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Abstract—One of the challenges of medical text translation is 

the usage of a large and specialized vocabulary, while the available 

parallel corpora are limited. In this presentation, we will show that 

including computer-generated parallel sentences deduced from a 

multi-lingual medical ontology in the training set of a 

Transformer-based translation model provides large benefits. 

Despite being trained exclusively on publicly available datasets, 

our model can achieve a performance level that is superior to the 

current state of the art in machine translation for the medical 

domain. We show this by comparing the precision and recall of 

MetaMap’s medical concepts extraction [1] on a test set of clinical 

notes written in Dutch and subsequently translated to English, as 

well as by using more conventional quality metrics for translation 

models (BLEU, GPT-2 perplexity, cross-lingual cosine similarity). 
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I. INTRODUCTION (HEADING 1) 

Several studies, including [2] and [3], have confirmed the 
importance of unstructured clinical notes in critical tasks for 
the healthcare industry, such as readmission or treatment 
outcome predictions. It is estimated that up to 80% of the 
relevant information in electronic health records (EHR) can 
only be found in the unstructured text typed by clinicians, 
despite the introduction of many structured-information 
sources over the years.  

Two explanations for this are commonly cited: firstly, not 
every relevant piece of information can be mapped to an 
existing structured representation [4]; secondly, even when 
such representations exist, learning the existing coding 
systems and following through with their usage in practice is 
a source of friction that is sufficient to ensure that they will be 
routinely ignored by physicians, who find it easier to express 
themselves in natural languages [5].  

Because of that, a wide variety of models and datasets have 
been developed to take advantage of these notes in different 
ways, with examples including entity recognition [1,6,7], 
natural language inference [8,9] and question answering [10].  

Unfortunately, most resources usable for training remain 
available in English only. There are therefore few medical 
models of note in other languages. A solution to this problem 
would be to translate the resources currently available in 
English to other languages, such as Dutch, to be able to train 
models with similar capabilities in these languages. Another 
solution is to translate input from their native language to 
English. The latter is the approach evaluated in this paper. 

So far, commercially available translation pipelines have 
not yet met the required quality standard to make EHR 
translation possible in a way that is compatible with the strict 
requirements of the medical domain. Patil and Devies [11] 

noted that “Google Translate has only 57.7% accuracy when 
used for medical phrase translations and should not be trusted 
for important medical communications”, which is a 
surprisingly poor outcome given how popular the product is. 
While quality has improved in the recent years [12], there 
remains challenges with their usage in practice [13,14]. 

The main reason why these translation engines do not 
perform well for a domain is usually that there is insufficient 
train data for the domain [15]. Aligned clinical text is difficult 
to find [16]. Hiring human translator for medical text 
translation is usually listed at prices up to 10 times higher than 
for other types of text, making corpus creation costly [17]. 

Another reason is that the many medical texts come 
attached with strings, requiring anonymization and strict data 
retention policies [18]. These are not always compatible with 
the type of bulk processing large companies perform when 
building their translation pipelines. 

This issue is compounded with the fact that medical text is 
highly specialized and has lots of ad-hoc terminology, and 
therefore requires many training examples to be accurately 
translated [19]. 

Finally, frequently-used translation datasets themselves 
contribute to quality issues due to their heavy reliance on 
automatically-aligned crawled data from the internet, which 
have been shown to be extremely noisy and of poor quality, 
with Caswell et al. [20] reporting that almost half of the 
translations found in such corpora are incorrect or otherwise 
unusable, on average. 

In the remainder of this article, we will share how we 
tackled these various problems, as well as other practical 
issues we faced, to serve as a guide for developing high-
quality translation pipelines for niche domains or languages. 
We then validate our results by looking at multiple quality 
metrics, including downstream tasks such as clinical term 
extraction. 

II. METHODOLOGY 

To achieve performance above the current state of the art 
in machine translation, we decided to focus on building a 
neural translation engine based on already-proven Marian MT 
[21], the technology stack behind Microsoft Bing Translator. 
This stack can be summed up as an Encoder-Decoder 
Transformer architecture with 6 layers on each side, static 
position embeddings, and a jointly-learnt vocabulary for the 
Dutch and English tokenization. 

Our model was initialized using the OpusMT models [22] 
developed by the University of Helsinki. It was then finetuned 
using the HuggingFace library [23] on a V100 32Gb GPU. 



