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Abstract: Pedestrian detection is an important research domain due to its relevance for autonomous
and assisted driving, as well as its applications in security and industrial automation. Often, more
than one type of sensor is used to cover a broader range of operating conditions than a single-sensor
system would allow. However, it remains difficult to make pedestrian detection systems perform well
in highly dynamic environments, often requiring extensive retraining of the algorithms for specific
conditions to reach satisfactory accuracy, which, in turn, requires large, annotated datasets captured
in these conditions. In this paper, we propose a probabilistic decision-level sensor fusion method
based on naive Bayes to improve the efficiency of the system by combining the output of available
pedestrian detectors for colour and thermal images without retraining. The results in this paper,
obtained through long-term experiments, demonstrate the efficacy of our technique, its ability to
work with non-registered images, and its adaptability to cope with situations when one of the sensors
fails. The results also show that our proposed technique improves the overall accuracy of the system
and could be very useful in several applications.

Keywords: sensor fusion; probabilistic fusion; naive Bayes; decision-level fusion

1. Introduction

Pedestrian detection has been the focus of research in the field of computer vision
over the last decades due to applications such as security, autonomous vehicles, and
intelligent traffic management, to name a few [1]. For such systems, many heterogeneous
sensors such as LiDAR, high-resolution cameras, thermal cameras, GPS, and others are
used for several different purposes, such as pedestrian/cyclist/vehicle detection and
route planning and estimation [1,2]. Visual sensors play a pivotal role in these systems as
they provide much more information compared to other sensors. Nevertheless, no single
visual sensor can deal with a dynamic environment, which includes varying lighting
conditions due to time of day, varying weather conditions such as rain, fog, and snow,
and temperature variation, necessitating the need for heterogeneous visual sensors. The
variants of visual sensors come with their own merits and limitations. For instance, a
thermal visual sensor can sense heat signatures of objects despite environmental com-
plexity, but it can only provide limited information due to its inability to cover the entire
visible spectrum of light. On the other hand, an RGB visual sensor provides much
more information by covering a wider visible spectrum of light, but depends on several
environmental conditions such as the amount of light, etc. In this regard, the American
Automobile Association (AAA) evaluated several available solutions and concluded
that none of them were good enough to detect pedestrians properly during difficult
conditional environments, especially during the night [3]. Hence, the operation of these
systems in a dynamic environment requires exploiting a combination of heterogeneous
visual sensors to address the problems pertaining to changing environmental condi-
tions [2,4]. This requires fusing data from heterogeneous visual sensors and addressing
multiple related issues such as geometric alignment of visual data, different fields of
view (FoVs), varying data-capture rates, and different resolutions.

Sensors 2022, 22, 8637. https://doi.org/10.3390/s22228637 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228637
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5577-6290
https://orcid.org/0000-0003-2112-3475
https://orcid.org/0000-0003-4746-9087
https://orcid.org/0000-0003-4456-4353
https://doi.org/10.3390/s22228637
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228637?type=check_update&version=1


Sensors 2022, 22, 8637 2 of 17

The techniques of image data fusion specifically from heterogeneous visual sensors
studied in the literature can be broadly classified into three main categories [5,6]. Pixel-
level or early fusion combines several visual sensors’ data at a pixel level. It is easy to
interpret and better for visual appearance. However, the accuracy of fusion is degraded
by a noisy sensor [7]. Furthermore, the fused data further requires feature extraction or
classification. By contrast, feature-level or middle fusion is performed on the features
extracted from visual sensor data. These methods can deal with a noisy sensor, as the
rich features are available from another sensor(s). However, this method requires the
design of a new classifier and a large training set [8]. Finally, fusion can be performed
at the decision-level by considering the classified data from visual sensors; this is also
known as late fusion. These methods can deal with the situation when a sensor is noisy
or unavailable, as the classification is done independently, and classification errors are
therefore uncorrelated. Furthermore, lower-level processing blocks can be optimised
separately. A prerequisite of efficient pixel- and feature-level image fusion is the geometric
alignment of images [9,10]. However, when using heterogeneous sensors with different
positions, FoVs, and resolutions, the accuracy of the image registration process may be
insufficient for these two types of fusion. Thus, there is a need for an efficient technique
that can fuse the image data from heterogeneous visual sensors without the requirement of
very accurate image alignment.

Decision-level fusion is more suitable in this respect, as it omits the need for accurate
image alignment, can be more efficient in selecting information than a pixel fusion approach
that treats all channels equally, has the capability to deal with noisy sensors, and allows
independent optimization of the feature extraction and classification. Furthermore, there is
no need to design a new classifier with the requirement of a large training set for multi-
model input .

