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Abstract—With the advent of deep learning (DL), various
automatic modulation classification (AMC) methods using deep
learning architectures achieved significant performance improve-
ments compared to conventional algorithms. Aiming to achieve
high classification accuracy, DL-based AMC algorithms require
numerous annotated training samples for each modulation class
to extract salient features, but it is hardly applicable in real-world
AMC applications. To tackle the annotated data scarce issue,
this paper proposes a novel few-shot learning (FSL) framework,
which introduces a relation network with a denoising autoencoder
to extract feature representations effectively from a limited
dataset. The experimental result demonstrate that the proposed
method can achieve higher classification accuracy compared to
the conventional FSL algorithm for signal modulation recogni-
tion, especially in low signal to noise ratio conditions.

Index Terms—Few-shot learning, modulation recognition, re-
lation network, denoising autoencoder

I. INTRODUCTION

Automatic modulation classification (AMC) refers to a tech-
nology that classifies a modulation type from a received signal
without prior knowledge of the communication parameters
and plays an important role as the demand of cognitive
radio in wireless communications is increasing. Traditionally,
AMC has been performed by Likelihood-based (LB) and
Feature-based (FB) approaches [1]. For LB algorithms, the
probability density function (PDF) of the received signal is
utilized to evaluate the likelihood of each possible hypothesis,
and the maximum value of the likelihood function gives
result in a classified modulation [2]. However, it suffers from
high computational complexity and requires knowledge of
the signal environment and channel parameters in advance,
which results in severe performance degradation problems
when the LB algorithm is applied to different wireless channel
environments. The alternative approach is FB which extracts
the features from the received signal and the decision is
made based on their differences [3]. FB approaches have less
computational complexity than LB approaches, but still require
domain-expertise knowledge.

Deep learning (DL) has shown a great performance in-
crease in the fields of image classification, speech recog-
nition and signal classification. Specifically, a deep neural
network (DNN) can automatically extract appropriate features
of the received signal, and DNN-based AMC algorithms
have shown exceptional classification performance. In [4], the
authors introduced the convolutional neural network (CNN)-
based approach for modulation classification and achieved

outstanding classification performance compared to that of the
conventional methods. Although DL-based AMC approaches
have shown excellent performance, they face several problems.
It requires collecting a training dataset with a huge number of
labeled samples in order to extract salient features effectively,
which is very expensive and time-consuming. Furthermore,
the trained model should be re-trained, if a new class is added
or the entire classification class changes. To tackle this issue,
transfer learning, a learning technique that reuses a trained
model in a data-rich field, has emerged to train a model
in a field where training data is scarce. In [5], the authors
proposed an adversarial transfer learning architecture reducing
the difference between data distributions. However, transfer
learning algorithms still requires a number of labeled samples.

Recently, few-shot learning (FSL) algorithm, based on the
idea that human beings are good at recognizing and distin-
guishing objects well even with very few instances, has been
in the spotlight. FSL algorithms can train model using a small
number of labeled samples and can perform classification
tasks on new classes by generalization [6]. The authors in
[7], proposed a new FSL framework, Attention Relations
Network (ARN), to utilize channel and spatial attention,
thereby effectively extracting features from a support set. In
addition, a novel network architecture called AMCRN, an
AMC algorithm using a relational network, is proposed in [8].
The architecture reached a maximum classification accuracy of
93% and showed a performance improvement of 10 to 50%
compared to the existing baseline schemes. Although existing
FSL algorithms can be trained with a small number of data
and showed excellent classification performance, they have the
limitation that a wide range of SNR signal data set is required
to obtain good classification performance at low SNR region.

In this paper, motivated by the denoising autoencoder, a
DL architecture that can improve robustness to changes in
the input by intentionally introducing noise into the signal,
we propose a relation network with a denoising autoencoder
(RNDAE) to effectively utilize a limited dataset.

