proxy for each single microservice. Instead, microser-
vices are grouped in regional clusters based on the network topology and demand. Each
regional cluster has a single service mesh proxy handling inter-microservice communica-
tion for the entire cluster.

Finally, the chapter provides an evaluation showing the impact of running microservice-based
applications in a fog ecosystem, confirming, for example, network latency plays a bigger part in
distributed workflow response time in the fog compared to the cloud.

1.5.6 Conclusion (Chapter 7)

Finally, Chapter 7 concludes this thesis, reflects on lessons learned during the course of this PhD,
and looks forward to propose interesting future research directions.

1.6 Research Projects

Parts of the research conducted during this PhD are the result of different national and interna-
tional research projects which are listed below:

1. Fed4FIRE (FP7-ICT): “Federation for FIRE”: This project established a European Federa-
tion of research testbeds by connecting over 23 instances all across Europe. This allows a
researcher to provision and connect physical and virtual infrastructure such as servers, vir-
tual machines, wireless and wired networks. As part of this project, IDLab created the first
iteration of the Tengu testbed, which allowed easy provisioning of data processing plat-
forms such as Apache Hadoop and Apache Spark. This testbed has been used extensively
by national and international research projects.
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2. MmmooOgle (bilateral agreement Bovicom - iMinds): This Smart Farming project inves-
tigated how Big Data technology could be used to combine and process data streams of
varying sensors in a modern dairy farm. As part of this project, iMinds helped Bovicom
explore the Big Data landscape and set up a proof-of-concept data analytics stream which
predicted the fertility of cows.

3. DeCoMAdS (VLAIO SBO):Deployment and ConfigurationMiddleware for Adaptive Software-
as-a-Service: The goal of this project was to support Software-as-a-Service providers in
creating adaptive, scalable and performant cloud applications. One of the goals was to
create a middleware solution to aid SaaS vendors in creating their platforms. This project
had a large advisory board of industry partners to bring use-cases and orient the research.

4. Providence+ (iminds.icon): The goal of this project was to optimize news publication
strategies by acting on predictions of the virality of news stories. As part of this project
IDLab created a platform to ingest raw click and scroll data from the news websites Medi-
aMonkey and VRT, and to predict which stories would “become viral”.

5. AMiCA (VLAIO SBO): This project had as goal to identify possibly threatening situations on
social networks by means of text and image analysis. This is to ensure the online safety
of children. As part of this project, IDLab created a platform which ingests a real time
stream of tweets from Twitter to analyze and highlight cases of cyberbullying, sexually
transgressive behavior, depression and suicidal behavior.

6. City of Things (imec): This is an umbrella program for a number of projects that investi-
gate how hardware and software can be combined to create smart-city solutions. The city
of Antwerp, Belgium, is home to a digital testing ground for these projects. Parts of this
research were conducted as part of a number of sub-projects, such as observing air quality
using sensors mounted on delivery vehicles, and supporting the development of scalable
applications on IoT data using the Obelisk IoT platform.

7. Digital Cinema (VLAIO O&O): The goal of this project was to create a distributed platform
for managingmovies in a cinema. Traditionally, movies are stored on centralized hardware
and downloaded by the cinema projector in each roomwhen needed. As part of this project,
IDLab created a swarm-based platform which allows the cinema projectors to collectively
store movies without a centralized platform. Using a combination of gossip protocols and
promise theory, the projectors collectively decide how and where to store which movies.

8. Solid Web Monetization (Grant for the Web): This project created a method for Solid web
applications to monetize content without ads. Solid is a new web standard for building
privacy-preserving and interoperable web applications. Since Solid web applications can-
not depend on data collection as their business model, this project investigated how to
incorporate Web Monetization into the Solid ecosystem. With Web Monetization, creators
can request micropayments for viewing their content in a browser. IDLab created a pro-
totype framework for monetizing content in a privacy-preserving way and drafted a new
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W3C standard which enables this functionality in an interoperable way.

9. Fed4FIRE+ (Horizon 2020): This project continues the effort of the original Fed4FIRE in
creating and connecting research testbeds across Europe. As part of this project, IDLab
created “Tengulabs”, the second iteration of the Tengu testbed which allows researchers
to easily provision Kubernetes clusters and deploy applications to them.

10. iCosy2 (VLAIO O&O): This project aims to improve indoor comfort by combined control of
ventilation and sun protection systems from Renson. As part of this project, IDLab de-
signed architectures for cloud-based and edge-based machine learning systems for com-
bined control. IDLab also created a prototype cloud-based architecture to evaluate the cost
and feasibility of such a solution.

1.7 Publications

The results of the research during this PhD have been published in scientific journals and presented
at different international conferences. This section provides an overview of these publications.

1.7.1 Publications in international journals

1. T. Vanhove, M. Sebrechts, G. Van Seghbroeck, T. Wauters, B. Volckaert, and F. De Turck,
Data transformation as a means towards dynamic data storage and polyglot persis-
tence, International Journal of Network Management, vol. 27, no. 4, p. e1976, 2017, doi:
10.1002/nem.1976.

2. M. Sebrechts, G. Van Seghbroeck, T. Wauters, B. Volckaert, and F. De Turck, Orchestrator
conversation: Distributed management of cloud applications, International Journal of
Network Management, vol. 28, no. 6, p. e2036, 2018, doi: 10.1002/nem.2036.

3. J. Santos, T. Vanhove, M. Sebrechts, T. Dupont, W. Kerckhove, B. Braem, G. Van Seghbroeck,
T. Wauters, P. Leroux, S. Latre, B. Volckaert, F. De Turck, City of Things: Enabling Resource
Provisioning in Smart Cities, IEEE Communications Magazine, vol. 56, no. 7, pp. 177-183,
Jul. 2018, doi: 10.1109/MCOM.2018.1701322.

4. V. Bracke, M. Sebrechts, B. Moons, J. Hoebeke, F. De Turck, and B. Volckaert, Design and
evaluation of a scalable Internet of Things backend for smart ports, Software: Practice
and Experience, vol. 51, no. 7, pp. 1557-1579, 2021, doi: 10.1002/spe.2973.

5. M. Sebrechts, S. Borny, T. Wauters, B. Volckaert, and F. De Turck, Service Relationship Or-
chestration: Lessons Learned From Running Large Scale Smart City Platforms on Ku-
bernetes, IEEE Access, vol. 9, pp. 133387-133401, 2021, doi: 10.1109/ACCESS.2021.3115438.

6. M. Sebrechts, B. Volckaert, F. De Turck, K. Yangy, and M. AL-Naday, Fog Native Architecture:
Intent-Based Workflows to Take Cloud Native Towards the Edge, IEEE Communications
Magazine, pp. 1-7, Aug. 2022, doi: 10.1109/MCOM.003.2101075.

https://doi.org/10.1002/nem.1976/
https://doi.org/10.1002/nem.1976/
https://doi.org/10.1002/nem.2036/
https://doi.org/10/
https://doi.org/10.1002/spe.2973/
https://doi.org/10.1109/ACCESS.2021.3115438/
https://doi.org/10.1109/MCOM.003.2101075/
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1.7.2 Publications in international conferences

1. M. Sebrechts, T. Vanhove, G. Van Seghbroeck, T. Wauters, B. Volckaert, and F. De Turck, Dis-
tributed Service Orchestration: Eventually Consistent Cloud Operation and Integra-
tion, in 2016 IEEE International Conference on Mobile Services (MS), Jun. 2016, pp. 156-159.
doi: 10.1109/MobServ.2016.31.

2. M. Sebrechts, S. Borny, T. Vanhove, G. Van Seghbroeck, T. Wauters, B. Volckaert, F. De Turck,
Model-driven deployment andmanagement of workflows on analytics frameworks, in
2016 IEEE International Conference on Big Data (Big Data), Dec. 2016, pp. 2819-2826. doi:
10.1109/BigData.2016.7840930.

3. M. Sebrechts, G. Van Seghbroeck, and F. De Turck, Optimizing the Integration of Agent-
Based Cloud Orchestrators and Higher-Level Workloads, in Security of Networks and
Services in an All-Connected World, 2017, pp. 165-170, doi: 10.1007/978-3-319-60774-0_16.

4. M. Sebrechts, C. Johns, G. Van Seghbroeck, T. Wauters, B. Volckaert, and F. De Turck, Be-
yond Generic Lifecycles: Reusable Modeling of Custom-Fit Management Workflows
for Cloud Applications, in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), Jul. 2018, pp. 326-333. doi: 10.1109/CLOUD.2018.00048.

5. T. Goethals,M. Sebrechts, A. Atrey, B. Volckaert, and F. De Turck, Unikernels vs Containers:
An In-Depth Benchmarking Study in the Context of Microservice Applications, in 2018
IEEE 8th International Symposium on Cloud and Service Computing (SC2), Nov. 2018, pp.
1-8. doi: 10.1109/SC2.2018.00008.

6. T. Goethals, S. Kerkhove, L. V. Hoye, M. Sebrechts, F. Turck, and B. Volckaert, FUSE: A Mi-
croservice Approach to Cross-domain Federation using Docker Containers, in the 9th
International Conference on Cloud Computing and Services Science (CLOSER), 2019. doi:
10.5220/0007706000900099.

7. M. Sebrechts, T. Goethals, T. Dupont, W. Kerckhove, R. Taelman, F. De Turck, B. Volckaert,
Solid Web Monetization, in the 22st International Conference on Web Engineering (ICWE
2022), 2022, doi: 10.1007/978-3-031-09917-5_40.

8. T. Goethals, M. Sebrechts, M. Al-Naday, B. Volckaert, and F. De Turck, A Functional and
Performance Benchmark of Lightweight Virtualization Platforms for Edge Computing,
in 2022 IEEE International conference on Edge Computing (EDGE), Jul. 2022.

9. M. Sebrechts, T. Ramlot, S. Borny, T. Goethals, B. Volckaert, and F. De Turck, Adapting Ku-
bernetes controllers to the edge: on-demand control planes using Wasm and WASI,
Submitted for review, 2022.

https://doi.org/10.1109/MobServ.2016.31/
https://doi.org/10.1109/BigData.2016.7840930/
https://doi.org/10.1109/BigData.2016.7840930/
https://doi.org/10.1007/978-3-319-60774-0_16/
https://doi.org/10.1109/
https://doi.org/10.1109/SC2.2018/
https://doi.org/10.5220/0007706000900099/
https://doi.org/10.5220/0007706000900099/
https://doi.org/10.1007/978-3-031-09917-5_40/
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1.8 Code Repositories

Applications and code developed as part of this PhD have been published using open source li-
censes. This includes applications, frameworks, evaluation code and simulation code. The follow-
ing list provides an overview of all public code repositories created as part of this PhD.

Note that this list does not include all code contributions of this PhD. Changes to existing open
source projects that have been submitted and accepted to their respective repositories are not
listed here.

1. The old Tengu testbed: a Juju-based platform to deploy and manage data analytics plat-
forms. This organization contains a number of repositories with open source components
of this platform.
https://github.com/IBCNServices/tengu-docs.

2. Public documentation of the old Tengu testbed.
https://github.com/IBCNServices/tengu-docs.

3. A Docker container based on the charmbox that can be used as Eclipse Che workspace to
develop Juju Charms in the Eclipse Che IDE.
https://github.com/IBCNServices/che-charmbox.

4. Orchestrator Conversation simulation code and results.
https://github.com/IBCNServices/oa.

5. Evaluation code and evaluation results of the charms.reactive framework.
https://github.com/IBCNServices/reactive-pattern-results.

6. orcon: a Kubernetes service relationship orchestrator.
https://github.com/IBCNServices/.

7. orcon evaluation code and benchmark results.
https://github.com/IBCNServices/kubernetes-relationships-results.

8. Easy OpenVPN Server: snap package of OpenVPN server with automated certificate man-
agement.
https://github.com/IBCNServices/easy-openvpn-server.

9. Public documentation of the Tengulabs Fed4FIRE+ testbed.
https://github.com/IBCNServices/Tengulabs.

10. Plumber: platform for collaboratively managing serverless streaming applications on Ku-
bernetes. Contains the application code, evaluation code and benchmark results.
https://github.com/IBCNServices/plumber.

https://github.com/tengu-team
https://github.com/IBCNServices/tengu-docs
https://github.com/IBCNServices/che-charmbox
https://github.com/IBCNServices/oa
https://github.com/IBCNServices/reactive-pattern-results
https://github.com/IBCNServices/
https://github.com/IBCNServices/kubernetes-relationships-results
https://github.com/IBCNServices/easy-openvpn-server
https://github.com/IBCNServices/TenguLabs
https://github.com/IBCNServices/plumber
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1.9 Awards and Recognition

Parts of the research conducted during this PhD have received awards and recognition:

1. Master’s thesis recognition (2015): The master thesis titled “Development of a scalable
and modular PaaS for Big Data solutions” was the start of this research. It received recog-
nition as a finalist in the ie-net awards for best Flemish engineering master theses. The
thesis was also longlisted for the Agoria award for best STEM thesis.

2. Best Student Paper Award SC2 2018: The paper “Unikernels vs Containers: An In-Depth
Benchmarking Study in the Context of Microservice Applications” [14] received this award
at the 8th IEEE International Symposium on Cloud and Services Computing.

3. Best Student Paper Award CLOSER 2019: The paper “FUSE: a Microservice approach to
Cross-domain Federation using Docker Containers” [13] received this award at the 9th In-
ternational Conference on Cloud Computing and Services Science.

4. Ubuntu Member (2021): Due in part to his contribution to the Juju and Snapcraft ecosys-
tems as part of this research, Merlijn received the “Ubuntu Member” title, for “significant
and sustained contribution to Ubuntu”. Juju is an open source cloud modeling language
and orchestrator, and Snapcraft is an open source package manager created by Canonical,
the company behind Ubuntu.

5. Best Demo Paper Award ICWE 2022: The demo paper “Solid Web Monetization” [22] re-
ceived this award at the 22nd International Conference on Web Engineering.
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2
Orchestrator Conversation: Distributed

Management of Cloud Applications

This chapter presents a published research article that tackles the first research question of this
dissertation: “How to encapsulate and reuse system administrator’s knowledge about when to
deploy what?” Although this research was performed in 2017 and published in 2018, the ques-
tion itself is still relevant to this day. Declarative desired state models are still the main way to
manage cloud applications, even in state-of-the-art container orchestrators such as Kubernetes.
Rightly so, since these models are very useful to describe the desired state of an application using
the abstractions provided by the language. Nevertheless, they lack powerful tools to let users
build new abstractions. This article proposes the “orchestrator conversation” to solve this issue.
Although it uses declarative models as an API, it adds the concept of an “orchestration agent”,
which translates higher-level abstract models to lower-level concrete models. Benchmarks in the
results section of this paper show varying standard deviation caused by variation in the response
time of the AWS cloud infrastructure used during testing. Since these results represent real-world
performance and predictability of cloud providers, we chose to include them as measured, instead
of cleaning the data. Looking back at this work in 2022, however, there is an important piece of
related work missing in this paper: Kubernetes Controllers and Custom Resources. Although this
was still a beta feature released without much fanfare, it has now grown into an important cor-
nerstone of Kubernetes. It is now the main way to create new abstractions for the Kubernetes
API and is interestingly based on the same principle as an orchestration agent: using a regular
programming language to translate higher-level abstractions into lower-level ones.
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AbstractManaging cloud applications is complex, and the current state of the art is not addressing
this issue. The ever-growing software ecosystem continues to increase the knowledge required to
manage cloud applications at a time when there is already an IT skills shortage. Solving this issue
requires capturing IT operations knowledge in software so that this knowledge can be reused by
sysadmins who do not have it. The presented research tackles this issue by introducing a new
and fundamentally different way to approach cloud application management: a hierarchical col-
lection of independent software agents, collectively managing the cloud application. Each agent
encapsulates knowledge of how to manage specific parts of the cloud application, is driven by
sending and receiving cloud models, and collaborates with other agents by communicating using
conversations. The entirety of communication and collaboration in this collection is called the
orchestrator conversation. A thorough evaluation shows the orchestrator conversation makes it
possible to encapsulate IT operations knowledge that current solutions cannot, reduces the com-
plexity of managing a cloud application and happens inherently concurrent. The evaluation also
shows that the conversation figures out how to deploy a single big data cluster in less than 100
milliseconds, which scales linearly to less than 10 seconds for 100 clusters, resulting in a minimal
overhead compared to the deployment time of at least 20 minutes with the state of the art.

2.1 Introduction

Managing cloud applications is complex. System Administrators (sysadmins) need to have an in-
depth understanding of all the components of the cloud application such as the operating system,
webserver, X.509 certificates andmore. Having such deep knowledge about how to deploy, config-
ure, monitor and manage these components is almost impossible in the field of big data because
of the size of the ecosystem, the complexity of the tools involved and the rapid pace of innova-
tion. This would not be such a big problem if it was not for the large skills shortage in the fields
of IT operations [32] and big data [31]. There is thus a need for the ability to share and reuse the
knowledge of sysadmins across teams and companies.

Sharing IT knowledge is not a new concept. The field of software development, for example, has
a big focus on sharing and reusing knowledge in the form of code libraries. Over the years, a vast
number of code libraries have been created that encapsulate an enormous amount of knowledge.
Developers use these libraries to quickly write software without having to know each and every
detail of how the software works. As an example, a programmer writing a piece of software that
communicates over HTTPS does not need to know the intricate details of the TCP/IP protocol, X.509
certificates and SSL encryption. By simply using a library that implements all these functions, the
programmer can focus on the actual novel parts of the application.
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Two properties of programming languages are key enablers for this knowledge reuse: the ability
to encapsulate code and to create new abstractions. Encapsulation allows developers to group
code with a common function into a reusable module. By creating an abstraction, the developers
expose the functionality of that module over an API that hides the inner complexity. An important
property of these two is that they are stackable: a module can have varying levels of abstraction
where each level encapsulates and hides the complexity of the level below it. As an example, a li-
brary for HTTPS communication might encapsulate three libraries: one for TCP/IP communication,
one for X.509 certificate management and one for SSL encryption. Note that it is not sufficient for
a programming language to be an abstraction of machine code, because it only allows developers
to reuse the knowledge of the creators of the programming language, not the knowledge of other
developers. It is vital the programming language itself allows for developers to create new ab-
stractions with the language instead of in the language, so that they can easily encapsulate their
own knowledge in a reusable way.

Knowledge reuse is regrettably a lot less prevalent in IT operations since it has historically been
a mostly manual job which makes capturing knowledge hard. The rising popularity of configu-
ration management automation provides new opportunities. Automation tools such as Chef and
Puppet allow sysadmins to develop code that manages a cloud application. Although this code
captures the sysadmin’s knowledge, it does not enable knowledge reuse because building on top
of automation code requires the same knowledge as creating the code in the first place. This
issue stems from the foundational theory behind configuration management tools: converging
towards a predefined end-state, as popularized by Burgess et al. [12] The idea of convergence is
that a sysadmin specifies the desired end-state of an application and the configuration manage-
ment tool executes the necessary actions to get the application into that state. The automation
code is in that sense a description of the desired end state of the application. The same code thus
always results in the same end state. Having the code figure out what the end state needs to be,
is not possible in this convergent approach to configuration management. This has the advantage
of consistency and reliability, but this presents a big issue for creating reusable automation code
modules. When an automation code module changes a property of an application, there are two
options. Either the module hides the value of that property in an abstraction, but then the value
is static so the module cannot be used in a scenario where that property needs a different value,
or the module exposes the property in its API, causing the module to leak its complexity. As a
result, a module is either understandable, or flexible, but it cannot be both, even though both are
important for successful reuse according to a systematic mapping study by Bombonatti et al. [7]

Note that it is entirely possible, and common, for the desired end-state to be an abstract de-
scription of the actual end-state. However, it becomes the responsibility of the configuration
management tool to translate the abstract description into a concrete description. The only ab-
stractions possible in configuration management tools are those provided by the creators of the
tools. Sysadmins can thus only reuse the knowledge of the creators of the automation tools, not
the knowledge of other sysadmins.

A recent addition to cloud application management is the concept of topology-based cloud mod-
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eling languages such as the OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA). On top of automation, these languages also provide ways to model the cloud application
as a set of interdependent services, and they abstract the underlying cloud to prevent cloud vendor
lock-in [41]. These languages are typically paired with an orchestrator, a program that interprets
the model and performs the necessary management actions.

Reducing the complexity towards end-users, however, requires more than abstracting the cloud
itself: it requires creating new abstractions using the cloud modeling language, which is still not
possible. As an example, modeling and managing a Hadoop cluster as a single entity is not pos-
sible. System administrators need to model each individual component of a Hadoop cluster and
their dependencies: the Namenode and Datanode to get an HDFS cluster, and the ResourceMan-
ager and NodeManager to get a YARN cluster, the Datanode and NodeManagermust be co-located,
etc. This also causes sysadmins to be responsible for translating higher-level objectives such as
“scale the Hadoop cluster” into actions on the individual components of the cluster and requires
them to have in-depth knowledge of the inner workings, i.e. on what it means to scale a Hadoop
cluster.
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Simply making it possible to create abstractions in cloud modeling languages is not the whole so-
lution, however, because someone still needs to create these abstractions and encapsulate knowl-
edge. The answer to the “who” question is complex because there are multiple parties involved
in the creation and management of a cloud application:

• the system administrator that manages the cloud application,

• the Independent Software Vendor (ISV) of the software thatmakes up the cloud application,

• and the vendor of the orchestrator that interprets the cloud model.

The sysadmin is the expert on how the software is used in the cloud application, but it is the
ISV who has the actual knowledge on how to manage the individual software artifacts, so the
ISV is the prime candidate to encapsulate the knowledge. Note that the transfer of knowledge
from ISV to sysadmins currently happens almost exclusively using documentation and tutorials.
The ISV writes documentation and tutorials, and the sysadmin uses that documentation to man-
age the software. This means that the most important role of the cloud modeling language and
orchestrator is to provide a platform to enable sysadmins to use the expertise of the ISVs. The
orchestrator vendor cannot decide what the requirements are, since that is the role of the sysad-
min, and the orchestrator vendor should not decide how individual components are best managed,
since that is the role of the ISV. This is regrettably not the case with current cloud modeling lan-
guages. As an example, if a sysadmin uses the current declarative capabilities of the TOSCA cloud
modeling language [30], then it is up to the orchestrator to interpret that model and manage the
cloud application accordingly. This is the exact opposite of the ideal scenario, where the role of
the orchestrator is as minimal as possible.

In summary, the issue with the current generation of cloud application management tools is that
these tools do not enable sysadmins to reuse the knowledge of ISVs. The orchestrator conversation
proposed in this article tackles this issue by introducing a new and fundamentally different way to
approach cloud application management: the orchestrator conversation, a hierarchical collection
of independent software agents that collectively manage the cloud application. Each agent is an
orchestrator that manages a specific part of the cloud application, collaborates with other agents
over peer-to-peer conversations and deploys new agents to delegate tasks to.

Three features of the orchestrator conversation are key to addressing the aforementioned issue.

a) The ability to encapsulate automation code thatmanages a single service and to provide
that functionality over an abstract API makes it possible to reuse the knowledge of how to
manage a single service.

b) Encapsulation of automation code that orchestrates a number of services and providing
that functionality over an abstract API, which enables reusing the knowledge of how to
orchestrate multiple interconnected services.

c) The orchestrator conversation enablesmultiple independent ISVs to encapsulate their knowl-
edge in an interoperable way so that sysadmins can build a cloud application using mul-
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tiple components from multiple ISVs.

The remainder of this article is structured as follows. Section 2.2 gives an overview of the state
of the art concerning this field and identifies how the related work has influenced this article.
Section 2.3 explains the concepts behind the orchestrator conversation, and how they address the
identified issues. Section 2.4 evaluates the solution using simulations and Section 2.5 concludes
this article.

2.2 Related work

There is a lot of different terminology being used regarding themanagement of cloud applications.
Since these terms are not always used in a consistentmanner, this section starts with a description
of how these terms are used in the context of the presented research. This generally follows the
cloud resource orchestration taxonomy proposed by Weerasiri et al. [45]

A cloud application consists of a number of services connected by relationships. A relationship gen-
erally denotes a dependency and/or an interaction between two services. An application topology
is a description wherein the cloud application is described as a graph of nodes (the services), and
edges (the relationships). Cloud resource orchestration is the process of selecting, describing,
deploying, configuring, monitoring and controlling the infrastructure and services that make
up the cloud application. Cloud resource orchestration is abbreviated as orchestration and is in-
terchangeable with cloud applicationmanagement in the context of this research. An orchestrator
is a piece of software that performs orchestration tasks. 1

A number of efforts from different fields try to tackle the issues regarding management of cloud
applications. The remainder of this section explores how each field addresses different issues,
how this relates to knowledge reuse, abstraction and collaboration, what our research takes away
from these efforts, and how it goes beyond the state of the art.

2.2.1 Resource scheduling

The lines between cloud application management and resource scheduling are starting to blur,
resulting in a number of innovative solutions regarding cloud application management to come
out of the resource scheduling field. The reason for this evolution is that there is a lot more to the
management of a cluster than simple job scheduling. Jobs are part of larger applications that have
complex topologies and dependencies. Jobs have a complex lifecycle, they need to communicate
with each other and they need to be configured [43].

One of the big lessons learned from this field is that monolithic schedulers evolve into complex
hard-to-maintain systems because of the increasing heterogeneity of resources and jobs and the
widening range of requirements and policies. This problem is addressed by pulling the monolithic

1Note that “orchestration” does not imply a central controlling entity. There is thus no distinction between orchestra-
tion and choreography in this context.
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cluster manager apart into a number of specialized schedulers that work together on shared re-
sources and job queues [34]. Apart from solving the complexity issue, this approach also makes it
possible to have multiple schedulers from different vendors manage shared resources [24].

The big shortcomings of the state of the art in cluster management are the lack of native support
for grouping workloads into application topologies [43], automatic dependency management and
dynamic reconfiguration of workloads [13]. The need for dynamic reconfiguration is inherent to
configuration itself since configuration solely exists to make hard-coded parameters changeable.
If a parameter needs the same value for every deployment of an application, then this parameter
will simply be hard-coded in the application’s source code. The advent of microservices has only
increased the complexity of application topologies and their configurations and dependencies,
making it impossible to manage these manually [23].

2.2.2 Cloud modeling languages

Cloudmodeling languages provide a standardized format to describe cloud applications and their
metadata. The sysadmin creates a model that describes the desired state of the cloud application
and the orchestrator deploys and configures the cloud application according to that description.
These languages thus have enormous potential to encapsulate cloud application management
knowledge in a reusable manner. The latest generation of cloud modeling languages is centered
around describing the application as a topology of components and their relationships to each
other. The TOSCA language is an effort to reduce vendor lock-in by separating the cloud model-
ing language from the cloud provider and cloud infrastructure platform. This effort resulted in a
push towards abstraction in cloud modeling languages. Abstraction of individual components is
possible using TOSCA “node templates”. The orchestrator substitutes a node template by concrete
node types before deployment [30]. Brogi et al. identified four different matching strategies
for transforming these abstract node templates into concrete node types [11]. These strategies
can be used to combat vendor lock-in by using standardized vendor-neutral node-templates [10].
The downside is that this substitution is a one-way process which results in critical information
loss. The resulting topology does not contain any information about what node templates were
present nor what node types correspond to what node templates. As a result, a sysadmin can only
use node templates during the deployment phase. After the deployment is done, the abstractions
are lost and the sysadmin is exposed to the full complexity of the cloud application making the
monitoring and controlling phases very complex.