On the other hand, CNN-based fusion methods in recent years have shown notable
progress in performance for multi-spectral pedestrian detection. Illumination-aware Faster
R-CNN [11] adaptively merges colour and thermal sub-networks to obtain confidence
scores defined over the illumination values via a gate function. Similarly, illumination-
aware weights for fusion can be predicted using a gate function based on the illumination
measure [12]. On the other hand, a confidence-aware fusion method [13] uses the confidence
scores of the network to estimate the weights of each instance and effectively fuses the
multi-modal information using those dynamic weights. The authors in [14] designed an
illumination-aware feature alignment module to align two modality features and allow the
network to be optimised adaptively according to illumination conditions.

Two-stream architectures with concatenated RGB-thermal feature maps used in
recent studies have achieved significant improvements. Nevertheless, this dependency
can cause a substantial loss in fusion performance if one of the inputs is unavailable
or if a sensor fails. Moreover, the performance of the state-of-the-art fusion methods
is strongly influenced by the quality of the registration between the thermal and
colour images. Furthermore, illumination-aware methods usually consider only the
variation of light in the colour images, while ignoring environmental changes in the
thermal images.

Large changes in the images caused by illumination or other environmental factors
clearly affect the performance of a detector. However, depending on the type of sensor,
changes in appearance are caused by different environmental factors. For example,
sufficient illumination is important for a colour camera, while it barely affects a thermal
sensor, for which the temperature of a scene and object is paramount. This difference in
conduct can be mitigated by carefully modelling the behaviour of the detectors in various
environmental conditions, and taking this discrepancy into account in the fusion process.

In this regard, we introduce a probabilistic late-fusion method based on appearance
models for colour and thermal images, which takes into account differences in light
and temperature. We propose a way to take this context into account and choose an
easy-to-measure method to evaluate its effectiveness. The ability of the detectors on
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colour images changes when the luminance is changed due to the amount of light present
in the environment, and a similar effect can be observed in thermal images with varying
temperatures. The proposed late fusion method is robust for less accurate registration,
and continues to function even when the input from one of the sensors is unavailable.

For this, a naive Bayes-based fusion approach is proposed, which uses probability
distributions estimated from a small annotated dataset. Moreover, a Monte Carlo sam-
pling [15] variant is proposed to estimate the distributions required for the fusion process.
This allows the use of off-the-shelf pre-trained detectors (e.g., CNNs) by modelling their
output for any dataset without the need for re-training. Besides the convenient reusabil-
ity of pre-trained detectors, the results in the paper also show a significant improvement
in pedestrian detection due to sensor fusion, as compared to single detectors.

The main contributions of this paper are as follows. (1) We present a luminance-change
problem concerning colour and thermal due to changes in the environment and analyse its
effect on the performance of detectors. (2) We propose a probabilistic late-fusion method
conditioned on environmental conditions to address luminance and temperature changes
in colour and thermal images. With this, the detector output is modelled without requiring
retraining. In addition, the proposed method can work with accurately registered as well
as poorly registered image pairs, and keeps working even when one of the sources is
unavailable. (3) We also propose a method to compute likelihoods and priors using a
variant of Monte Carlo sampling, which allows the computation of unbiased distributions
swiftly. (4) The proposed method achieves state-of-the-art results on both the aligned FLIR
dataset and our own captured dataset in terms of accuracy.

The rest of the paper is organised as follows. The overview of the proposed method
is described in Section 2 with the fusion method and the methods for computing priors
and likelihoods, the experimental setup, and the dataset formation. Section 3 contains
the comparison results of the proposed method with different implementations for
computing likelihood, different methods of random sample generation for computing
likelihoods for the proposed technique, and the state-of-the-art fusion method for multi-
spectral pedestrian detection. Section 4 concludes the paper with a description of
potential future work.

2. Materials and Methods
2.1. Methodology

The proposed system uses images from two visual sources i.e., thermal and colour
cameras. For thermal images, a pre-processing step is required to remove lens distortion,
as mentioned in Section 2.5.

Existing pedestrian detectors are applied and their detection results are used for fusion
and modelling, as shown in Figure 1.

Initially, during the modelling phase, a small annotated dataset is used to model the
output of detectors conditioned on the environment variable that affects the sensor data,
i.e., solar altitude representing day/evening/night for colour images and temperature
for thermal images. This process uses the detection results to model the behaviour of
detector(s) on the dataset with varying illumination in the thermal and colour images by
computing relevant likelihood histograms, which are then used during the fusion process.