For the development of this NMT model, various datasets 
were collected then assessed for suitability, semi-parallel 
corpora were mined for parallel examples using multilingual 
sentence embeddings models, data augmentation techniques 
were used to transform corpora comprising of unnatural 
phrases into more easily generalizable parallel sentences. We 
cover these operations in more detail in the following sections. 

A. Finding parallel data for the biomedical domain 

The first challenge we tackled was the collection of 
parallel corpora relating to medical data. Given the sizable 
cost of high-quality translations of such corpora, few of these 
exist; but a couple of sources can help us get started. 

In the medical domain, drug notices are frequently legally-
required to be translated in multiple languages for use in 
countries with multiple official languages, like Belgium. For 
many products sold in the EU, these translations are being 
registered at the European Union level, at the European 
Medicines Agency (EMA).  

This is a good starting point, but these notices have a bias 
towards symptoms and diseases and do not cover medical 
procedures quite as much, which can be an issue. They are 
also aimed at a general public, and might try to avoid obscure 
terminology when alternatives are available, which clinical 
notes are not guaranteed to do. More datasets would be useful 
for achieving enough coverage. 

Surprisingly, finding parallel corpora in the medical 
domain became easier when focusing on applications of NLP 
in the medical domain rather than on translation directly. An 
aligned corpus of Medline guidelines for clinicians was for 
example discovered while looking for multi-lingual named-
entity recognition [24]. While not directly aimed at 
translation, these datasets can often align with that goal very 
well, and have the advantage of having been manually 
annotated, ensuring high quality. 

Given the large breadth of the medical domain vocabulary, 
these two sets of corpora are not sufficient to achieve adequate 
coverage. Fortunately, the medical sector has developed over 
time many coding systems and ontologies, some of which 
have been partially or totally translated in multiple languages.  

One such ontology, SnomedCT [25], was mined by us for 
parallel phrases. It is important to note that these ontologies 
are rarely aimed at translation, and while each concept can 
have multiple representations in any given language, these 
representations are not linked across languages. We therefore 
used Google’s LaBSE model [26] to find best-matching pairs 
among the possibilities offered to us by the SnomedCT 
translation alternatives.  

Given SnomedCT contains more than 700k concepts, 
using this mined corpus is an excellent way to improve 
vocabulary coverage. In addition, using this corpus biases the 
translation towards phrases that are easily recognizable by 
English NLP systems since they are part of the exact matches 
found in UMLS [27], a superset of SnomedCT. This lessens 
the burden on the English clinical term extraction model, by 
guiding the translation to well-known phrases. 

Further investigation however revealed that adding these 
phrases straight to the training corpus did not yield the 
expected results while working with neural machine 
translation models, as they apparently had trouble translating 

known phrases when they were embedded inside sentences, 
even though they were well translated taken separately.  

To overcome this and teach the model the role which these 
noun phrases can play in sentences (and thus boost 
generalization), a data augmentation technique was devised to 
generate several full sentences containing these terms, based 
on 50 manually crafted generic sentence templates. 

For each concept in the ontology, parallel sentences were 
generated using 3 random templates out of these 50, by 
replacing a masked token by the concept names in Dutch and 
English respectively. The same LaBSE-matched pairs were 
used again, but including them in multiple sentences 
reinforced the translation model's ability to translate them 
correctly in context (see ablation studies). 

B. Finding parallel data for spoken language 

Another issue we noticed with clinical notes is that, unlike 
most written technical text, they feature many similarities with 
spoken text (ellipses, chaotic punctuation, fluid grammatical 
structure) while all the before-mentioned medical corpora are 
carefully redacted.  

To address this challenge, our training set was expanded 
to include the OpenSubtitles dataset [28], which features a 
large variety of parallel subtitles (from movies to 
documentaries). Adding these subtitles improved the fluency 
of our translations visibly, although we had to take particular 
care in overcoming some biases stemming from this dataset 
(for example, most movies in the US use the Imperial units 
system, and the translation engine started translating the 
metric values into imperials, which is not a desired outcome). 

C. Overcoming the lack of in-domain EHR parallel corpus 

Despite the usage of the above-mentioned resources, it 
remains a fact that no in-domain training data (i.e. clinical 
notes) has been suggested so far. To overcome this, the 
frequently-used technique of back-translation was employed.  

