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Abstract—This work develops and benchmarks surrogate mod-
els for Dynamic Phasor (DP) simulation of electrical drives. DP
simulations of complex systems may be time-consuming due to the
increased number of equations. Thus, it is desirable to have a data-
driven approach to compute the critical state/control variables
and power losses. The surrogate models are intended to be used
as a steady-state equivalent of the DP simulation model. We
consider the Gaussian Process (GP), Multi Layer Perceptron, and
Random Forest as surrogate models. Among other techniques,
GPs are found to have good accuracy. Moreover, GPs are data-
efficient and have desirable properties, such as built-in uncertainty
quantification. The study shows that the GP performs better
compared to other techniques in terms of the Mean Squared
Error of the prediction, while still being very fast to evaluate. We
illustrate the potential of these surrogate models to also predict
transient behavior.

Index Terms—Dynamic phasor, Induction machine, Permanent
magnet synchronous motor, Surrogate modelling, Gaussian Pro-
cess

I . INTRODUCTION

Conventionally, Electromagnetic-Transient (EMT) simula-
tions and steady-state phasor simulations are widely used for
simulating power grids. EMT simulations are suitable for
switched power converters at the cost of increased computation
and simulation time and steady-state phasor simulations are
extremely fast but they are not suitable for transient studies.
Dynamic Phasor (DP) combines the advantages of both EMT
and steady-state phasor methods by performing frequency-shift
operation on the original time-domain signal. This results in a
complex signal that captures the envelope of the original time-
domain signal. The DP method allows a larger time step and
allows selective modelling of dominant frequencies. However,
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Intelligentie (AI) Vlaanderen” and the ”Fonds Wetenschappelijk Onderzoek
(FWO)” programmes.

for complex systems, due to the increased number of equations,
the simulation time may increase. In this study, we investigate
the performance of several data-driven surrogate models which
are built upon the data set recorded from the DP simulation.

Recently, surrogate models have been applied to power elec-
tronic converters focusing on the thermal modelling of power
electronic devices [1], [2]. The input power and simulation time
are considered as input parameters and they are mapped to the
junction temperature [1]. In [2], an algorithm is developed
to extract parameters of thermal models. Furthermore, in [3],
surrogate models were developed for reliability and lifetime
analysis of power electronics.

In a previous study [1], a neural network (NN) is used,
however, NNs need a lot of data to perform well. Secondly,
NN hyperparameter selection is hard. Finding the right archi-
tecture per problem is a time-consuming process. Considering
those drawbacks, we benchmarks several surrogate modelling
techniques namely: the Multi Layer Perceptron (MLP) [4],
Gaussian Process (GP) [5], [6], [7], and Random Forest (RF)
[8]. MLP is one of the standard variants of NNs for a regression
problem. GPs could be a suitable alternative to NNs, as GPs are
data-efficient, able to use prior knowledge via the choice of the
kernel function, and also it can capture the model uncertainty
when seeing new data. The latter could be useful for decision
making, active learning, or anomaly detection. Furthermore,
unlike NNs; GPs do not need time-consuming hyperparameter
tuning.

We consider two motor types for the surrogate models:
Induction Motor (IM), and Permanent Magnet Synchronous
Motor (PMSM) drives based on DP simulations. The surrogate
models are built to map the input variables such as DC link
voltage, load torque, and speed reference to the output variables
of the drive including stator currents, modulation ratio, and
modulation angle. Furthermore, the input variables are also
mapped to the losses in the drive. We consider the mechanical
and electrical losses for the motor. For the three-phase inverter,



we consider the conduction and switching losses. The surrogate
model can be used as the steady-state equivalent of the dynamic
simulation model. Further, we also demonstrate the potential
usage of the surrogate model to predict the transient behaviour.

II . DP MODELLING OF ELECTRICAL COMPONENTS

A. Electrical System Description
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Fig. 1: Electrical system layout

The model of the electrical system considered is shown
in Figure 1. The system consists of a three-phase 2-level
converter that interfaces a DC power supply and an AC
electrical motor. In this paper, we have considered two motor
types: a three-phase squirrel cage Induction Motor (IM) and a
Permanent Magnet Synchronous Motor (PMSM). A suitable
Field Oriented Control (FOC) strategy is used for both types
of motor to track the desired mechanical reference speed of
the motor by actively controlling the output voltage vectors of
the three-phase inverter.