During the inference phase, the results of two detectors are fused using a naive Bayes-
based algorithm (described in Section 2.2) with the environment information, i.e., temper-
ature and solar altitude, and the likelihood histograms computed during the modelling
phase, followed by greedy non-maximum suppression (NMS) [16] to remove duplicate
detection from results.
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Figure 1. Proposed methodology.

For such a system, a generative adversarial network (GAN) [17] could be useful to
generate more datasets from existing images to perform more robust modelling; however,
due to common problems such as non-convergence of model parameters, vanishing pa-
rameters, and mode collapse, it is hard to train a sturdy GAN [17]. For this, naive Bayes
for late fusion is considered due to its benefits such as a few parameters to set, simplified
design process, computational speed, easy scalability, and not requiring a large amount
of data [18]. Additionally, it is a well-established technique for modelling detection and
classification problems [19].

2.2. Naive Bayes-Based Fusion

The task of the fusion process is to estimate the probability that a person is present at
each possible location x in the field of view covered by the sensors, denoted as px(ped). It is
estimated as a conditional probability given the scores of the detectors’ output for bounding
boxes near that location, denoted as px(ped|sI , sR), where sI and sR are the detection scores
from detectors applied on thermal and colour images, respectively.

The fusion process computes the probabilities for all the detections from two detectors.
It uses the modelled output of the detectors as an approximated likelihood/histogram, as
discussed in Section 2.4, using a Naive Bayes approach.

The equation for computing probabilities using the proposed fusion is given as follows:

posterior =
likelihood× prior

marginalprobability
(1)

In Equation (1), the posterior is estimated by the fusion process, i.e., px(ped|sI , sR)
conditioned on the output scores of the detectors at a given location x in the registered
images. Using the chain rule, the Equation (1) becomes:

px(ped|sI , sR) =

px(sI , sR|ped)px(sR|ped)px(ped)
px(sI , sR|ped)px(sR|ped)px(ped) + px(sI , sR| ∼ ped)px(sR| ∼ ped)px(∼ ped)

(2)

Since the variables sI and sR in Equation (2) are assumed to be independent when
conditioned on the variable ped, Equation (2) can be written as:

px(ped|sI , sR) =
px(sI |ped)px(sR|ped)px(ped)

px(sI |ped)px(sR|ped)px(ped) + px(sI | ∼ ped)px(sR| ∼ ped)px(∼ ped)
(3)

where px(s|ped) and px(s| ∼ ped) are the likelihoods for a correct (true positive) and
incorrect detection (false positive), respectively, while px(ped) is the prior.

Although, for simplicity, we will assume that px(ped|sI , sR) only depends on the scores
of the detector, and not on the actual position in the image, we still maintain the subscript x
to emphasise that the posterior refers to the occurrence of a pedestrian at a certain position
in the image.



Sensors 2022, 22, 8637 5 of 17

The likelihood functions in Equation (3) express the general case where the probabil-
ity px(s|ped) describes the distribution of detector scores across all conditions. However,
detector performance can vary strongly in the function of specific circumstances, for
example, night vs. day, for detection in RGB camera images. As a result, the posterior
probability in Equation (3) may poorly represent real pedestrian presence in specific con-
ditions. To obtain more accurate posterior probabilities, likelihood functions are further
conditioned on the luminance category G, because the luminance factor strongly affects
the confidence scores in experiments produced by detectors on RGB and thermal images.

To address this, Equation (1) is reformed by considering the posterior as the probability
of the presence of a pedestrian ped given the detection score, and global luminance category
from colour (RGB) and thermal (infrared—IR) detection sR, GR and sI , GI , respectively, as
px(ped|sI , GI , sR, GR) for possible locations x. Thus, the likelihood according to the chain
rule would be as in Equation (4).

px(sI , GI , sR, GR|ped) = px(sI |ped, GI , sR, GR)px(GI |ped, sR, GR)px(sR|ped, GR)px(GR|ped) (4)

However, some of the variables in Equation (4) are independent, and some are de-
pendent on other variables as well. For example, the detection score sI is only dependent
on the presence of pedestrian ped and the environmental variable GI . GI is a completely
independent factor itself. Therefore, by considering conditional independence among these
variables, the Equation (4) can be written in a simplified form as:

px(sI , GI , sR, GR|ped) = px(sI |ped, GI)px(GI)px(sR|ped, GR)px(GR) (5)