In particular, sentences of the MIMIC-III clinical notes 
corpus [29] and of the NIH Clinical Trials outcome dataset 
[30] were back-translated from English to Dutch using Google 
Translate, and added to the training dataset for a final 
finetuning (described in more detail in the next section). While 
these translations are not perfect, what matters is the target 
English. 

This was motivated by our impression that Google 
Translate's main advantage over its competitors seemed not to 
be better understanding of the encoded Dutch, but rather a 
translation into more fluent English. 

Adding in-domain sentences in English should thus 
improve the output quality, by guiding the language model of 
the decoder.  

 

Fig. 1. Flowchart explaining the sentence-generation from Snomed CT  



III. EXPERIMENTS 

To evaluate this model, the AZ Delta hospitals kindly 
provided us (post-training) with a small sample of 
anonymized text documents, extracted from their EHR. These 
texts are in the same medical domain as the train dataset, but 
feature more spoken-language phrasing, and the usage of 
punctuation in the text is not always consistent.  

These short pieces of Dutch text are subsequently 
translated using the various systems being tested, and the 
quality of these translations is what is being reported in the 
results section below. 

A sample of the pieces of text used is shown below (dates 
have been redacted to increase the patient’s privacy): 

Datum 1: Instabiele angor. Ostiale stenose LAD 
angularistak en stenose van meer dan 50% op de RCA. 
Stressischemie RCA en angularisgebied.  

Datum 2: Coronaire bypasschirurgie met lima naar 
angularistak en LAD en vene naar de ramus posterior 
descendens. Postoperatief eenmalig VKF.  

Datum 3: Blaasneoplasie waarvoor resectie. 

Fig. 2. Example of test data used to evaluate the models 

Note that this test set is different from the development set 
used for evaluating the model and choosing hyper-parameters 
values, which consisted of a left-out portion of the training set. 

To evaluate the quality of the translations generated by the 
various systems, we decided to use the following four metrics, 
to avoid focusing on one particular aspect: 

BLEU score on medical text translation: BLEU [31] is 
the most popular metric to judge translation quality. It 
compares the precision of a candidate translation in regard to 
a golden standard by counting their overlap in the n-gram 
domain. Terse and accurate translations often score well in 
BLEU score. Changes in word order at the global level do not 
affect the BLEU score too much, which enables for sentence-
level word reordering at very low cost. Paraphrases or 
difference in language variations can however alter the BLEU 
score negatively. Despite these disadvantages, BLEU remains 
an important metric for translation rating, and translation 
models that perform well should also do well with this metric. 

MetaMap concept extraction: MetaMap [1] is a 
frequently used system for medical concept extraction in text 
documents. It is based on the UMLS metathesaurus [27], and 
operates based on a set of rewriting rules followed by a 
precision/coverage scoring system for potential matches. 
Texts were first manually annotated by a medical ontology 
specialist, and the recall and precision of the MetaMap 
concept extraction are subsequently evaluated based on that 
golden standard. Because of the way MetaMap works, it is 
important for the generated translation to use phrases as close 
as possible to those usually found in medical text written in 
English to perform well on this test. 

GPT-2 perplexity: GPT-2 [32] is an autoregressive 
language model trained on text extracted from the web. Its 
weights encode many bits of world knowledge, and is often 
used in transfer-learning scenarios, but in this case its usage as 
a language model is what we are interested in. Good 
translations should be plausible sentences in English, and 

therefore their perplexity in GPT-2 should be low. Translation 
models with a high fluency should score well with this metric, 
because they generate more plausible sentences than models 
that generate word-for-word translations. 

XLM-R cosine similarity: XLM-R [33] is the state-of-
the-art multi-lingual semantic sentence embedding system at 
the time of writing. An indication of how well sentences are 
translated would be the perceived similarity between their 
embeddings in the XLM-R space. Models that preserve the 
meaning of sentences should score well with this metric, but 
models that do not translate part of the sentences can also 
score high, so this metric should be used with caution. 

IV. RESULTS 

All metrics confirm our model performs well for 
translating Dutch medical text into English. These results are 
summarized in Table 1. 

