IMU-aided detection and mitigation of Human
Body Shadowing for UWB positioning
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Abstract—Ultra-wideband (UWB) indoor positioning systems
have the potential to achieve decimeter-level accuracy. However,
the performance can degrade significantly under Non-Line-of-
Sight (NLoS) conditions. Detection and mitigation of NLoS
conditions is a complex problem, and has been the subject of
many works over the past decades. When localizing pedestrians,
human body shadowing (HBS) is an important cause of NLoS.
In this paper, we propose an HBS mitigation strategy based on
the orientation of the body and tag relative to the UWB anchors
by attaching an inertial measurement unit to the UWB tag. Two
algorithms are designed and implemented, of which the second
algorithm is designed for robustness against errors in the IMU’s
estimated heading. The proposed algorithms are validated by
UWB Two Way Ranging (TWR) measurements, performed in
two environments. Two more algorithms are implemented as a
benchmark, of which one is based on the estimated first path
power, and the other is based on range residuals. The proposed
algorithm outperforms the other algorithms in the higher error
statistics, achieving a 49% reduction of the p90 error depending
on the environment.

Index Terms—UWB, ToF, indoor localization, human body
shadowing, inertial measurement unit, Non-Line-of-Sight

I. INTRODUCTION

In Time-of-Flight (ToF) ranging, the travel time of a
signal is measured to estimate the distance between a tag
and anchor [1]. UWB ranging has several advantages over
other technologies, i.e. centimeter-level accuracy, immunity to
multipath fading and low power consumption [1]. Commercial
Off-the Shelf (COTS) UWB transceivers have been available
for several years, of which the Decawave DW1000 has shown
to be the best performing [2].

While high ranging accuracy can be achieved in line-of-sight
(LOS), there is still ongoing research in mitigating the effects
of non-line-of-sight (NLoS) conditions. In these conditions,
the direct path between the tag and an anchor is (partly)
obstructed by a wall, object, or the human body. Depending
on the obstruction, it is possible that the received power along
the direct path is too low, and through reflection or diffraction
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an indirect path component of the signal is detected instead.
Because the indirect path covers a larger distance than the
direct unobstructed path, the signal is detected with a delay
causing a positive bias on the range estimation [3]. Human
body shadowing (HBS) is a specific NLoS condition and
plays a large role in pedestrian tracking with on-body tags.
The effects of HBS on UWB ranging has been investigated
in other works [4]-[6], which have shown that the impact
is heavily dependent on the body-tag orientation to the
anchor as well as the placement of the tag on the body.
However, most works on UWB NLoS detection/mitigation
offer solutions for NLoS in general [3], [7]-[12]. While
some works do differentiate between NLoS caused by the
human body and the environment (e.g. walls) [3], [13], they
do not use the insight on the extent of HBS, which the
tag-body orientation can provide. Furthermore, many NLoS
mitigation methods are based on extracting information from
the Channel Impulse Response (CIR). However, extracting
the CIR from a COTS transceiver such as the DW1000, is
time consuming and (depending on the desired resolution)
not feasible for real-time applications [14].

Some recent works focus on hybrid systems, which fuse
(UWB) ranging with an Inertial Navigation System (INS)
or Pedestrian Dead Reckoning (PDR) [15], [16]. INS and
PDR use an inertial measurement unit (IMU) to estimate the
pedestrian’s movement (by e.g. detecting steps), and enable
infrastructure-less localization [17]. While having their own
drawbacks, INS/PDR’s immunity to NLoS can therefore
reduce NLoS errors in a hybrid positioning system.

In this paper, it is hypothesized that an IMU can also be used
to detect and compensate HBS, based on the tag-body-anchor
orientation. Two IMU-based HBS mitigation approaches are
implemented on top of an existing positioning algorithm, and
evaluated with measurements using COTS hardware in two
environments.



The contributions of this paper are as follows:

1) Two IMU-based human body shadowing detection and
mitigation methods for UWB-IPS are presented.