Similarly, the marginal probability px(sI , GI , sR, GR) for Equation (1) can be derived as:

px(sI , GI , sR, GR) = px(sI |ped, GI)px(GI)px(sR|ped, GR)px(GR)px(ped)+

px(sI | ∼ ped, GI)px(GI)px(sR| ∼ ped, GR)px(GR)px(∼ ped)
(6)

By substituting px(ped) as prior, likelihood as Equation (5), and marginal probability
as Equation (6) in Equation (1), the simplified equation for naive Bayes-based fusion can be
written as:

px(ped|sI , GI , sR, GR) =

px(sI |ped, GI)px(sR|ped, GR)px(ped)
px(sI |ped, GI)px(sR|ped, GR)px(ped) + px(sI | ∼ ped, GI)px(sR| ∼ ped, GR)px(∼ ped)

(7)

where px(GI) and px(GR) are cancelled out from the numerator and denominator, and
px(s|ped, G) and px(s| ∼ ped, G) are the likelihoods for correct and incorrect detections of
thermal and colour images.

The methods to compute the prior px(ped), i.e., the probability of a pedestrian being
present in the field of view at location x, and the likelihoods px(s|ped, G) and px(s| ∼ ped, G),
i.e., the likelihood of a detection at position x being either a true positive or false positive
conditioned on the environmental variable G, are further discussed in Sections 2.3 and 2.4.
After computing the posterior, detections that belong to the same pedestrian are then
associated, as discussed in Section 2.2.1.

2.2.1. Association Method

Each possible combination of detections from different sensors is evaluated using the
posterior probabilities of Equation (7) and the amount of overlap measured by intersection
over union (IoU) [20] between the detections. Moreover, when a detection is only available
from a single sensor, a likelihood is computed for an imaginary detection with score equal
to zero for the other sensor. This helps the fusion process to handle omissions.

Bounding box association between different detectors is solved by using a cost matrix
that involves the scores of both detectors as well as the IoU of the two bounding boxes,
where the matches are selected with minimal cost. To improve numerical stability when
likelihoods are very small, we apply a log function:
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cost(Ii, Rj) = −log(px(ped|sIi , GIi , sRj , GRj))− log(IoU(bbIi , bbRj)) (8)

where Ii, Rj are the detections from the colour and thermal images, respectively,
px(ped|sIi , GIi , sRj , GRj) is their posterior, and IoU(bbIi , bbRj) is the IoU of their bound-
ing boxes.

Furthermore, multiple detections for the same pedestrian may occur due to less
overlapping detections, i.e., less than the IoU threshold th; therefore, greedy non-maximum
suppression (NMS) is used to suppress duplication among the select matches in colour and
thermal image detections.

2.3. Prior

The prior is the probability of an event to occur, which, is in this case the presence
of pedestrian(s) in the scene at all possible locations. Moreover, the prior is also used
to compute the value of px(∼ ped) as 1− px(ped), which describes the probability of a
pedestrian not being present at a certain location in the scene.

The estimation of the prior px(ped) at a given location x in the scene depends on the
prevalence of pedestrians in the dataset. However, since the prior will be used to compute
the posterior px(ped|sI , GI , sR, GR) for scores produced by a detector, we also have to model
the behaviour of this detector. More specifically, we have to take into account the role of
the gating function used by the detector to determine whether a pedestrian is present at a
certain location. Furthermore, we also have to take into account that the positions where a
pedestrian may occur are not evenly distributed over the image, and that the height and
width of a bounding box also have their own typical distributions. To accomplish this, we
apply the Monte Carlo sampling method to the ground truth set to obtain reliable estimates
p̃x(ped) for the prior.

For estimation, the generation of the realistic random sample, i.e., random bounding
boxes, is difficult due to different distributions of width, height, and location of bounding
boxes. Therefore, multivariate distribution is computed based on the ground truth set, as
shown in Figure 2.

The distributions shown in Figure 2 are computed with 100 bins based on the
resolution of the images. The height H and width W of the bounding boxes in pixels
are smaller and, therefore, are multiplied twice and four times for better visualization,
respectively. Furthermore, the pedestrians and their size in the image, i.e., W and H, in
the captured dataset appear about evenly on the x-axis, and only the y-axis Y is taken
into account for this multivariate distribution. Additionally, we have also investigated
other methods for generating random samples and compared the final fusion results
accordingly in Section 3.
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(a) (b)

(c) (d)

Figure 2. Multivariate distribution for generating random samples. (a) W-distribution. (b) H-
distribution. (c) Y-distribution. (d) Random samples generation.