II. FEW-SHOT LEARNING

In DL, the number of data sample is directly related to
the classification accuracy, but in a realistic task, this number
is often insufficient. To solve this limited dataset problem,
data augmentation methods exist at the data perspective,
and Un/Semi-supervised learning, transfer learning, and meta
learning methods exist at the network perspective. FSL is



Fig. 1. RNDAE architecture for a 5-way 1-shot problem with one query example. In this case, an I/Q data (2× 128) of each of the five modulation classes
is used as a support set, and another I/Q data out of five classes is used as a query sample.

a method of training a network with a very small number
of data samples and is called the ’C-way K-shot’ problem.
C is the number of classes, and K is the number of data
per class. As K increases, the number of instances per class
increases, so the performance improves. FSL assumes a very
small K, and most studies use 5-way 1-shot and 5-way 5-shot
as benchmarks. Few shot learning maximizes generalization
performance by using episodic training-type meta-learning
so that FSL model works well even on new classes which
have not been trained previously. Episodic training performs 1
episode with a support set and a query set of C-way K-shot on
a training dataset. For each episode, a network is trained using
a randomly selected support and query set, and during the test
session, a support and query set is also randomly selected from
classes that are not used in the training dataset.

III. PROPOSED NETWORK

A. Network Description

The proposed network is mainly composed of two parts,
one is a denoising autoencoder and the other is a relation
module, as illustrated in Fig.1 and the details of each layer in
the RNDAE architecture is described in table I. The denoising
autoencoder is used to learn how to reconstruct noise added
signal to its original clean signal, so the learned encoder embed
the same class signal samples at similar location in latent
space, even if noise is added to the signal. The encoder part of
the denoising autoencoder consists of four convolution blocks,
and each block contains 64 filters of 1×7 size, followed
by batch normalization, ReLU activation, and maxpooling
layer. The decoder consists of four transposed convolution
blocks to reconstruct denoised signal in the reverse order
of the encoder. Noise added samples in support set S =
{(xi, yi)}mi=1 (m = C ×K) and query set Q = {(xj , yj)}nj=1

are fed into the denoising autoencoder. The input data format
entering into the denoising encoder is (C + 1) × 2 × 128,
one data of each class in support set and one query data

with size of 2 × 128 each. The encoder extracts the salient
feature of the signals and dimensionally reduced feature maps
fφ(xi), fφ(xj) are obtained. To learn the similarity metric
in the relation module hϕ, the feature maps of the support
set and query set are concatenated to generate support-query
pairs C(fφ(xi), fφ(xj)) by concatenation operator C. Finally,
the relation module outputs a relation score ri,j through two
convolution blocks and two dense layers. In the C-way 1-
shot case, the relation score between one query input xj and
support set input xi passing through the entire network is
expressed as

ri,j = hϕ(C(fφ(xi), fφ(xj))), i = 1, 2, . . . , C (1)

where relation score ri,j in range of 0 to 1 representing
the similarity between xi and xj . The network is trained to
increase the similarity between the same class by reducing the
loss between the relation score and the ground truth label.

B. Objective Function

We introduced two loss functions to improve the training
performance and used the mean square error (MSE) for both
loss function, one for regressing the relation score ri,j and
the other for calculating reconstruction loss of the denoising
autoencoder. By adding reconstruction loss, the network can
improve robustness to changes in the input. Learning is
performed by minimizing the following objective function,

L = λLs + (1− λ)Lr (2)

where Ls is regression loss of relation scores and Lr is
reconstruction loss of denoising autoencoder. λ is weight of
loss function and we used λ = 0.8 for the experiment in this
paper. The regression loss Ls is defined as