2) Experimental validation of the proposed method by low-
frequency static UWB Channel Impulse Response (CIR)
measurements and ranging, and with high-frequency
dynamic UWB ranging, both in human body NLoS
conditions and with IMU measurements.

The remainder of the paper consists of an overview of
related works (section II), the measurement methodology and
implemented algorithms (section III), evaluation of the results
(section IV), and the conclusions and future work (section V).

II. RELATED WORKS

Figure 1 explains the configuration considered here and in
related work. ¢ € [0°,180°] is the incident angle of the signal
in the horizontal plane relative to the body orientation of the
user. More specifically, it is the smallest angle between vectors
PT and T'A, where T, P and A are the 2D positions of the tag,
person, and anchor respectively (Figure 1). The tag is carried
in front of the body during our measurements, as depicted in
Figure 1. For ¢ € [90°,180°], there is some degree of body
obstruction between the tag and the anchor.

Anchor (A)
@) PT
N ¢
TA
Tag (T)
)
Person (P)

Fig. 1: Tag-anchor configuration and symbols used in this
paper

1) Human body influence on UWB ranging: UWB
measurements in anechoic chambers with several antennas
show that the received power is not significantly affected by
the human body for ¢ < 150° [18]. Very large attenuations
for ¢ > 180° are observed in [19]. Indoor and outdoor
ranging experiments were performed with the Decawave
TREK1000 development kits in [5], along with simulations. It
was found that the signal is largely unaffected for ¢ < 67.5°,
while the ranging error increases from 20 cm to 30 cm for
67.5° < ¢ < 112° in the simulations. However, the average
error increases up to 60 cm for 180° > ¢ > 112°. Similarly,
[20] reports no significant influence on ranging compared to
pure LOS ranging for ¢ < 90° with the tag held in front of
the body, but large errors occured above 150°. The difference
in reported angle intervals can be attributed to the distance
between body and tag, as [5] found a 3 dB rise in the electric
field by placing the tag only a few cm away from the body.
For larger ¢, reflected signals become dominant over creeping

waves. It is noticed in [21] that weak reflections from the
absorber blocks of the anechoic chamber can be stronger
than the creeping waves for full NLOS. A 90" percentile
range error of 4 m in NLOS conditions due to reflections is
reported in [4]. Based on measurements with an on-body tag
in a realistic environment, [12] concludes that HBS has the
highest impact on ranging accuracy.

The influence of tag placement on range error and packet
loss are investigated in [4] and [6] respectively. Both works
conclude that the head (quasi LOS) is the best place and the
chest/stomach is the worst place for the tag. Furthermore, the
error increase for large ¢ values also depends on the TOF
estimation algorithm itself, e.g. leading-edge detection (LDE)
is more susceptible to HBS than the SAGE algorithm [22].
Lastly, [4] proposes adaptive noise models for on-body UWB
ranging depending on the tag placement and ¢. [13], [20]
use similar models for tags in front of the body at chest height.

2) Detection and mitigation of HBS in UWB ranging:
NLoS detection and mitigation have been researched exten-
sively during the past decades, but few works try to mitigate
HBS specifically [3], [4], [6], [20]. [3] uses a fuzzy classifier
to detect HBS or (a combination of) other types of NLoS, and
mitigates the ranging errors accordingly before calculating the
position. NLoS including HBS is detected by thresholding the
relative first path power with 93% accuracy in [12], which then
uses a polynomial function to estimate the range error. The cor-
rected ranges are then used on several positioning algorithms,
of which the EKF performed best in severe NLoS conditions.
Instead of mitigating the range errors before calculating the
position, the first path power is used directly in [6] to estimate
the noise variance of an EKF and Particle Filter (PF), but with
mixed results. Similarly, an Extended Kalman Filter (EKF) is
used in [4], for which the measurement noise variance depends
on the placement of the tag, e.g. low variance on the head, high
variance on the chest.

A PF with adaptive noise model is proposed in [20], where ¢ is
estimated based on the heading provided by a gyroscope and
the PF’s estimated position. If ¢ is larger than a predefined
threshold, the channel is considered NLOS and a Gamma
distribution is used. Otherwise the channel is LOS and a
Gaussian distribution is used. The same approach is used in
[23], but the orientation is based on the walking direction
estimated from past estimated positions.

