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Abstract
Bayesian optimization is a popular tool for optimizing time-consuming objective functions
with a limited number of function evaluations. In real-life applications like engineering
design, the designer often wants to take multiple objectives as well as input uncertainty
into account to find a set of robust solutions. While this is an active topic in single-objective
Bayesian optimization, it is less investigated in themulti-objective case.We introduce a novel
Bayesian optimization framework to performmulti-objective optimization considering input
uncertainty. We propose a robust Gaussian Process model to infer the Bayes risk criterion
to quantify robustness, and we develop a two-stage Bayesian optimization process to search
for a robust Pareto frontier, i.e., solutions that have good average performance under input
uncertainty. The complete framework supports various distributions of the input uncertainty
and takes full advantage of parallel computing. We demonstrate the effectiveness of the
framework through numerical benchmarks.

Keywords Efficient global optimization · Robust optimization · Bayesian optimization ·
Gaussian process

1 Introduction

In many real-life applications, we are faced with multiple conflicting goals. For instance,
tuning the topology of neural networks for accuracy as well as inference time [11]. A solution
that is optimal for all objectives usually does not exist, and one has to compromise: identify a
set of solutions that provides a trade-off among different objectives.Moreover, the calculation
of the objectives sometimes requires a significant computational effort. Hence, a Multi-
ObjectiveOptimization (MOO) strategy,which is able to quickly locate the optimal trade-offs
while reducing the number of expensive evaluations, is of practical interest.

Multi-Objective Bayesian Optimization (MOBO) (e.g., [7, 29]) is a well-established effi-
cient global optimization (EGO) ([18]) technique to search for an optimal trade-off between
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Fig. 1 Comparing two solutions in a maximization problem using their Bayes risk measures JA and JB , i.e.,
the expectation of the objective function under uncertainty as defined in Eq.1 a Single-objective: candidate
xB (orange) is superior over xA (blue) as its Bayes risk measure JB is higher. b Multi-objective: candidate
xB is preferable as J B dominates the Bayes risk J A of candidate xA . (color figure online)

conflicting objectives. Its useful properties, including data-efficiency and an agnostic treat-
ment of the objective function, havemadeMOBOawidely applicable optimization technique,
especially where the objectives are time-consuming to evaluate.

In a chaotic world full of uncertainties, it is almost impossible to implement an optimal
solution exactly as defined. For instance, consider an optimal configuration of a system found
by MOBO. Any manufacturing uncertainty could result in a slightly different configuration
and hence result in a possible degradation of the actual performance. Among these uncertain-
ties, we are specifically interested in considering input uncertainty: a common uncertainty
type caused by perturbations of the input parameters, that might result in different outputs.
Considering input uncertainty in MOO is important to ensure that the final implemented
optimal solutions are still likely to be satisfactory. Hence, it is also of high interest in MOBO.

Limitation of current approaches Data-efficient approaches have been proposed to per-
form MOBO considering input uncertainty ([24, 30]). These approaches extend existing
robust MOO methodologies with a computationally efficient surrogate model, however, the
surrogate model is only utilized in a non-Bayesian way, i.e, the posterior mean is used as
a point estimation, and the model refinement step has to be defined explicitly. This has
usually resulted a complicated robust MOO framework. Motivated by these, we propose a
lightweight robust MOO framework that deals with robustness in a principle way and still
enjoys the elegance of the standard BO flow.

Contributions This paper introduces a Robust Multi-Objective Bayesian Optimization
framework to pursue a set of optimal solutions that considers a pre-specified InputUncertainty
(RMOBO-IU). In order to handle the input uncertainty, we optimize a robustness measure,
defined as the expectation of the objective distribution induced by the input uncertainty , or
Bayes risk [3] (see Fig. 1) [9]. To provide a data-efficient inference of this unobservable
quantity. we construct a Robust Gaussian Process (R-GP) as the surrogate model of the
Bayes risk, where a deterministic GP realization can be achieved through the utilization of
the Sample Average Approximation (SAA) [2, 19].