A useful feature of the TOSCA approach is that it is possible to create a topology that contains both
node types and node templates, thus having multiple levels of abstraction in a single model. This
allows sysadmins to choose the appropriate level of abstraction for each part of the topology. As
an example, a sysadmin can use the “SQL Database” node template for parts of the cloud appli-
cation that are database agnostic and use the “MariaDB Database” node type, in the same model,
for parts of the cloud application that are tied to that specific database.

A big advantage of topology-based cloudmodeling languages is that each individual component is
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isolated. Interaction between components is only possible using relationships. This makes it very
easy to create reusable components, resulting in community-driven capturing and reuse of con-
figuration management code [42][21][46], which is very important in the field of cloud resource
orchestration [45]. However, the actual reuse of knowledge is limited because of the issues ex-
plained in the introduction.

The following research efforts havemade progress towards formalizing the concepts behind topology-
based cloud modeling languages. Andrikopoulos et al. propose a set of formal definitions to rea-
son on topology-based cloud applications with the goal of selecting the optimal distribution [2].
The Aeolus component model makes it possible to formally describe several characteristics of a
cloud topology such as dependencies, conflicts, non-functional requirements and internal compo-
nent state [19]. Brogi et al. propose a Petri net-based approach to formallymodel the relationships
of TOSCA cloud models [9].

A big shortcoming of cloud modeling languages is the limited support for creating abstractions
using cloudmodels. This has caused TOSCA orchestrators such as Cloudify to build their ownmeth-
ods to enable this. Cloudify’s solution to this is Cloudify Plugins [18]. A Cloudify plugin basically
allows adding additional orchestration logic into the Cloudify Orchestrator. These plugins allow
to define new base node types and control how the orchestrator handles them. Although this
method provides a way for Cloudify users to create new abstractions, it is still lacking. For in-
stance, this method does not make it possible to stack abstractions: you cannot create new ab-
stractions by combining and encapsulating a number of existing abstractions. Furthermore, this
method nullifies an important property of TOSCA models: their portability. A TOSCA model that
uses a plugin-specific node type cannot be interpreted by an orchestrator that does not support
the specific plugin. Since plugins are developed using a Cloudify-specific API, this essentially re-
introduces vendor lock-in into the TOSCA ecosystem. This is a big issue, given that TOSCA’s main
selling point is that it eliminates vendor lock-in. Note that this method of extending orchestra-
tors to enable abstraction is neither limited to Cloudify nor to TOSCA. The alien4cloud project [4]
provides an abstraction layer on top of TOSCA models, and the conjure-up project [15] provides an
abstraction layer on top of the Juju [16] cloud modeling language discussed in Section 2.2.4.

2.2.3 Models at runtime

Cloudmodeling languages can also be used tomonitor and control runtime state [6]. Themodels
at runtime (M@RT) approach is to have a model that is causally connected to the running appli-
cation: the runtime model is constantly updated to mirror the runtime state [39][38]. Another
approach called self-modeling [25] is to dynamically generate a model from the current state us-
ing generic building blocks, which has been shown to be useful for self-diagnosis and root-cause
analysis [40]. These approaches, however, are limited in that they only support a one to one
mapping between the runtime model and the runtime state. This is an issue because complex ab-
stractions can violate this constraint: a single abstraction can represent different runtime states in
different topologies and different abstractions can represent the same runtime state in different
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topologies, as is the case with the “Spark on Hadoop” example used for evaluation in Section 2.4.
Solving this issue requires more complex translations between the running application and the
model than the M@RT approach currently provides.

2.2.4 Agent-based management of cloud applications

The approach of converging towards a predefined end-state as popularized by Burgess et al. [12] is
inherently inflexible as explained in the introduction. We believe that agent-based cloudmanage-
ment addresses this inflexibility. An agent-based cloud application manager consists of a number
of independent agents that each manage a specific part of the cloud application i.e. a service.
Each agent independently decides what the desired end-state is for that service and executes the
necessary actions to get into that state. Dependencies between services are resolved by com-
munication between the agents. As an example, a cloud application consisting of two services,
a website and a database, is managed by two agents. One agent is responsible for the website
and the other one for the database. If the website needs a connection to a running database, the
agent responsible for the website will wait until it receives a message from the agent responsible
for the database saying that the database is running. In this approach to config management, the
global end-state of the cloud application emerges from the collective behavior of the agents.

One of the big advantages of an agent-based approach is the reliability and resiliency against
failures as shown by Xavier et al. [22] and Kirschnick et al. [26]. Lavinal et al. have shown that the
local autonomy of each agent combined with their organizing behavior enables global manage-
ment autonomy in a distributed environment [28]. The flexibility of the agent-based approach
allows it to manage not only analytical platforms but also the workloads running on top of those
platforms as shown by the authors’ previous work [36]. The state of the art in this area however
does not address the need for abstraction, collaboration and reuse.

Juju [16] is a cloud modeling language and orchestrator that can be seen as a hybrid between
agent-based management and cloud modeling languages. The sysadmin creates a Juju model de-
scribing the entire topology of the cloud application, the Juju orchestrator interprets that model,
but the actual management of the individual services is done by agents co-located with the ser-
vices. Juju makes it possible to encapsulate automation code that manages a single service in a
charm, an entity similar to a TOSCA node type, but charms are not stackable and can only manage
a single service.

2.2.5 General limitations and lessons learned

A recent survey on cloud orchestration by Weerasiri et al. [45] identifies a number of general limi-
tations across the field of cloud applicationmanagement. Although concerns such as conformance
to QoS and SLA requirements are reasonably addressed by the state of the art, the importance of
knowledge reuse is underestimated and there is too much fragmentation resulting in sysadmins
having to use different tools to manage different aspects of the application lifecycle [45]. The sur-
vey furthermore proposed the idea of orchestration knowledge graphs, where “common low-level
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orchestration logic can be abstracted, incrementally curated and thereby reused by DevOps” [45].

For this reason, the presented research’s focus is not in finding new orchestration and scheduling
techniques, but in developing a specification that makes it possible for the existing cloud sched-
ulers, modeling languages and orchestrators to work together, enabling encapsulation of cloud
application management knowledge in orchestration knowledge graphs.

There are a number of concepts in the state of the art that are very useful in achieving this. The
presented research uses the following concepts as a foundation for the orchestrator conversation
as explained in the next section.

a) The concept of a meta-scheduler as a way for different schedulers to work together solves
real problems and should be applied to orchestration as well.

b) Topology-based cloud modeling languages make it easy to represent and reason over a
cloud application and enable communities to collaborate around encapsulated knowledge.

c) Runtime models are a great way to represent the current state of a cloud application.

d) The agent-based approach to deployment of cloud applications provides a lot of benefits
to the resiliency of the management system.

2.3 Orchestrator conversation

We propose the orchestrator conversation as a fundamental new way to approach cloud model-
ing languages and orchestrators. This section gradually introduces the key concepts behind the
orchestrator conversation. As a running example, the management of a Hadoop cluster is used.
The section concludes with a summary of the entire conversation.

The need for knowledge reuse has heavily influenced the design decisions in this section. Specifi-
cally, the systematic mapping study of software reuse by Bombonatti et al. is used as a guideline
for the non-functional requirements of the orchestrator conversation: understandability, modu-
larity with loose coupling, flexibility and abstractness.

2.3.1 Request and runtime models

Two pieces of information are key to themanagement of cloud applications: what state should the
application be in, and what state is the application currently in. In the orchestrator conversation,
that information is embedded in two types of cloud models.

Definition 2.1. The request model is a structured description of the desired state of part of the
cloud application.

Definition 2.2. The runtime model is a structured description of the actual state of part of the
cloud application at a specific point in time.
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These models follow a predefined schema that is both human- and machine-readable so both
system administrators and themanagement platform itself can understand them. Cloudmodeling
languages are perfectly fit as the schema for these models, since they provide a way to describe
cloud applications satisfying both constraints. The request and responsemodels are always linked
in the sense that the runtime model describes the state in the context of the request model. It
must be clear from the runtime model what the status is of the requests in the request model. As
the example in Figure 2.1 shows, the runtime model uses the same names for the service and its
properties so that the sysadmin understands the runtime model.

These two models are the primary way for a system administrator to communicate with the man-
agement platform. The sysadmin creates a request model to tell the management platform what
the desired state of the cloud application is and uses the runtime model to keep track of the
runtime state of the cloud application.

Capturing the complete and current state of a highly distributed cloud application requires strict
consistency, which degrades performance immensely because of global locks. Furthermore, lock-
ing the state of a running cloud application without any downtime is arguably impossible since
state changes such as a running process crashing unexpectedly cannot be prevented. This is the
reasonwhy the runtimemodel does not represent the state of the cloud application in the present,
but at some time in the past. The orchestrator conversation follows the eventual consistency
model [44]: if the state does not change, the runtime model will eventually reflect the current
state. This is achieved by ensuring the following three properties.

• The runtime model represents the state at some point in the past.

• If the state has changed since that point, the runtimemodel will be updated at some point
in the future.

• Write conflicts are handled using the “last writer wins” approach.

2.3.2 Service Agent

The actual management of the individual services is the responsibility of the service agent (SA).

Definition 2.3. A service agent is an event-based program that manages a single service to get
it into the state described in the request model and creates the runtime model that reflects the
runtime state of the service.

A service agent is fully event-based, thus it only reacts to changes, which can be internal such as a
service crash, or external such as an update to the request model. Each change generates an event
that the service agent needs to process. Each service agent has a specialized role. For example,
Figure 2.1 shows a service agent that is specialized in managing a Hadoop Worker service. The
service agent is running on the same machine as the service itself. This is an easy way to give the
service agent access to the service, although this is not required as shown in the authors’ previous
work [37].
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Figure 2.1: The Hadoop Worker service agent runs on the same machine as the Hadoop Worker service. The
sysadmin defines the desired state of the service in the request model and the service agent notifies the
sysadmin of the current state using the runtime model.

In the scenario shown in Figure 2.1, the process is the following.

1. The system administrator selects which service agent to use.

2. The sysadmin deploys the service agent onto a server.

3. The sysadmin sends the request model to the service agent and subscribes to its runtime
model.

4. The service agent deploys and configures the service to get it into the state described in
the request model.

5. The service agent updates the runtime model to reflect the current state and sends it to
the sysadmin.

A key difference between the service agent approach and conventional configurationmanagement
tools is that the system administrator not only chooses the end state, but also the entity that will
interpret that end state, i.e. the service agent. This solves the issue explained in the introduction
that the languages used to describe the end state do not support creating flexible abstractions.
Service agents provide that functionality and can contain arbitrary processing logic to translate an
abstract request model into a practical set of operation actions that need to happen. As a result,
sysadmins can encapsulate knowledge in a service agent so it can be reused. Figure 2.1 shows an
example where the request and response models only specify a few configuration options. The
service agent decides what the optimal values are for the unspecified configuration options. As
a result, flexibility and understandability are not mutually-exclusive in this approach. Aside from
enabling knowledge reuse, the service agent also has a number of other advantages:

• The need for a one-size-fits-all cloud modeling language is removed because different
languages can be used for management of different services. As an example, modeling a
Virtual Network Function (VNF) is quite different from modeling a big data service so it is
useful to model each in a modeling language specific to its domain.
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• Service agents allow for fine-tuned translations from declarative request models into im-
perative steps instead of having to rely on generic translation rules provided by the man-
agement software.

• System administrators can reuse existing “legacy” models such as a TOSCA topology in the
orchestrator conversation. This allows them to capitalize on their existing investments in
model-driven management of cloud applications and it provides an easy migration path
from conventional management tools.

• The approach enables a heterogeneous ecosystem where cloud modeling languages can
compete with each other and evolve quickly.

2.3.3 Collaborator relationship

The previous subsection focused on managing a single service. However, cloud applications gen-
erally consist of multiple interconnected services. A standard Hadoop setup for example requires
three services working together: the Namenode, the ResourceManager and the Hadoop Worker.
Connecting these services requires communication between the respective service agents in or-
der to exchange information such as IP addresses and port numbers. The collaborator relationship
enables this communication between service agents.

Definition 2.4. A collaborator relationship is an isolated, two-way communication channel that
connects two service agents and allows a conversation between them. Each service agent has a
role in this conversation, which denotes how the service agent acts. Two types of conversations
are possible: unary and binary. In a unary conversation, both service agents have the same role.
In a binary conversation, each service agent has a different role. A collaborator relationship be-
tween two service agents is possible if either both implement the same role of a peer-to-peer
conversation or if they both implement opposite roles of a directional conversation.

The term conversation is chosen to differentiate from the simple static exchange of properties
possible in languages such as TOSCA. Similar to itsmeaning in Business ProcessModel andNotation
(BPMN), a conversation can consist of multiple interactions and messages resulting in negotiation
and resolution of complex dependencies. The Hadoop cluster shown in Figure 2.2 shows three
directional conversations. In each conversation, both connected service agents have a distinct
role. For example, the Hadoop Namenode and the Hadoop ResourceManager have two distinct
roles in their conversation simply because they provide information about two distinct services.
The collaborator relationships in this example are used to check Hadoop version compatibility,
exchange IP addresses and port numbers, setup shared credentials, and coordinate service starts
and restarts. A sysadmin creates a relationship by specifying a request for the relationship in the
request models of both service agents. Each relationship request contains the address of the other
service agent, the roles of both service agents and the conversation protocol.

Note that a relationship only denotes that two agents can communicate. Whether or not that com-
munication will be fruitful is not specified. As an example, during the conversation between the
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Figure 2.2: Illustrative example: the collaborator relationships between SA’s of a Hadoop cluster.

Hadoop Namenode and the Hadoop ResourceManager, it might become clear that the Resource-
Manager’s Hadoop version is incompatible with the Namenode’s Hadoop version. If the Hadoop
version is specified in the request model, then the service agents are not allowed to change the
Hadoop version themselves. It is then the responsibility of both service agents to explain this
issue in their runtime models so that the sysadmin can intervene, e.g. by changing the Resource-
Manager’s Hadoop version.

The collaborator relationship is a key piece to enabling collaboration because it allows multiple
parties to develop service agents independently, while still allowing these service agents to col-
laborate and communicate. A developer can implement the collaborator conversation without
knowing the implementation details of the service agent on the other side because the conversa-
tion acts as a generic protocol that hides the implementation. As a result, ISVs can create service
agents that manage their own software and connect to software from other vendors. Orchestrator
vendors facilitate this collaboration by creating a set of standardized collaborator conversation
protocols that ISVs can program against. This will result in a rich ecosystem of interoperable ser-
vice agents at the fingertips of system administrators who use them as building blocks for their
cloud application.

2.3.4 Controller

Deploying multiple service agents introduces a new issue: the system administrator needs to cre-
ate a request model for each service agent, which would be very cumbersome to do manually.
This is where the topology-based cloud modeling languages come in. Such languages provide a
way to describe a cloud application as a set of interconnected services. They are thus ideal for
creating the combined request model including the relationship request between the different
service agents. Dividing the topology model into a number of request models is quite straight-
forward: each vertex is a separate request model. Each edge is described in both request models
of the nodes it connects. Doing this division is the job of the controller. The controller receives
the entire request topology model, divides the request model and sends each part to the service
agent responsible for that service.
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Figure 2.3: The Hadoop cluster orchestration agent manages multiple service agents by sending them indi-
vidual request models.

2.3.5 Operator relationship

The service agent as described in the previous sections enables abstraction of one single service,
but it does not allow abstracting an entire topology into a single component. As an example, when
setting up the Hadoop cluster, the sysadmin still needs to know that a Hadoop cluster consists of
a Namenode, Datanode and a Worker, and how they need to be connected. As explained in the
introduction, there is a need for an abstraction layer that can represent a cluster of services as
one service, so the system administrator can request a deployment of “a Hadoop cluster” and
have the management platform figure out what services are required for a Hadoop cluster. As
shown in the state of the art section, it is important that this abstraction is two-way: both the
request and response model the sysadmin interacts with need to represent the individual Hadoop
services as one Hadoop cluster.

Figure 2.3 shows the orchestrator conversation’s solution to this: a service agent that takes over
the job of the system administrator. This service agent receives the abstract request for the
Hadoop cluster and fulfills that request by creating new service agents, sending them request
models, listening for runtime models, translating those runtime models into one overall state of
the Hadoop cluster, and sending a runtime model reflecting that state to the sysadmin. The key
to enabling this is to characterize the interaction between the sysadmin and a service agent and
create the operator relationship that allows such interaction between service agents themselves.

Definition 2.5. An operator relationship is an isolated, two-way communication channel be-
tween two service agents that allows one service agent to send request models to and receive
response models from the other service agent. The conversation going over the operator rela-
tionship has two roles: the operator sends request models to drive the behavior of the executor,
which sends runtime models back to the operator to inform the operator about the runtime state.
A service agent can be the executor in only one operator relationship, but it can be the operator
in multiple relationships.

This article refers to a service agent that manages a number of other service agents using an
operator relationship as an “orchestration agent (OA)”. The interaction between a system ad-
ministrator and an OA can be seen as the system administrator having an operator relationship to
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the service agent. In fact, there is no practical difference between a system administrator manag-
ing a service agent or another service agent managing that service agent. As a result, it is possible
to create multiple layers of abstraction by chaining service agents using operator relationships.

This does have implications on the visibility of the cluster of service agents to the system ad-
ministrator. Only the service agents that are directly connected to the sysadmin are fully visible,
which is wanted behavior since it enables abstraction: the visibility of the service agents in lower
abstraction layers is curated by the service agents in the upper abstraction layers. Subsequently,
each service agent has complete control over its executors.

The operator relationship is the second key piece for enabling a rich ecosystem of orchestration
knowledge. Just as the collaborator relationship, the operator relationship serves as a generic
protocol that service agent developers can program against. ISVs can now create service agents
that manage entire clusters of their software and orchestrator vendors can create service agents
that translate higher-level requests to lower-level setups.

2.3.6 Summary

The orchestrator conversation consists of a hierarchical collection of service agents that collabo-
rate to deploy a cloud application. Each service agent is an orchestrator specialized in managing a
specific part of the cloud application. A sysadmin deploys service agents and sends them request
models to specify what the desired end-state is. These service agents then communicate using
collaborator relationships to connect different parts of the cloud application and delegate work
by deploying new service agents and managing them using the operator relationship. The service
agents report back to the sysadmin using eventually-consistent runtime models that show the
state of the cloud application in the context of the request model.

Service agents encapsulate orchestration logic and expose their functionality over abstract APIs,
thus enabling knowledge reuse. Relationships between service agents use agreed-upon conver-
sation protocols, enabling a vibrant ecosystem of multiple vendors creating interoperable service
agents. Orchestration vendors can ease this collaboration by standardizing conversation proto-
cols and providing generic orchestration agents that perform tasks such as auto-scaling. The
end-result is a modular system with loosely coupled components.

The orchestrator conversation can be seen as a swarm in the sense that it consists of a number of
locally interacting SAs that collectively achieve the goal ofmanaging the cloud applicationwithout
a centralized control structure. An SA’s interactions are strictly local because communication can
only happen over relationships, the local neighborhood of a SA is determined by its relations and
the management of the cloud application is an emergent behavior since no single SA has the
knowledge to manage the entire cloud application.



Chapter 2 35

2.3.7 Aside: declarative and imperative modeling

The topic of declarative versus imperative modeling is subject of an ongoing debate in the field of
cloud modeling and orchestration [8][27][20]. This also introduces the issue of uncertainty since
different orchestrators can interpret a model in different ways, causing the orchestration to fail
in unexpected ways. For this reason, ISVs have a strong preference for imperative models.

ISVs see cloud modeling languages as a way to enhance the experience of their customers by
accompanying their software with a model that encapsulates the knowledge of how to deploy
and manage the individual software components. Imperative models allow them to fine-tune the
models and havemore control over the quality of experience of their customer, regardless of what
orchestrator the customer uses.

The abstraction capabilities introduced by the orchestrator conversation are a great way to have
the best of bothworlds. The ISVs create the orchestration agents in an imperativeway so they have
full control over what the orchestration actions are and the customer interacts with the orches-
tration agent using declarative request models. The ISVs have full control over the orchestration
actions and in turn over the quality of experience of their customers, while the complexity is still
hidden to the user.
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Figure 2.4: The evaluation setup. The orchestrator conversation is simulated on the host. The resulting
topology is serialized into a Juju model which is deployed on AWS EC2.

2.4 Evaluation

2.4.1 Evaluation Setup

To evaluate the proposed orchestrator conversation, a number of proof-of-concept orchestration
agents and simulated service agents are created using Python and the “Pykka” actormodel frame-
work. The full source code is available on Github[35]. The service agents are simulated in the sense
that they do not actually deploy and manage services, they only track what state these services
need to be in. When the orchestrator conversation finishes, the agents recursively serialize into a
Juju bundle that describes the desired cloud application state. This bundle is then used to actually
deploy the cloud application as shown in Figure 2.4.

All benchmarks of the orchestrator conversation were run on an Ubuntu 17.10 host with a 4-core
Intel i5-7440HQ CPU and 16 GB of RAM. Deployment benchmarks were run using Juju 2.2.5 on
AWS EC2 virtual machines of type “m3.medium” running Ubuntu 16.04 with 1 vCPU and 3.840 GB of
RAM. The numbers of runs of the experiments and simulations are chosen so that there is sufficient
convergence in the results and the standard deviation is small enough to show the significance of
relevant trends.

2.4.2 Complexity towards the sysadmin

The first evaluation checks whether the orchestrator conversation makes it possible to hide the
complexity of managing a cloud application to the sysadmin. The primary way of interfacing with
a model-based cloudmanagement platform is the model itself. Thus, the complexity of the model
that the sysadmin interfaces with, is a good approximation of the complexity of using that man-
agement platform.

We compare the request model for a Hadoop cluster in the orchestrator conversation simulation
with threemodels from the following state of the art projects: DICE, INDIGO DataCloud and Apache
Bigtop. The exact models used are available on Github [35].

• DICE is a European Horizon 2020 project aimed at defining a framework for quality-driven
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development of Big Data applications [17], which leverages TOSCA models to deploy and
manage big data applications. This evaluation uses their example Hadoop models [1].

• The INDIGO - DataCloud project develops an open source data and computing platform
targeted at scientific communities [33]. TOSCA is used as the method to interface between
the INDIGO platform and end users. This evaluation uses the example model to request a
Hadoop cluster from the INDIGO platform [29].

• Apache Bigtop is an Apache Foundation project that is the de-facto standard for packaging,
deployment and testing tools for open-source big data frameworks [3]. It is the upstream
of many commercial big data offerings such as Cloudera’s CDH Hadoop distribution. This
evaluation uses the Bigtop reference bundle for deploying Apache Hadoop using Ubuntu
Juju [14][5].

This evaluation uses four indicators of the complexity of a model. Each object is a variable that
needs to be specified by the user, thus increasing the complexity of the model. Moreover, each
individual object acts as a multiplier to the overall complexity because the values of different
objects need to be correct in combination. The number of objects can thus be seen as the degrees
of freedom of the model. The indicators are as follows.

1. The number of nodes in the topology model. This is the number of declared node types for
a TOSCA model and the number of declared applications and machines for a Juju model.
Node types referenced but not defined are not counted since defining these node types is
the role of the platform and thus provides no additional complexity for the sysadmin.

2. The number of relationships in the topology model. Each relationship is only counted
once, even if it is declared at both endpoints such as in certain TOSCA models. Machine
placement directives in Juju models are also counted as relationships since these signify
a relationship between the application and the machine.

3. The number of outputs. In TOSCAmodels, the request model defines what runtime proper-
ties the sysadmin is interested in, and how these runtime properties should be formatted.
Juju request models do not contain outputs because it is up to the Charm to decide what
information should be shown to the sysadmin and how it should be formatted.

4. Number of properties present in the model. This maps to the number of properties in the
TOSCA models, and the number of configuration values, constraints, and scale declarations
in the Juju models.

Figure 2.5 compares the complexity of the four evaluatedmodels and Figure 2.6 shows the topolo-
gies of thesemodels as a graph. The indicators diverge a lot between the different state-of-the-art
models because each model makes a different trade-off between flexibility and complexity: more
information exposed in the model means greater flexibility but also more complexity. This trade-
off is inherent to the state-of-the-art, since it is not possible to have both, as explained in the
introduction. The trade-offs of the presented models are further investigated below.
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model represent node types that are referenced in relations but not defined in the model itself.
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• The DICE model as a large number of nodes and relationships because the IP, firewall, and
virtual machine are also modeled as separate nodes with relationships. Although this is
TOSCA-compliant and improves the reusability of the nodes, it greatly increases the com-
plexity of the model.

• In the INDIGOmodel, theHadoop services are only represented by two services: “hadoop_master”
and ”hadoop_slave” instead of the four separate services “Namenode”, “Datanode”, “Node-
Manager” and “ResourceManager”. This causes the INDIGO model to be less complex, but
it hampers the flexibility and reusability of the components in the model.

• The Bigtop and INDIGO models contains a large number of properties because the require-
ments of the host machines such as CPU, RAM and root disk space are part of the model.
These properties are not set in the other models, which will result in the orchestrator de-
ciding these values, causing the user to have no control over this..

The request model for the orchestrator conversation scores the best on every indicator which
proves that this approach indeed makes it possible to hide the complexity of managing a Hadoop
cluster. On the other hand, the sysadmin can still choose to manually model the Hadoop clus-
ter out of individual components, or use a mix of components with different abstraction levels,
should that need arise. Thus, the trade-offs between complexity and flexibility are not needed in
the model of the orchestrator conversation.

Note that, as explained in Section 2.2, it is technically possible tomake the TOSCAmodels easier us-
ing Cloudify plugins or node templates, but thesemethods have great limitations: node templates
do not exist after deployment of the model and Cloudify plugins are neither standards-based nor
stackable. In contrast, in the orchestrator conversation, the sysadmin can still manage the cloud
application at runtime using the “Hadoop Cluster” abstraction, and the abstraction is completely
stackable, the underlying individual service agents and their request models are still present.

2.4.3 Overhead of the orchestrator conversation

Some studies report that the reusability of software has a negative impact on its performance due
to the overhead of abstraction and the absence of context-specific optimizations [7]. In order to
see whether this is true for the orchestrator conversation, this series of evaluations investigates
the overhead of turning an abstract request model into a full topology that satisfies it.