However, the PFs in [20], [23] rg(iliire a fixed angle between
the walking direction and vector PT (i.e. sideways/backwards
walking is not allowed). They also use knowledge of range
error statistics which varies depending on the environment
and tag position on the body. We propose an HBS mitigation
algorithm based on an IMU, which does not rely on error
statistics and does not require a fixed angle between the
walking direction and PT.



TABLE I: UWB hardware and measurement settings

Tag position abdomen
UWB Channel 5
Pulse Repetition Frequency (MHz) 64
Bitrate (kb/s) 850
Preamble length (# bytes) 1024

III. METHOD
A. Measurement configurations

1) Environments: For designing and testing the positioning

algorithms, measurements are performed in two environments.
One is an 11 m x 9 m open environment with eight UWB
anchors in the Industrial Internet of Things (IIoT) lab. This
lab has no obstacles other than the person carrying the tag.
The other environment is a 41 m x 27 m office with six
UWRB anchors (OfficeLab). The anchors in IIoT lab are placed
in two groups in the corners of the lab as shown in Figure
2a. The lower four anchors are placed at a height of 0.4m,
the higher four are placed at 2.6m. The IIoT lab also has a
Qualisys motion capture (mocap) system with seven infrared
(IR) cameras, providing ground truth with millimeter-level
accuracy. However, mocap accuracy degrades towards the edge
of the lab environment, thus the measurement area is confined
to a 6.3 m x 4.4 m area, marked by the dashed red lines in
Figure 2a.
The office has six anchors as shown on the floorplan in
Figure 2c, which includes the material type of each wall. The
upper corridor and the rooms above it are mostly separated by
drywwalls. All anchors are placed close to the ceiling around
2.60 m above ground level, and their location is known with
cm-level accuracy. The building area is 41 m x 27 m, but the
measurement area is confined to the upper horizontal corridor
in Figure 2c.

2) Data collection: We used the Open Source UWB
hardware platform “Wi-Pos” [24], which consists of a
Decawave DW1000 UWB transceiver (IEEE 802.15.4a),
an external planar dipole antenna attached to the UWB
transceiver’s SMA connector, and a Zolertia RE-Mote. The
latter is an IoT platform with a CC1200 sub-GHz radio
(IEEE 802.15 g), which manages a symmetrical double-sided
two-way UWB ranging scheme using a custom Time Division
Multiple Access protocol [25]. The tag output is read from the
tag’s USB serial port and consists of the CIR and estimated
range at a rate of 1 Hz, or only the range at 24 Hz. The
CIR is not required for the technique proposed here, but it
is useful for other/future research. Therefore, 24 Hz range
measurements are performed during the dynamic tests, while
1 Hz CIR and range measurements are performed during
the static tests. The UWB hardware settings are provided in
Table I.

IR markers are placed on the tag, which allows the
mocap system to provide accurate position and orientation
of the tag at a sampling rate of 90 Hz. However, the human
body also causes shadowing when tracking the UWB tag
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Fig. 2: The measurement area in the IIoT lab is marked by the
red dashed rectangle in (a), and includes 390 measurements
positions in a variety of orientations. The dots in the corners
represent the UWB anchors. (b) shows a scatterplot of the true
distance and incident angle ¢ measured by the mocap system
for each tag-anchor link, at each measurement position. The
floorplan of the office lab is shown in (c), where the blue
and red dots represent the UWB anchors and measurement
locations respectively. The latter are marked on the floor below
a wire (red line).

with mocap. Therefore, all hardware is taped onto a piece
of cardboard and markers are put on the sides as shown in
Figure 3. The tag is positioned at the abdomen, where the
markers stick out to the sides of the body, so they are still
in view of enough cameras in case the tag itself is not. The
local coordinate system is defined with the antenna as the
origin, the Z-axis pointing up and the Y-axis perpendicular
to the antenna surface, i.e. PT. Furthermore, a Raspberry Pi
(RP1) is used to read the tag output and the sensor data of
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Fig. 3: Picture of the measurement setup. A Raspberry Pi reads
the data from the UWB tag (Wi-Pos) and the IMU (BNOS5S).
Infrared markers on the side of the cardboard allow consistent
and accurate ground truth by motion capture.

the Adafruit BNo55 IMU.