B. Dynamic Phasor (DP) Modelling Approach

Dynamic phasors are considered for modelling the electrical
components. The dynamic phasors are the time-dependent
Fourier coefficient of a periodic signal with period T and they
are defined as follows:

⟨v⟩0(t) = Vdc(t) (1)

⟨v⟩k(t) =
1

T

∫ τ

τ−T

v(t)e−jkωotdτ (2)

d

dt
⟨v⟩k(t) =

〈 d
dt
v
〉
k
(t)− jωok⟨ψ⟩k(t) (3)

The product of two dynamic phasors, v and i is calculated
through the discrete convolution principle given by (4).

⟨vi⟩k =

∞∑
l=−∞

⟨v⟩k−l⟨i⟩l (4)

Considering that the electrical power flowing in the system
is primary caused by the DC component of voltage/current
and the fundamental 50 Hz component of voltage/current, the
power definition as per (4) can be reduced to the following:

⟨p⟩0 = ⟨v⟩0⟨i⟩0 + 2ℜ
{
⟨v⟩1⟨i⟩−1

}
⟨q⟩0 = 2ℑ

{
⟨v⟩1⟨i⟩−1

}

AC electrical machines are typically modelled in the
Direct−Quadrature (DQ) domain [9]. The stationary domain
phasors vabc can be transformed into positive sequence DQ do-
main phasors using the transformation in (5), where α = ej2

π
3

[9].

⟨Vp⟩k =
2

3

[
1 α α2

] ⟨va⟩k⟨vb⟩k
⟨vc⟩k

 (5)

C. Induction Machine (IM) Model

The stator flux λps and rotor flux λpr depend on the stator
currents ips and rotor currents ipr as shown below:[

λps
λpr

]
=

[
Ls Lm

Lm Lr

] [
ips
ipr

]
(6)

Here, Ls, Lr and Lm represent the stator self-inductance, rotor
self-inductance and mutual inductance between stator and rotor
respectively.

1) Stator Equations: The stator currents are driven by
the applied stator voltage vps and electrical supply angular
frequency ωs.

dλps
dt

= Vps − rsips − jωsλps (7)

In the above equations, rs represents the equivalent stator
resistance.

2) Rotor Equations: Due to the squirrel cage rotor as-
sumption, there are no externally applied voltages. The rotor
currents are driven by the flux from the stator. rr represents
the equivalent rotor resistance and ωslip represents the slip
frequency.

dλpr
dt

= −rripr − jωslipλpr,im (8)

3) Torque and Angular Velocity Equations: The electrical
torque Te developed by the IM and the mechanical angular
speed Ωm equation obtained by torque balance is given below:

Te =
3

2
p(λps,reips,im − λps,imips,re) (9)

J
dΩm

dt
= Te −BΩm − TL (10)

In the above equations, p represents the number of pole pairs
in the stator, B is the coefficient of friction and TL is the load
torque. The slip frequency in IM is defined as follows:

Ωel = pΩm (11)
ωslip = ωs − Ωel (12)

4) Field Oriented Control: In FOC, the rotor flux is held
constant in a particular orientation λpr,re = Λo and λpr,im = 0
which allows a linear relationship between the required electri-
cal torque and current. An external speed controller generates
the torque command as shown in Figure 2. The imaginary axis
current contributes to the torque developed, thus depending
on the torque, the current reference is calculated according to
(13).

i∗ps,im =
T ∗
e

1.5pLm

Lr
Λo

(13)
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Fig. 2: FOC in IM and PMSM

The stator real axis current reference is calculated depending
on the required rotor flux as shown in (14).

i∗ps,re =
Λo

Lm
(14)

The required stator frequency is calculated using (15).

ωs,est = pΩm +
rrLmipr,im
LrΛo︸ ︷︷ ︸
ωslip,est

(15)

A Synchronous Reference Frame (SRF) current controller
with decoupling is used to track the generated reference current.
The output of the PI controller is the inverter control voltage
which is transformed into the modulation ratio Mr and angle
ϕ based on the available DC link voltage Vdc :

Mr =

√
V 2
inv,re + V 2

inv,im

Vdc

2

ϕ = arctan
(Vinv,im
Vinv,re

)
D. Permanent Magnet Synchronous Machine (PMSM) Model

Unlike the IM, the stator flux λps in PMSM depends only on
the stator currents ips since there is no electrical circuit in the
rotor [10]. The stator flux real part depends on the permanent
magnet flux λf from the rotor.[

λps,re
λps,im

]
=

[
Lsd 0
0 Lsq

] [
ips,re
ips,im

]
+

[
λf
0

]
(16)

Lsd and Lsq represent the direct and quadrature axis self-
inductance.