Since the main interest is in the overhead of the abstraction itself, the orchestrator conversation
is only used to figure out what needs to be deployed in order to satisfy the initial request model.
The orchestration agents create, configure and connect the required service agents but these do
not actually deploy or manage any services, they simply figure out the desired state of the service
and immediately report in their runtime model that the request model has been satisfied, which
propagates through the topology until the initial request model is completely satisfied. At this
point, the simulation stops and the desired state of all services is serialized into a Juju topology
model. This model is then used to confirm if the required state as described by the service agents
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Figure 2.7: The simulation starts with a Hadoop OA and a Spark OA connected to each other. The goal is to
create a Spark cluster running on a Hadoop cluster that consists of a Namenode, a ResourceManager and a
Worker.

is correct, and deployed using Juju to get the time required to deploy the cluster using a state-of-
the-art orchestrator.

The initial request model for this simulation is shown in Figure 2.7 as the “initial topology”: a
Hadoop orchestration agent connected to a Spark orchestration agent. The goal is to create the
complete topology of orchestration and service agents which satisfies the request model. The
request model of each agent contains a requested number of workers, referred to as k for Hadoop
and n for Spark. During the simulation, the orchestration agents create new orchestration agents,
service agents and relationships in order to achieve the desired state of the request model. The
simulation finishes when all orchestration agents notify the user that the request model has been
satisfied, thus when the complete topology is created. During the simulation, the two orchestra-
tion agents use the relationship to figure out what other agents need to be created and what the
desired state is to fulfill the request. What follows is a summary of the actions and decisions that
have to be made by the orchestration agents in this simulation.

1. The Hadoop OA creates service agents that deploy and manage a Hadoop cluster.

2. The Hadoop OA also creates the Hadoop plugin service agent. This plugin SA provides its
peers with the correct information to connect an application to Hadoop. The Hadoop OA
then sends the address of the plugin SA to the Spark OA so that the Spark OA can create a
relationship between the plugin SA and the Spark SA.

3. The Spark OA creates a single Spark Client service agent and connects it to the plugin SA.
Since Spark has to run on Hadoop, there is no need to create a full Spark cluster.

4. The Spark OA requests the Hadoop OA to create n workers since each Hadoop worker func-
tions as a Spark worker when Spark runs on Hadoop.

5. The Hadoop OA compares n to k, the amount of workers from its request model, and up-
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Figure 2.8: Theminimum deployment time of the cluster is around 20minutes and scales up with the number
of workers.

dates the request model of the worker SA to create max(n,k) workers.

This interaction clearly shows the strength and flexibility of the orchestrator conversation. The
abstraction of the Spark OA cannot be provided by a TOSCA node template because there is no
one-to-one translation from the abstract “Spark cluster” node to what will actually be deployed:
if the Spark OA is connected to a Hadoop OA, it will only deploy a single Spark client, otherwise
it will deploy a full Spark standalone cluster. Similarly, the conventional M@RT approach will not
work here because there is no one-to-onemapping betweenwhat the Spark OA reports as “number
of Spark workers” and what is deployed: when it is connected to the Hadoop OA, the Spark OA will
report the number of Hadoop workers, otherwise it will report the scale of the Spark standalone
cluster. After the simulation finishes, all service agents serialize the desired state of the service
into a Juju bundle, which is deployed to get the deployment time of the cloud application.

Figure 2.9 shows the time required by the orchestrator conversation to create the complete topol-
ogy, starting from the request model. Each dot represents the aggregated result of 10 simulations
of the orchestrator conversation. Figure 2.8 shows the deployment time: the time required by
Juju to deploy the topology model created by the orchestrator conversation simulation. Each dot
represents the aggregated results of two deployments. While the simulation time stays under
100ms, the deployment time ranges from around 20 minutes to over one hour. This demonstrates
that the overhead of using orchestration agents as an abstraction is negligible compared to the
deployment time of the actual cloud application.
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Figure 2.9: The overhead of the orchestrator conversation is less than 0.10 seconds which is insignificant
compared to a minimum deployment time of around 20 minutes. The simulation time remains constant
because the amount of workers is represented in the Hadoop Worker service agent as an integer value.

2.4.4 Scalability of the orchestrator conversation

This series of evaluations focuses on how the orchestrator conversation scales when creating the
topologies for multiple different cloud applications at the same time. It is a common scenario
that cloud infrastructure is shared over multiple teams, projects, and environments such as de-
velopment, staging and production.

These evaluations simulate such a scenario by deploying multiple Spark-on-Hadoop clusters si-
multaneously. It does notmatter what the actual orchestrated clusters are since these evaluations
focus on the scalability of the orchestrator conversation and not the scalability of the orchestra-
tion actions themselves.

Unlike scaling a single cluster, creating multiple clusters actually creates multiple orchestration
agents. Figure 2.10 shows that the simulation time scales linearly in function of the number of
clusters. This linearity is expected since the clusters do not have any dependencies on each other.
Consequently, if all the clusters are equal, the time to create the topology for cluster n+1 is equal
to that for cluster n, thus each cluster adds a constant overhead to the overall simulation time.

2.4.5 Concurrency in the orchestrator conversation

Concurrency is a strong point of a distributed service orchestrator because the orchestrator con-
versation allows all orchestration agents to run at the same time. This is inherent to the orches-
trator conversation and does not require code changes in the orchestration agents. This stands
in stark contrast with the monolithic nature of current state of the art orchestrators. A single-
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Figure 2.10: The simulation time scales linearly as a function of the number of unconnected clusters of or-
chestration agents. This graph shows the result of 10 runs for each x value.

process orchestrator cannot orchestrate a topology concurrently, and enabling parallelization in
a monolithic orchestrator creates a complex system that is hard to adapt and fine-tune [34]. This
series of evaluations has the goal to find out if the orchestrator conversation actually uses the
concurrency potential of the topology.

These evaluations use a simple orchestration agent that creates a number of children and waits
until these children are ready. This process continues recursively until the requested amount of
orchestration agents is created. This creates a tree of orchestration agents connected by the op-
erator relationship. The leaves of the tree immediately go into the ready state as soon as they are
created. This causes the ready states to propagate through the tree from the leaves to the root.
When the root orchestration agent is in the ready state, the simulation stops and the duration of
the simulation is used for evaluation. The duration of two topologies with the same number of
nodes but different concurrency potential is compared.

Changing the number of children of an orchestration agent has a big impact on the concurrency
potential of the topology. This simulation uses a unary tree of the aforementioned orchestration
agents as a topology without concurrency potential. Both the creation of the unary tree and the
propagation of the ready state has to happen sequentially, one node after the other. A binary tree
is used as an example of a topology that has a lot of potential for concurrency.

The big performance increase when concurrency is possible, as depicted in Figure 2.11, shows that
the distributed service orchestrator does indeed use the concurrency potential of the topology.
This has a big impact on the real-world performance of a distributed service orchestrator because
themain use of the operator relationship is to abstract; to connect one operator tomultiple execu-
tors, allowing the executors to run concurrently. Note that in a real-world topology, the number
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Figure 2.11: The orchestrator conversation happens as concurrently as the topology allows, without any code
change required, which significantly improves the scalability. Each dot represents the aggregated results of
5 simulation runs.

of children can differ between orchestration agents and can exceed two, as is the case with the
Hadoop OA in the Spark-on-Hadoop cluster, which has 4 children. A topology where each node has
3 or more children contains even more concurrency potential, but our simulations have shown no
significant performance improvements between a binary and tertiary tree because at that point,
the number of CPU cores is the bottleneck, not the number of concurrent threads.

The optimal usage of concurrency potential also explains the scalability of orchestrating multiple
unconnected clusters as discussed in Subsection 2.4.4: the clusters are not dependent on each
other, thus the orchestration of all clusters runs concurrently.

2.5 Conclusion and Future Work

This article proposes the orchestrator conversation as a way to introduce abstraction of the cloud
application to topology-based cloudmodeling languages. The focus on the conversation instead of
the orchestrator itself makes it possible for software vendors to create components that translate
abstract, declarative models into management actions on their software. The evaluation shows
that the orchestrator conversation can be used to create much smarter abstractions than possible
with the state of the art, the overhead of the conversation is minimal compared to the actual
time to deploy the cloud application, and that the request model is indeed less complex while
the underlying full topology is still present. The evaluation also shows that the decentralized
nature of the conversation enables themanagement of the cloud application to happen inherently
concurrent. This greatly enhances the scalability of the solution and alleviates the need for the
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complex and error-prone process of manually programming concurrency into an orchestrator.

Hierarchical abstraction layers are possible by creating a tree of “operator” relationships. System
administrators specify their request in the same way as orchestration agents: using the operator
relationship, which means that orchestration agents themselves can fully utilize the abstractions
of other orchestration agents in order to reason about and manage the cloud application on a
higher level. This also makes it possible for system administrators to gradually automate more
and more management tasks by creating orchestration agents that use the operator relationship
to drive the behavior of other agents. It is important to note that this approach of a conversation
instead of an orchestrator does not take orchestrator vendors out of the picture. Markets can
still emerge around creating and selling orchestration agents where orchestrator vendors can use
their expertise to create auto-scalers or specialized orchestration agents that can take SLA and
QoS requirements into account.

This article treats OAs and SAs as a black box, however it is valuable for future work to see how QoS
and SLA requirements can be reasoned about in such a distributed manner. The state machine ap-
proach currently used by cloud modeling languages to model the lifecycle of a single component
is not flexible enough for agents with multiple independent sub-states. Future work will investi-
gate more flexible ways to model SAs and OAs and investigate the advantages of the orchestrator
conversation when used as an alternative rather than a supplement to existing cloud resource
orchestration frameworks. An interesting topic to further investigate is whether this decentral-
ized nature has a positive impact on the solution’s ability to cope with network segmentation
and its resiliency. Another important question is whether the hierarchical nature of the operator
relationship has an adverse effect on the solution’s ability to self-heal.
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3
Beyond Generic Lifecycles: Reusable Modeling

of Custom-Fit Management Workflows for
Cloud Applications

This chapter tackles the second research question: “How to encapsulate and reuse system ad-
ministrator’s knowledge about when to perform which management actions?” It proposes the
reactive pattern to make it easier to create custom lifecycles to manage a single component of a
composed application. The pattern is specifically designed to make knowledge sharing between
developers of lifecycles easier: it allows these developers to create reusable layers of lifecycle
steps. This chapter ends with an evaluation of the ecosystem that existed two years after the
initial release of software implementing this pattern, showing a healthy amount of reuse and col-
laboration between different creators. Even in 2022, this research is still relevant, for example
as inspiration for how to increase code sharing between custom Kubernetes controllers. Even a
modern framework to create custom orchestration logic for Kubernetes controllers, such as the
operator SDK, lacks tools to encapsulate and share parts of this logic.

⋆ ⋆ ⋆
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Abstract Automated management and orchestration of cloud applications have become increas-
ingly important, partly due to the large skills shortage in IT operations and the increasing com-
plexity of cloud applications. Cloud modeling languages play an important role in this, both for
describing the structure of a cloud application and specifying the management actions around
it. The TOSCA cloud model standard recently defined declarative workflows as the preferred way
to specify these management actions but, as noted in the standard itself, this is far from ideal.
This paper draws lessons from six years of using declarative workflows in Juju for deploying and
managing complex platforms such as OpenStack and Kubernetes in production. This confirms the
limitations: declarative workflows are inflexible, hard to reuse, and allow for related components
to become silently incompatible. This paper proposes the reactive pattern to solve these issues by
enabling the creation of emergent workflows using declarative flags and handlers, which can be
easily grouped into reusable layers. After more than two years of using this pattern in production
as part of our charms.reactive framework, it is clear that it enables reusability and ensures com-
patibility: 67% of reactive charms share parts of the management workflow and 73% of reactive
charms share a relationship workflow.

3.1 Introduction

Due to the large skills shortage in IT operations [9] and the increasing complexity of cloud ap-
plications [16], automated management and orchestration of cloud applications have become in-
creasingly important. The OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) [13] is a front-runner in this field: a standard with large backing from both the industry
and academia. It provides a specification to create self-contained cloud models that describe the
structure of a cloud application in a topology model, as well as the surrounding management and
orchestration processes in a workflow model. The order in which these processes are to be ex-
ecuted is either explicitly defined in an imperative workflow model or implicitly in a declarative
workflow model. The latter type is of great importance to this research because it allows cap-
turing the knowledge on how to manage a cloud application in a reusable way, which is crucial
to solving the skills shortage and the complexity of cloud applications [16]. Consequently, the
Juju cloud modeling language [4], which closely resembles the TOSCA standard, has been using
declarative workflows since its inception. Section 3.2 introduces these concepts and related work
in greater detail.

However, as noted in the TOSCA specification itself, declarative workflows are inherently inflexible:
every workflow needs to adhere to a single lifecycle defined by the cloud modeling language.
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The real-world implications of this issue have become painfully clear during 6 years of managing
complex platforms in production with Juju. Section 3.3 reflects on this experience and identifies
the main shortcomings of the declarative approach.

This paper proposes the reactive pattern in Section 3.4 to address the limitations of declarative
workflows. Specifically, the reactive pattern allows creating custom-fit workflows, not limited by
lifecycles, and enables more fine-grained reuse than declarative workflows. Its implementation
is discussed in Section 3.5 and the evaluation of two years of production use is discussed in Sec-
tion 3.6. The reactive pattern has resulted in widespread code reuse and increased compatibility.
Consequently, it forms a great battle-tested foundation for improved workflow support in the
TOSCA standard.

3.2 Background and Related Work

3.2.1 Cloud Modeling Languages

Model-based management of cloud applications is ubiquitous [16] and can be traced back to the
1995 paper of Burgess et al. where the idea of converging towards a predefined end-state was
proposed [1]: a system administrator declaratively specifies what the desired end-state of the
cloud application is, and an orchestrator interprets that specification and iteratively executes the
required actions to get the application into that state. This idea has evolved over the years and has
resulted in the creation of topology-based cloud modeling languages to enable better portability
and reusability [13]: the model of the cloud application consists of a graph of components which
are connected by their dependencies. Each component is a self-contained description of part of
the cloud application and newmodels can be created by rearranging the components thusmaking
each component reusable.

As said in the introduction, OASIS TOSCA [13] provides a specification to create self-contained cloud
models that describe both a) the structure of a cloud application in a topology model, and b) the
management and orchestration processes surrounding it in a workflow model. The topology con-
sists of a number of nodes connected to each other using relationships. Relationships denote
dependencies between two nodes. A web app, for example, might have a relationship with a
database to denote that the web app uses the database for storage. The types of relationships
possible between nodes are defined by their node type in the form of requirements and capabil-
ities: a relationship connects a node that requires a certain dependency to a node that provides
the same dependency. The structure of the workflow model has changed over the past few years.
TOSCA 1.0, released in 2013, does not enforce a specific workflow language but favors BPMN. TOSCA
Simple YAML profile 1.0, released in 2016, lost the ability to specify a workflow and only with the
2018 release of TOSCA Simple YAML profile 1.1 have workflows been included again, now in two
forms: imperative and declarative workflows [10].



54 Beyond Generic Lifecycles

3.2.2 Imperative Workflows

Imperative workflows are often depicted as a set of activities linked by a control flow. Each ac-
tivity is a piece of work that forms one logical step of a process. The control flow describes the
order in which the individual activities are performed. These can be represented as a directed
graph where each node represents an activity and the vertices describe the control flow. In an im-
perative workflow, the order of execution is explicitly defined as part of the workflow definition
e.g. as a flow diagram. Many IT service management practices such as Information Technology
Infrastructure Library (ITIL) [2] use imperative workflows as high-level descriptions of IT busi-
ness processes. Thus, the use of such workflows in cloud modeling languages makes it easy to
align IT services with business needs. The imperative workflows in a cloud model define how to
deploy, manage and undeploy a topology. Each activity is a management action such as “install
MySQL”, and the control flow describes when each management action needs to be performed.
During deployment, the orchestrator executes the workflow step by step until the entire topology
is deployed.

The downside of using imperativeworkflows is that they are defined for a specific topology instead
of for one component. Thus, when the topology is changed, the workflow needs to be recreated.
This is an inherent limitation of imperative workflows: changing a constraint in an imperative
workflow description requires a complete rewrite of the control flow [6]. Having to rewrite the
workflow every time a component in the topology changes, goes against the modular nature of
topology-based cloud modeling languages. Wagner et al. propose to define the imperative work-
flows on the level of the individual nodes, and interconnect the workflows of all the components
in a topology using a choreography. This approach however still requires manual creation of the
choreography because the orchestrator cannot know how the individual workflows should be con-
nected [15].

3.2.3 Declarative Workflows

Declarative workflows provide optimal reusability: the declarative workflow for each component
of a topology is contained inside the description of that node. Adding the node to the topology
will automatically add all the management activities to the global workflow. This is because the
control flow is not explicitly specified but rather implicitly derived from the constraints of each
activity. In TOSCA, the constraints specify which lifecycle phase the activity is part of, for example
installing, configuring or starting. It is then up to the orchestrator to decide when each lifecycle
phase for each component needs to be executed, so the orchestrator “generates” an imperative
workflow bymerging all activities from all nodes in the topology [3]. The lifecycles themselves are
however defined by the orchestrator which presents the biggest drawback of declarative work-
flows in TOSCA: workflows are limited to the states and transitions defined in the orchestrator’s
lifecycle.

Furthermore, this also restricts the types of dependencies possible between nodes. TOSCA speci-
fies a number of normative relationships that each carry specific meaning about the dependency
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between related nodes. As an example, the DependsOn relationship means that the target node
needs to be started before the source node is created. This directly translates into how the orches-
trator connects the declarative workflows of these two components: the deployment workflow of
the source node is executed when the target node reaches the started state. As a result, declara-
tive workflows can only model dependencies which are explicitly defined by the orchestrator. The
current TOSCA specification, for example, does not support circular dependencies [5], i.e. depen-
dencies where the control flow jumps back and forth between two nodes multiple times.

3.3 Lessons learned: history of declarative workflows in Juju

Juju [4] is a cloudmodeling language and orchestrator created by Canonical that closely resembles
the TOSCA standard. Since its inception in 2012, Juju has been used in production to deploy big
software such as OpenStack and Big Data clusters [14], and is at the core of BootStack and the
Canonical Distribution of Kubernetes.

A Juju charm is similar to a TOSCA node type: it represents one service in the cloud application
and defines which relationships it supports using requires and provides statements. Juju also
uses declarative workflows: the orchestrator defines a number of lifecycle stages such as install,
start and config-changed, and executes a program called a hook during each lifecycle stage. A
hook is a workflow activity and its name defines which lifecycle transition it performs. Thus, the
Juju orchestrator decides when hook code gets executed, and the charm developer decides what
operation should be performed. A deployed instance of a charm is called aunit and adding a unit to
a model automatically adds the hooks of its charm to the topology-wide declarative management
workflow. This approach resulted in a number of issues.

The lifecycle provided by Juju does not match the actual lifecycle of the managed services.
Juju’s provided lifecycle is too simple for most services, which require many more lifecycle phases
and transitions. This results in a frequently used anti-pattern where all lifecycle stages execute
the exact same code which implements a rudimentary state machine with if-then statements that
mimics the real lifecycle of the application. The state machine figures out which actual lifecycle
stage the application is in, and executes the required actions. Expanding the lifecycle of Juju’s
orchestrator is not a good solution because each service requires its own specialized lifecycle so a
one-size-fits-all lifecycle is simply not sufficient. Moreover, it should not be up to the orchestrator
to define what the lifecycle of a service is, this should be defined by the service.

Reusing parts of the lifecycle of a single service is difficult. Many services share components,
and many lifecycle steps are the same for multiple services. Many services are installed using
the distribution package manager, for example, and need to be updated when security fixes are
released. Encapsulating this functionality in a way that it allows being reused in other lifecycles
is not possible. Over the years, a number of charm helper libraries have been created in order to
increase code reuse, but the issue with a library is that it only encapsulates how to do a certain
lifecycle action, not when that action should be performed.
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The relationship lifecycle provided by Juju does not match the actual relationship lifecycle
of the managed services. As explained in Section 3.2, the use of declarative lifecycles restricts
the types of dependencies between two nodes to the ones supported by the orchestrator. Juju
supports only one type of dependency in which the lifecycles of both units run concurrently. After
the start hook of both units, the relationship lifecycle runs and the units exchange configuration
values. In reality, however, many services require knowing configuration values, such as the IP
address of a database, before starting. This causes developers to create a state machine that
completely ignores hooks such as config-changed and start, and waits until the relation-changed
hook to actually configure and start the service. This results in a discrepancy between the state
that the orchestrator thinks a service is in, and the actual state a service is in.

Silent incompatible relationships. Because of the previous issue, the relationship lifecycles are
actually implemented by the charm, instead of by the orchestrator. The orchestrator has therefore
no way of verifying that two ends of a relationship actually implement a compatible lifecycle. This
has resulted in many semi-compatible charms that implement the same relationship according
to the orchestrator, but differ in subtle incompatible ways in practice.

3.4 The reactive pattern

This paper proposes the reactive pattern as a fundamentally new approach to managing services
using cloud modeling languages. Such pattern allows the creation of flexible and reusable emer-
gent workflows that manage the entire lifecycle of a modeled cloud application including depen-
dency management, initial deployment, second day operations, topology changes and node type
upgrades. Although it was initially created for the Juju cloud modeling language, the pattern it-
self is generic enough so that it can be used in different cloud modeling languages such as TOSCA
or as the service engine in a Distributed Service Orchestrator [12]. This section gradually intro-
duces all the primitives of the reactive pattern and explains their role and how they address the
shortcomings of declarative workflows.

Just like with regular declarative workflows, the actual management operations are encapsu-
lated in activities which are part of the node definitions. The novel part of this pattern is how
the control flow gets created: the orchestrator does not define a lifecycle, it only defines a num-
ber of events. Developers create custom event-based workflows for each service and hook them
into these events. These workflows are created using constraint-based modeling [8]: each activ-
ity defines a set of constraints which need to be satisfied in order for them to execute. Unlike
approaches like DECLARE [7], these constraints are not explicitly tied to events regarding the ex-
ecution of other activities. Rather, the constraints use semantic flags that can also represent a
number of different types of events such as the arrival in a certain state, a change in the topology
and service events e.g. a crash.
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3.4.1 Handlers and Flags

The reactive framework is based on the idea of handlers reacting to flags. Handlers are the activ-
ities of the workflow: pieces of code that perform management actions on the cloud service. The
control flow, the order in which handlers get executed, is driven by flags: each handler defines
which flags it reacts to, i.e. which flags need to be set and/or unset for the handler to execute.
The framework executes a handler when its preconditions are met, during which it modifies the
service, and can set and clear flags. This triggers other handlers to run, until there are no more
handlers whose preconditions are met. In this sense, the reactive pattern uses constraint-based
modeling with arbitrary events.

The power of a flag is that it can represent almost anything, from internal state such as “the service
is running” and “disk utilization is critically high” to topologymodifications such as “a new relation
is established” or “this node has been removed”. The following is a non-exhaustive list of what
semantic meaning a flag might hold.

• Lifecycle Stage: The orchestrator itself defines a number of flags that represent which
lifecycle transition it requests such as install, config-changed, and stop. These are the
reactive pattern’s counterpart to the hooks and lifecycles of declarative workflows.

• Service state: Developers can define a number of flags that represent low-level state of
the service such as “the webserver is installed” and “the SSL certificate is registered”.

• Service events: A flag can also represent events that happened in the past, and that might
need to be handled, such as “the service has crashed”, which might require notifying a
system administrator, even when the service has successfully been restarted.

• Topology state and events: Flags can also represent the topology or changes to it. A flag
can indicate that a new relation was created in the model or that a related service in the
topology has entered a certain state.

• Day 2 operations: A flag can signal that a backup is requested, that an update is required,
or that an SSL certificate needs to be renewed.

Note that not all flags need to be set by the handlers themselves. The operating system itself can
set a flagwhen a service crashes or when a certain time has passed, and the orchestrator sets flags
to indicate which lifecycle stage the application is in and what the current state of the topology
is. This for example allows the workflow to hook into the lifecycle provided by the orchestrator.

Definition 3.1. A handler is an activity that manages a cloud resource, accompanied by a set of
preconditions that, using flags, states when that activity should execute.

Definition 3.2. A flag is a boolean identified by a unique string that is a semantic representation
of an event to be used in a handler’s preconditions.

Figure 3.1 shows a custom workflow that emerges from a set of handlers and their preconditions.
Each activity is a handler and the control flow emerges from their preconditions. The orchestra-
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Figure 3.1: This workflow emerges from the handlers, their preconditions and their flags. Each handler is
represented by an activity. The “stop web app” handler is represented by two different activities because the
next activity depends on which activity was executed previously to “stop web app”. The handlers are colored
according to which aspect of the service they manage.

tor starts the workflow and sets the appropriate flags when the domain name config is set and
changed. The operating system itself sets flags when 20 days have passed and when an update
is available to the packages. The pseudocode for the handlers and their preconditions is available
online [11].

The resulting workflow shows that some activities such as deploying the web app and registering
the SSL certificate can be executed in parallel. This however only regards the control flow depen-
dencies, not the actual dependencies of the activities themselves: it does not matter which action
is run first, but the actions might not be able to run at the same time.

In summary, flags and handlers allow the construction of emergent workflows that hook into and
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expand the lifecycle provided by the orchestrator. Because the emergent reactive workflow hooks
into the lifecycle provided by the orchestrator usingflags, it can leverage the existing techniques to
combine the declarative workflows of multiple components into a single workflow that manages
the entire cloud application. Just like with declarative workflows, reactive emergent workflows
are shipped as part of the node type of a component. When that component gets added to amodel,
the accompanied workflow will be hooked into the model’s global workflow. This approach thus
eliminates the downsides of TOSCA’s imperative workflows while allowing for a greater level of
flexibility.

3.4.2 Scope

A big advantage of cloud modeling languages stems from the separated scope between nodes.
A node can only access information about another component if there is an explicit relationship
that shares that piece of information. This property is also present in the reactive pattern. Flags
in the reactive pattern are unit-scoped: each instance of a node type has its own set of flags.
Handlers themselves are node-type scoped: all instances of a single node-type have the same
set of handlers. This means that the emergent workflow of each unit will be the same, but the
current position in the workflow might be different. The web app example from Figure 3.1 is a
single service that consists of a number of components: an SSL encrypt certificate, a webserver
and a web app. When the web app scales out into multiple instances, each instance will have its
own set of flags, but the handlers will be the same over each unit.

3.4.3 Layers

As mentioned previously, the web app example service can be divided into three components: the
webserver, the SSL certificate and the web app. The emergent workflow in Figure 3.1 shows each
activity colored based on which component it manages. As one can see, it is not possible to divide
the emergent workflow into three sub-workflows, one for every component. With the reactive
pattern, this becomes possible since the workflow itself is just an emergent property from the
handlers and their preconditions: it only exists at runtime. At design time, the handlers can be
divided into arbitrary groups because there are no explicit dependencies between activities: the
only dependencies are implicit with the flags as an intermediary.