In the IoT lab, the mocap, UWB tag and IMU output
are published to an MQTT broker, where a subscriber
receives all data synchronized and timestamped. During
the measurements, the pedestrian walks around in the
measurement area. Every other step, the pedestrian stands
still for at least eight seconds. The average position and
orientation measured by mocap while standing still defines
the ground truth. This results in 390 positions scattered
across the measurement area as shown in Figure 2a. The tag
was pointed in different directions, so all ¢ values are well
represented for ranges between 3 m and 10 m, as shown on
the scatterplot in Figure 2b. There is no mocap system in
Officelab, making accurate ground truth difficult to attain,
and each measurement position has to be defined manually.
Therefore, the experiment area is limited to the upper corridor
in Figure 2c, where a wire is attached to the frame of two
doors on opposite sides of the corridor. Right below the wire,
ten measurement positions are marked. Measurements are
performed at each position in four orientations (along the
cardinal directions), resulting in 40 unique configurations.

B. Assessment of human body orientation effect on ranging

Assessment of HBS effects on UWB ranging and position-
ing is based on the horizontal incident angle ¢ € [0°,180°]
between the direct tag-anchor path and the direction the tag is
pointed at, as described in section II. This angle is estimated
with eq. (1), where 7' is an initial estimate of the tag position
and D, 1s the tag heading provided by the IMU.

P

[cos(Rimu), 511 (himau)] - TA
T4

Pest = acos( ) €]
When ¢ is known, a new position can be calculated where
the range from a tag-anchor link with a value of ¢ higher
than an HBS threshold ¢ g is ignored (i.e. anchor selection)

or its contribution to the positioning is reduced. Since eq.
(1) requires an estimated position, its accuracy and thus
the effectiveness of the HBS mitigation strategy are highly
dependent on the positioning algorithm itself (see section IV).

C. Linearized Least Squares positioning

As discussed in section III-B, eq. (1) requires an estimated
position for HBS assessment. In this paper, we use the
Linearized Least Squares (LLS) multilateration algorithm as a
basis for our HBS assessment, which is then used to estimate
a new and more accurate position. The solution for (Weighted)
LLS multilateration with n anchors is explained in [26] and
is calculated with eq. (2).

x=(ATA)"1ATp )

x is a vector of which the last two elements represent the 2D
position.

1 2z -2y si—ai -y}

1 =225 —2p s5— a3 — 43
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1 -2z, -2y, Sn = Tn ~ U
s; is the measured 2D distance between the tag and anchor
i with position x%, . = (x;,¥i,2;). Note that eq. (3) differs

slightly from [26], because the latter provides the 3D solu-
tion. Since the experiments are performed in 3D space, each
measured (3D) range r; is converted with eq. (4).

ztag)2 (4)

The tag height 2,4 is considered a known constant.

5 =r? (-

D. Mitigation of human body shadowing effects

The HBS mitigation strategy employed in this paper is
based on discarding the range measurements with high
likeliness of large errors, i.e anchor selection (AS). This
strategy has been used as a NLoS mitigation strategy for
many years [27], and is still being used in recent literature
[28].