1) Stator Equations: The stator currents are driven by
the applied stator voltage vps and electrical supply angular
frequency ωs.

dλps
dt

= Vps − rsips − jωsλps (17)

2) Torque and Angular Velocity Equations: The electrical
torque Te developed by the PMSM is given below. The torque
balance equation is identical to (10).

Te =
3

2
p(λf ips,im +∆L.ips,reips,im) (18)

3) Field Oriented Control: In interior PMSM, Lsd > Lsq,
hence we define ∆L = Lsd − Lsq. By Maximum Torque
per Ampere (MTPA) strategy [10], the reference currents are
calculated. The peak stator current I∗s is calculated using the
reference torque.

I∗s =
T ∗
e

1.5pλf
(19)

By applying the MTPA condition, the real axis current refer-
ence is calculated according to (20). Due to quadratic nature,
two solutions are obtained from which the negative solution
has to be chosen for motors.

i∗ps,re =
1

4∆L

(
− λf ±

√
λ2f + 8∆LI2s

)
(20)

The imaginary axis current is calculated as shown below.

i∗ps,im =
√
I∗s

2 − i∗ps,re
2. sign I∗s (21)

The required stator frequency is calculated using the mechani-
cal speed ωs,est = pΩm

E. Three-Phase Inverter Model
We assume a B6C topology for the three-phase inverter and

it is assumed that the gate signal is generated through a sine
pulse width modulation (SPWM) strategy. The three-phase
inverter is modelled as a sinusoidal voltage source in the DP
domain by neglecting harmonics. The dynamic phasor of the
phase to neutral voltage of phase A van can be calculated as
shown in (22) [11].

⟨van⟩0 =
MrVdc

4
ejϕ (22)

The voltage on the DC link is Vdc and the control variables
are Modulation ratio Mr and phase-shift angle φ. Power
electronic switches such as IGBTs and MOSFETs are typically
used in motor drives, IGBTs are preferred for medium voltage
applications due to their inherent capabilities to withstand
higher voltages. Most power electronic topologies require an
anti-parallel diode for commutation of the line current during
a switching event.

Consider the voltage drop across the IGBT and diode during
conduction as Vce,S and Vce,D, respectively. The conduction
loss in a three-phase 2-level converter is given by (23).

Pcond = 6
|⟨i⟩0|
π

{
Vce,S

(
1 +

Mrπcosφ

4

)

+ Vce,D

(
1− Mrπcosφ

4

)}
(23)

|⟨i⟩0| represents the peak value of current through the switch.
The turn-off and turn-on energy can be calculated at a given
reference DC link voltage Vref and reference peak current
Iref . The turn-off and turn-on energy of the IGBT are Eoff,S

and Eon,S , respectively and the turn-off energy of the diode
is ED. For B6C topology, the switching losses across the 6
IGBT/diode pair is given by (24).

Psw = 6
fsw
π

(
Eon,S + Eoff,S + ED

) Vdc
Vref

2|⟨i⟩0|
Iref

(24)



III . SURROGATE MODELS

Compact surrogate models are fast-to-evaluate and can be
run on a multitude of platforms. We train and benchmark
various surrogate models based on the DP simulations.

A. Data generation
The goal of the data generation process is to obtain in-

formative data sets which describe the system best. In other
words, we want space-filling designs that spread out the points
to encourage a variety of data. The surrogates model trained
on this data set is smooth within the specified domain and
has better interpolation and extrapolation performance than
data sets obtained through random sampling [12]. For this
purpose, a Halton random sequence [13] is used. Compared
to random sampling, Halton random sequences produce more
dispersed points, see Figure 3, leading to better interpolation
and extrapolation performance of the surrogate models. The
boundary of the domain is not treated differently.
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Fig. 3: Halton random sequence of 50 points for the IM case.