In the reactive pattern, each set of grouped handlers is called a “layer”. Figure 3.2 shows the
handlers from the web app example divided into three layers. Each layer contains the handlers
that manage a specific part of the service: the web app, the SSL certificate and the webserver.
Adding a layer to a node type results in the handlers of that layer being added to the emergent
workflow of that node type. This thus greatly improves the reusability and allows developers to
focus on the components that they are an expert in, instead of having to code the entire service.
In a sense, this is aspect-oriented programming: each layer contains the activities that manage
one specific aspect of the service. The flags define the “cut points”, the points in which the aspects
get injected into the program code.
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Figure 3.2: Since the dependencies between handlers are implicit, the handlers can be grouped by which
aspect of the service they manage, even though the emergent control flow goes back and forth between the
layers in an erratic manner.

A layer is one level below a TOSCA node type: multiple layers combined form one node type. From
the viewpoint of the orchestrator, all layers of the same node type share the same lifecycle. The
orchestrator does not coordinate the lifecycles of each layer individually since the control flow of a
service is defined by the flags and the preconditions of handlers. This also has the advantage that
a model designer does not come into contact with layers, the model designer only sees a single
node and layers are an “implementation detail” of the node. Finally, this makes it possible to use
layers without needing any changes to TOSCA itself since layers are “compiled” into a TOSCA node
type, and the orchestrator only interacts with the node type.

In order for layers to be reusable, it is important that each layer defines what the semantic prop-
erties are of each flag. Some flags might be for internal use in a layer itself, while other flags are
to be used by other layers to signal this layer or to use in the preconditions of their handlers. It is
also important to define how these flags will be managed by a layer: whether or not flags will be
automatically set or removed when certain conditions happen.

Furthermore, it is important to avoid conflicts between layers. An example of a conflict is when
two handlers, A and B, react to the same flag, config.changed, and both clear that flag during ex-
ecution. Though it is not immediately obvious, this results in non-deterministic behavior because
the workflow is executed sequentially and the preconditions of flags are rechecked after execu-
tion of every handler. If handler A runs first, it will clear the config.changed flag and handler B
will not even run. This in itself is wanted behavior: a handler is never allowed to run if its precon-
ditions are not met. If handler A clears a flag during its execution, it signals that the event that
set the flag is handled, indicating that no other handlers which handle the same event should run.

It is however entirely possible that multiple layers handle the same event. Layers do not have
explicit dependencies on each other, so a handler cannot know, at the time of clearing the flag, if
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the event is actually handled by every layer. Triggers are used to avoid such conflicts.

Definition 3.3. A trigger is a causal, directed dependency between two flags that sets or clears
a flag immediately when the other flag is set or cleared.

Immediately in this context means that when a flag changes, the execution of handlers is paused
until all triggers are processed.

Using a trigger, a layer links the config.changedflag to a customflag for example layer-a.config.changed,
such that the custom flag is set immediately after config.changed is set. This custom flag is meant
for internal use in that layer only and is thus prefixed with the layer’s name. Since a trigger is one-
way, the custom flag will not be cleared when another layer clears config.changed. The developer
can thus safely use the custom flag in the preconditions of a handler without having to worry that
it will be cleared by another layer before the handler has a chance to run.

3.4.4 Interface layers and Endpoints

Much like layers contain reusable handlers to manage individual services, interface layers contain
reusable handlers to manage the relationship between two nodes. Unlike regular layers, a sin-
gle interface layer contains handlers for two nodes because an interface layer implements both
sides of the relationship. An interface layer is thus a declarative model of the communication
between two nodes. This again makes it possible for the orchestrator to know whether a relation-
ship between two nodes is possible: if two nodes share the same interface layer, the relationship
is possible.

Relationships in TOSCA serve two purposes during orchestration: they are used to connect the
control flow of two nodes in a way that the dependency is resolved, and they are used to exchange
information such as IP addresses in order to configure both services correctly.

The control flow of a single component in the reactive pattern is defined by the flags. It is how-
ever not desirable to share all the flags of one node with another node, since that creates deep
dependencies between nodes, loses the modularity and limits the reusability of a layer. Thus, all
sharing of state and data happens explicitly by the handlers of the interface layer so that the de-
pendencies between the implementation of two nodes are limited to the handlers of the interface
layer, which is not an issue since the interface layer is already shared between two nodes.

Each time the relationship and its data gets changed, the orchestrator notifies the interface layer
by setting flags that denote lower-level relationship events such as endpoint.x.joined, when
a relationship is established, endpoint.x.changed, when relationship data changes, and end-
point.x.departed when a relationship is removed. These lower-level flags are the internal API
of an interface, they are only to be used by relationship handlers which react to these events, read
and write relationship data and manage higher-level flags. Regular layers should only react to
the higher-level flags since those are regarded as the “external API” of the interface.

As an example, in the MySQL case of an interface which is used to connect a node that provides
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a MySQL database to a client, the MySQL side will have the higher-level flags table.requested, to
denote that a client has requested the creation of a table, and user.requested which is set when
a client requests the creation of a user account. The layer that manages the MySQL database will
contain a number of handlers that react to these flags to create the requested tables and users,
and will call back to the endpoint object to notify that the requests are executed.

Endpoints are the key to the second purpose for relationships: sharing information between nodes.
An endpoint is an object that represents one side of the relationship. It publishes and reads the
relationship data to communicate with the endpoint at the other side and it translates the raw
relationship data into high-level objects to be used by handlers.

3.5 Implementation

3.5.1 The “charms.reactive” framework

The charms.reactive framework is our implementation of the reactive pattern built on top of Juju’s
declarative workflows1 . It is written in Python 3. Handlers are decorated python functions or
executable files that implement the external handler API.

A reactive charm is built from layers. Each layer is a directory with a number of handlers and a
layer.yaml file that holds metadata such as the name of the layer, and the dependencies of this
layer i.e. what other layers this layer uses. The charm build tool is used to compile a layer and its
dependencies into a charm. It downloads all the dependencies from the layer-index 2 , merges all
the layers and packages the result into a deployable charm.

Figure 3.3: The architecture of the charms.reactive framework: when the orchestrator executes a hook, the
reactive framework initiates and runs the handlers whose preconditions are true.

Figure 3.3 shows the architecture of the framework. Much like the state machines mentioned in

1https://charmsreactive.readthedocs.io/en/latest/
2https://github.com/juju/layer-index

https://charmsreactive.readthedocs.io/en/latest/
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Section 3.2, the framework ties into the Juju hooks so that any hook simply executes the frame-
work. It then decides which handlers to run based on the preconditions of the handlers. When
there are no more handlers to run, the framework exits the hook. According to the Juju orchestra-
tor, a reactive charm is thus no different from a regular charm.

At the start of each hook, the reactive framework loads the flags from persistent storage, sets
and clears the managed flags based on the hook and the information from the orchestrator, and
starts to execute the handlers whose preconditions are met, as shown in Listing 3.1. A handler is
considered matching if the preconditions are true and the handler did not yet run in the current
hook or the flags referenced in its preconditions have changed since the last time it ran.

Listing 3.1: Pseudocode for a run of the reactive framework

set and clear managed flags
add matching handler to the queue

while queue is not empty:
for each handler in queue:

run handler
if handler failed:

revert flag changes
fail hook

remove handler from queue
remove not matching handlers from queue

add matching handler to queue
if max iterations reached:

revert flag changes
fail hook

All handlers on the same unit are executed sequentially, even if the emergent control flow allows
concurrent execution, since the reactive pattern does not provide a way for handlers to define
whether or not two handlers can actually run concurrently. This is however still an improvement
over TOSCA’s declarative workflows, where even the activities of related nodes are run sequen-
tially. The order in which the reactive framework runs handlers when multiple handlers match is
undefined but deterministic: every run will result in the same order, but a charm developer should
not rely on any order.

From Juju’s standpoint, a hook is transactional: if a hook fails, Juju will rollback the state changes
of that hook and try the hook again. This fixes transient failures. For this reason, the reactive
framework itself also rolls back all changes to flags when a handler fails. This protects against
transient failures as shown by Wettinger et al. [17]. Juju’s approach to this does not eliminate
the need for idempotency because the orchestrator does not roll back the actual changes to the
service so the service might be in an inconsistent state, and handlers might run multiple times
when the hook is retried.
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3.5.2 Lessons learned

In the initial version of the charms.reactive framework, flags were called states, which confused
developers because they thought they were building finite state machines (FSMs). It is possible
to build an FSM with the reactive pattern, but the pattern is a lot more powerful since it also
allows event-based programming. Flags are a much more neutral term which does not imply any
specific model of computation. As an example, some of the relationship flags represent events
instead of states. The relationship.{name}.joined flag is a state: it is set when the relationship
reaches the joined state, and is cleared when the relationship leaves that state. However, the
relationship.{name}.departed flag represents an event: it is set every time a unit departs from a
relationship and is manually cleared by a handler that “handled” the departure. In contrast, if this
event were a state, it would be set when the first unit departs a relationship and never be cleared
since that unit remains departed, even when that departure has been “handled”.

In the current implementation of the reactive framework, handlers whose preconditions are true
are re-executed in every hook. This however turned out to be counter-intuitive for developers,
especially new developers without experience writing non-reactive charms. Since the reactive
framework is a layer on top of Juju’s declarative workflow, and hooks are thus hidden, having
such a reliance on their lifecycle adds unnecessary complexity for developers. It is however not
possible to change this behavior currently because this will break backwards compatibility.

3.6 In practice

This section shows the results of using the reactive pattern in Juju for more than two years, since
our implementation has become available. The data shown in this section is obtained using the
public Juju charm store api 3 . A cached copy of the data and the full code to download and process
it is available on Github [11].

The charm store contains a total of 529 active charms: charms that have been downloaded in the
last month. Of those, only 176 or 33% use the reactive framework. The relatively young age of the
framework plays a big role in this: many charms were built before the reactive framework, and
porting these charms to the reactive framework is not trivial, since it requires a complete rewrite
of the charm code.

Figure 3.4 shows the number of reused layers and interfaces per charm, i.e. the number of layers
and interfaces which are also used by another charm. This shows the reactive framework has in-
deed made it possible to reuse workflow code across charms: two-thirds of actively-used reactive
charms share at least one layer with another charm. This is an incredibly high number compared
to the workflows in TOSCA, where node templates simply can not share any workflow code. How-
ever, there is a lot of unused potential because 41% of layers are used in only one charm as shown
in Figure 3.5.

3https://github.com/juju/charmstore/blob/v5-unstable/docs/API.md

https://github.com/juju/charmstore/blob/v5-unstable/docs/API.md
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Figure 3.4 also shows that interface layers are also heavily reused: 73% of charms use at least one
interface layer that is shared with another charm, which improves the compatibility of charms
implementing the same interface. However, not all interface layers have this benefit: 36% of
interface layers are only used once, as shown in Figure 3.5. This is because of the high number of
non-reactive charms: these interface layers are used to connect reactive charms to non-reactive
charms.

3.7 Conclusion

Six years of managing cloud applications in production using declarative workflows shows that
their inflexibility limits their usefulness. Moreover, they do not provide enough opportunity for
code reuse, causing duplicated effort and allowing connected workflows managing different ser-
vices to become silently incompatible. The reactive pattern proposed in this paper addresses these
issues by allowing declarative specification of workflows that match the actual lifecycles of the
services and by enabling aspect-based grouping of workflow activities into reusable layers.

The results of two years of production use show the reactive pattern’s benefits: 67% of reactive
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charms use shared layers and 73% of reactive charms use shared interfaces. This shows that the
reactive pattern solves the issues of declarative workflows and even though it originated from the
Juju ecosystem, it is generic enough so that it can form the basis for improved workflow support
in other cloud modeling languages such as TOSCA.
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4
Service Relationship Orchestration: Lessons

Learned From Running Large Scale Smart City
Platforms on Kubernetes

This chapter addresses RQ 3: “How to encapsulate and reuse system administrator’s knowledge
about composing microservice applications and (re-)configuring their internal dependencies, in a
way that fully integrates into a cloud-native ecosystem” It proposes “orcon”, which extends the Ku-
bernetes API so users can model dependencies between microservices. It uses these modeled de-
pendencies to automatically reconfigure microservices to adapt to changes in their dependencies.
As the name implies, orcon is a successor to the orchestrator conversation proposed in Chapter 2.
Specifically, it adapts the orchestrator conversation to the realities of microservice applications
running on container orchestrators. Having a separate management agent for each individual
component creates a troublesome overhead in a microservice application because of the sheer
number and small size of components. As such, the evaluation at the end of this chapter shows
how orcon is able to manage relationships with an overhead that is negligible compared to the
agent-based approach of Juju.

⋆ ⋆ ⋆
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Abstract Smart cities aim to make urban life more enjoyable and sustainable but their highly
heterogeneous and distributed context creates unique operational challenges. In such an envi-
ronment, multiple companies work together with government on applications and data streams
spanning several management domains. Deploying these applications, each of which consists of
several connected services, and maintaining an overview of application topologies remains diffi-
cult. Even though cloud modelling languages have been proposed to solve similar issues, they are
not well fit for such a heterogeneous environment because they often require an “all or nothing”
approach. Moreover, cloud modelling languages add an additional abstraction layer that rarely
supports all features of the underlying platform and make it harder to reuse existing knowledge
and tools. This research defines service relationships as the key element to modelling applica-
tions as topologies of services. We use this definition to pinpoint what is lacking in the state of
the art Kubernetes orchestration tools and provide a blueprint for how relationship support can
be added to any orchestrator. We present “orcon”, a proof of concept orchestrator that extends the
Kubernetes API to allow managing relationships between services by adding metadata to service
definitions. Our evaluation shows this orchestrator enables lifecycle synchronization and config-
uration change propagation with an overhead of only 0.44 seconds per service.

4.1 Introduction

Smart cities have the potential to make urban life more enjoyable and sustainable by introduc-
ing deep integration with Internet of Things (IoT) technology. The inherent heterogeneous and
collaborative nature of cities creates unique challenges for integrating IoT. Problems cannot be
solved in a vacuum: they often require collaboration between multiple competing industry part-
ners, governments, research institutions and the public. A single end-to-end application can have
data streams crossing multiple management domains and environments: it can contain compo-
nentsmanaged by completely different teams on different networks, clouds and data centers. This
unique environment acts as a multiplier to operational complexity, making it hard for developers
to focus on the applications themselves.

One such smart city project is “City of Things” [34], transforming the city of Antwerp, Belgium, to
tackle a wide variety of challenges such as prediction and detection of flooding, improving traffic
flows, creating a smart grid and fine-grained monitoring of pollution. Since inter-disciplinary
research, citizen science and industry collaboration are key here. The speed of innovation and the
exploratory nature of this project only exacerbates the operational challenges, making it hard to
get a clear picture of application topologies and how services are connected. Furthermore, due
to this nature, individual services are changed often. Adapting related services to these changes
often requires manual effort and close collaboration between teams. This speeds down the rate
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of innovation.

Cloud modelling languages such as the OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA) are a great way tomodel the full topology of an application. Cloud orchestra-
tors can then automaticallymanage individual services and their relations to each other. However,
these languages often follow an all-or-nothing approach in that the entire application needs to
be modeled in that language. Moreover, they create an additional abstraction on top of the ex-
isting tools and platforms that developers use. Since the goal of the City of Things project is to
explore what could be possible in a Smart City context, it is hard to define requirements and com-
mit to specific technology choices early in the process. Container managers such as Kubernetes
(k8s) [26] provide very flexible APIs to manage containerized services. However, dependency-
management and collaboration between services require ad-hoc solutions that are prone to break.
Service meshes can aid in this, but they require putting additional components such as proxies in
the data path. This overhead is even more damning if they are only used to solve operations is-
sues. Given the latency requirements of many IoT applications such as smart grids, this is not a
good fit for Smart Cities projects. Finally, service meshes provide a general fabric for all services
to communicate with each other, instead of configuring specific connections based on a topology
model of the application.

Thus, given these limitations of the state of the art, the contribution of this work is to answer the
following research questions.

RQ 3.1. On an abstract level, what concepts enable modeling and automated management of
dependencies between services?

RQ 3.2. To what extend does the state of the art support modeling and automated management
of such dependencies in Kubernetes?

RQ 3.3. How can existing platforms be extended in order to support service relationships without
hiding the underlying API of the platform to users and without adding extra components in the
data path?

RQ 3.4. What is the orchestration overhead introduced by adding support for such relationships?

Additionally, this research provides an open source proof of concept prototype relations orches-
trator for Kubernetes. This paper starts off by exploring how related work addresses some of
the operational challenges of running complex interconnected applications and services in Sec-
tion 4.2. The smart cities use-case is explained in detail in Section 4.3. Section 4.4 provides a
number of definitions concerning what it means to have a relationship between two services and
Section 4.5 uses these definitions to pinpoint what is lacking in the state of the art Kubernetes
orchestration tools. We propose “orcon”, a proof of concept orchestrator on top of Kubernetes that
manages relationships between services in section 4.6. We evaluate whether this approach is vi-
able by comparing the proof of concept with the Juju orchestrator and native Kubernetes tools in
Section 4.7. Finally, Section 4.9 concludes this paper and explains how future work will continue
this line of research.
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4.2 Related Work

Although cloud models are often presented as the solution to many operational challenges, their
creation requires considerable technical and architectural expertise [18]. However, some of this
expertise is already being captured in the form of cloud computing patterns. Fehling et al. [15]
propose away to describe the deployment in an abstractway using patterns, and to translate these
patterns into the actual deployment models, with the goal of significantly reducing the required
knowledge to create cloud models. Martino et al. use automated reasoning to map between
cloud agnostic and vendor dependent cloud patterns [29]. Unfortunately, these approaches are
not applicable to scenarios where full access to the underlying cloud infrastructure is required
because it is hidden by the abstractions of the structural models. This eliminates the possibility
of a multilevel approach where deployments can be modified using both higher-level and lower-
level concepts.

Container orchestration is another recent development aiming to solve operational challenges.
Topics such as resource scheduling, load balancing, fault tolerance and autoscaling are supported
inmost state-of-the art orchestrators [11]. However, higher-level abstractions, and specifically, the
concept of relationships and dependencies is much less widespread. As Burns et al. note, Google’s
decade of experience with container orchestration has shown that dependency management is
an important issue but the perceived complexity of dependency-aware systems has hampered
the adoption of such systems by mainstream container-management systems [9].

4.2.1 Cloud Models as an Abstraction

Cloud models have also been proposed as a way to decrease the complexity of managing complex
cloud applications by using it as a simpler abstract representation. This has had some success
in the area of big data processing, for example [1]. Bhattacharjee et al. continue on this line of
thinking and propose CloudCAMP [4] for domain-specific modelling so that cloud applications and
their dependencies can bemodeled without the need for domain expertise. The authors show that
providing a higher-level abstraction to model cloud applications indeed reduces the complexity
and enhances the ease of use. However, it requires pre-made building blocks to provide the higher-
level abstractions. TOSCA is a front-runner in the field of cloud modelling languages and is used in
many domains to simplify operations, however, because of its versatility and popularity, the risk
exists of proliferation of incompatible TOSCA dialects [2].

4.2.2 Mutating Cloud Models

Finding effective ways to mutate cloud models is important in order to enable customization and
day-2 operations such as maintenance and patching of applications managed with models. Man-
aging dependencies, configuring and re-configuring services all require changing and updating
cloud models. Palesandro et al. propose Mantus [32] as an aspect-oriented approach for modify-
ing TOSCAmodels. They introduce the TOSCAManipulation Language as an “XSLT for TOSCAmodels”,
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making it possible to model day-2 operations as changes to a cloud model. Some of the solutions
in this space come from the industry, with Kustomize [27] as a prominent example of a language to
modify Kubernetes models. Some tools such as Helm [20] go one step further by adding features
such as package management, lifecycle management and dependencies to Kubernetes models.
However, these are heavily criticized even within the Kubernetes community for conflating too
many concerns in one tool and solving none of the challenges particularly well [16].

4.2.3 Relationships in Models

In order to make it easier to modify and reuse cloud models, the majority of cloud modelling
languages supports creating topologies, where a cloud application is composed of a number of
self-contained entities connected by relationships [3]. This is particularly relevant in NFV environ-
ments. Chaining of heterogeneous functions is important to both NFV and IoT platforms, although
it is still an open research challenge in 2019 according to Vaquero et al. [42]. The Juju cloud
modelling language, for example, is being used to orchestrate 5G Virtual Network Function (VNF)
services [13]. These relationships are also useful for more data flow-based workloads [38][17].

An important advantage of topology-based cloud modelling languages comes from their ability
to reuse components by turning a monolithic cloud model into a set of loosely-connected inter-
changeable components [44][38][40]. This also supports enhanced collaboration between mul-
tiple parties, for example by function shipping [45] and can even support a “marketplace”-like
ecosystem with off-the-shelf components. Furthermore, these topologies can be used in order
to analyze application topologies, find common microservice architectural smells, and suggest
refactorings, as shown by Brogi et al. [8].

4.2.4 Smart city service orchestration

Service orchestration in smart cities is a complex multi-faceted issue. Sivrikaya et al. tackle cross-
domain service composition by proposing the ISCO framework [41], a multi-agent-based middle-
ware framework, which builds on top of the JIAC agent platform [21]. Not addressed by ISCO, how-
ever, is the issue of composition of existing polyglot services running in container orchestration
platforms such as Kubernetes. The bIoTope project aims to build an ecosystem to create ad hoc
and loosely coupled information flows in a smart cities context [24]. It introduces several building
blocks in order to enable standards-based open communication and proof of concept implemen-
tations of this framework as an alternative to the traditionally proprietary and vertically-oriented
ecosystems. The lower-level concerns of modeling, deployment and reconfiguration of container-
ized services based on compositions are not in the scope of the bIoTope project, however. The
SWITCH workbench [46] offers a solution for managing the entire life cycle of time-critical appli-
cations in general. Using TOSCA as a modeling language, it supports management of applications
consisting of complex topologies of microservices. Although it supports deploying applications to
Kubernetes, it hides the entire Kubernetes API behind the TOSCA abstractions, making it hard to
integrate with the wider Kubernetes ecosystem.
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Figure 4.1: High level overview of the Obelisk City of Things architecture. Obelisk provides uniform and secure
access to heterogeneous IoT data to multiple tenants with varying levels of cooperation. An in-house PaaS
allows tenants to add additional processing functionality close to the data.

4.3 The Use-Case

As explained in the introduction, the City of Things project [34] is a collaboration between industry,
academia and government with the goal of using IoT to make urban life more enjoyable and sus-
tainable. As with any smart cities project, this creates a complex environment spanning multiple
management domains that has to support multiple tenants with varying levels of collaboration
between them. At the core of this setup, shown in Figure 4.1, sits Obelisk [7][22]; a platform for
building scalable applications on IoT centric time series data. Obelisk is specifically built to support
the heterogeneous nature of smart cities. Heterogeneity in protocols and sensors is supported by
using a flexible REST interface and an integration layer capable of translating a wide variety of IoT
protocols. Smart cities also introduce a second form of heterogeneity however, namely in terms of
authorization, data access and data ownership. Since smart cities require collaboration between
multiple parties who are direct competitors to each other, there are very stringent requirements
on which data gets shared to which exact parties. Obelisk supports this using deeply integrated
multi-tenant isolation with granular access controls in the entire architecture. The Obelisk and
City of Things projects are explained in much more detail in previous work [7][34].

It became clear early in the project that there is a need for low-latency processing and trans-
formation of the data captured by Obelisk. For this reason, the solution includes a multi-tenant
Kubernetes-based Platform as a Service (PaaS) co-located with the Obelisk core. This allows cus-
tomers to run event-based containerized applications that ingest event-based data streams from
Obelisk using a Server-Sent Events (SSE) API, process them, and load them into either Obelisk or
external platforms. Model-based management of these applications and their connections is the
main focus of this paper. Figure 4.2 shows a simplified and zoomed-in view of the use-case where
a number of different applications running inside of the Kubernetes PaaS connect to the SSE server.
The core team develops and manages the Obelisk core, a number of different app teams develop
applications using Obelisk’s SSE API, and the platform teammanages the Kubernetes clusterwhere
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Figure 4.2: Different parts of the application run in different administrative domains, shown in the figure
using dashed lines. Each third party team is a different tenant on the Kubernetes cluster. The platform team
manages the cluster and its connection to external infrastructure. The core team manages an external SSE
server.

the applications run. None of these parties has full knowledge and access to all the parts of the
entire end-to-end application.

Automated model-based deployment and management of the applications is key here for a few
reasons. First of all, it allows app teams to get started with the data as soon as possible and in
an independent manner. Secondly, if the automation system propagates changes without human
interaction, then all teams have the freedom to modify and iterate on their part of the software
without coordination with other teams. Finally, because of the complexity of interconnections
between different components, model-based management is key for its ability to retain a global
view of the complete topology. This requirement is partly fulfilled by Kubernetes itself. It falls
short, however, in modeling and managing the relationships between individual components. For
example, it is not possible for Kubernetes to define that one service has a relationship to another,
automatically configure the services depending on that relationship, and reconfigure the services
when the service on the other end of the relationship changes. Moreover, the heterogeneity of
stakeholders in a smart cities context adds additional challenges to service orchestration. First
of all, it is very hard to standardize on a single methodology and toolset to deploy and manage
applications. Although each application has components running in Kubernetes, these are often
deployed and managed differently, depending on the stakeholder. Secondly, it is not possible to
have a single stakeholder deploy and manage the entire end-to-end application as a single model
because each application crosses multiple management domains.

Due to the technically challenging nature of this project, developers often use advanced features
of Kubernetes in order to fine-tune how the applications are managed, scaled and upgraded. This
includes integration with many tools in the Kubernetes ecosystem such as service meshes, custom
resources and operators. Many of these tools either extend the Kubernetes API with new function-
ality or use the Kubernetes API tomanage and update the applicationmodels. As such, using these
tools requires direct access to the Kubernetes API and the model of the application. It is thus vital
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that any solution does not impede the developer’s access to the API so they can continue bene-
fiting from the wider Kubernetes ecosystem. Similarly, the solution itself should also integrate
into Kubernetes itself in such a way that existing management tools and workflows seamlessly
integrate, showing the need for a Kubernetes-native solution.

4.4 Concepts of a service relationship

This section provides a definition and an extensive explanation of a service relationship and re-
lated concepts. The purpose of this is two-fold. Firstly, this explanation is used throughout this
research to evaluate the state of the art. Secondly, this chapter forms a blueprint for how to fully
support service relationships in orchestration systems, answering RQ 3.1. The section starts with
the definition and proceeds to explain each part of the definition in detail. The terms in bold are
used further in this work to refer back to specific parts of the definition.

Definition 4.1. A service relationship is an explicit typed connection between isolated and inde-
pendent service models that enables exchange of configuration information, synchronization of
lifecycles and runtime communication.

In the most simple sense, a relationship means that two services are connected with each other.
This connection can have up to three distinct components.

1. The communication component refers to the interaction of the services at run-time. Ex-
ample: The SSE client communicates with the server using the HTTP SSE protocol.

2. The lifecycle component refers to how the lifecycles of related services are dependent on
each other. Example: The SSE client can only start after the SSE server has started.

3. The configuration component refers to how the configuration of one service uses infor-
mation from another service. Example: the SSE client app is configured with the URL of
the SSE server.