The Algorithm 1 for estimation of the prior works as follows. After initializing pr,
random samples, i.e., random bounding boxes, are drawn from multivariate distribution in
Step 2, by obtaining the Y-position and corresponding size of the bounding box, i.e., width
and height values, as shown in Figure 2d. Steps 3 to 10 compare these random samples
with the annotations of a randomly selected image and increment pr if there is a matched
annotation, i.e., if the IoU between the random sample and the annotation is greater than
the threshold.

Algorithm 1: Estimating px(ped).

Data: Ground truth set D of bounding boxes where pedestrians appear, sample
size N and IoU threshold th

Result: Estimate p̃x(ped) for the prior
1. pr ← 0
2. R← DRAW_SAMPLES(N)
3. for r ∈ R
4. Choose a random image i from the dataset
5. Let Di ⊂ D be all ground truth annotations for image i
6. Mi = {di ∈ Di| IoU(di, r) > th}
7. if |Mi| > 0
8. pr ← pr + 1
9. end
10. end
11. p̃x(ped)← pr

N
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Drawing random samples from the ground truth (i.e., bounding boxes) ensures that the
prior takes into account gating (i.e., the IoU criterion), and uses appropriate distributions
for the position and dimensions of the bounding boxes. By repeating the above resampling
multiple times, we also obtain a value for the variance of p̃x(ped).

Annotations from the ground truth that match the random sample (i.e., gating with
IoU > 0.25) only contribute to the prior. In last step, the number of samples matched with
ground annotations is normalised. For our dataset, the estimated value for the prior found
was px(ped) = 0.3.

2.4. Likelihood

The likelihood function is the probability of the observation, i.e., the detection score
of the detector over the parameters of the model, which are the presence or absence
of the pedestrian and the global luminance category G. Thus, the likelihood functions
px(s|ped, G) and px(s| ∼ ped, G) are to be determined for each value of G. Therefore,
the dataset categories (mentioned as in Tables 1 and 2) are further used to compute
likelihoods to model the output of a detector. Two likelihoods are considered; the first is
the probability of detection being correct, i.e., the probability of detection score for all
possible locations x conditioned on the event (pedestrian presence) and global luminance
category. Similarly, the second likelihood is for the detection being wrong, where the
event is the pedestrian not being present.

Initially, the detector is applied to the images of dataset categories, and detection
results per image are used to classify correct (true positive) and incorrect (false positive)
detections using IoU by comparing the detections with the ground truth annotations.

The detection is considered correct if the overlap area between detection and ground
truth annotation is more than the threshold value; otherwise, it is wrong. The ground
truth annotations are computed using a semi-auto method and, therefore, are not pixel-
level accurate. Due to this, an IoU threshold of 0.25 is used in the whole fusion process
rather than the standard IoU threshold of 0.5. Moreover, during the classification of
detection results, priority is given to the detections with the highest detection score.
Therefore, true positives and false positives are formed from the detection results of all
the dataset categories.

2.4.1. Classical Method

The likelihood histograms are computed for each bin based on the correct (true
positive) and incorrect (false positive) detections. Furthermore, a Savitzky–Golay filter [21]
is used to smooth the histogram data. The computed histogram for a single category from
the dataset is shown in Figure 3.

Figure 3 shows the computed histogram is based on 10 bins, where the likelihood
of correct detection is higher when the detection score is also higher. On the other hand,
the likelihood of detection being wrong is higher when the detection score is lower. This
method provides an easy way to compute likelihood histograms; however, the likelihood
values are sensitive to the number of bins used.
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Figure 3. Likelihood histograms from a dataset category: likelihood for true positives-px(s|ped, G)

and false positives-px(s| ∼ ped, G).

2.4.2. Kernel Density Estimation

Kernel density estimation [22] can be used to overcome the number of bins problem
in the likelihood histograms. This is done by estimating the probability density using
the Gaussian kernel. However, this non-parametric estimation method is sensitive to
bandwidth and, therefore, the estimation is performed with several bandwidth values and
compared to actual data distribution using the Kolmogorov–Smirnov test [23] to find the
best fit estimation. The best-selected estimation compared with the actual distribution of
100 bins for a single category from the dataset is shown in Figure 4.

(a) (b)

Figure 4. Estimated likelihood from a dataset category. (a) True positives likelihood-px(s|ped, G).
(b) False positives likelihood-px(s| ∼ ped, G).