A simple AS algorithm (Algorithm 1) is proposed first. An
initial position is calculated using n ranges, where n is the
amount of anchors. With this position and the tag heading
Rimu, the azimuth ¢; with ¢ € [0,n — 1], can be determined
for each *" tag-anchor link (eq. 1). Starting from the highest
value of ¢, corresponding ranges are discarded as long as more
than three ranges, or no ranges with ¢ > ¢y pg remain. The
final position is then estimated, again with eq. (2), but only
using the non-discarded ranges. This AS algorithm is labeled
"LLS-AS¢im., . Instead of ¢, the relative signal strength of
the first path component F'P can also be used to assess HBS
influence. In fact, it is used in several works to detect HBS
[6], [29], and NLOS conditions in general [12], [14]. F'P
is defined as the difference between the estimated received
signal strength and the strength of its first path component,
and can be calculated directly from metadata produced by the
DW1000 transceiver. Since F'P is frequently used for NLoS
detection in recent literature involving COTS UWB hardware,



we also test Algorithm 1 using F'P to assess the HBS effect.
This algorithm is labeled as 'LLS-AS_F'P’, and is used as
a benchmark. Note that the first step of Algorithm 1 is not
necessary for LLS-AS_F'P. The last variation of Algorithm
1 is labeled as 'LLS-AS¢p,0cap, Which uses the ground
truth position and orientation to calculate ¢. Knowledge
of the exact ¢ value provides insight on the maximum
achievable performance of this orientation-based AS method,
as well as the influence of position and/or heading errors
on the assessment and subsequently on the mitigation of HBS.

Algorithm 1

Data: n ranges with known anchor positions, tag heading
himu, HBS threshold ¢ ps

Result: 2D tag position

1 xprit — (2);
¢+ (1);
sort ¢ descending;
while length(¢) > 3 do
if (25[0} > ¢HBS’ then
¢-pop(0);
else
break;
end if
end while

: xtag < (2),

> use all available links
> based on rough position and /.,

R A A S

_ =
-

> use links corresponding to ¢

Algorithm 1 has some disadvantages though: first, it de-
pends on the initial unmitigated position for calculating ¢. If
Otrue 18 close to ¢rpg, errors in the unmitigated position
and/or estimated heading can cause a ’bad’ range to be
used and/or a ’good’ range to be excluded. There is also a
possibility that the range error is small (section IV-A) and is
still usable, even when HBS is correctly detected and as a
consequence, the range is discarded.

Therefore, Algorithm 2 is proposed. First, a candidate position
is calculated for all >, _, (;) anchor subsets. A weight w/ is
then calculated for each j'" candidate position with eq. (5),
where ¢ is the azimuth of the i'" link, S’ is the subset of
links, and L(...) is a likelihood function.
n—1 TP O . j
il s
i=0 i
The likelihood functions are Gaussian Cumulative Distribution
Functions (CDFs) centered around a threshold ¢pyps, as
shown in Figure 4. Eq. (5) uses the assumption that the links
in a given subset, which are used to calculate a candidate
position, are not under HBS influence, i.e HBS. If a tag-
anchor link ¢ is not under influence of HBS, then ¢; < ¢ ps
and vice versa. Therefore, if i € S7 and QSg is low/high,
then its likelihood is high/low respectively. A link with ¢
close to the threshold has a balanced likelihood regardless of
its inclusion in the subset. These smooth likeliness functions
make the positioning algorithm robust against heading errors

—— L(¢|HBS)
L(|HBS)

®rss

Likelihood

0 150

#(°)
Fig. 4: Algorithm 2: likelihood function for ¢ when human
body shadowing is assumed (orange), and when it is not
assumed (blue), for a threshold ¢y g of 150°.

and a possible absence of a clear HBS transition as a function
of ¢.

Finally, the weights of each candidate position are normalized
and the weighted average position is calculated. This algorithm
is labeled as 'LLS-Robustg’. Lastly, alternative AS strategies
exist which also do not require the CIR or error statistics.
[27] is an older method which uses range subsets to calculate
candidate positions, and chooses the subset/position with the
lowest median of squared range residuals. We implemented
this method as a benchmark and labeled it as "LLS-LMedSq’.