Each relationship has one or more of these components. The relationship between a web service
using an SSL certificate and the certificate authority (CA), for example, has a lifecycle and a con-
figuration component: the web service can only start after the CA is available and the web service
is configured to use a certificate signed by the CA. This relationship does not have a communica-
tion component, however, since there is no communication between the webserver and the CA at
runtime.

Relationships are explicit in the sense that they are defined in the model, rather than inferred
from service configuration or runtime behavior. This important property makes sure operators
have a clear viewon the topology of their application, and automation tools have a straightforward
way to reason about it.

Definition 4.2. An interface is the directional type of a service relationship, describing the sup-
ported exchange of information and coordination between services.
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The interface specifies which components a relationship has and what each component entails. It
defines the following.

• How the lifecycles of the two services are connected.

• The protocol used for runtime communication between the services.

• What configuration information is shared between the services.

• How configuration information is presented to each service.

An interface is directional in the sense that the service on each end of a relationship acts differ-
ently. As a result of this, an interface can be broken down into two sides: one for each service.

The type of a relationship is defined in an interface: it specifies which components a relationship
has and what each component entails. It defines the following.

Definition 4.3. A role is the part of an interface describing the supported relationship behavior
of a single service.

Two roles exist in each relationship: the provider and the consumer. One service provides the
interface while the other service consumes it. A relationship is only possible between a service
that supports the provides role and one that supports the consumes role of the same interface.

Relationships are created between isolated services in the sense thatmodel and state are service-
scoped. By default, information in the service scope is not available to other services and cannot
be referenced in their models. Information can only be made available to related services by
including it in a role. This behavior ensures all service relationships are explicit and completely
described by the interface.

Furthermore, each related service is independent, meaning each servicemodel can bemanaged as
an independent entity, by an independent entity. This makes it possible for service relationships to
cross administrative boundaries forming the basis for collaboration between independent parties.

4.5 Relationship Support in Kubernetes

This section evaluates the current support for relationships in Kubernetes based on the definitions
of the previous section. Table 4.1 shows a summary of this evaluation, presenting the answer to
RQ 3.2.

4.5.1 Native Kubernetes

In Kubernetes, the desired state of a cloud application is modeled using object specs. Although it
is possible for two services to communicate with each other, these connections are not explicit in
the object specs. The object spec specifies a unique name for each service. All containers in the
same namespace as the service can use this name to establish runtime communication. In order to
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K8s Helm Service Mesh Juju
Relationship Support
Explicit × ✓ × ✓
Typed × × × ✓
Isolated × × × ✓
Independent × × × ✓
Communication comp. ✓ ✓ ✓ ✓
Lifecycle comp. × × × ✓
Configuration comp. × ✓ × ✓
Kubernetes Nativity
K8s API access ✓ ✓ ✓ ×
Part of K8s API ✓ × ✓ ×

Table 4.1: Comparison of relationship support in Kubernetes solutions. Although TOSCA-based solutions like
Juju provide the full functionality of service relationships, they fall short in allowing users access to the full
functionality of Kubernetes.

know which services will actually establish this communication, an operator would have to trace
network traffic and/or inspect the code and declarations of every single service to see which ones
initiate communication, as proposed by Muntoni et al. [31]. Although this functionality enables
the communication component of a relationship, it does not support a lifecycle component nor a
configuration component. Moreover, relationships are not explicit in the model and there is no
notion of interfaces or relationship scope.

4.5.2 Helm

Helm is a package manager for Kubernetes. The desired state of an application is modeled in a
Helm chart; a combination of templated Kubernetes object specs. Helm provides tools to fill in
these templates, deploy the resulting objects andmanage their lifecycle. Because these templates
are based on Kubernetes object specs, Helm users can take full advantage of the Kubernetes API.
Despite that, Helm itself is not part of the Kubernetes API. As a result, tools built to manage
Kubernetes applications cannot take advantage of Helm.

Helm makes it possible for a chart to explicitly define its dependencies by specifying subcharts.
As the name implies, this is an inherently hierarchical relationship requiring the subchart to be
deployed as part of its parent, breaking the independence requirement stated in the previous
chapter. As a result, this approach requires an operator who has complete authority over the
entire model spanning all connected services. This does not allow creating services that span
administrative boundaries as explained in Section 4.3.

Even though relationships in Helm are explicit, they are not typed. Although the model explicitly
stateswhich services are connected, it does not specify how they are connected. An operator needs
to “reverse-engineer” this information by inspecting the template and checking whether services
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are configured to communicate with each other, and inspecting the services themselves to see
if they have a hard-coded connection to another service. Furthermore, Helm dependencies only
provide one-directional isolation: a parent chart can override any values of the subchart while
a subchart has no access to the parent chart. Lastly, these dependencies do not influence the
lifecycles of the services. When Helm deploys a service, it does not wait until the dependencies of
that service are running.

4.5.3 Service Meshes

A service mesh is a relatively new concept that seeks to improve communication between services
by providing observability, increased security and failure recovery for requests between services.
Istio [23], for example, implements a service mesh to connect containers running in Kubernetes.
Conceptually speaking, service meshes aim to solve problems of the communication component
of relationships, but they themselves cannot cover other aspects of a relationship between ser-
vices because they provide no way to influence the lifecycle of connected services nor can they
change the configuration of different services. Although service meshes can be useful to discover
the topology of a microservice application, they infer this from the runtime behavior of services,
instead of any explicit relationship definition. Furthermore, it is up to the administrator to make
sure that connected services are actually compatible since service meshes do not have a way to
declare and check the type of relationships.

A number of distributed tracing and observability solutions, such as Dynatrace [14], exist for Ku-
bernetes. Much like service meshes, these applications make it possible to intelligently infer de-
pendencies from the runtime behavior of microservice applications and present this dependency
information to users as a topology model. Much like service meshes, however, these also suffer
from the same issues: they provide no way to manage the lifecycle and configuration of services
based on a topology model. In a sense, it’s the reverse of our goal: instead of changing run-time
behavior to conform with a model, it creates a model based on run-time behavior.

Another, more practical issue specific to service meshes is that these are often implemented us-
ing sidecar proxies. These add latency and increase the resulting complexity of a deployment.
Moreover, these proxies often only support a limited number of communication protocols.

Although service meshes and distributed tracing solutions are a useful development, they do not
provide any additional features over Kubernetes in terms of service relationships as defined in
Section 4.4. For this reason, we see them as complementary to service relationships. Thus, the re-
mainder of this research does not regard these as an alternative solutions but evaluates whether
different solutions can integrate with them by determining whether the model allows direct ac-
cess to the Kubernetes API.
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4.5.4 TOSCA-related solutions

A number of different initiatives are working towards TOSCA-based solutions to manage appli-
cations running on top of Kubernetes. Projects with an industry background such as Juju and
Cloudify provide full-featured orchestrators with Kubernetes support. This integration also has
considerable interest from academia with a number of recent publications such as Chareonsuk
et al., proposing a TOSCA to Kubernetes translator [12], Bogo et al. introducing a toolchain for de-
ploying multicomponent applications using TOSCA [5], and Borisova et al. examining how to adapt
TOSCA for Kubernetes deployment [6].

Because of TOSCA’s exhaustive support for relationships, all these tools support explicit and typed
modelling of communication[30], lifecycle [39] and configuration components of a service rela-
tionship. Moreover, individual components in TOSCA are isolated and a number of TOSCA imple-
mentations, such as Juju, support creating relationships between completely independentmodels.
As a result, it is possible in Juju to create relationships crossing administrative boundaries, as re-
quired by the use-case explained in Section 4.3. Even thoughmost of these TOSCA-based solutions
have complete support for service relationships as defined in Section 4.4, there are two issues that
make them unsuitable for our use-case. The first one is that it is often an all-or-nothing approach:
taking full advantage of this relationship functionality is only possible if the entire application is
modeled using the TOSCA-based platform. But this is not always feasible, as our use-case shows:
many collaborators use their own tools andmethodologies tomanage their infrastructure and are
hesitant to change. The second issue is that TOSCA adds an additional abstraction on top of Ku-
bernetes, which hides Kubernetes itself. Such abstractions, when done well, can simplify complex
platforms but they have the downside that they often do not support all the features of Kuber-
netes itself and that they make it hard to reuse existing Kubernetes tools and expertise. Next
to this, it also makes migrating to the new abstraction more difficult because there is no a clear
migration path available and it is difficult to gradually transition to the new abstraction. For the
remainder of this paper, we will use Juju as a representative TOSCA-based solution.

4.6 Implementation

This section presents the open source orcon orchestrator [37] developed as part of this research.
Themotivation behind the development is three-fold. First of all, this implementation allows us to
check the validity of the concepts and definition of service relationships presented in Section 4.4
and determine whether these are a sufficient answer to RQ 3.1. Secondly, this implementation
shows how to extend an existing platform to support service relationships without hiding the
underlying platform API, answering RQ 3.3. Finally, this implementation is used to answer RQ 3.4
by evaluating its performance in Section 4.7.

The orcon orchestrator injects the concepts of relationships, interfaces and roles into the Kuber-
netes API. By using injection, orcon avoids creating an additional layer of indirection and enables
users to keep working with the same tools and techniques they are used to.
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Kubernetes works based on the desired state principle: users declaratively describe the desired
state of the system by adding and changing object specs in the Kubernetes API server. Kubernetes
services then take appropriate action to get the system into that state and reflect the current state
in the object status. The object status thus describeswhat is actually set up in the cluster in order to
meet the needs described in the object spec. Orcon allows users to describe desired relationships
between objects by adding additional information to the object specs. Two orcon services monitor
the API server for these descriptions and take the appropriate actions to establish the desired
relationships. Since modifying object specs is already supported by means of the Kubernetes API,
all Kubernetes tools that support this API automatically support orcon too.

The next subsection explains how the conceptual model of a relationship from Section 4.4 is im-
plemented in the existing Kubernetes API in order to allow users to describe desired relationships
between objects. The remaining subsections explain how the orcon services extend the Kuber-
netes control plane in order to establish those relationships.

4.6.1 Representing relationships, interfaces and roles in Kubernetes objects

Orcon adds a number of extensions to the schema of Kubernetes object specs that are directly
mapped to the conceptual model of a relationship detailed in Section 4.4. For these extensions,
orcon uses Annotations, which allow adding arbitrary complexmetadata to any object, and Custom
Resources, which allows adding new types of objects to the Kubernetes API.

The roles and interfaces supported by an object are described using the orcon.dev/provides and
orcon.dev/consumes annotations. Each annotation contains a comma-separated list of interface
names ofwhich the object supports that specific role. These annotations are used by orcon in order
to type-check relationships and in order to figure out the interface of a relationship between two
objects.

The relationships themselves are described by adding the annotation orcon.dev/relationship to
the consumer end of a relationship. It supports a comma-separated list of object names so that
a single object can have multiple relationships. Each object name in this list specifies the request
for an individual relationship between the object in question and the named object. Note that in
the Kubernetes model of “desired state”, these annotations denote the desire for a relationship
between two objects, not necessarily an established relationship. Establishing a relationship is
only possible if the specifying object supports the consumer role of an interface that the named
object provides.

These three annotations are enough to describe the intent for a basic relationship between a Ku-
bernetes Deployment and a Kubernetes Service. Below is an example of a Deployment consuming
the sse and mysql interface, which has a relationship to an object named sse-endpoint and an
object named mysql-db.
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kind: Deployment
metadata:

name: sleep
annotations:

orcon.example/consumes: sse,mysql
orcon.example/relations: sse-endpoint,mysql-db

spec:
...

In such a basic relationship, the interface is inferred implicitly based on the default orcon rela-
tionship template and the name of the interface. The default interface template is as follows.

• The lifecycles of the two objects are connected in such a way that the Deployment starts
after the service becomes available.

• Orcon assumes both objects use the same protocol for communication.

• The providing Service shares its URL.

• The service URL is presented to the consuming Deployment as an environment variable
with the same name as the interface itself.

Since such an interface is very limited in its usefulness and provides only rudimentary type-checking,
orcon allows users to explicitly define interfaces by specifying both roles of an interface using two
custom resources: ProviderConfig and ConsumerConfig.

The ProviderConfig explains how to enact the provider role of an interface. It defineswhich values
should be extracted from the providing object. The valueLocations map in a ProviderConfig object
describes for each relationship key, where to extract the associated value from. These values can
come from the object spec, from the object state, a Secret or a ConfigMap.

Below is an example of a ProviderConfig mapping three relationship keys to a field in the object
spec and two secrets.

apiVersion: relations.orcon.example/v1alpha1
kind: ProviderConfig
metadata:

name: mysql-config
config:

valueLocations:
url:

type: /v1/services
name: mysql-service
path: spec.externalName

username:
type: secret
name: mysql-secret

password:
type: secret
name: mysql-secret

Important to note here is that, using this method, a providing service does not actually have to
run inside of the Kubernetes cluster itself. The only requirements is that a representation of the
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service is present in the API server in the form of an object. The above example uses the external-
Name functionality of Kubernetes Service objects, which allows representing external services in
Kubernetes objects.

The ConsumerConfig explains how to enact the consumer role of the relationship. It defines how
the relationship values should be injected into the consuming object and what kind of lifecycle
dependency the consuming object has on the providing object.

• The lifecycledep key describes the lifecycle dependency between the provider and the con-
sumer of a relationship. At the moment, the only supported lifecycle dependency is start,
denoting that the consuming service needs to start after the providing service. This field
also accepts the string none, denoting there is no lifecycle dependency.

• The keyconfig map describes for each relationship key, how to inject this key into the con-
suming object using injectionMethod. Orcon currently supports injecting relationship val-
ues using environment variables and mounted volumes.

Below is an example of a ConsumerConfig mapping three relationship keys to two environment
variables and a volume. It also describes that the object should only start after the related object
has started.

apiVersion: relations.orcon.example/v1alpha1
kind: ConsumerConfig
metadata:

name: mysql-consumer-config
config:

lifecycledep: start
keyConfig:

url:
targetKeyName: mysqlurl
injectionMethod: env

username:
targetKeyName: mysqlusername
injectionMethod: env

password:
targetKeyName: pwd
injectionMethod: volume
mountPath: /etc/mysql

Finally, objects specify which configuration they use for a certain interface with the optional or-
con.dev/config annotation.

4.6.2 Injecting relation data

Figure 4.3 shows the architecture of the orcon services responsible for taking the appropriate
actions to establish and manage relationships. The extraction and injection of relation data is
managed by the Relations Controller. This service implements the Kubernetes Controller pat-
tern [19][25] in order to plug into the Kubernetes management plane. Controllers are Docker
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Figure 4.3: Architectural overview of orcon. The Relations Mutating Webhook injects lifecycle dependencies
before the objects are persisted in the API server. The Relations Controllermodifies Deployments and Services
in order to establish and update requested relationships.

containers running inside of the Kubernetes cluster that use the Kubernetes API to observe and
modify resources.

The relations controller consists of three parts: A Deployment Watcher, a Service Watcher and a
Relations Cache. The Relations Cache maps the names of providing objects to objects that request
a relationship to them. The sequence diagram in Figure 4.4 shows that the Deployment Watcher
updates the Relations Cache every time a Deployment gets added. The Relations Cache is then
used by the Service Watcher to figure out which Deployments to update when a Service changes.
The ProviderConfig and ConsumerConfig are used to determine which specific actions to take and
how to update related objects. These watchers perform very similar functionality when Deploy-
ments and Services change after creation.

4.6.3 Injecting lifecycle dependencies

The orcon Relations Mutating Webhook is responsible for injecting lifecycle dependencies into
Deployments as shown in Figure 4.3. This service implements the Mutating Admission Controller
pattern [19][33] in order to have the ability to change Deployments before they are persisted
in the API server. Thus, the lifecycle dependencies are injected before the Kubernetes services
responsible for deploying Pods can view them. This avoids a race condition where Kubernetes
deploys Pods before the lifecycle dependencies are injected.

The lifecycle dependencies themselves take the form of Kubernetes init containers that wait until
they receive a signal that the dependent object has started. Since the main container of a Pod will
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Figure 4.4: The Relations Mutating Webhook injects lifecycle dependencies before the objects are persisted in
the API server. The Relations Controller modifies Deployments and Services in order to establish and update
requested relationships.
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only run after all init containers have exited, adding such an init container effectively halts the
execution of the main container until the lifecycle dependency is met. This way, orcon makes sure
that all objects start in the correct order.

Figure 4.4 shows the sequence of the orcon admission controller when a new Deployment is cre-
ated. The controller checks if the Deployment consumes an interface. If so, the controller injects
the orcon Init Container into the pod template of the Deployment and configures it according to
the requirements of the interface. As a result, the application containers of that Deployment will
only start after the relation information is added by the relations controller. Important to note
here is that the relations controller will only spring into action when a valid relationship is re-
quested and is possible between two objects. The admission controller, however, will inject the
lifecycle dependencies immediately, even if the requested relationship is not possible. This en-
sures that, in the event the providing object is not yet present in the API server, the consuming
object will not start. If an object has a lifecycle dependency on another object, it should not start
if that other object is not present.

Although it is technically possible for the Admission Controller to inject relationship data, orcon
avoids it to reduce latency because Admission Controllers block the acceptance of an object until
they are finished. Regular controllers, on the other hand, work concurrently with other operations
on those objects thanks to Kubernetes’ optimistic concurrency control [9][35].

4.6.4 Optimization

As explained in Section 4.6.1, orcon heavily uses Kubernetes object annotations to store metadata.
Since annotation contents are not indexed by the Kubernetes API, it is not possible to select objects
based on them. In order to find all objects which consume a certain relationship, orcon needs to
request all objects having any relationship and manually search through the annotations itself.

The first step in reducing the overhead of this process is to cache information of related objects
locally in the controller so the Kubernetes API does not have to be contacted in order to retrieve
information. For this, orcon uses the SharedIndexInformer of the Kubernetes controller SDK. By
accessing this eventually-consistent cache directly, orcon avoids expensive calls to the Kubernetes
API. Since the Kubernetes API itself is also an eventually-consistent system, orcon natively supports
this paradigm without modifications.

The second step in reducing the overhead of object annotations is the RelationsCache. This orcon-
specific data structuremaps the names of providing objects to cached versions of all objects which
consume a relationshipwith them. This way, when a providing object is updated, finding all objects
to whom the change needs to be propagated is an O(1) operation which happens in the controller
itself without contacting the Kubernetes API. Every time a relationship changes, orcon updates the
RelationsCache to reflect those changes.

The controller itself currently does not support any parallelism. All updates to Kubernetes objects
are processed sequentially, one by one.
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Figure 4.5: Overview of the conceptual topology of the evaluated use-case and the resulting topologies of
its implementation using each evaluated solution. The dotted graphics show the components needed to add
an additional consumer.

4.7 Evaluation

This evaluation compares the performance of the orcon orchestrator presented in the previous
section to regular Kubernetes and to Juju on Kubernetes, in order to answer RQ 3.4.

The leftmost part of Figure 4.5 shows the evaluated conceptual topology. This test case is based
on the use-case described in Section 4.3: a number of separate app teams each provide a single
application that runs on the Kubernetes cluster managed by the platform team and connects to a
single eternal SSE server managed by the core team. The gray and dotted parts of Figure 4.5 show
which components are added with each additional app team.

The sse relationship in this topology has the following components:

• Communication: The SSE client connects to the SSE server to receive and process events.

• Lifecycle: The SSE client can only start after the SSE server has started.

• Configuration: The SSE client receives the DNS name of the SSE server.

Although orcon supports much more complex relationships and topologies, this evaluated use-
case is intentionally simplified for clarity purposes.

4.7.1 Setup

All performance benchmarks are executed on a vanilla Kubernetes cluster from the Charmed Dis-
tribution of Kubernetes (CDK) version 1.14.1 [10] connected to a Ceph cluster for persistent storage.
All software is deployed in virtual machines on a VMWare ESXI cluster [43] and managed by Juju
2.5.4 [28]. Each solution is tested with an increasing number of consumers, from 5 to 55 with an
increment of 5. Each combination is tested 20 times. The graphs show all measurements as in-
dividual dots and crosses. The full source code for the different implementations, the evaluation
and the full specification of the test cluster is available on GitHub [36].
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4.7.2 Evaluated Solutions

These evaluations compare four different solutions to the use-case described in Section 4.3.

1. The “orcon” solution deploys the consumers as described in Section 4.6.

2. The “pure k8s” solution deploys the consumer containers by submitting adeployment.yaml
using the kubectl command-line client. The URL is specified using a ConfigMap. The URL
is updated by submitting a new deployment.yaml file with the updated URL.

3. The “Helm” solution deploys the same setup as the “pure k8s” solution but the Deployment
is templated so that the number of consumers and the URL are specified using Values.

4. The “Juju” solution deploys the consumers using Kubernetes Charms. Each Consumer is a
k8s charm that deploys the consumer container and the SSE service is represented by a
proxy charm that contains the URL to the SSE service. This URL is transferred to the con-
sumer charms using a Juju relationship. The URL is updated by changing the configuration
of the SSE service charm, which then sends the updated URL to all the consumer charms,
which in their turn update the PodSpec.

Figure 4.5 shows the evaluated conceptual topology and the resulting implementation in each
solution. The specific models and implementations of each solution are available on GitHub [36].

Note: even though Juju is used to manage the Kubernetes cluster itself, only the “Juju” solution
uses Juju for the deployment of the consumers. The other solutions simply deploy on top of the
Juju-managed Kubernetes clusters.

4.7.3 Functional Evaluation

With the goal of comparing the functionality of orcon to the state of the art, we used BPMN 2.0
choreography diagrams to model the interactions required to deploy and update the aforemen-
tioned setups. For clarity purposes, interactions where at least one party is a person have a solid
border, interactions where both parties are people have an icon in the description, and interactions
solely between software systems have a dashed border. We will mainly focus this evaluation on
interactions involving humans since those have a significant penalty in terms of latency and po-
tential for mistakes. The performance of the machine-to-machine interactions are benchmarked
in Section 4.7.4.

Figure 4.6 shows the processes required to create a new app in each solution. These processes
assume the appropriate actions have already been taken to add the SSE server to the setup. Helm
has the significant downside that it requires the platform team to submit the application on behalf
of the app team. Due to Helm’s lack of independence in relationships, the entire setup, including
the service and existing applications from other teams, needs to be managed as a single entity
and only the platform team has the permissions to do this.

Juju has the downside that the app team cannot interact with Kubernetes directly, Juju serves as
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Figure 4.6: Like any TOSCA-based solution, Juju has the downside that users cannot interact with Kubernetes
directly, Juju serves as an intermediary.
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Figure 4.7: The Helm setup requires the platform team to change an App because it manages the entire setup
as a single entity.

an intermediary. This shows the advantage of the more integrated approach of orcon: it adds ad-
ditional abstractions without an additional abstraction layer. Although the Juju solution requires
three manual interactions instead of two, this is simply due to Juju’s mandatory security concern-
ing relationships that cross management domains. This difference would not exist if all solutions
provided the same level of security.

Figure 4.7 shows the processes required to update an existing app. Here too, Helm suffers from
its lack of independence: the app team needs to ask the platform team to update the app on their
behalf. Not only does this prevent the app team from interacting with Kubernetes directly, it adds
an additional manual step in the process. Juju also has the same downside that its additional
abstraction layer prevents the app team from interacting with Kubernetes directly.

Figure 4.8 shows the role relationships can play in automated response to changes. In orcon and
Juju, only the core team has to perform a manual interaction to update the service. The system
then automatically propagates changes to the related Deployments. While Helm dependencies
could offer a similar function, it still requires an additional manual action because only the plat-
form team has the permissions required to use it. Juju still has the same downside that the Kuber-
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Figure 4.8: With the orcon and Juju setup, the relationship causes the service change to propagate automat-
ically to connected apps without human interaction. The yellow interactions in these diagrams are bench-
marked in the performance evaluation.

netes API is hidden from the users. The Pure Kubernetes setup requires the most manual actions
due to having no automated way to propagate changes.

4.7.4 Performance Evaluation

With the goal of investigating the overhead of orcon, we benchmarked the time it takes, after a
service is updated, to propagate that change to all Deployments. Note, however, that this bench-
mark does not take into account steps that require human-to-human interaction, so for the “helm”
and “pure k8s” solutions not all steps required to update a service are benchmarked. The steps
included in this benchmark are highlighted in yellow in Figure 4.8.

The orcon solution proposed in this paper propagates the URL change substantially quicker than
Juju. As Figure 4.9 shows, orcon propagates the change to 55 consumers in 48 seconds on average,
while Juju requires 146 seconds. The “Juju agents” plot in this graph shows how long it takes
for the Juju agents to become ready to process a new change. There is a period of 100 seconds
between when Juju updates 55 consumers and when the agents are ready to accept new changes.
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Figure 4.9: The orcon orchestrator proposed in this paper is significantly faster than Juju in propagating
the new URL of the SSE server to the SSE consumers. Moreover, after all consumers are updated, orcon is
immediately ready to accept new changes while Juju requires a cooldown period during which it cannot
propagate URL changes.

This is because, for stateless services, the Juju management agent lifecycle is connected to the
pod lifecycle. This means that each time a management agent updates a pod, both the pod and
the management agent itself shut down and are replaced. As a result, there is a long period
after the consumers are updated where the new Juju agent cannot accept new changes because
it is initializing. The pure k8s and orcon solutions do not have such a cooldown period: these
immediately accept new changes after updating the consumers.

Figure 4.10 dives deeper into the difference between our orcon approach, Helm and pure k8s.
Since the pure k8s and Helm solutions do not have lifecycle management, the graph also includes
a plot of change propagation duration of orcon without lifecycle management labelled “orcon
without initc”. This shows that for 55 consumers, the average additional overhead of lifecycle
management using init containers is nine seconds. Although it appears from this graph that the
Helm and “pure k8s” solutions are significantly faster than orcon, this does not take into account
the manual steps that require human-to-human interactions. These interactions are error-prone
and introduce a highly-variable latency that can easily exceed the less than thirty seconds delay
between orcon and the state of the art.

Figure 4.10 also shows that Helm, on average, performs slightly better than the “pure k8s” solu-
tion. There are a number of possible explanation for this behavior. The “pure k8s” solution uses
a simple method to resubmit the entire application, including all the components that did not
change, directly to the Kubernetes API. Helm, on the other hand, has intimate knowledge about
what exactly changed due to the use of Helm Values. This might cause helm to interact with the
Kubernetes API in a smarter way so as to only change the objects that are actually changed. This
behavior was not investigated further because themain focus on this paper is on the performance
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Figure 4.10: The init container used by orcon for lifecycle management, adds on average an additional 9
seconds to the time for a URL change in the SSE server to be propagated to all consumers.

of orcon compared to the state of the art. Performance between the different state of the art so-
lutions themselves is of less significance to this research.

4.7.5 Summary

Table 4.2 shows a summarized comparison of orcon with the state of the art. For every process,
orcon and Juju have the lowest number of human-to-human interactions required. Although Helm
succeeds in reducing the number of human-to-human interactions needed to update a service, it
still requires one such interaction because of Helm’s monolithic approach to dependencies.