TABLE I
THE DETAILS OF EACH LAYER IN THE RNDAE ARCHITECTURE

Module Layer Output
Input Layer - (C+1)×2×128

Denoising Conv(64,1×7,padding=0),BN,Relu,
Maxpool(2) (C+1)×64×1×61

Autoencoder Conv(64,1×7,padding=0),BN,Relu (C+1)×64×1×55
Conv(64,1×7,padding=1),BN,Relu (C+1)×64×3×51
Conv(64,1×7,padding=1),BN,Relu (C+1)×64×5×47
ConvT(64,1×7,padding=1),Relu (C+1)×64×3×51
ConvT(64,1×7,padding=1),Relu (C+1)×64×1×55
ConvT(64,1×7,padding=0),Relu (C+1)×64×1×61
ConvT(64,2×8,padding=0,stride=2),
tanh (C+1)×2×128

Concatenate - C×128×5×47

Relation Conv(64,1×7,padding=0),BN,Relu,
Maxpool(2,4) C×64×2×10

Network Conv(64,1×7,padding=0),BN,Relu,
Maxpool(2,4) C×64

Dense, Relu C×8
Dense, Sigmoid C×1

TABLE II
THE DETAILS OF THE SETTINGS FOR THE TRAINING AND TEST DATASETS.

Parameter Assignment
Training set classes 8PSK,AM-DSB,BPSK,GFSK,PAM4,QAM64
Test set classes QPSK,AM-SSB,QAM16,CPFSK,WBFM
Number of training sets 6,000
Number of test sets 100,000
Number of episodes 100,000

Ls =

m∑
i=1

n∑
j=1

(ri,j − 1(yi == yj))
2 (3)

The reconstruction loss Lr is expressed as

Lr =

n∑
i=1

||x− gψ(fφ(x))||2 (4)

IV. SIMULATIONS AND DISCUSSIONS

To evaluate the performance of the proposed RNDAE
network, RadioML2016.10a is used as the dataset in our
experiment [9]. The dataset contains 11 signal modulations,
including BPSK, QPSK, QAM16, QAM64, CPSFSK, 8PSK,
GFSK, PAM4, WBFM, AM-SSB, and AM-DSB, each of
which consists of 2 × 128 size inphase (I) and quadrature
(Q) samples. The SNR of the dataset ranges from -20dB to
18dB with an interval of 2dB and there are 1,000 samples for
each modulation and SNR. We used only the 18dB dataset
when training networks to demonstrate whether the proposed
network performs better under limited conditions where only
high SNR datasets are available, and used the entire SNR
data to test the performance of classification accuracy on each
SNR. FSL algorithms basically separates classes for training
a network and classes used for test to demonstrate whether
the trained network can classify new classes well. Since the
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Fig. 2. Performance evaluation of the proposed RNDAE network and relation
network under 5-way 1-shot and 5-way 5-shot condition

experiments were conducted under the conditions of 5-way 1-
shot and 5-way 5-shot, we split the entire classes into 6 classes
for training set and remaining classes for test set. Detailed
settings for the datasets used for training and testing are listed
in Table II. To compare the performance of the proposed
network, a relation network is used as a benchmark network.

The performance of proposed RNDAE and relation network
is plotted in fig 2. RNDAE and RN trained with 5-way 1-
shot and 5-way 5-shot settings similarly converge to 88%
classification accuracy when SNR exceeds 4dB. However,
in the low SNR region between -10dB and 2dB, there is a
performance gap in classification accuracy of 2% to maximum
25%. Additionally, 5-way 5-shot case is trained with 5 times
as many support dataset compared to 5-way 1-shot, which
improves classification accuracy by 3-10% at low SNR region.
Since the denoising autoencoder learns to restore a randomly
noise-added signal to a clean original signal, the learned
encoder maps signals to a close position in the latent space
even if noise is added to the signal, which results in an
improved classification performance in low SNR region.

V. CONCLUSION

In this paper, a novel network architecture, RNDAE was
proposed to improve the performance of AMC utilizing FSL
architecture under the condition when only a few high SNR
signals in the dataset are available. The experimental results
show that the proposed scheme can obtain a classification
performance improvement of 2% to maximum 25% compared
with baseline scheme particularly in the low SNR region
between -12dB and 4dB.
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