B. Gaussian Processes
A Gaussian Process (GP) can be viewed as a distribution

over real-valued functions: f(x) ∼ GP (m(x), k(x,x′)). A
GP is fully specified by its mean function m(x) and covari-
ance function k(x,x′) [5]. To train the GP model, we need
to estimate the hyperparameters θ̂. In this case, θ̂ contain
the parameters of k(x,x′). Maximum Likelihood Estimation
(MLE) [14] is used to estimate the hyperparameters:

θ̂ = argmax
θ

log p(f | X, θ) (25)

= argmax
θ

−1

2

(
log |2πKxx|+ fTK−1

xx f
)

(26)

where X = [x1,x2, . . . ,xn] are the training data, f is a vector
of function observations at X , and Kxx = k(xi,xj).

For predicting new points X⋆ = [x⋆1, . . . ,x⋆N⋆
], the Gaus-

sian predictive distribution is given as:

µ (X⋆) = K⋆xK
−1
xx y (27)

σ2 (X⋆) = K⋆⋆ −K⋆xK
−1
xx K

T
⋆x (28)

where µ (X⋆) is the predictive mean, σ2 (X⋆) is the predic-
tive variance, K⋆x = k(x⋆i,xj), and K⋆⋆ = k(x⋆i,x⋆j). For
the covariance function, the Matérn 5/2 kernel [15] is used:

k (x,x′) = α

(
1 +

√
5r +

5

3
r2
)
exp(−

√
5r), (29)

r =

√√√√ d∑
m=1

(xm − x′m)
2

l2m
(30)

where α is the kernel variance, and lm is the lengthscale for
dimension m. This kernel is adopted since we assume that the
physical model does not have overly-smooth response surfaces.

IV. SURROGATE MODEL SETTINGS

We consider four use cases to build the surrogate models,
Induction Motor Simulation (IM-M), Permanent Magnet Syn-
chronous Motor Simulation (PMSM-M), Three-Phase Inverter
with IM Motor (IM-TPI), and Three-Phase Inverter with PMSM
Motor (PMSM-TPI).

A. Data Sets

In this study, 250 points of training data are generated using
the Halton random sequence1. The domain specification for
the training data generation is given in the Table I.

TABLE I: Input domain specification

Parameter Lower bound Upper bound
DC Link Voltage 700 Volts 900 Volts
Load Torque 0 Nm 15 Nm
Desired Speed 1100 rpm 1490 rpm

The motor surrogate uses all of the three inputs described
in Table I, while the three-phase inverter surrogate does not
use the load torque variable and replaces it with the electrical
input power instead. Note that the domain for the electrical
input power variable is not fixed. Thus, its value will depend
on the other variables. After generating the inputs points, we
run the simulation2 to obtain the output variables. We set the
simulation time to 100 seconds with a 0.1 second time step to
reach a steady-state. In our training data sets, the maximum
and minimum value of the electrical input power are 246.3W
and 2608.6W, respectively.

B. Surrogate Models

We build surrogates for each output of the use cases. For the
IM-M use case, the measured current (ips,re) is constant. The
inputs and outputs of the different surrogates are presented in
Figure 4.

All of the surrogate models are built with three different
techniques. The first technique is the Gaussian Process (GP)
regression with the Matérn 5/2 kernel. The implementation of
the GP surrogate models is carried out using the GPFlow library
[18]. The other surrogate modelling techniques are Random
Forest (RF) and one variant of NN, the Multi Layer Perception

1For this task, Tensorflow Probability 0.13.0 is used [16]
2Using the OMPython library 3.2.0 [17]
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Fig. 4: The input-output behavior of the surrogate models.

(MLP). Both are implemented using the Scikit-learn library
[19]. For the RF, 100 trees are used and no maximum depth
is set. For MLP, we use 3 hidden layers with 150, 100 and 50
neurons, respectively. The Adam optimizer is used for learning
the weights of the MLP for 500 iterations.

V. S IMULATION RESULTS AND VALIDATION

A. Model Validation and Testing

The performance of the surrogate models is evaluated
using both 5-fold cross-validation [20] as well as independent
test sets. A test set of 500 random points is generated for
each model. The Mean Squared Error (MSE) is used as the
performance metric.

The full results of the comparison are shown in Table II. We
can see that the GP performs very well compared to the other
surrogate models with a relatively low number of training data.

B. Time-domain Validation

A time-domain validation is performed by changing one of
the value of the inputs continuously.