Orcon has an order of magnitude less overhead compared to Juju. Although orcon appears to have
a slight overhead of less than half a second per pod compared to Helm, this is negated by the
previously shown fact that helm still requires a human-to-human interaction for this process.

Although Juju makes dependencies explicit and allows the app team to update their service in-
dependently of other teams, it adds an additional abstraction layer that makes it impossible to
use the full power of the Kubernetes API. Because Juju and Helm objects are not modeled in the
Kubernetes API server itself, it is not possible to use other Kubernetes tools to create and manage
these objects. Orcon, on the other hand, allows users to directly access the Kubernetes API server
and is completely implemented inside of it. The power of this last feature is shown by the fact
that other Kubernetes tools, including Helm, can be used to interact with orcon. Orcon is thus not
strictly a competitor to Helm, since orcon can be used to enrich a Helm-based approach with true
relationship-based dependencies.
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Solution orcon K8s Helm Juju
Workflow: number of manual interactions
New app 1 1 1 1
Update app 0 0 1 0
Update Service 0 2 1 0
Performance: overhead compared to K8s (s/pod)
Change propagation 0.44 / 0 4.4
Kubernetes Nativity
K8s API access ✓ ✓ ✓ ×
Part of K8s API ✓ ✓ × ×
Relationship support
Explicit ✓ × ✓ ✓
Typed ✓ × × ✓
Isolated ✓ × × ✓
Independent ✓ × × ✓
Communication comp. ✓ ✓ ✓ ✓
Lifecycle comp. ✓ × × ✓
Configuration comp. ✓ × ✓ ✓

Table 4.2: The evaluation shows orcon provides all the benefits of service relationships on Kubernetes while
completely integrating into the Kubernetes ecosystem and providing much better performance than Juju.

4.8 Discussion

RQ 3.1 asks “On an abstract level, what concepts enable modeling and automated management of
dependencies between services”

These concepts are laid out in Section 4.4, starting with the definition of service relationships:
“An explicit typed connection between isolated and independent service models that enables ex-
change of configuration information, synchronization of lifecycles and runtime communication”.
Furthermore, the concepts “interface” and “role” described in that section are required to model
the full extent of both active and possible dependencies between services in a way that both hu-
mans andmachines can easily understand and reasonwith them. By implementing these concepts
in orcon and evaluating its functionality, we show these concepts indeedmake it possible tomodel
a service relationship and take full advantage of its benefits.

RQ 3.2 asks “To what extend does the state of the art support modeling and automated manage-
ment of such dependencies in Kubernetes?”

Using the concepts of the previous answer, we evaluated the state of the art in Section 4.5 and
came to the conclusion that, although TOSCA-based solutions offer full support for service rela-
tionships on Kubernetes, they fail to allow users access to the underlying orchestrator.

RQ 3.3 asks “How can existing platforms be extended in order to support service relationships
without hiding the underlying API of the platform to users and without adding extra components
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in the data path?”

Section 4.6 implements orcon shows how to use the introduced concepts for implementing service
relationship support while maintaining user access to the underlying orchestrator. The orchestra-
tor does this by injecting additional abstractions into the Kubernetes API, instead of wrapping it.
As a result, orcon users can still take full advantage of the Kubernetes API, and existing Kubernetes
ecosystem tools can be used to drive orcon. The orcon framework actively resolves dependencies
between services and automatically propagates changes in them. The evaluation in Section 4.7
includes a confirmation of this functionality and its advantages for developer workflows.

RQ 3.4 asks “What is the orchestration overhead introduced by adding support for such relation-
ships”

Section 4.7 shows that, although adding these concepts adds a slight orchestration overhead of
0.44 seconds per consumer compared to manual configuration, it removes the need for man-
ual human-to-human interactions, ultimately reducing the total time needed to update services.
Moreover, the overhead of orcon is an ten times smaller than that of Juju. This evaluation also
show that resolving lifecycle dependencies at the container orchestration level also adds addi-
tional overhead. It is thus advised to modify the services to resolve their own lifecycle dependen-
cies at runtime. This has the added benefit that it makes the services more resilient to dependen-
cies breaking after the initial deployment.

Although Juju hasmuchmore overhead compared to orcon, it is important to note itsmuch broader
feature-set. Juju supports automatic cross-cluster relationships, allows extensive modeling and
management of services in and beyond Kubernetes and is network and storage-aware. In cases
where orcon’s deep integration within the Kubernetes ecosystem is not needed and standardiza-
tion on a single management tool is possible, Juju can be considered a powerful alternative to add
relationship support to Kubernetes. Interesting to note is that, according to our evaluation, about
half of the overhead of Juju is caused by a single design decision, namely replacing management
agents when the pods they manage restart. This suggests the performance differences between
Juju and orcon might not be inherent to Juju’s expanded feature-set.

4.9 Conclusion

This research proposes orcon, an orchestrator that adds native support of relationships to Kuber-
netes. It is the first orchestrator that does so without hiding the underlying API and integrating
in a way that supports the existing ecosystem of kubernetes tools. Our evaluation shows orcon
propagates change at an average of 0.44 seconds per service, an order of magnitude faster than
the state of the art.

An interesting future research opportunity is to investigate the overhead difference between orcon
and Helm to shed light on possible optimization routes. Another interesting route to explore is to
save historical relationship data in order to support easy rollback to previous configurations. This
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is not possible in the current version of orcon as relationship updates are destructive in the sense
that they overwrite previous values. A third opportunity lies in support for Federated Kubernetes
clusters. Although the current implementation technically allows creating a relationship to a ser-
vice in another Kubernetes cluster using the externalName functionality explained in Section 4.6,
this still requires manual modification of representative Service objects. An improvement in this
area would allow completely automated management of application topologies spanning multi-
ple Kubernetes clusters, opening the door for full topology-based management from the cloud to
the edge. Finally, orcon currently only supports relationships between equal peers. Investigating
support for hierarchical relationships is an interesting path forward as it could enable the creation
of higher-level abstractions inside of the Kubernetes API.
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5
Joint Management of Serverless Stream

Processing Pipelines Crossing Organizational
Boundaries

This chapter answers the research question “How can multiple independent parties collabora-
tively create serverless streaming pipelines?”. Serverless pipelines are a unique challenge for
service orchestration because the platform is expected to provide both control-plane and data-
plane functionality. This is in contrast to orcon, for example, which resides purely in the control
plane. Although orcon can configure communication channels, it does not handle the actual com-
munication itself. In serverless platforms, however, the complexity of communication between
workloads is moved into the platform. This chapter presents “Plumber” to address this challenge.
It is a framework for building and running serverless stream processing pipelines that cross or-
ganizational borders. It has a specific focus on enabling collaborative creation of such pipelines,
a focus that is lacking in current state of the art. It goes beyond that focus, however, to deliver a
user-friendly UI and advanced features such as atomic upgrades, automatic scaling and seamless
roll-back to previous versions. Like the orcon solution from Chapter 4, it is also a Kubernetes-
native framework ensuring high compatibility with the existing ecosystem.

⋆ ⋆ ⋆
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Abstract Collaboration across organizational boundaries, whether it is between teams, organiza-
tions or companies, is becoming increasingly important. Both industry 4.0 and smart cities require
collaboration and sharing of data to succeed. As a result, Gartner predicts that by 2023, orga-
nizations which have the technology and processes to enable interenterprise data sharing will
outperform those that do not. The current state of the art in stream processing platforms, how-
ever, does not offer cohesive facilities for such collaboration. Existing technologies lack methods
for collaboratively modelling and building data processing topologies and lack hands-off change
management techniques.

This research proposes a method to allow for asynchronous collaboration in both the modelling
and changemanagement of serverless stream processing topologies. The introduced concepts are
illustrated through the development of Plumber: an open source Kubernetes native framework
that allows for the iterative development and management of processing topologies in a server-
less manner. A functional evaluation shows the platform makes it possible to collaboratively
create stream processing pipelines that cross organizational borders. A performance evaluation
shows the framework can update a running cross-domain analytics pipeline in 12 seconds without
any data loss or duplication.

5.1 Introduction

Every day, organizations have to deal with an increasing amount of streaming data [18, 2, 47]. As
the volume of data increases, so does the need to distill this data into increasing amounts of ben-
eficial information. Stream processing frameworks have been able to fill the niche of dealing with
these increasingly real-time processing needs. The fourth industrial revolution adds an additional
challenge to this need, however. Lepore et al. show that collaboration between teams, organiza-
tions and companies is imperative for introducing industry 4.0 technologies [29]. This creates a
high need for interconnecting systems and sharing data [8]. As more and more of these systems
get interconnected, data streams start to cross organizational boundaries are jointly managed
by multiple independent parties. This need is not limited to the factory floor, however. Gartner
predicts that by 2023, organizations which have the technology and processes to enable inter-
enterprise data sharing will outperform those that do not [15]. As technology becomes more and
more ingrained into society, so does the need for IT systems which can handle the realities of
collaboration without complete trust. Smart cities, for example, require collaboration between
government and multiple industry partners, each with their independent goals. Solving the prob-
lems of modern cities requires these parties to work together up to the data stream level. Finally,
even within a single company, stream processing often requires collaboration. As an example,
two roles typically work closely together on these projects: the data scientist and the data engi-
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neer. The scientist is interested in gaining valuable insights from data and possesses expertise in
data analysis, machine learning, etc. The engineer is in charge of wrangling raw data from vari-
ous sources and supporting the scientist’s study by operating stream processing frameworks and
other data infrastructures [7].

Serverless is a paradigm that simplifies operating an application by providing an opinionated ab-
straction over all layers except the core business logic [4]. Applied to stream processing, users
only need to supply their business logic and minimal configuration to form a running topology.
Many operational concerns, such as scaling, scheduling, and observability, are taken care of by the
serverless platform [16]. Simultaneously, serverless approaches have the potential to reduce re-
source usage [1, 34], even outside of the cloud in an IoT setting [48, 36]. There is still a technology
gap between stream processing and serverless solutions, however, such as in the area of moving
state from one processor to the next [23]. Current serverless solutions on Kubernetes such as
Knative [27, 25], for example, lack first-class support for the composition of functions into topolo-
gies [5]. As a result, changes that touch multiple parts of a processing topology require manual,
error-prone work. More recently, serverless workflow tools have popped up to facilitate real-time
use cases. A notable example of this is Argo Dataflow [3]. These tools, however, still lack in the
form of change management. This blind spot is becoming increasingly challenging as companies
release faster and more often using methodologies such as Agile and Design thinking [11]. This in-
creases the need for software changes to happen flawlessly, and to easily roll-back changes after
an issue is detected. Nevertheless, the current generation of stream processing frameworks still
require manual work to ensure that no messages are lost or duplicated during upgrades. Finally,
serverless topologies are often modeled as single entities, with implicit links between topolo-
gies. This makes it difficult for multiple parties to collaboratively manage topologies that span
organizational boundaries.

This research aims to tackle these issues by developing Plumber [21]: an open source platform for
creating and managing serverless stream processing pipelines which cross organizational bound-
aries. Specifically, Plumber aims to provide the following properties.

• Cross-organizational topologies: Allow multiple parties to create and manage different
parts of a single serverless function composition.

• Asynchronous collaboration: Allow these parties to independently and asynchronously
manage their respective parts.

• Explicit, declarative models: Provide a declarative API that allows users to explicitly de-
fine topologies in a versioned manner, so users have a clear view of currently and pre-
viously running pipelines. Users specify a topology in a declarative manner, so that the
platform itself is responsible for taking the necessary actions to deploy the pipeline and
ensure it is running up to specification.

• Serverless, zero-touch change management: The platform automatically manages and
scales pipelines, and takes care of the boilerplate configuration, allowing users to focus
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on the processing logic. The platform supports at-least-once processing semantics and
ensures these are met at all times, including during upgrades.

• Kubernetes Native: As an extension to cloud native; provide deep integration into the Ku-
bernetes ecosystem so compatibility with existing tools is ensured, and so that the plat-
form can run on any Kubernetes-certified cluster.

This article starts by presenting a more in-depth look into the state of the art in Section 5.2. The
motivating use-case is presented in Section 5.3. The design and architecture of the proposed
framework is discussed in Section 5.4. Section 5.5 takes a deep dive into how the platform pro-
cesses changes to running topologies. The functionality and performance of the resulting frame-
work are evaluated in Section 5.6 and Section 5.7 respectively. Section 5.8 concludes the work and
Section 5.9 gives a glimpse into future work in this space.

5.2 Related Work

Creating, deploying and managing chains of serverless functions connected by dependencies is
extensively studied in related work, although multiple terms are used to refer to broadly similar
concepts. Serverless function compositions [24], serverless topologies [49], serverless dependen-
cies [30], serverless function chains [13], serverless workflows [37], and serverless choreogra-
phies [38] are all used in related work to refer to graphs of serverless functions.

A number of approaches exist for tracing application dependencies of distributed applications at
runtime [30, 41]. Lowgo, for example, records dependencies of serverless function chains across
clouds [30]. This approach is very useful for mapping the topology of existing serverless applica-
tions, and could be extended for topologies crossing organizational boundaries. The downside of
this approach, however, is that it is focused on runtime observability instead of design-time and
operational support. Specifically, during design and modification of topologies, developers still
need to manually manage dependencies.

A common issue when moving computation from the cloud towards the edge is the heterogeneity
of underlying infrastructure and resources [32]. One approach aiming to solve this issue is sym-
bIoTe [43, 50], creating unified search and control for disparate IoT resources across management
domains. Chen et al. introduce FogSEA [9], which uses a fully decentralized service composition
model to deploy and connect services at runtime. Risco et al. introduce a platform for server-
less workflows running in the Cloud Continuum [37]. While these approaches tackle the issue of
managing applications running on heterogeneous infrastructure, they do not address the issue of
managing applications created by a heterogeneous development team that crosses organizational
boundaries.

One approach for enabling composition of serverless functions is by implementing composition
via reflection in the serverless runtime, called composition-as-function by Baldini et al. [5]. An
advantage of this solution is that it enables nested compositions since a composition of functions
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is itself also a function. This feature, however, introduces a challenge for compositions which cross
organizational boundaries. While it is clear who owns and has access to individual child functions,
this is not straightforward for the composition or parent function itself.

A second approach for serverless function composition can be called composition-as-topology: a
two-level system in which individual functions are composed into a topology or a workflow. A
function and a topology are functionally very distinct and are handled very differently in such a
platform. As a result, this approach does not enable nested compositions and thus does not suffer
from the same issues as composition-as-function for cross-domain compositions. Although this
approach is widely used in related work [40, 42, 10, 14, 49, 44, 39, 31, 38], no existing approach
addresses the challenge of cross-domain compositions.

Datta et al. aim to improve the security of serverless applications through auditing of network
traffic using a proxy [12]. Although this approach allows more secure re-use of third-party code,
each serverless topology is still contained in a single management domain, resulting in an “all or
nothing” permission model for developers modifying these topologies.

5.3 Motivating use-case

To further illustrate the challenges addressed in this research and the requirements of the pro-
posed framework, we present amotivating use-case of a Data Scientist andData Engineer, working
together on a predictive maintenance and event-based actuation pipeline.

• The Data Scientist is responsible for creating and maintaining algorithms that analyze a
stream of IoT data in order to decide which actuations to take, and to predict when main-
tenance should be performed.

• The Data Engineer is in charge of ingesting raw data from various IoT sensors, decoding
it, and making it available for analysis. Secondly, the Data Engineer is also responsible for
receiving the output of the analysis and moving it to the various platforms which act on
this data.

The end result is a stream processing pipeline that ingests raw events from IoT sensors, decodes
the data, and splits into two parallel branches, each of which processes a copy of all decoded
events.

• The first branch removes all invalid events from the stream and subsequently analyses the
events in order to generate actuations.

• The second branch analyses the decoded events to predict when maintenance is required.
If maintenance is required, this branch emits an event which is sent to the maintenance
department.

Both the Data Scientist and Data Engineer want to independently make changes to this topology.
The data engineer wants to update the ingest source and egress destinations, and update the
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decoding logic when issues are detected or changes are made in connected systems. The data
scientist wants to iterate on the analysis logic to improve it or to meet new business needs.

As a result, there is a need for a stream processing framework which allows two independent
parties to create and update different parts of a single stream processing topology. The solution
should also take into account a number of secondary requirements as stated in Section 5.1.

• Declarative definition of pipelines and seamless rollback of the pipeline to previous ver-
sions.

• Horizontal autoscaling out of the box.

• Atomic no-touch upgrades from the standpoint of the stream such that there is a single
upgrade point after which all new messages are processed by the upgraded topology.

• At-least-once processing semantics at all times.

• Using the Kubernetes API for interaction with users.

5.4 Architecture

This section outlines the overall architecture of Plumber [21]. This takes into account the require-
ments originating from the motivating use-case in Section 5.3.

Plumber’s architecture is divided into four layers, discussed in-order in the remainder of this sec-
tion.

• The domain model describes the abstract concepts which constitute a Plumber serverless
stream processing topology.

• The data plane contains the componentswhich process events and run the serverless func-
tions.

• Themanagement interface contains the custom Kubernetes resources that users interact
with to build and manage topologies collaboratively.

• The control plane contains the components that drive the data plane towards the user-
specified desired state.

5.4.1 Domain model of composition as topology

As explained in section 5.2, one way to support compositions of serverless functions is using the
composition-as-function paradigm in which each composition is also a function. Although this
approach allows creating new serverless abstractions, and thus promotes reuse, it introduces some
problemswhen serverless compositions cross organizational boundaries. The problems stem from
the property that different parts of the composition have different ownership. As such, there is
no single party which completely owns the composition and no single party which can reuse the
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Figure 5.1: A Plumber stream processing topology crossing organizational boundaries. The Data Engineer and
Data Scientist both manage different parts of the same topology, requiring collaboration in order to get the
desired result.

composition. For this reason, our solution uses the two-level composition-as-topology paradigm.
Functions are composed by connecting them to each other into a Direct Acyclic Graph (DAG). This
approach is common in stream processing frameworks such as Apache Storm, Spring Cloud Stream
and Kafka streams.

In Plumber, a topology consists of four distinct types of nodes.

• Sources are declarative abstractions over external event emitting systems. The source acts
as an event ingress into topologies. Each source has one input event stream.

• Processors are units of code that takes events as input, run a serverless function on them,
and produce output events. Each processor has one input and one output event stream.

• Sinks are declarative definitions of egress systems. Each sink has one output event stream.

Users create directed acyclical processing topologies by creating such nodes and connecting each
input of a node to the output of a previous node using the following rules.

• Each output must be connected to the input of at least one other node.

• Each input must be connected to the output of exactly one other node.

• The output of a source cannot be directly connected to the input of a sink.

• The topology must be a DAG.

Figure 5.1 shows how these domain objects can be used to create the topology of the motivating
use-case explained in Section 5.3. The Data Engineer is responsible for one source, one processor
and two sinks. The Data Scientist is responsible for three processors. Note that it is possible for
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Figure 5.2: High-level Plumber architecture showing with color-coding how a topology of domain objects
corresponds with data-plane components.

a node to send its result to two other nodes, even though each node has only one output stream.
This is because each output stream can be connected to multiple input streams.

5.4.2 Data Plane

The data plane of Plumber consists of a number of containers running in Kubernetes communicat-
ing using Apache Kafka topics. As shown in Figure 5.2, each Processor is a Kubernetes Deployment
consisting of two containers: the sidecar and the user function.

The sidecar can be seen as a proxy between the user function and the rest of the data plane. It
embeds all necessary logic to facilitate data plane communication. The sidecar further canonical-
izes events into a common format, CloudEvents, before sending them to the user function. The
sidecar forwards the transformed event based on the user function response, or drops the event
if the user function decides so. This last property makes it possible for a function to act as a filter,
removing invalid or otherwise unneeded events.

The user function embeds the user supplied code. Although it is possible for user code tomanually
respond to and parse CloudEvents, Plumber also supplies a Python SDK to reduce the amount of
boilerplate code needed. This SDK handles sidecar interaction, provides logging facilities, and has
a minimal interface for the receiving of events and taking actions such as dropping an event or
forwarding the transformed data.

Apache Kafka is used for communication between components. Each Source and Sink is a Kafka
topic, and Processors communicate by publishing to- and consuming from Kafka topics. Plumber
uses Kafka in at-least-once configuration. This configuration is ensured by the Plumber sidecars,
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which make sure to configure Kafka clients and handle Kafka communications in the correct man-
ner to get these guarantees. This limits the scope of user error to affect the message guarantees.

5.4.3 Management Interface

The management interface offers three custom resources for users to interact with:

• TopologyPart represents a part of a topology which is managed by a single team. It is a
collection of the desired state of the nodes and edges in that part of the topology. The
edges are defined by referencing other nodes by name, to either take input from or out-
put towards. These references connect the corresponding event streams of those nodes
following the rules explained in Section 5.4.1.

• TopologyPartRevision is an immutable snapshot of a TopologyPart; a new snapshot is
automatically created upon each change to a TopologyPart.

• Topology represents a complete topology created by combining TopologyPartRevisions.
It is a collection of references to TopologyPartRevisions which together form the desired
state of a single topology.

Together, they provide declarative and collaborative (change-)management of topologies. Data
engineers and scientists can independently build and change the parts they are responsible for.
Once all appropriate changes are made, one of them can change the Topology to encapsulate the
new, combined desired state as expressed in the TopologyPartRevisions.

5.4.4 Control Plane

The control plane as shown in Figure 5.3 is modeled as a set of collaborating Kubernetes con-
trollers. The first set of controllers are custom developed for Plumber as part of this research:

• The Updater is responsible for correctly orchestrating transitions between versions of
Topologies.

• The Syncer translates the desired state of the active version of the Topology into its data
plane components.

• The Garbage Collector cleans up data plane components of Topology versions that are not
required anymore.

The second set of operators are existing third party open source projectswhich are used by Plumber
to perform more generic tasks:

• KEDA provides auto-scaling capabilities for event-driven workloads in Kubernetes [26].
KEDA allows Plumber to scale Processors reactively based on Kafka topic depth.

• Strimzi brings management of Kafka into Kubernetes [35], allowing for declarative man-
agement of clusters, topics, and configuration.
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Figure 5.3: Interactions within the control plane. All parties interact through the management interface by
modifying Kubernetes objects which represent the desired state of their part of the topology.

5.5 Change Management Flows

The control plane must consider common user interaction scenarios concerning change manage-
ment. Therefore, this section dives deeper into the two most important flows: handling updates
to a Topology and the subsequent garbage collection.

5.5.1 Update Flow

When users make a semantic change to a Topology and another version of the Topology is already
running, the control plane takes care of meeting the following properties:

• At-least-once guarantees: Should remain respected during updates; all events ingested
from a Source by a Topology version should be fully processed by that version.

• No duplicate processing: Zero duplicated events should be processed as a result of the
update mechanism.

• Limit processing downtime: The period in which no version actively processes from a
Source should be minimized.

• Atomicity: Upgrades should be atomic, such that no two versions process events from a
Source concurrently.

• Convergence: Convergence towards the desired state should be achievable in all cases,
even when the controllers themselves crash momentarily.
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Figure 5.4: Change management Flows of the Updater and Syncer.

The concept of Revisioning is applied to Topologies in the form of TopologyRevisions to enable
these properties. These Revisions embed the full combined desired state of the Topology along-
side configurations that should carry over between Revisions. The TopologyRevisions have three
distinct states; these states are persisted on the respective Topology object themselves. Transi-
tions of these states happen strictly through the Updater. The following states are defined:

• Active: The Revision that should be actively Processing new events from the Sources.

• Next: The Revision that should take over Source processing from the Active revision.

• Phasing-Out: A Revision that was previously Active, but may still have outstanding events
in its internal topics to be processed.

Upon detecting a semantic change to a Topology and its composed desired state, the Updater
creates a TopologyRevision as shown in Figure 5.4. In the case of an update, an active Revision
is already set. The Updater ensures that all necessary information for processing continuation,
i.e., the correct starting offsets and consumer groups, are propagated to the new Revision. Subse-
quently, the Updater marks the newly created Revision as the next Revision. The Syncer is notified
upon this occurrence and deletes the Source-connected Processors of the active Revision from the
data plane. When the Updater notices that the Syncer has completed this work, it marks the next
Revision as active and the active Revision as phasing-out in one atomic operation. Of course, the
Syncer then brings the new active Revision to the data plane immediately.

The initial creation of a Topology is a special case of the Update flow, in which no active Revision is
present yet. Upon noticing this, the Updater immediately creates a TopologyRevision with default
consumer group settings and immediately marks it as active. Subsequently, the Syncer continues
to translate the active Revision towards the data plane.

The Syncer passes in the required dataflow configurations to the sidecar, e.g., the input and output
topics to use, consumer groups, etc., based on the links made by users and information that spans
Revisions added by the Updater.
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With this high-level approach, the sub-requirements are all tackled.

• At-least-once guarantees: Only the phasing-out Revisions’ Source-connected Processors
are deleted in the upgrade flow. Thus, the Revision can still process all in-flight events.

• No duplicate processing: This is ensured by having unique Processor output topics per
Revision, i.e., topics not linked to Sinks or Sources. Secondly, Source-connected Processors’
consumer groups are propagated between the active and the next Revision such that after
decoupling, the processing continues right where the previous Revision stopped.

• Limit processing downtime: The new Revision is brought to the data plane as soon as the
previous Revision is decoupled from its Sources.

• Atomicity: Grouped state transitions happen through atomic operations.

• Convergence: All implemented operations are idempotent and result in changes that are
verifiable.

5.5.2 Garbage Collection

The remaining non-Source-connected Processors of phasing-out Revisions will eventually process
all outstanding events in their input topics. The Processors and their underlying data plane com-
ponents can be deleted upon verifying this.

When a Revision is marked as phasing-out, only the output topic of the deleted Source-connected
Processors remains, and no new events will be produced into this topic. As soon as the immediate
downstream Processors have drained all of the contained events within the topic, the downstream
Processors can be deleted. Again, the Processors that are next in the topological ordering will not
have any new events flow into their input topics.

Using this property, the Garbage Collector can perform incremental garbage collection. It starts
by determining which Processors are still running and have no running predecessors. The Garbage
Collector then checks each of these Processors for completion. If one of the Processors is com-
plete, its deployment is deleted, and the Garbage Collector adds the deleted Processors’ immedi-
ate downstream neighbors to the list of Processors to check. If the Garbage Collector can verify
that all Processors are deleted after a complete run of this procedure, the Garbage Collector can
delete the Revision from the phasing-out list of the Topology. Otherwise, the Garbage Collection
algorithm is performed again at a later time.

5.6 Functional Evaluation

This section evaluates the overall function of the framework to support cross-domain workflows
and the function of the KEDA autoscaler.
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5.6.1 Cross-domain collaboration

To evaluatewhether Plumber indeed enabled cross-domain collaboration, this section implements
the motivating use-case presented in Section 5.3 using Plumber. Figure 5.1 is a visual represen-
tation of the resulting topology created using the domain objects of Plumber. The code for this
implementation can be found on GitHub [19].