Algorithm 2
Data: n ranges with known anchor positions, tag heading
himw, HBS threshold ¢y pg
Result: 2D tag position
WeightedPositions < list;
S« list of all 3 _, (}) possible tag-anchor link subsets;
for 57 € S do

Xy < (2) > use links in S7;
¢’ (1) > usex?,, and Aimy
w! (5);_ 4
append w’ - x},, to weighted Positions;

end for

Xtag < sum(WeightedPositions);

IV. RESULTS
A. Impact of human body orientation on UWB ranging

Figure 5a shows boxplots of the ranging errors in both
environments as a function of ¢ in 20° intervals. The black
box plots represent the errors from the tests in the IIoT lab,
which show that the average error remains O cm up until 100°
and the error spread is constant. The 75" and 90*" percentile
of the absolute errors are 7 cm and 11 cm while true distance
is 6 m on average. This conforms to the results measured at 5
m in LOS conditions [24], with the same hardware (settings)
and environment. As observed in [5], [20], the human body
can therefore be ignored as a source of error in this interval
of ¢. Figure 5 (black) also shows that a positive error bias
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Fig. 5: Boxplots of ranging errors as a function of the ground truth incident angle ¢ in IIoT lab (black), in the office lab with
only the human body (green), and with both human body and drywalls as cause of NLOS (red). CDFs of the heading errors
of the Adafruit BNOS55 IMU in the IIoT lab (blue), and the office lab (orange).

and a larger standard deviation appear for ¢ > 100°, which
both continue to increase with ¢. More specifically, a positive
bias of 4 cm appears for ¢ € 100° — 140° and the 75" and
90" percentile of absolute errors rise to 9 cm (+29%) and
14 cm (+27%). In the 140° — 180° interval, the average error
is 36 cm and the 75" and 90" percentile of absolute errors
are 46 cm (+557%) and 82 cm (+645%), with outliers up to
2.9 m. Note that the exact boundaries differ in other works,
which is attributed to the placement and distance of the tag
relative to the body.

Furthermore, Figure 5 also shows boxplots of the ranging
errors in the office lab. The ranges are split based on the
presence of walls between the tag and the anchor. As in the
IIoT Iab, the signals from anchors located in the corridors
(green) do not pass through walls, whereas the signals of
anchors outside of the corridor do (red). The former are
only represented in three azimuth intervals, because only
measurements in the four cardinal directions were performed
and the measurement positions and corridor anchors are
almost collinear.

Regardless of the location of the anchors, the range errors
in office lab follow the same trend as a function of ¢ as in
the IIoT lab, but they are more dispersed in every interval.
This is expected in a realistic environment, which introduces
errors that are independent of the body orientation.

B. Impact of IMU-based mitigation of human body shadowing
in UWB positioning

First, the parameters of the various algorithms are
discussed. The threshold ¢zps has the same value for
all orientation-based algorithms, which is the value for
which the LLS-AS¢,,0cqp algorithm has the lowest mean

error. ¢ps = 150° in the IIoT lab and ¢rps = 100° in
the office lab. These values correspond roughly with the
intervals in Figure 5a where the slope of the average range
error increases. The LLS-Robust¢ algorithm has a second
parameter: the standard deviation of the likelihood functions.
We set this value to 5° in the IIoT lab and 15° in the office
environment, which corresponds to the standard deviation
of the IMU heading (M) error in both environments
respectively. Furthermore, Figure 5b shows the CDFs of the
absolute errors of h;,,, in both environments.

The optimal threshold for the LLS-AS_F'P algorithm is 15
dB, and the LLS-LMedSq algorithm does not require any
parameters. Note that we had to set the minimum amount of
anchors from three (IIoT) to four in the office lab to have
any improvement compared to the LLS algorithm. This is
attributed to the Geometric Dilution of Precision (GDOP),
which is higher for measurement positions outside of the
polygon formed by the anchors as is the case in the office
labe (see Figure 2c), and is inversely proportional to the
amount of anchors. Therefore it is better to select at least
four range measurements, even if they are affected by HBS.