The estimations are made separately for correct (true positive) and incorrect (false
positive) detections for each dataset category for each modality with different bandwidth
values, depending upon the best fit with actual data. From Figure 4, it can be seen that
the estimation fits the actual data without combining several data samples in the bins,
although these estimation methods are biased near the boundaries and flatten the peaks of
the distribution [24], as seen in the figure as well. However, the bias of density estimation
is better than histogram estimation [25].
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2.4.3. Monte Carlo Sampling

The likelihoods computed in Section 2.4.1 and estimated at a higher bin resolution in
Section 2.4.2 are based on the detector-provided bounding boxes per image and, hence, only
consider correct and incorrect detections, disregarding the possible locations. Moreover,
this creates a bias in the rich contrast regions of the images.

For this purpose, Monte Carlo sampling can be used to approximate the distribution
of data by considering all bounding box samples in one space. Moreover, random samples
are generated and gated for all possible locations in the space, which also produces an
unbiased sample generation. However, due to the limitations of drawing samples directly,
as mentioned earlier, a similar variation of Monte Carlo sampling is used (as proposed in
Section 2.3), where random bounding boxes are drawn from the multivariate distribution
shown in Figure 2.

The Algorithm 2 for likelihood estimation requires correct (true positive) detections
based on the classification performed on detector output using IoU, along with user-
specified parameters such as size for random samples, number of bins for histograms, and
gating function parameters, i.e., IoU threshold for considering all the matching detections
with the random samples.

After initializing the histograms, random samples are drawn from multivariate
distribution (as shown in Figure 2) in Step 2. Steps 3 to 16 compare each bounding box
r with the detections of a detector to determine how likely the detection score s(mi) is
for correct or incorrect detections. A random image is selected from the dataset and
only those detections that are matched with the sample r (which has a higher IoU than
the threshold) in Steps 4 to 6 are selected. If there are not any matched detections with
the random sample, then another random sample r is selected and compared with the
detections of another random image i in Steps 7 to 9. Otherwise, in Step 10, only the
detection with the highest score in that region of an image is considered to overcome the
overlapping detections with a lower score.

Algorithm 2: Likelihood estimation.

Data: Bounding boxes of all true-positive detections (TP) with their detection scores,
sample size N, IoU threshold (th), number of bins (b), and dataset images I

Result: Two normalised histograms (TPD and FPD) for the density estimation of
px(sR|ped) and px(sR| ∼ ped)

1. Initialise TPD and FPD as histograms with all b bin counts set to zero
2. R← DRAW_SAMPLES(N)
3. for r ∈ R
4. Choose a random image i from the dataset
5. Let Di ⊂ D be all detections for image i
6. Mi = {di ∈ Di| IoU(di, r) > th}
7. if Mi = ∅
8. goto step 3
9. end
10. Let mi ∈ Mi be the matched detection with the highest score s(mi)
11. if mi ∈ TPi
12. increase the jth bin count of TPD by one, where j = bs(mi)× bc
13. else
14. increase the jth bin count of FPD by one, where j = bs(mi)× bc
15. end
16. end
17. Normalise both histograms

The matched detection with the highest score is compared with TP for the correct or
incorrect histogram Steps 11 to 15. The detection score s(mi) of the bounding box mi is
multiplied by the number of bins to find the right bin in Steps 12 and 14. In the last step,
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both histograms are normalised with their sums. By imposing a threshold on the IoU with
random sample r, we take into account the gating function of the detector.

The likelihood estimation from approximated histogram for correct (true positive)
detection can be represented by the conditional probabilistic term px(s|ped, G), where
s represents the detection score, ped represents the presence of a pedestrian as correct
detection, and G represents the global luminance. Similarly, likelihood estimation from
histogram of incorrect (false positive) detection is px(s| ∼ ped, G), with ∼ ped representing
a detection without pedestrian.

In Figure 5, the two shown likelihood histograms are approximated from a single
category of the dataset from images of a single modality; similarly, the distributions are
computed for all categories of the dataset for both colour and thermal images. In the
likelihood histogram for true positives, the detections with the highest score are the most
correct ones, and in false positives, the incorrect detections usually have the lowest scores.
These likelihoods are used to model the output of the detectors and are also used in the
fusion process, as discussed in Section 2.2.

Figure 5. Approximated likelihood histograms from a dataset category: likelihood for true positives—
px(s|ped, G), and false positives—px(s| ∼ ped, G).

2.5. Experimental Setup

For the dataset, video frames from a FLIR Thermicam-390 LWIR thermal camera and
Intel Realsense are captured. The traffic during the recordings was persons, persons in
groups, cycles, bikes, and cars.