The Data Engineer creates the first part of the topology: a TopologyPart that configures one source,
one processor that decodes it, and two sinks going to two separate Kafka clusters.

apiVersion: plumber.ugent.be/v1alpha1
kind: TopologyPart
metadata:

name: use-case-engineer
spec:

sources:
iot-ingress:

bootstrap: kafka-cluster-iot:9092
topic: iot-ingest

sinks:
actuation-sink:

bootstrap: kafka-cluster-iot:9092
topic: actuations

maintenance-sink:
bootstrap: kafka-cluster-maintenance:9092
topic: maintenance

processors:
decoder:

inputFrom: iot-ingress
image: "decoder-function:v0.0.1"
maxScale: 8

The Data Scientist creates the second part of the topology: a TopologyPart with three processors,
two of which ingest from the decoder function specified by the Data Engineer. The end result is
sent to two sinks.
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apiVersion: plumber.ugent.be/v1alpha1
kind: TopologyPart
metadata:

name: use-case-scientist
spec:

processors:
filter:

inputFrom: decoder
image: "filter-function:v0.0.1"
maxScale: 8

actuation-generator:
inputFrom: filter
image: "actuation-generator-function:v0.0.1"
sinkBindings: actuation-sink
maxScale: 24

maintenance-predictor:
inputFrom: decoder
image: "predictive-maintenance:v0.0.1"
sinkBindings: maintenance-sink
maxScale: 12

Behind the scenes, Plumber creates two TopologyPartRevisions to capture a snapshot of the Topol-
ogyParts. The Data Scientist then creates a Topology which uses these revisions to create the full
topology.

apiVersion: plumber.ugent.be/v1alpha1
kind: Topology
metadata:

name: use-case-topology
spec:

parts:
- name: use-case-engineer

revision: 1
- name: use-case-scientist

revision: 1
defaultScale: 5

Once this topology is submitted, Plumber creates the required data-plane components in order
to set up the stream processing pipeline. Once it is submitted, both the Data Scientist and Data
Engineer can change their respective TopologyParts without impacting the running pipeline. Only
once the Topology specifies a new revision for one of its parts, will the data plane be updated.

This example confirms Plumber can be used to manage stream processing pipelines crossing or-
ganizational boundaries. Each individual party creates a TopologyPart, which are joined together
in a Topology.

5.6.2 KEDA autoscaling

The current version of Plumber allows all Processor deployments to scale up and down transpar-
ently and scale-to-zero if no new events are outstanding. This still requires some configuration
from the user, however: they still need to hint at a maximum scale for each of their Processors
through the management interface if they would require a higher scaling bound than the default



Chapter 5 117

value. As such, users need to manually override the scale of the Topology or TopologyPart upon
realization that the set maximum scale is insufficient for the use case. Ideally, the number of par-
titions is scaled up transparently if the number of Processors is maxed out. Furthermore, there are
three significant issues with the current approach that hinder the practicality of the autoscaling,
which are all caused by the reactiveness of KEDA.

The first issue is that scaling operationsmight have side-effects that hinder continuous processing.
When a processor gets scaled, the sidecars and the Kafka consumers inside of them scale accord-
ingly. This triggers Kafka to initiate a rebalancing process. During this process, Kafka reassigns
partitions to the existing consumers within the group and offers a mechanism for communicating
the partition’s last committed offset to the responsible consumer. During this rebalancing process,
consumers are temporarily paused, possibly increasing the backlog of events on the topic in Kafka.
This increasing backlog can trigger KEDA to scale again, causing another rebalancing process. This
mechanism can cause KEDA to continually over-scale, adding more and more instances to handle
the load, which each trigger another rebalancing procedure. This effect can be partially alleviated
by setting an upscaling stabilization window which pauses KEDA actions for a predefined time af-
ter a scaling action. Increasing this window, however, reduces reactiveness of the overall scaling
which is not ideal when handling unpredictable load patterns.

The second issue is that it is infeasible for Plumber to automatically tweak the KEDA scaling set-
tings such as the queue depth to workload instance ratio, because this requires knowledge of the
processing latencies of each individual Processor in the Topology. Although KEDA has knowledge
about the input queues of a processor, there is no way for it to take into account the output of a
processor in order to calculate processing latency.

Finally, KEDA is not topology-aware. In scaling decisions, KEDA only takes into account the backlog
of the respective processor. As a result, if the event rate greatly increases in the Source of a topol-
ogy, KEDA will only scale the first processor accordingly. Scaling of a subsequent processor will
only happen once enough events are handled by the previous processor to create a backlog for
the next processor. As a result, the scaling of the entire topology happens in a slow cascade from
upstream to downstream Processors. The overall scaling reactiveness of a topology to increased
input load is thus slow.

5.7 Performance Evaluation

5.7.1 Benchmark setup

These benchmarks are executed on a single server with 24 GiB RAM and two Intel Xeon E5645
@ 2.40 GHz processors running Ubuntu 20.04.2 LTS. Kubernetes version 1.20 uses Docker version
20.10.8 and is installed using Kind 0.10.0. All ram and CPU of the host machine is available to the
Kubernetes cluster. A single Kafka broker running version 2.7.0 uses three Zookeeper nodes and,
are configured with ephemeral storage configurations.
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Figure 5.5: Sidecar latency benchmark setup.

5.7.2 Sidecar Latency

Although Plumber’s sidecar approach increases extensibility, this includes an additional compo-
nent in the data path, which adds latency. This benchmark aims to understand the performance
penalty of this approach by comparing the end-to-end latency of three pipelines with identical
processing logic as shown in Figure 5.5.

• Baseline: a single user function container that directly consumes and produces to Kafka.
This setup serves as a baseline for the minimum achievable latency.

• Plumber: a deployment consisting of the Plumber sidecar and a user function using the
Plumber SDK.

• Dapr: a deployment consisting of a Dapr sidecar and a user function. This setup has been
included to compare the Plumber sidecar with a more mature sidecar implementation.

The Golang implemented bench source [20] produces events containing a begin timestamp with
nanosecond precision into the input topic. Processors read these from a shared input topic and
forward them to an output topic specific to each setup. The Golang sinks add an end timestamp
with the same precision and persist these numbers to disk. The delta between the begin and end
timestamp is the measured end-to-end latency. To ensure the test isolates sidecar interaction
latency, the source produces at a rate of around 10 event per second, which ensures that each
setup has ample time to process the event. A total of 10 000 events are processed to provide a
large sample size. Furthermore, each of the setups has identical Kafka consumer and producer
configurations. Lastly, each of the Processors has exactly one replica running, and each of the
topics has one replica and partition.

Figure 5.6 visualizes the benchmark results. The median added latency of the Plumber sidecar is
0.4 ms. The spreads of the sidecar implementations are more significant than the baseline im-
plementation. This difference can be attributed to the use of an extra protocol which comes with
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Figure 5.6: The Plumber sidecar adds about 0.4 ms of latency compared to the baseline. This is slightly larger
than the Dapr sidecar.

its own variance, causing the latency gap between the sidecar implementations and the baseline
implementation to widen as higher percentiles are reached, ultimately causing a 0.8 ms delta
between Plumber and the baseline at the 99th percentile. Each of the setups show heavy out-
liers at the 99.5th percentile, which were filtered from the two density visualizations using the
Interquartile Range (IQR) method.

A first observation from the results is that, barring heavy outliers, the results for Plumber are
acceptable. The first reason being that Plumber, nor its intended use cases, are focused onminimal
latency operations; the solution is tailored to be extensible, and general purpose for stateless
operations. The sidecar architecture is important in facilitating this extensibility, as changes to
code that impact the runtime are limited to the single sidecar implementation. Secondly, cloud-
based serverless solutions such as AWS Lambda, and Azure Functions show invocation latencies
ranging from milliseconds to seconds. The right tail, being seconds, is not relevant as this is most
likely due to cold-start overhead, a similar overhead is expected upon a scale from zero when
using Plumber [28]. Thus, during normal operations, the invocation latency of a cloud serverless
function is in the milliseconds and the median Plumber added sidecar latency is a fraction of that.
Lastly, the Dapr numbers show promise that the gap between the baseline setup and the Plumber
setup can be further narrowed down.

Upon closer inspection of the Dapr sidecar logic, the delta between Plumber and Dapr can be
attributed to two implementation details. The first is that Dapr does not enforce the canonical-
ization of events when reading from a binding, which is similar to a Plumber source. The added
conversion code introduces extra allocations; however, this accounts for only a small delta. The
primary culprit for the delta is hypothesized to be different HTTP client libraries; Plumber uses
the Golang standard libraries’ net/http, while Dapr uses a highly optimized open-source library,
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Figure 5.7: Sidecar latency benchmark outliers at a low data rate of 10 events per second.

fasthttp[46]. The self-reported client benchmarks of fasthttp show an up to 10x performance in-
crease over net/http, in part due to its heap avoiding implementation [17]. This data is supported by
independent benchmarks conducted by TechEmpower, which compares popular web server frame-
work performances, showing about 3x higher throughput and 3x lower latency is achieved over
the net/http package in a simple setup where a JSON-serialized response is returned on a GET
request [45].

As mentioned before, about 0.5% of the total events per setup are heavy outliers. These outliers
are visualized in Figure 5.7 which zooms in on events with a higher than 5 ms end-to-end latency,
the observed 99.9th percentile latency for each platform is about 52 ms. When the data rate is
higher, at 800 events per second, the same pattern reoccurs as seen in Figure 5.8. The same
general outlier pattern occurs in each of the setups, with a 99.9th percentile latency of about 27
ms for each of the platforms. As the latency is present in each setup, it is not caused by the sidecar
mechanism itself but by the Kafka client or server. One likely culprit is the Kafka client batching
records before persisting (producing) them, as explained in [33]. With the right timing, subsequent
records might arrive in such a manner that a batch is only produced after it is completely full. This
would explain why the outlier latency goes down as the data rate goes up, since a batch fills up
more quickly in such a scenario. It might also explain why the latency happens in “waves” as the
output batch of a sidecar might not fill up completely until a new input batch is ready.

To conclude, the added latency by introducing a sidecar to Plumber is deemed acceptable, as the
median latency difference is limited to 0.4 ms compared to a setup without a sidecar. In addition,
the extreme tail-end latencies appear to be comparable to a baseline setup, with both having
heavy outliers, yet the 99.9th percentile latencies stay acceptable for most use cases.
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Figure 5.8: Sidecar latency benchmark outliers at a higher data rate of 800 events per second.

5.7.3 Topology Upgrade Speed

This benchmark [20] evaluates the speed and correctness of upgrading a running topology. Specif-
ically, this benchmark checks whether event processing remains at-least-once during an upgrade,
and how long an upgrade takes.

This benchmark creates an initial Topology Revision to process a continuous stream of events.
After some time, it performs a Topology upgrade. Both revisions of the Topology have a single
Processorwhich simply forwardswhatever it reads froma Kafka Source to a Kafka Sink. The bench-
mark continuously produces messages with a production timestamp and incrementing message
ID. Processors wait for a specified period of time, after which they send the message to the next
step in the process. Each sink adds a receival timestamp to the message and writes all messages
to an append-only file. These message timings and IDs allow for the verification of correctness.
First, if there are no gaps in the written message IDs, no events were lost. If there are no duplicate
message IDs present, no duplicate processing was performed. Secondly, the operator was instru-
mented to log the timings and corresponding revision of status transition for bottleneck detection.
Each of the following benchmarkswas performed twenty times, with the relative gathered timings
being averaged out.

Figure 5.9 shows a timeline of important milestones in the Plumber operators after the upgrade is
initiated. It further shows the timespans in which the first Revision is processing events, no Revi-
sions are actively processing events, and the second Revision is processing. Note that the overlap
time does not imply that the two Revisions are competing for consumption from the Source; it
only means that the first Revision is still phasing-out.
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Figure 5.9: Processing of events pauses for about 10 seconds while the containers of the new revision become
active.

The collected data of 20 upgrades shows no events were lost or duplicated during the upgrade
process. A close examination of the timeline reveals a significant period of almost 10 seconds
during which processing of events is paused. Specifically, there is a large gap between the second
Revision becoming active and it processing its first event. This is caused by the time needed for the
Processor deployments’ underlying pods to be scheduled and run. As such, operators of Plumber
topologies should factor in the fact that a pipeline might pause for up to 10 seconds while an
upgrade is in progress.

5.7.4 Garbage Collector Benchmark

A third benchmark was conducted with a more elaborate setup, consisting of two Processors in
sequence, with the second Processor artificially being slow. With this setup, the Garbage Collector
needs to correctly check if all messages have been Processed from the first Processors’ output
topic by the slow second Processor. Figure 5.10 again shows the relative timings. Notice that
there is now a time span where the first and second Revisions are both processing. However, this
does not mean both Revisions compete to consume from the Source, as the first Revisions’ Source
connected Processors are deleted.

Again, no messages were lost, nor were any duplicates observed in 20 runs of an elaborate topol-
ogy upgrade. Coupled with the previous benchmark results, this experimentally verifies the cor-
rectness pertaining to the disallowance of duplicate processing and lost events even when there
are unprocessed events for the remaining phasing-out Revision. However, as noted before, im-
provements to the upgrade process should and can be made to mitigate periods where no pro-
cessing occurs.
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Figure 5.10: A timeline of events during a more elaborate topology upgrade

5.8 Conclusion

Current stream processing solutions lack in two areas: facilitation for streamlined collaboration
and support for change management. For these reasons, Plumber, a stateless stream processing
framework, was designed and developed in this study to achieve the following key objectives:

• Streamlined Collaboration: Users can effectively and collaboratively reuse parts of topolo-
gies, compose them, andmanage lifecycles of topologies using the proposedmanagement
interface. A visual management interface can be implemented as a front-end to the cur-
rent text-based model to improve the current proposition.

• Serverless Operations: Plumber minimizes typical operational work in the building and
maintenance of stream processing topologies. Most importantly, this study proposes a
generic, no-touch update technique that minimizes operational effort and can be extrap-
olated towards other (stateless) stream processing technologies.

• Kubernetes Native: The implemented framework runs natively in Kubernetes and strictly
uses Kubernetes native building blocks. This has two significant implications. Firstly,
Plumber integrates with the existing Kubernetes ecosystem through the operator pattern;
for example, users may use Continuous Delivery technologies to automate deployments of
topologies further. Secondly, the framework can be used on-premises or in the cloud, on
any Kubernetes certified distribution of choice.

A thorough evaluation shows the framework handles topology updates in an atomic manner with-
out any message loss, but with a pause of about 10 seconds during which no messages are pro-
cessed. A comparison of the serverless function overhead shows the sidecar mechanism only adds
0.4ms of additional latency compared to the baseline.



124 Joint Management of Serverless Streams

5.9 Future Work

This section described strategies for solving twomain shortcomings by optimizing the update flow
and improving the overall user experience. Furthermore, a more general proposal to mitigate the
shortcomings of KEDA is made.

5.9.1 Optimizing updates

The deployments of the new Revisions’ Processors should be created immediately upon an update
occurring to enable a faster processing hand-off during the update flow. In addition, the spawned
sidecars should be in a standby state until there is a certainty that the previous Revisions’ Source-
connected Processors were entirely deleted. The sidecars should thus ask the control plane for
confirmation to start processing. By immediately creating deployments and having a standby
state for the sidecars, the time in which no processing occurs is further mitigated.

5.9.2 Smoother UX

Two main issues hinder a smooth user experience with Plumber. Firstly, to create a function, a
user needs to build a Docker container with their code and submit it to a registry accessible by
Plumber. Secondly, to create a topology, a user needs to modify and submit Kubernetes objects
using a textual representation such as YAML. To improve the UX regarding these issues, a browser-
based GUI can be created that serves as a front-end to Plumber and itsmanagement interface. The
GUI could allow users to write function code in the browser, and have source-to-image conversion
to handle the containerization automatically. Secondly, this GUI could allow users to compose and
modify Topologies and their Parts in a drag-and-drop manner.

5.9.3 Predictive event-driven autoscaling

The state-of-the-art in event-driven scaling on Kubernetes was found to be insufficient for use
in Plumber. The first issue is that KEDA only scales reactively. Future work should investigate
how predictive FaaS autoscaling approaches such as from Balla et al. [6] can be integrated into
Kubernetes as a whole and Plumber specifically. However, as suggested in Section 5.7, a second
issue arises from KEDA’s lack of knowledge about the composition’s topology. Recent work in
the predictive scaling field [22] that takes into account the data-flow dependencies when making
scaling discussions could alleviate these issues. The method proposed by the authors requires an
offline phase, however, and is not designed for event-driven scaling. Work by Daw et al. is much
more promising since it is specifically built for event-driven serverless compositions, and has an
optional predictive component [13].
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5.9.4 Exactly-once processing

Plumber currently uses exactly-once processing, where each message is guaranteed to be pro-
cessed at least once. During a fail-over scenario, however, it is possible that a message is pro-
cessed more than once. For example, this can happen when the sidecar crashes between produc-
ing the result of a processed message to the output topic and committing the consumption offset
in the input topic to signal the message has been processed. With somemodifications to Plumber,
Kafka Transactions and Idempotency can be used to ensure this race condition never happens.
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6
Fog Native Architecture: Intent-Based

Workflows to Take Cloud Native Towards the
Edge

As the final chapter before the conclusion, this chapter takes a peek beyond the cloud to inves-
tigate how to help developers deploy applications that run on a mixture of cloud and edge re-
sources. As such, it relates the final research question “How to adapt the cloud native paradigm
to the cloud-edge continuum of the fog?” Both the research in previous chapters and the cloud
native paradigm itself make a number of assumptions about the underlying infrastructure that
do not hold true in an environment of mixed cloud and edge resources. This chapter investigates
these issues in-depth and proposes an architecture to enable the cloud native experience in the
edge. Although this chapter marks the end of the research presented in this dissertation, it is
intended to be the beginning of a new line of research to facilitate service orchestration in the
fog.

⋆ ⋆ ⋆
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Abstract The cloud native approach is rapidly transforming how applications are developed and
operated, turning monolithic applications into microservice applications, allowing teams to re-
lease faster, increase reliability, and expedite operations by taking full advantage of cloud re-
sources and their elasticity. At the same time, “fog computing” is emerging, bringing the cloud
towards the edge, near the end user, in order to increase privacy, improve resource efficiency,
and reduce latency. Combining these two trends, however, proves difficult because of four funda-
mental disconnects between the cloud native paradigm and fog computing. This article identifies
these disconnects and proposes a fog native architecture along with a set of design patterns to
take full advantage of the fog. Central to this approach is turning microservice applications into
microservice workflows, constructed dynamically by the system using an intent-based approach
taking into account a number of factors such as user requirements, request location and avail-
able infrastructure and microservices. The architecture introduces a novel softwarized fog mesh
facilitating both inter-microservice connectivity, external communication, and end-user aggrega-
tion. Our evaluation analyses the impact of distributing microservice-based applications over a
fog ecosystem, illustrating the impact of CPU and network latency and application metrics on per-
ceived Quality of Service of fog native workflows compared to the cloud. The results show the fog
can offer superior application performance given the right conditions.

6.1 Introduction

The cloud native paradigm advocates for developing applications and network services to run in-
trinsically in the cloud, rather than merely transitioning to it [3, 8]. The objective is to realize
applications at scale and provide capabilities including dynamic scaling, automatic recovery and
seamless roll-out. This requires turning monolithic applications intomicroservice applications [5]
by decomposing them into self-contained components interconnected by Application Program-
ming Interfaces (APIs). The added complexity of managing microservices has been widely stud-
ied [4, 13, 1]. The considerable increase in message exchange between microservices, however, has
been largely overlooked because it has not posed a major challenge given cloud providers’ tight
control over internal network bandwidth and latency.

At the same time, more and more companies are combining cloud applications with edge com-
puting [6]. The Netflix Open Connect program, for example, invites ISPs to place Netflix caching
servers in the edge, in order to increase user experience and decrease strain on the network. These
capabilities are opened up to a much broader industry by fog computing, which extends the cloud
towards the edge. This creates a new economic market where even small players can run applica-
tions over a mixture of cloud and edge resources. This enables application developers to increase
privacy [15] and reducing latency [11], and helps ISPs to ensure more efficient resource usage. On
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Figure 6.1: The OpenFog reference architecture showing a three-tier fog connected by a softwarized network
controllable by management functions.

a technical level, this is enabled by providing both cloud and edge resources in a unified platform
such as the OpenFog reference architecture [10] shown in Figure 6.1.

Taking full advantage of the fog requires an approach similar to cloud native paradigm. Naively
applying this paradigm and tools to the fog, however, results in inefficient resource utilization and
sub-optimal compute distribution; potentially negating the proximity benefits of the fog. These
possibly counter-productive results are caused by a number of cloud native assumptions which do
not always hold true in the fog.

• The cloud is relatively homogeneous and seamlessly hides the specifics of the underlying
infrastructure from the end user, while the fog is inherently heterogeneous, accompanied
with operational complexity.

• While clouds have an overabundance of relatively cheap resources, resource constraints
become more apparent closer towards the edge of the fog.

• While clouds offer reliable low-latency and high-bandwidth communication between in-
ternal nodes, fog nodes are fully distributed and connected by a network with highly vari-
ant latency and bandwidth.

• The cloud is central with a relatively limited number of geographical locations, while the
fog is dispersed with a much higher number of geographical compute locations offered
by edge tiers.

Current efforts applying cloud native technologies to the edge do not fully address these issues.
KubeFed, for example, allows creating federations of Kubernetes clusters, but is focused on the
cloud instead of the fog. KubeEdge aims to shrink Kubernetes to fit on edge nodes, but does not
address the fog’s operational complexity and dispersion.

This paper identifies four fog native challenges and proposes an architecture that instigates a
paradigm shift by defining applications as microservice workflows, constructed dynamically us-
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ing intent-based matching of user requirements. This microservice workflow is an evolution from
Service Function Chaining of Virtual Network Functions (VNFs), addressing its limitation of hard
dependencies. This approach also provides better alignment with cloud native norms and offers
uniform representation of ‘logic-execution’ elements in the fog. Moreover, the architecture intro-
duces a novel fog mesh enabling seamless internal/external communication and flexible group-
ing of end-users. The architecture is evaluated in terms of distributing workflows over the fog
to provide a baseline assessment on the impact of heterogeneity as well as the characteristics of
microservices in a workflow on QoS and resource utilization.

This paper starts off by identifying four disconnects between cloud native and the fog in Sec-
tion 6.2. Section 6.3 introduces the fog native architecture addressing these challenges. Section 6.4
outlines a pathway towards implementation through a sample use case. Section 6.5 provides a
baseline assessment of workflow performance in the fog. Finally, Section 6.6 draws conclusions
and outlines future work.

6.2 Disconnect between cloud native and the fog

This section identifies four key incompatibilities between cloud native and the fog. They stem
from four assumptions about the underlying infrastructure and context that do not hold true in
the fog.

6.2.1 Operational Complexity

Clouds present themselves as relatively homogeneous offerings, allowing developers to reason
about what products and infrastructure to use for building an application. As a result, cloud ap-
plications are designed as rigidly connected microservices described using desired-state mod-
els [8]. Although these descriptions often use over-simplified assumptions of underlying opera-
tional complexity, this is not an issue in the relatively homogeneous-looking cloud.

The fog, however, is inherently heterogeneous from a developer standpoint. Providers cannot
abstract away the underlying complexity because nodes have varying capabilities and availability
of functionality is highly dependent on location, fog tier, and current resource usage [6]. Designing
applications for a common denominator risks losing out on an untappedwealth of useful-but-not-
ubiquitous features of fog nodes. Moreover, since resources in the fog are not infinitely scalable,
design-time assumptions about infrastructure availability might not hold true anymore when the
application is deployed.

6.2.2 Resource constraints

Clouds offer the illusion of infinite capacity at a relatively cheap price. Consequently, cloud native
technologies do not necessarily optimize resource usage. Service meshes, for example, typically
duplicate the number of containers needed to run amicroservice application [4]. Thesemeshes are
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dedicated infrastructure layers that manage communication between microservices to improve
observability, control and security of inter-microservice communication. They commonly use a
“sidecar” approach in which each containerized microservice is accompanied by a containerized
proxy which acts as an intermediate in all communications for that microservice. This approach
works without code changes to the microservices themselves, but introduces significant resource
overhead.

These inefficiencies are generally tolerable in a cloud environment with abundant resources. The
fog, however, has strict constraints on resource consumption [6] that may not tolerate such waste.

6.2.3 Latency

Clouds offer reliable internal networks which enable low-latency and high-bandwidth communi-
cation between nodes. As a result, many cloud schedulers do not consider inter-service depen-
dencies and network latency when placing services because their impact on performance is often
negligible. This is not the case in the fog, however, due to its heterogeneous and turbulent inter-
nal network latency. As the evaluation in Section 6.5 shows, not taking into account inter-service
dependencies and network parameters during scheduling of microservices in the fog results can
negate much of the locality benefits of the fog.

A second issue arises in common cloud native patterns such as API gateways [13], which sit be-
tween a client and a microservice application, acting as the ingress endpoint for all external con-
nections [1]. This pattern enables microservice applications to use asynchronous communication
internally, and centralizes concerns such as compression, response aggregation and authoriza-
tion [13]. However, given the aim of the fog is to bring compute closer to the edge, centralized
gateways are antithetical to it, negating the latency [6] and privacy [15] benefits of keeping data
and compute at the edge.

6.2.4 Dispersion

The cloud provides a relatively limited number of geographical compute locations, often called
“regions”. As a result, developers normally manually plan the geographical distribution of their
microservices based on (predicted) user demand.

The fog, however, has a very high number of geographical compute locations [6], making it difficult
to manually select where an application needs to run. Moreover, automatically distributing fog
native applications based on individual end user requests can be challenging because of the sheer
volume and diversity of them. Although this might be feasible for relatively static requirements
such as a home automation system, it falls short at the scale and variability of applications such
as video streaming and social networking.
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Figure 6.2: A fog native architecture showing a fog mesh supporting both internal and external communica-
tion, and a workflow manager using a discovery service to design and deploy microservice workflows based
on user requests.

6.3 Designing a fog native architecture

This section introduces a number of fog native design patterns which fit together into an archi-
tecture that tackles the aforementioned challenges of bringing the cloud native paradigm to the
fog.

6.3.1 Overview

The proposed fog native architecture instigates a paradigm shift where developers no longer de-
fine what should be deployed. Instead, they define the desired behavior of the application using
intents. The system then dynamically composes and deploys workflows of microservices, taking
into account a number of factors such as user location, network topology, available infrastruc-
ture, and existing services. This intent-based workflow construction permits much larger flexibil-
ity than the traditional desired-state approach because the orchestrator can change application
topology and interchange application components depending onwhere user demand is for certain
functionality and what infrastructure is available at that location.

Figure 6.2 shows an overview of the proposed fog native architecture, consisting of three concep-
tual components.

• The discovery service is a registry of individual microservice templates enriched with
metadata about their functionality, characteristics and dependencies. This registry also
tracks the offerings of the fog provider and the functionality of already deployedmicroser-
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vices and workflows.

• The workflow manager responds to user requirements and either identifies a running
workflow or uses intent-based workflow construction, explained further in Section 6.3.2,
to create a new workflow from scratch to satisfy the user request.