1) IM: In the IM-M scenario, we change the desired speed
input linearly 1475rpm to 1375rpm starting from t = 85s to
t = 90s. We consider surrogates for three outputs for this
case: mechanical loss, electrical loss, and the stator current
ips,im. The performance of the surrogate models is shown in
Figure 5. The Mechanical loss surrogate model has a good
prediction performance for the transient behavior. While, the
electrical loss and the stator current ips,im surrogates has a
slightly biased prediction for the transient phase. Furthermore,
after the transient period, the bias vanishes. The performance of
the surrogates models in the IM-TPI use case under the same
desired speed input changes is illustrated in Figure 6. There are
no biases in the mean prediction of the overall phase, however
in the start and the end of the transient phase, the conduction
loss, switching loss, and modulation angle surrogates have a
periodic behavior that our surrogates cannot capture.

2) PMSM: For the PMSM-M use case, we applied a change
for the torque load input. The changes are applied from a
steady-state for 12Nm to 5Nm, starting from t = 85s to t = 90s.
The surrogates have a good performance as depicted in the
Figure 7.

In the PMSM-TPI setting, we consider desired speed changes
like the IM case, since we are not using torque load as an
input. We can see from Figure 8 that the performance of the
surrogate models are better than in the IM-TPI setting. The
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Fig. 5: IM surrogate model validation for transient behavior.
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Fig. 6: TPI with IM transient behaviour validation under speed
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periodic behaviour at the start and the end of the transient
phase has lower amplitude than the IM-TPI setting.
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TABLE II: Validation and Testing Mean Squared Error (MSE) of all Surrogate Models

Surrogate Model Name Gaussian Process Random Forest Multi Layer Perceptron
K-Fold MSE Test MSE K-Fold MSE Test MSE K-Fold MSE Test MSE

IM-M electrical loss 2.168e-5 5.862e-6 6.768e-1 4.085e-1 9.696e-1 5.654e-1
IM-M mechanical loss 1.820e-6 7.192e-7 1.177e-1 2.622e-2 1.548 7.029e-1
IM-M measured currents (ips,im) 8.659e-9 1.883e-9 3.451e-3 2.051e-3 3.327e-2 2.198e-3
PMSM-M electrical loss 2.160e-4 1.654e-5 1.128e+1 1.412 1.800e+1 7.537
PMSM-M mechanical loss 3.640e-6 4.513e-7 1.173e-1 6.180e-3 1.780 7.115e-1
PMSM-M measured currents (ips,re) 5.307e-9 0.603e-9 3.822e-4 5.164e-5 3.423e-3 2.306e-4
PMSM-M measured currents (ips,im) 1.443e-8 2.703e-9 1.324e-2 1.678e-3 8.352e-2 7.991e-3
IM-TPI conduction loss 6.646e-6 7.390e-7 7.354e-2 3.647e-2 1.945e-2 8.486e-3
IM-TPI switching loss 3.611e-4 1.552e-5 1.037 5.029e-1 1.445e-1 6.297e-2
IM-TPI modulation ratio 3.325e-9 0.303e-9 1.068e-4 4.276e-5 1.032e-5 6.279e-6
IM-TPI modulation angle 0.169e-3 0.001e-9 2.124e-7 1.346e-7 6.082e-7 7.930e-8
PMSM-TPI conduction loss 2.260e-4 4.572e-6 2.349 1.180 5.267 3.417e-1
PMSM-TPI switching loss 9.051e-4 7.547e-4 8.757 4.813 4.188 5.935e-1
PMSM-TPI modulation ratio 3.114e-9 0.388e-9 7.149e-5 3.005e-5 3.244e-6 1.768e-6
PMSM-TPI modulation angle 1.721e-8 0.256e-9 9.147e-5 4.918e-5 2.417 1.659e-5
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Fig. 8: TPI with PMSM surrogate models transient phase
validation under speed reference changes.

VI. CONCLUSION AND FUTURE WORK

This paper benchmarks surrogate modelling techniques for
steady-state dynamic phasor based IM and PMSM electrical
drives. We conclude that GP surrogate models perform better
than MLP and RF in terms of predictive performance. Also,
GPs have desirable properties such as data efficiency and
uncertainty estimation of their prediction. We also investigated
the performance of the surrogates for predicting transient
behavior, which shows promising performance.

Future work will focus on building transient surrogate
models for explicitly modelling the transient behavior of the
physical model. Further, the uncertainty quantification of the
Gaussian Process could be utilized for various tasks such as
active learning and anomaly detection. Finally, a more detailed
speed comparison between the DP and the surrogate models
in resource-constrained environments will be conducted.
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