Recordings were made during the sunny and cloudy days without rain/snow because
of the permeable recording setup. The recording scenario of the dataset is given in Table 1.

Table 1. Recording scenario for dataset.

Date & Time Condition Solar Altitude Temperature

15-09-2020 @ 21:26–21:54 Warm night [−14◦,−18◦] 24 ◦C
16-09-2020 @ 19:12–19:36 Warm afternoon-evening [ 07 ◦, 03◦ ] 23 ◦C
05-11-2020 @ 16:53–17:25 Cold evening [ 02◦,−02◦] 12 ◦C
18-11-2020 @ 16:59–17:48 Cold evening-night [−01◦,−09◦] 13 ◦C
20-11-2020 @ 10:09–11:06 Chilly morning [ 13◦, 17◦ ] 04 ◦C
10-12-2020 @ 18:12–19:02 Chilly night [−14◦,−22◦] 03 ◦C
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The lens parameters for the thermal camera are calculated with the help of a halo-
gen lamp, chessboard, and the Caltech toolbox [26], as described in [27], to remove lens
distortion. The colour images are free from lens distortion.

The colour images are annotated semi-automatically using an auto-labelling tool [28].
The annotations for thermal images are formed with the help of colour images’ annotations
with negligible parallax, using the stereo projection method [29,30].

The bounding box coordinates for thermal images are computed from the normalised
bounding box coordinates of colour (RGB) images and then thermal (infrared—IR) image
coordinates. This operation performs scaling and translation on annotations to transfer
them from RGB to IR images considering the same orientation for both of the cameras, as
in Equation (9).

(xI , yI) =

(
xR − oxR

fxR

fxI + oxI ,
yR − oyR

fyR

fyI + oyI

)
(9)

where ( fxR , fyR) and ( fxI , fyI ) are the focal length, (oxR , oyR) and (oxI , oyI ) are principal
points, and (xR, yR) and (xI , yI) are the bounding box points of colour and thermal camera
images, respectively.

For the experiments, we have used YOLO version 3 [31] as the pedestrian detector
for both colour and thermal images. Although YOLO is only trained on colour images,
applying it on inverted thermal images produced useful results, as shown in Section 3.

2.6. Dataset Division

The luminance in colour and thermal images is affected by different environmental
factors due to different modalities. For colour images, the luminance in the images is de-
pendent on the position of the natural light source. For thermal images, the environmental
temperature is important.

Therefore, the dataset is divided into categories based on the selected environmental
variable, which affects the global luminance category denoted as G, presented in Table 2.
The distributions of these categorised datasets are computed and used as likelihood his-
tograms in the fusion process, which results in an improvement for the fusion, as described
in Section 3.

Table 2. Dataset division.

Dataset Environmental Global Luminance No. of
Category Variable Category G Images

Colour
Day Solar altitude > 6◦ 1 26,573
Evening Solar altitude = [6◦ ,−6◦] 2 24,144
Night Solar altitude < −6◦ 3 13,365

Thermal
Cold Temperature < 20 ◦C 1 34,328
Warm Temperature ≥ 20 ◦C 2 29,754

The dataset is divided into the mentioned factors for colour and thermal images
with the help of weather information [32,33], presented in Table 1. The colour images are
divided with three different ranges for the day, evening, and night, depending on the solar
altitude [34], as shown in Figure 6.
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Figure 6. Solar altitude between Sun and local horizon.

The altitude ranges for the colour dataset categories considered are shown in Figure 6
for day and night, while the blue and golden hours are considered as evening. The solar
altitude data is obtained from weather information and the colour dataset is divided
accordingly. The thermal images are divided with temperature ranges, also using the
weather information.

3. Results

The proposed fusion method is implemented with different approaches to compute
the prior and likelihoods. The results of these implementations are shown in Figure 7.

The fusion is performed on different dataset categories; mAP (mean average pre-
cision) [35] is considered as a performance factor. It can be seen in Figure 7 that the
implementation of the proposed method with the proposed Monte Carlo sampling variant
performs better than other implementations.

On the other hand, the fusion with KDE is slightly better than the classical method
in most cases, but it sometimes degrades when estimation becomes inappropriate with
KDE due to multiple and high peaks in the actual distribution. Moreover, detections of
YOLO for RGB and IR images are also compared, where it is observed that the mAP of
the proposed fusion results are much better, especially with the difficult conditions, than
applying a detector on a single sensor.