Note that there is a mismatch in the type of uncertainty provided by the R-GP and the
uncertainty expectedby a commonmyopic acquisition function, as the latter usually implicitly
assumes that this uncertainty comes from a random variable that is directly observable.
In order to mitigate this issue, we propose a two-stage approach that can handle existing
acquisition functions, including myopic acquisition functions which are commonly used in
MOBO. The proposed flexible RMOBO-IU framework, illustrated in Fig. 2 and detailed
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Fig. 2 RMOBO-IU flowchart: the Bayes risk J of the objectives are derived from Gaussian processes MJ .
In the first stage, an off-the-shelf acquisition function is used to select (q) query points: X∗

q := {x∗
1, ..., x

∗
q }.

For the second stage, these points are then re-investigated by an Active Learning (AL) acquisition function
if the AL process activation condition has been met. The updated query points are then fed to the expensive
objective observer and augment the training data. The iteration loop continues until a termination condition
has been met. Eventually, the robust model, queried data, and the query pool can be utilized to make optimal
robust recommendations

in Algorithm. 1, can be used with existing acquisition functions and with different input
uncertainty distributions. The effectiveness of this novel method has been demonstrated on
several synthetic functions.

The key contributions can be highlighted as:

1. A Bayesian optimization taxonomy for robust multi-objective optimization.
2. A deterministic Robust Gaussian Process (R-GP), using the efficient Sample Average

Approximation (SAA) based Monte Carlo kernel expectation approximation (SAA-MC
KE) to infer the Bayes risk, with a proper complexity analysis.

3. We highlight some problems when applying a myopic acquisition function with a robust
Gaussian Process and present a novel nested active learning policy to alleviate these.

4. New synthetic benchmark problems for robust multi-objective Bayesian optimization
under input uncertainty.

The remaining of the paper is structured as follows. First, the background and related tech-
niques are described in Sect. 2. TheRMOBO-IU framework, including themodel description,
is introduced in Sect. 3. The numerical experiments are presented in Sect. 4. Conclusions are
provided in Sect. 5.
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2 Preliminaries and related work

2.1 Preliminaries

Multi-Objective Optimization (MOO)methods search for optimal solutions considering mul-
tiple objectives simultaneously. This can bemathematically expressed as finding the optimum
of a vector-valued function f := { f1, ..., fM } in a bounded design space X ⊂ R

d , where M
represents the number of objectives. In the context of MOO, the comparison of different can-
didates is done through a ranking mechanism Arank . Considering the goal of maximizing
each objective function, a candidate x is preferable to x′ if ∀i ∈ M : fi (x) ≥ fi (x′) and
∃i ∈ M : fi (x) > fi (x′). This specific ranking strategy is termed as dominance (	) and
described as f (x) dominates f (x′): f (x) 	 f (x′). In MOO, the candidate x is defined as
Pareto optimal input if �x′ ∈ X such that f (x′) 	 f (x). In this case, f (x) is defined as a
Pareto optimal point. Given that different objectives usually conflict with each other, MOO
seeks for a Pareto frontierF∗ that consists of all the objective values f of the Pareto optimal
solutions in the bounded design space X : F∗ := { f ∈ F f |� f x′ ∈ F f s.t . f x′ 	 f }, where
F f := { f (x)|x ∈ X }.

In many scenarios, the vector-valued function f does not have a closed-form expression,
and observing the function value may have a high computational cost. For this class of
problems, it is of paramount importance to restrict the number of function queries when
searching for F∗.

Bayesian Optimization (BO) [18] is a sequential model-based approach to solving optimiza-
tion problems efficiently [26]. Starting with a few training samples D = {X, F}, it builds a
Bayesian posterior modelM (with a Gaussian Process (GP) as a common choice [23]), as a
computationally efficient surrogate model of f . Given the predictive distribution from the
surrogate model, an acquisition function can be defined as a measure of informativeness
for any point x in the design space. It is hence able to search and query the most informative
candidate {x, f (x)} to augment the dataset D and update M accordingly. This process of
refining the posterior model and searching for optimal candidates can be conducted sequen-
tially until a predefined stopping criterion has beenmet. Eventually, the finalmodelM and the
dataset D can be utilized for recommending optimal solutions. The same paradigm is usually
referred to asMulti-Objective Bayesian Optimization (MOBO) when f is vector-valued,
and the goal is searching for the Pareto frontier F∗.