Figure 6 shows the CDFs of the localization errors of
the algorithms discussed in section III in the IloT lab (a)
and the office lab (b). A summary of several error statistics
is provided in Table II and Table III respectively. All HBS
mitigation algorithms perform well compared to the LLS
algorithm, showing an average reduction of 31% and 36% of
the median and p75 errors. The orientation-based algorithms
perform better on the higher error statistics, with the LLS-
Robust¢ and LLS-AS¢.,0cqp algorithms performing best
and almost equally, with a 49%, average of 73% and 68%
reduction of the p90, p99, and maximum errors respectively.



The performance of LLS-AS_F'P, although slightly lower
than the orientation-based algorithms, confirms that the
first path power can be used for NLoS/HBS detection and
mitigation. LLS-AS¢;,,,, performs close to its ideal version
LLS — AS¢imy in the IIoT lab, because both the IMU
heading and LLS algorithm achieve good results in this
environment.

The results in the office lab show our motivation for the ro-
bust orientation-based algorithm (LLS-Robust¢). The accuracy
of the LLS algorithm and of the IMU heading have degraded
to the extent that the LLS-AS¢;,,, algorithm increases the
localization error compared to the LLS algorithm. Surprisingly
no improvement is shown with the F'P-based algorithm either.
The LLS-Robust¢ algorithm performs best, followed by the
LLS-LMedSq algorithm, showing a 50% and 35% reduction
of the average error respectively.

TABLE II: IIoT lab: localization error statistics in m for the
algorithms discussed in section III

Algorithm Localization error (m)

mean | pS0 | p75 p90 | p99 max.
LLS 0.26 0.18 | 0.3 0.51 | 1.77 | 2.14
LLS-AS_F'P 0.19 0.12 | 0.19 | 0.35 | 1.05 | 1.25
LLS-AS¢;imu 0.16 0.13 | 0.19 | 0.29 | 0.70 | 0.77
LLS-AS¢mocap 0.15 0.12 | 0.18 | 0.26 | 0.52 | 0.69
LLS-LMedSq 0.19 0.13 | 0.23 | 043 | 1.02 | 1.15
LLS-Robust¢ 0.15 0.12 | 0.19 | 0.26 | 0.45 | 0.69

TABLE III: Office lab: localization error statistics in m for
the algorithms discussed in section III

Algorithm Localization error (m)

mean | pS0 | p75 | p90 | p99 | max.
LLS 14 0.6 1.3 2.1 14 18.3
LLS-AS_FP 1.5 0.6 1.5 2.1 14 18.3
LLS-AS¢imu 1.7 0.6 1.5 3.6 14 18.3
LLS-AS¢mocap 1.3 0.5 1.0 1.9 14 18.3
LLS-LMedSq 0.9 0.5 12 | 20 | 3.8 | 44
LLS-Robust¢p 0.7 05 | 0.8 14 |22 |23

V. CONCLUSIONS AND FUTURE WORK

NLoS detection and mitigation in UWB positioning is a
complex problem, which is still a popular topic after two
decades of research. This paper focuses on detection and
mitigation of human body shadowing, a special case of NLoS
in which the body of a pedestrian carrying a tag obstructs
the direct path between the tag and one or more anchors. We
proposed a mitigation strategy in which an IMU is attached to
the UWB tag to estimate the tag heading. An initial/candidate
position estimate and the heading are used to estimate the
body-tag orientation relative to the anchors, in order to assess
the HBS influence. This approach does not require detailed
error statistics, but is dependent on the accuracy of candidate
position estimates and estimated heading. A robust algorithm
was proposed to tackle these dependencies. The algorithm
first estimates candidate positions from several anchor subsets
and then estimates the relative orientation of these positions
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Fig. 6: CDFs of localization errors for the algorithms discussed
in section III, in IIoT lab (a) and the office lab (b)

using the IMU heading. The candidate positions are weighted
by likelihood functions based on the estimated orientations.
The algorithm is validated with measurements in two environ-
ments, an [IoT lab and an office lab. It outperforms similar
algorithms in the higher error statistics, with a 49% and 33%
reduction of the p90 error in the IIoT and office environments
respectively. In the future, more extensive experiments will be
performed in a variety of realistic environments. Furthermore,
the experiments performed for this research were static. Future
research will include experiments with a mobile tag.
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