For comparison, we have used precision, recall, and mAP factors. These factors as
computed as:

mAP =
∑N

n=1 APn

N
(10)

where
AP = ∑

rε{0.0,0.1,...,1.0}
(Rr − Rr−1)Pr (11)

and,

P =
tp

tp + f p
, R =

tp
tp + f n

(12)

tp, f p and f n are true positives, false positives, and false negatives. N is total number of
images with ground truths; Pr and Rr are the precision and recall at the r threshold, respectively.
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Figure 7. Comparison of different implementations for the proposed fusion and YOLO detections.

Furthermore, the results of the proposed method are compared with a similar method,
but without being conditioned on the environmental variable G, as presented in Table 3.

Table 3. Comparison of proposed fusion with and without considering the conditional variable.

Dataset Proposed Fusion Fusion without G
Category P R mAP P R mAP

Day 0.51 0.70 0.80 0.50 0.70 0.79
Evening 0.41 0.76 0.80 0.47 0.73 0.79
Night 0.41 0.61 0.75 0.55 0.55 0.74
Cold 0.40 0.65 0.73 0.46 0.62 0.73
Warm 0.50 0.73 0.84 0.54 0.70 0.83

It can be seen from the results that by just considering a single conditional variable G,
the overall results of the method improve. Therefore, the results prove that the proposed
fusion process improves the detection accuracy of the system by a considering conditional
variable, especially in challenging dynamic environments where the accuracy of a single
sensor detector starts degrading.

To investigate the relative importance of the prior and likelihood estimations, different
strategies to draw random samples are compared, from the most realistic to a naive method,
using multivariate distribution as discussed in Section 2.3, polynomial regression, normal
distribution, and uniform distribution. The final results are shown in Figure 8.

Polynomial regression is used to compute the polynomial relation between the Y-axis
and the corresponding width and height of the bounding box from the annotated dataset.
The independent normal distributions are used for another experiment by considering mean
and variance from the annotated dataset; finally, uniform distribution is used for random
sample generation, where the sample ranges are obtained from the annotated dataset.
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Figure 8. Comparison of different random sample generation methods for the proposed fusion.

Figure 8 shows the difference in mAP after fusion when using different methods to
generate samples to compute prior and likelihood histograms. This experiment clearly
illustrates the importance of obtaining a realistic estimate and the role of sample distribution
in its estimation, as described in Section 2.3.

Additionally, the proposed method is also compared with the state-of-the-art fusion
methos, as shown in Table 4. Most of the current state-of-the-art methods require fine image
registration between thermal and colour images; therefore, the aligned FLIR dataset [36,37]
is used for this comparison.

Table 4. Comparison of proposed fusion with the state-of-the-art method on aligned FLIR dataset.

FLIR Dataset Proposed Fusion MBNet [14]
RGB IR P R mAP P R mAP

X 0.86 0.55 0.69 0.45 0.14 0.27

X 0.63 0.45 0.61 0.83 0.01 0.01

X X 0.66 0.65 0.73 0.40 0.55 0.69

The results in Table 4 show that the performance of the current state-of-the-art method
drastically decreases if the input from one of the sensors is unavailable. On the other hand,
the proposed method performs better than the state-of-the-art-method when the input
images from both of the sensors are available, and it is also able to cope if one of the sensors
is unavailable.

Furthermore, the current state-of-the-art methods cannot be applied to the non-
registered dataset without altering and retraining the fusion technique, while the proposed
method performs effectively on both non-registered and registered datasets.

4. Discussion

The results presented in this paper show that our proposed fusion technique, com-
bined with the proposed variant of Monte Carlo sampling to compute prior and likelihood,
improves the detection accuracy of the system, especially during difficult dynamic situa-
tions and even when one of the sensors is unavailable, as compared to the state-of-the-art
methods. Additionally, the proposed method can easily be implemented without retraining
the detector on a huge annotated dataset, with minimal changes in the parameters. Fur-
thermore, adding a single relatively uninformative measurement such as global luminance
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is shown to have the potential to improve the accuracy of simple naive Bayes fusion, and it
can further be improved by investigating object-based variables such as skin complexion
of pedestrians [38] detected or local contrast measures for detection, in order to acquire
balanced modelling for several sub-populations [39] from the existing datasets, which
would be conditioned similarly using the proposed fusion method.

In the future, we aim to use our proposed method with a particle filter tracker, which
will improve the accuracy further by using successive detections from previous frames and
will also be useful for systems such as autonomous driving and traffic management, to
name a few.
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