TABLE I.  EVALUATION METRICS OF TRANSLATION QUALITY  

Metrics / Model Google DeepL Microsoft Ours 

BLEU (average) 64.3 61.8 58.5 69.1 

MetaMap (recall) 82% 80% 69% 86% 

GPT-2 (perplexity) 298 295 375 215 

 

A. BLEU score on medical text translation 

BLEU, the most used metric for translation, gives our 
model a 5 points advantage over Google on the test set. While 
BLEU is not meant to be averaged per-sentence, the relative 
ordering is what matters. 

B. MetaMap concept extraction 

Our most impressive result is an improvement of recall on 
a challenging medical concept extraction task based on 
MetaMap, where our model achieved a recall of 86% (against 
Google Translate’s 82% and Microsoft Translator’s 69%). We 
expect this to be in line with the downstream task performance 
obtained by our translations. 

C. GPT-2 perplexity 

When evaluated based on the GPT-2 perplexity of the 
translations, our model again performs the best on the test set 
(see Table 1).  

The perplexity gap between our model and Google 
Translate (215 vs 298) seems to confirm that our model 
generates more fluent translation in the eyes of GPT-2. 

That said, looking at the data manually seems to indicate 
that this only applies to specifically medical-domain 
constructs, as Google Translate seemed to remain more fluent 
overall. 

D. XLM-R cosine similarity 

When evaluated on the cross-language cosine similarity of 
the translations, all models seem to perform at about the same 
level, around 80% of similarity between sentence pairs.  

The numbers even suggest it is possible that better 
translations yield a slightly worse average cross-lingual cosine 
similarity, but the difference (0.80 vs 0.81 vs 0.82 vs 0.80) is 
not significant given the size of our test set. We therefore 
chose not to include this metric in Table 1 given its lack of 
relevance, but still wanted to report our findings. 



V. ABLATION STUDIES 

To show the importance of the LaBSE matching of 
medical concepts found in SnomedCT, and the sentence-
generation pipeline based upon these results, we ran two 
ablation studies.  

NSS (No SnomedCT sentences): The first variant 
consists in a model trained on the same data as our best model, 
including the LaBSE-matched medical phrases from 
SnomedCT, but from which the computer-generated 
sentences including those matches were excluded. The results 
of this ablation show the gain in generalization obtained by 
generating sentences from SnomedCT terms. 

NS (No SnomedCT): The second variant consists in a 
model trained on the same data as our best model, but from 
which both the SnomedCT matches found by LaBSE and their 
augmented sentences have been excluded. The results of this 
ablation study show the gain in vocabulary obtained by the 
addition of the SnomedCT matches. 

As can be seen in the table below, disabling the sentence 
augmentation for SnomedCT concept pairs degrades the 
translation quality for MetaMap extraction by a factor of 3%.  

Excluding the SnomedCT pairs entirely from the train 
dataset further degrades the performance by an additional 4%, 
at which point our model becomes worse than Google 
Translate for the task of concept extraction. 

TABLE II.  EVALUATION METRICS (ABLATION STUDY) 

Metrics / Model Ours NSS NS 

BLEU (average) 69.1 62.3 56.6 

MetaMap (recall) 86% 83% 79% 

 

These encouraging results demonstrate the value we were 
able to extract out of the SnomedCT translation dictionary we 
derived thanks to LaBSE. Based on these results, we decided 
to release this translation dictionary as well, because it can be 
useful in further experiments by other researchers. 

VI. CONCLUSION 

These encouraging results demonstrate the value we were 
able to extract out of the SnomedCT translation dictionary we 
derived thanks to LaBSE. Based on these results, we decided 
to release this translation dictionary as well, because it can be 
useful in further experiments by other researchers. 

Thanks to our careful data collection and the generation of 
sentences based on the SnomedCT ontology, we were able to 
advance the state of the art for Dutch medical text translation, 
and to provide the first offline translation model achieving 
state-of-the-art results in the clinical domain. 

Our model and the accompanying dictionary are now 
released on the HuggingFace repository. Taking advantage of 
the open licensing of the data used during training, both were 
released under a non-restrictive MIT License. 

 

EXTERNAL RESOURCES 

A. Translation Dictionaries 

https://github.com/FremyCompany/ 
snomed-translate-dictionaries 
 

B. Translation Model 

https://huggingface.co/FremyCompany/ 
opus-mt-nl-en-healthcare  
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