• The fog mesh enables communication both between microservices, and to end-users. It
consists of a set of interlinked service proxies, each of which provides softwarized network
services to a regional cluster of microservices, saving up valuable resources by removing
the one-to-one relationship between proxy and microservice.

The remainder of this section explains in detail the four key innovations of this fog native archi-
tecture compared to a traditional cloud native approach.

6.3.2 Intent-based workflow construction

As Section 6.2.1 explains, the fog’s heterogeneity escalates the complexity for developers to de-
scribe their application’s desired state. To tackle this challenge, we propose to dynamically create
workflows based on user intents. This gives the system flexibility to dynamically update the de-
sired state based on user demand, location and available infrastructure. Following this approach,
user requests provide a description of the desired functionality, constraints, and tolerances. De-
velopers advertise microservice templates annotated with rich metadata describing the function-
ality of each component, its infrastructure requirements and its dependencies. End users request
certain functionality, for example using semantic-based addressing similar to that proposed by
Al-Naday et al. [2]. The system parses this request and matches the intents with microservices,
active workflows, fog offerings and VNFs. The system then either directs the request towards an
existing workflow or dynamically constructs one that meets the demand. The resulting workflow
can consist of microservices, VNFs, and XaaS offerings.

Figure 6.3: Intent-based construction of a new workflow.

As shown in Figure 6.3, when constructing a new workflow, the workflow manager selects a num-
ber of microservices and offerings using a matching logic which takes into account the locality of
the end-user and workflow constraints in order to ensure the required QoS. The resulting work-
flow takes the form of a desired statemodel that containsmultiple connected components such as
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microservices and offerings. This model is delegated to lower-level orchestrators such as Kuber-
netes and/or deployed as VNFs. As a result, the practical implementation of requested functionality
is different depending on the geographic location of the end-user, available infrastructure, and
available microservices. Note that this work is focused on laying the foundations of intent-based
workflow construction; leaving optimization solutions for future work.

6.3.3 Fog mesh providing inter-microservice connectivity

Internal connectivity in a cloud native environment is facilitated by a service mesh. As stated
in Section 6.2.2, the current generation of service meshes are not well adapted to the resource
constraints of the fog. Addressing this challenge requires removing the one-to-one relationship
between sidecar proxies andmicroservices, and adding regional awareness from a network stand-
point. The resulting fog native service mesh, “fog mesh”, automatically groups microservices into
a number of regional clusters based on network constraints. For example, microservices which are
close to each other from a latency and network bandwidth perspective could share a single sidecar
proxy. This vastly reduces the overhead required for the sidecar approach. Moreover, using this fog
mesh, inter-microservice communication can use performant, not necessarily user-friendly, pro-
tocols. This mesh can be implemented as a flexible network of decentralized network functions.

6.3.4 Fog mesh providing external connectivity

The API gateway pattern is difficult to implement in the fog due to the heterogeneous network
latency and possible spread of workflows over multiple regions, as explained in Section 6.2.3.
Therefore, this architecture automatically distributes the API gateway functionality by merging it
into the fog mesh. Each fog mesh proxy acts as an ingest point for the microservices connected
by the proxy, providing service-based handling of internal-external communication, automatically
configured based on local needs. This effectively merges the concepts of “service mesh” and “API
gateway” into a single “fog mesh”, which provides this functionality in a distributed manner.

This has two advantages: firstly, it regionally distributes API gateway functionality automatically
based on microservices and network constraints as explained in Section 6.3.3. As a result, user
requests and responses can be handled by the gateway in the region closest to the user, without
the need for redirection to a central API gateway. Secondly, it removes the need for an additional
service: fog mesh proxies handle both internal and external communication. This results in lower
resource usage overhead.

Additionally, to fully utilize the potential for optimized communication, responses from microser-
vices to end-users do not leave the fog mesh from the proxy closest to the last microservice, but
from the proxy closest to the client. This fog mesh then translates the communication into a pro-
tocol tailored to the end user device, such as HTTPS in case of a browser. Notably, narrowing down
the requests admitted by a proxy to those targeting the proxy’s microservices combined with hav-
ing a generally smaller number of users by virtue of locality is foreseen to incur a manageable
state in the proxy.
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6.3.5 Fog mesh providing end-user aggregation

In a cloud environment, the geographical distribution of an application is oftenmanually designed
by the application developer based on historic records of use and availability of cloud regions. This
is infeasible in the fog, however, due to its high number of geographical compute locations as
outlined in Section 6.2.4. Thus, a fog native scheduler is needed which distributes a microservice
workflow based on end-user demand. Automating this distribution, however, is non-trivial due to
the higher dispersion of users, causing higher demand variation and thus increased pressure on
the fog scheduler.

To address this challenge, this architecture includes the novel design pattern of aggregating end-
users and their workflow requests by the fog mesh. This allows the scheduler to make decisions
on aggregations of end-user requests instead of individual requests, lowering the demand for
scheduling decisions. Since, as explained in Section 6.3.4, fog mesh proxies act as the ingress
point for local end-user requests, they have the required information to aggregate user requests
for similar functionality into regional groups.

This, however, means that the end-user from a scheduling perspective is an aggregate and not
the actual end-user. Since the fog mesh uses the scheduling information in order to manage
communication, it will only be able to manage the connection up to the component acting as the
aggregator. To ensure the aggregate component knows how to manage the connection to the
end-user, this pattern introduces a response-path token uniquely identifying the end-user. This
way, a workflow which, from a scheduling perspective, has a single end-user, can fan-out to an
aggregate of nearby users.

6.4 Example: decision-support in the fog

This section outlines a pathway towards system-level implementation of the architecture, through
an example use case of UAV-based disaster management; enabling a dynamic decision-support
system based on live drone feeds for aiding first responders. Autonomous drones observe the
incident area, interpret the data and provide an action list prioritized on urgency or danger to
responders as shown by Moeyersons et al. [9].

Due to the unexpected nature of most incidents, proactively designing and deploying decision
support pipelines on location is not possible. Due to the high bandwidth and low latency require-
ments of the decision support pipeline, running them on a centralized data center will negatively
affect both the end user experience and strain the network resources. Therefore, this requires a
system that dynamically designs and schedules local workflows based on responders’ needs (i.e.
intents)

Figure 6.4 illustrates the example using the proposed fog native architecture. A subset of fogmesh
proxies may already be active at the responders’ site while others have yet to be instantiated at
the incident site. The proxy’s implementation can build on experience gained from sidecar and
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Figure 6.4: Overview of the proposed fog native architecture enabling drone-based decision support for crisis
response teams through matching of responders intents with offered microservices and data.

API gateway technologies. The workflow manager and discovery service are placed in the net-
work, possibly at the responders’ site, having latency-bound communication with both end-user
proxies. Notably, this example assumes a single instance of each management service controls
the fog resources of both sites of interest; otherwise, distributed instances of each service might
be needed.

In this example behavior, an emerging incident may trigger an intent-based workflow request by
the responders’ proxy (A), describing required tasks and data, including video feeds. The workflow
manager interacts with the discovery service (B), to identify existing components and data. A sub-
set of microservices may already be available, while others - such as the drone feed - are yet to be
established. Upon arrival to the scene, the drone uses a fog proxy to advertises an intent-based
description of its video stream to the discovery service (C). The latter informs workflow manager
to complete the construction of the workflow. The deployment of the workflow is delegated to
lower-level orchestrators. In this example, the workflow manager contacts a K3S edge node and
uses a Kubernetes relationship orchestrator [12] to deploy an undistributed composition of mi-
croservices (D). After a successful deployment, the workflow manager instructs the drone to start
transmitting the video stream (E) to be processed by the workflow, i.e. by the microservices fol-
lowing their dependency map in a hop-by-hop fashion. The last microservice delivers the decision
support outcome to the responders’ dashboard after it completes.

6.5 Evaluation

This section analyzes the impact of distributing workflows over a fog ecosystem using the discrete
event simulation framework simmer [14]. The analysis illustrates the impact of internal network
latency and application metrics on the perceived Quality of Service (QoS) of workflows distributed
over the fog compared to undistributed workflow allocation in cloud systems. We present our
results in terms of the latency residual budget, corresponding to QoS by measuring the difference
between the latency threshold of aworkflow, specified by the end-user, and the observed response
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time. A negative value indicates a violation of the latency agreement.

A fog native network is modeled as a set of fog nodes overlaid on top of a softwarized routing
network. Traffic per workflow is modeled as a set of simmer trajectories starting from the user to
the fog node of the first microservice; and ending from the fog node of the last microservice back
to the user. The CPU capacity of each node depends on the node’s tier, with cloud nodes having the
highest CPU capacity and edge nodes having the lowest. Similarly, network links are characterized
by their bandwidth capacity (Mbps) and length (Km) with core links having the largest bandwidth
and longest distance and edge links having the smallest and shortest counterparts. Propagation
latency and the queuing counterpart at each routing node are calculated using link attributes,
current state and data size. The processing latency of the deployed microservices are derived
from the CPU capacity, current workload of a fog node, and task size. The total response time is
then calculated as the additive accumulation of all latencies, between ‘user-to-first-microservice’
and ‘last-microservice-to-user’.

For application workflows, the evaluation considers two forms of dependency maps: Chain and
Hub and Spoke (H&S). In a Chain map, microservices are serially related to each other; whereas in
a H&Smap, the first and last microservices are hubs and intermediary ones are spokes. A workflow
may either be distributed (i.e. microservices assigned) over multiple fog nodes, hence classified as
Distributed or all correspondingmicroservices are assigned to one fog node and so deemedUndis-
tributed. Moreover, each workflow is characterized by a latency budget indicating the maximum
tolerable response time. Each microservice has a task size measured in number of CPU cycles, and
input and output data measured in megabytes.

The simulation assumes 100 workflows offered in the network, each of which consists of 5 mi-
croservices selected from a catalog of 1000. Each workflow has either Chain or H&S dependency
map. The CPU and data specification per microservice is defined per scenario. For the network,
we consider the topology of the AT&T MPLS network of 25 nodes and 114 links [7]. It assumes a
3−Tier fog network with: tier-0 central cloud (2 nodes), tier-1 the smaller cloudLets (4 nodes)
and tier-2 the highly constrained edge (8 nodes). The fog nodes in each tier are placed randomly
in the network. In all the results, the CPU and bandwidth capacities of any tier are approximately
10% equivalent of the upper tier. Finally, the simulation assumes each switching node to connect
between 1000 and 4000 end-devices, generating requests for workflows at a rate of approxi-
mately 1500 requests per second.

6.5.1 Latency vs. distributability

This evaluation analyzes the interplay between workflow dependency and infrastructure distribu-
tion, and the impact on latency perceived by end-user.

Figure 6.5 shows the latency residual budget when varying the distribution of the fog infrastruc-
ture, extending from the typical central cloud to a hierarchically distributed fog. The results are
shown for both undistributed workflows and workflows distributed randomly over multiple fog
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Figure 6.5: The latency residual budget when varying the fog infrastructure from central cloud to hierarchical
fog.

nodes. The observed latency residual budget for distributed workflows is lower than for undis-
tributed variants, illustrating the impact of network latency on overall response time. Notably, the
average residual budget of H&S workflows is approximately 20% higher than that of chain work-
flows, showing improvement as a result of parallelizing microservice execution. Moreover, the
residual budget for distributed workflows decreases as the infrastructure changes from central
to distributed. This increased response time is caused by

• additional communication latency from distribution of the workflow over a larger number
of fog nodes, and

• increased computation latency from the lower CPU capacity of edge infrastructure.

Interestingly, undistributed workflows in a hierarchical fog perform no different from their coun-
terparts in central clouds, showing the reduction in communication latency is countered by in-
creased computation latency.

6.5.2 Latency vs. application metrics

Figure 6.6 shows the latency residual budget when having variant task and data size. The results
show the response time for workflows of large sized data, (approximately 2-4 megabyte) is on
average 10-25% higher than for small data (approximately 0.5-2 megabyte), irrespective of the
task size. Nonetheless, workflows with large task size have, on average, a higher response time
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Figure 6.6: The latency residual budget for variant task and data size in a 3-tier fog.

by approximately 5-20% compared with workflows of small task size, for the same data size. This
reveals the significance of communication latency when having to transmit large volumes of data.
The dependency map and distribution also impact the perceived response time. H&S workflows
incur the quickest response time, even when comparing distributed ones to undistributed chains.
This shows the effect of parallel microservice execution and the interplay with CPU and link band-
width capacities. Although the last microservice in a H&S workflowwaits for all the intermediaries
to complete, the combined execution and waiting time remains smaller than that in undistributed
chains. Although distributing a workflow reduces residual latency, the budget is not exceeded,
which means it can be a valid option to reduce workload congestion by spreading compute load.

6.6 Conclusion

Operational complexity, stringent resource constraints, varying internal network latency, and high
granularity of geographic regions make the fog inherently incompatible with the cloud native
paradigm. To address this challenge, this work proposes a fog native architecture along a set
of design patterns to facilitate flexible and dynamic provisioning of microservice-based applica-
tions over the heterogeneous fog. Using intent-based workflow construction, applications are
composed of loosely-dependent microservices selected to best match user requirements. A novel
fog mesh enables microservice grouping under one proxy, seamless user-microservice and inter-
microservice communications, and request aggregation. To illustrate a pathway towards imple-
mentation of the architecture, this article describes an example use case of drone-based decision
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support for first responders in the fog. Evaluation shows the impact of runningmicroservice-based
applications in a fog ecosystem, confirming, for example, network latency plays a bigger part in
distributed workflow response time in the fog compared to the cloud.

Future work is foreseen to provide a prototype of the fogmesh and further investigate algorithms,
optimizations and implementations for translating intents into desired state models. It will also
further investigate management of data at rest in the fog.
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7
Conclusions and perspectives

This concluding chapter reflects on the proposed solutions in the broader context of this disser-
tation and identifies interesting open challenges.

7.1 Reflecting on research questions

Each of the solutions proposed in the previous chapters relate to one of the research questions
described in Chapter 1. This section shows how these solutions address the research questions
in the broader context of this dissertation. At the time of writing this dissertation, some of the
research presented has been published over four years ago. As such, the benefit of hindsight
gives the unique opportunity to reflect on some of the lessons learned since initial publication.
This section also peeks into how the presented research can play a role in future developments in
the field of service orchestration in the cloud and fog.

7.1.1 Deciding what should be deployed

The orchestrator conversation presented in Chapter 2 presents an answer to the question of “How
to encapsulate and reuse system administrator’s knowledge about when to deploy what?”. The
chapter breaks this challenge down into the more fundamental question of “how to let system
administrators create new abstractions”. Since it is difficult to create new abstractions using
desired state models, the chapter proposes a collection of independent agents which translate
higher-level models into lower-level ones.
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Kubernetes addresses this challenge in a similar way using “controllers”. These are services devel-
oped using regular programming languages that translate higher-level abstractions into lower-
level ones. The difference between this approach and the orchestrator conversation lies in the cen-
tralized nature of controllers. Kubernetes itself is a centralized orchestrator with a single source
of truth: the Kubernetes API. As such, controllers follow this model by extending this central API
with new abstractions. A single controller can manage as many instances of this abstraction as
needed. A single controller instance might, for example, manage three separate Spark clusters. In
the orchestrator conversation, on the other hand, there is no single source of truth: each service
agent has a limited view on reality. As such, abstractions are added in a decentralizedmanner. The
abstraction provided by an orchestration agent can thus only be used by entities directly connected
to it. To manage three separate Spark clusters, three orchestration agents need to be deployed.
Herein lies a major downside of agent-based orchestrators such as Kubernetes: the overhead of
the control plane. Chapter 4 shows that managing relationships using a centralized controller
incurs much less overhead than using an agent-based approach. Moreover, in a microservice ap-
plication, the memory usage of an agent might come close to the overhead of the microservice it
manages [3].

Looking into the future, however, it is probably unwise to discount an agent-based approach en-
tirely. As Chapter 6 discusses, centralized systems common in the cloud become challenging in
the cloud-edge continuum of the fog. As such, an agent-based approach might be the only viable
solution in such an environment. Nevertheless, the overhead issues of an agent-based approach
would still need to be addressed, since resources becomemore limited asworkloadsmove towards
the edge.

7.1.2 Deciding when to run management actions

The reactive pattern presented in Chapter 3 presents an answer to the question of “How to encap-
sulate and reuse system administrator’s knowledge about when to perform which management
actions?” Since it is challenging to reuse parts of traditional lifecycles, the reactive pattern pro-
poses an event-based system where lifecycles emerge from chaining conditional handlers. The
chapter highlights the charms.reactive SDK which implements this pattern on top of the Juju or-
chestrator.

The evaluation in Chapter 3 shows that after two years since its initial release, charms.reactive
did indeed create an ecosystem of code sharing and collaboration between developers creating
charms. At the time of writing this thesis, seven years after inception of this framework, Canon-
ical is still maintaining and using it. In 2019, however, it has been officially superseded by the
“Charmed Operator Framework”. Interestingly, this new framework continues the idea of event-
based custom lifecycles in order to facilitate knowledge sharing between Charm developers [1].
A common complaint of the reactive approach is that its complexity makes it difficult to wrap
your head around. It is not always clear, for example, what specific workflow will emerge from
certain preconditions. It was not uncommon for developers to be surprised by the emerging be-
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havior of their code, which is not always a good thing. One possible way to address this would be
to dynamically generate the emerging workflow during design time, to give developers a better
understanding of it. This is difficult to do with the charms.reactive framework because the pre-
and post-conditions of a handler are only truly known at runtime. Requiring developers to de-
clare these at design time would make this easier, although it is an additional limitation on the
flexibility of a handler.

Looking into the future, it seems the event-based approach of the reactive pattern still has merit
to promote code reuse. Although Kubernetes has a growing ecosystem of controllers and tools to
create them, code sharing between controllers is still difficult. The operator SDK, for example, is a
common toolset to create controllers. Although it adds a fair amount of functionality to facilitate
creating controllers, this functionality is focused on working with Kubernetes itself. Very few
examples exist of application or microservice-specific functionality being embedded in libraries
for reuse.

7.1.3 Deciding how to connect microservices

The “orcon” orchestrator presented in Chapter 4 aims to address RQ 3: “How to encapsulate
and reuse system administrator’s knowledge about composing microservice applications and (re-
)configuring their internal dependencies, in a way that fully integrates into a cloud native ecosys-
tem?” It extends the Kubernetes API to allow users to model microservice dependencies and it
automatically manages these dependencies.

The evaluation in that chapter shows this approach has much less overhead than cloud modeling
languages such as Juju. The overhead of orcon is still larger than that of Helm, however, indicating
more optimization could be achieved. The evaluation also shows the original Kubernetes API is
not obscured by orcon, so it integrates into the existing Kubernetes ecosystem. One example of
this integration is that it is possible to use Helm to define and modify orcon relationships. This
makes it possible for users to encapsulate and share applications using orcon. It is also possible
to define and modify orcon relationships using Argo CD, in order to set up a robust CI/CD system
for managing an application using orcon.

7.1.4 Deciding how to process cross-domain streams

The “Plumber” platform presented in Chapter 5 aims to address the fourth research question:
“How can multiple independent parties collaboratively create serverless streaming pipelines?” It
extends the Kubernetes API to allowmultiple independent parties to collaborativelymodel server-
less streaming pipelines and it automatically creates and manages these pipelines.

The evaluation of Chapter 5 shows multiple independent parties can indeed collaboratively create
these pipelines. Moreover, it shows there is minimal data-plane overhead, and updating a topol-
ogy is achieved in 12 secondswithout any data loss. Just like orcon, Plumber is a Kubernetes-native
framework and thus integrates into the wider ecosystem with tools like Helm and Argo CD.
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7.1.5 Bringing cloud native to the fog

The fog native architecture presented in Chapter 6 relates to RQ 5: “How to adapt the cloud native
paradigm to the cloud-edge continuum of the fog?” It addresses four key incompatibilities be-
tween the cloud native paradigm and the fog: increased operational complexity, more stringent
resource constraints, highly variant network latency and bandwidth, and high geographic disper-
sion. To solve these, the architecture proposed a paradigm shift where developers no longer de-
fine what should be deployed. Instead, they define the desired behavior of the application using
intents.

This chapter includes an evaluation that analyzes the impact of distributing workflows of mi-
croservices over a fog ecosystem. This confirms, for example, that network latency plays a much
bigger part in distributed workflow response time in the fog compared to in the cloud. The intent-
based approach is a radical change from the work presented in previous chapters. Whereas the
previous chapters solved service orchestration problems using declarative desired-state models,
this chapter details how this approach is not feasible anymore in the fog. As such, although this
chapter marks the end of the research presented in this dissertation, it is intended to be the be-
ginning of a new line of research to facilitate service orchestration in the fog.

Looking at the future, however, it is clear that declarative desired state models will also play
an important role in the fog. Not as the main user-facing API, but as an underlying intermediary
format in machine-to-machine communication. As the architecture proposes, workflowmanagers
translate intents into instructions to send to lower level orchestrators, which is what declarative
desired-state models are made for. This is where the orchestrator conversation from Chapter 2
might come in. Its design is uniquely suited to the decentralized nature of the fog and it is focused
around machine-to-machine communication. The same approach might be key to creating a truly
decentralized fog orchestrator.

7.2 Future perspectives

7.2.1 Agent-based orchestrators in the fog

While centralized orchestrators work great in the cloud, they are less ideal for the distributed
nature of the fog. As such, future work should look at how agent-based distributed service or-
chestration methods such as the orchestrator conversation proposed in Chapter 2 can be adapted
to the fog.

• One key challenge in adapting agent-based orchestration to the fog is the overhead of
agent-based approaches. A promising way to solve this might be to create on-demand
agents using WebAssembly, similar to the on-demand Kubernetes controllers shown in [2].

• Addressing the cross-domain nature of the fog is equally important. One interesting ap-
proach to tackling this issue is to combine agent-based approacheswith swarm algorithms
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and promise theory. The agent-based approach can be used to create a federation of or-
chestrators. Swarm algorithms could be used to solve the inherent issues of having mul-
tiple independent agents operate without a single global view of the entire truth. Finally,
promise theory could be used in order to ensure QoS and other metrics across such a net-
work of independent agents.

• Another interesting challenge is in how to create a true fog ecosystem of infrastructure
providers, service developers and orchestration providers.

• Given the large ecosystem which is emerging around the Kubernetes API, it is interesting
to investigate whether it is possible to create a distributed agent-based system which
provides the same API as Kubernetes.

7.2.2 Improving collaboration in the creation of Kubernetes controllers

Although Kubernetes has a growing ecosystem of controllers and tools to create them, code shar-
ing between controllers is still difficult. The operator SDK, for example, is a common toolset to
create controllers. Most of its functionality, however, is focused on making it easier to communi-
cate with the Kubernetes API and to integrate into the Kubernetes control loop. It does not contain
application-specific logic. The only knowledge captured in this library is about how to write con-
trollers, not how to manage applications or services. This is common with other toolsets: very few
examples exist of application or microservice-specific knowledge being embedded in libraries for
reuse.

The reactive pattern proposed in Chapter 4might be a good candidate to solve this issue. Although
the successor of the charms.reactive framework can be used to manage applications running on
Kubernetes, it is built on top of the Juju orchestrator which hides the Kubernetes API behind a
new abstraction. Therefor, it might be interesting to investigate how to adapt this pattern to
Kubernetes controllers without adding an additional abstraction on top of Kubernetes.

7.2.3 Secure service orchestration in the Fog

Moving services to the fog also considerably changes the security considerations of their service
orchestrations. For example, ensuring physical security of devices in the edge is much more diffi-
cult than in the cloud. This has considerations for both infrastructure providers as infrastructure
users. Providers need to ensure they can trust devices which join their platform and ensure that
a physical compromise of a device does not mean their entire platform is compromised. Users,
on the other hand, need to take into account that a physical compromise is much more likely and
that the hardware can have varying levels of trust.

• Device attestation refers to a collection of approaches to ensure the hardware and software
of a remote device is in a certain state. It can make sure that the software of a remote de-
vice has not been tampered with using approaches such as Trusted Platform Modules and
Intel Software Guard Extensions. There is a need for novel solutions which integrate these
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device attestation approaches with orchestrators such as Kubernetes. Device attestation
approaches often employ chained trust where each layer of a system checks the integrity
of the layer above it. The hardware root of trust is the lowest layer fromwhich this process
starts. As such, a second challenge concerning device attestation lies in the relationship
between the root of trust and a user of the infrastructure. Depending on how and by whom
the root of trust is configured, the trust level of a device might change drastically from the
viewpoint of a user. As a result, service orchestrators should have mechanisms to present
this information to the user and to take this information into account during scheduling
decisions.

• The increased risk of physical compromise and varying levels of trust creates a second
challenge: is it possible to run workloads on infrastructure that is not fully trusted? One
possible way to address this issue is to look into confidential computing. Intel Software
Guard Extensions, for example, make it possible to hide certain aspects of an application
from even the lowest levels of the operating system and hypervisor. This can, for example,
ensure encryption keys of a process are not visible to other entities. It can also run certain
processes in a trusted enclave, ensuring that the entire process is not visible to other en-
tities. The downside of these approaches is that they are resource intensive and require
special hardware support. Novel approaches are required to integrate these technologies
into service orchestrators. For example, an orchestrator could dynamically choose to use
certain trusted computing methods for executing workloads based on the trust level and
available features of the infrastructure. Since certain trusted execution solutions require
code changes, this is another factor that should be taken into account during scheduling
decisions.

7.2.4 Intent-based orchestration

Chapter 6 shows how intent-based orchestration is important to facilitate service orchestration
in the fog. Although there is a lot of active research on using intent-based approaches in software
defined networks, there are still a number of open challenges concerning orchestrating microser-
vice applications using intents.

• The first challenge is in the structure and form of intent models for microservice appli-
cations. Novel research is needed to investigate what form these models should take.
One approach might be to combine intent-based statements with existing desired-state
approaches in order to find a middle ground between flexibility for the orchestrator and
concreteness for the developer.

• The second challenge concerns how to translate intent models into concrete desired state
models. Architecturally, an agent-based solution such as the orchestrator conversation
could be extended with a new type of agent which does this translation. The question
remains, however, how this agent gathers and processes the current state of available
infrastructure and available demand in order to create a desired state model which im-
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plements the desired intents. Artificial Intelligence for IT Operations (AIOps) might play a
role in this in order to ensure the desired state models are optimized and take into account
possible future changes to infrastructure and demand.

• Another important question is in how such an intent-based system would handle the in-
herent uncertainty of distributed infrastructure running highly heterogeneous workloads.
Scheduling algorithms in a homogeneous cloud environment have the advantage to work
with a complete picture of the current state of the infrastructure. This makes it relatively
easy to predict the effect of aworkload scheduling decisionwhen the behavior of thework-
load itself is known. This is much less the case when a heterogeneous fog environment is
combined with incomplete information about the current state of the system. This appears
to be another challenge in which AIOps might play a significant role, in order to reason on
an incomplete data set and predict the resulting behavior of decisions.
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