Input Uncertainty is a common type of uncertainty that is studied in this paper. Suppose
we would like to implement a configuration x. The input noise, which can be formulated
as an additive noise term sampled from a distribution ξ ∼ p(ξ), could result in a different
implementation x + ξ that can worsen the performance. The additive noise distribution ξ

results in a distribution of possible objective function values p( f (x+ξ)|ξ), which is refereed
to as the objectivedistribution. In this research,we assume that the additive noise distribution
form is known from practitioners and can be unbounded.

Optimality in Robust Multi-objective Optimization The Bayes risk measure is optimized to
obtain a set of non-dominated solutions in Bayes risk space. As the robustness is measured
through pairwise comparison as depicted in Fig. 1, this assumes that the practitioner is more
interested in the robustness of certain candidates among the Pareto Frontier instead of the
(robustness of the) whole Pareto frontier. Remark that this is usually the case for MOOwhere
only one solution is selected a posteriori. Hence, the goal of our formulation is to search for
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a robust Pareto frontier, which we define as the Pareto frontier in the Bayes risk space:
F∗

J := {J ∈ JJ |�J x′ ∈ JJ s.t . J x′ 	 J}, where JJ := {J(x)|x ∈ X }.

2.2 Related work

Several approaches have been proposed to link the robust MOO methodology with a GP
surrogate model [1, 24, 28, 30]. [28] consider the worst-case robustness scenario, for which
the worst objective function is extracted from the GP. [30] introduce a GP surrogate model
assisted multi-objective robust optimization strategy based on [20], where the GP acts as an
efficient surrogate and hence, as a cheap intermediary for a genetic algorithm to search for
the optimum. In a more probabilistic setting, [24] propose an interesting bounding box-based
efficient MOO framework. For each observation, a conservative bounding box is constructed
based on some robustness measures approximated by MC sampling on the surrogate model,
with the assumption that an extra aleatory variable can bemodeledwith a uniform distribution
built upon the bounding box. The concept of probability of box-based Pareto dominance is
utilized to compare against different aleatory variables hence different observations. Subse-
quently, it can search for the optimum or improve the surrogate model accuracy accordingly.
Nevertheless, while equipped with a GP as a probabilistic surrogate model, the robustness
measure of the above-mentioned approaches are usually extracted in a non-Bayesian way as
a point estimation from the posterior mean, and the surrogate model refinement step must be
defined explicitly. A more principled BO-like RMOBO framework has yet to be revealed.

3 RMOBO-IU framework

3.1 Optimizing Bayes risk versus optimizing the original objective function

The Bayes risk is utilized as objective in the RMOBO-IU framework:

Maximize
x∈X⊂Rd

J1(x), J2(x), ..., JM (x)

where J (x) =
∫

f (x + ξ)p(ξ)dξ
(1)

Given the fact that we are optimizing the Bayes risk J , we useF∗
J andF∗

f to represent the
Pareto frontier of the robust and non-robust optimization problem (i.e., optimize the original
objective function f ), respectively. It is natural to wonder what the difference is between
F∗

f and F∗
J . Using the objective space, the difference can be categorized into four different

cases [9] as shown in Fig. 3. Except for the first case, the remaining cases clearly show that
F∗

J leads to more robust optimal solutions, at least for some parts of the Pareto fronts.
It might be difficult to determine whether a robust Pareto front exists that is different from

F∗
f . This is not trivial to answer due to the agnostic property of the black-box function J .

Nevertheless, from a practitioner perspective, we define a sufficient condition based on the
objective functions which helps to determine whether a distinct robust Pareto front exists:

Proposition 1 If ∃ fi ∈ f , Ji ∈ J , s.t. for x f ∗
i

:= argmax
x∈X

fi (x), x J∗
i

:= argmax
x∈X

Ji (x).

x f ∗
i

�= x J∗
i
, x J∗

i
is unique and f x J∗

i
/∈ F∗

f .

Then: ∃xdi f f ∈ X such that J(xdi f f ) ∈ F∗
J while f (xdi f f ) /∈ F∗

f , and F∗
f �= F∗

J .
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Fig. 3 Four different cases comparing the Pareto front F∗
f with the Pareto front F∗

J considering input uncer-
tainty. Images courtesy of [9]. (color figure online)

Proof Given x f ∗
i

:= argmax
x∈X

fi (x), x J∗
i

:= argmax
x∈X

Ji (x), having x f ∗
i

�= x J∗
i
means

fi (x f ∗
i
) > fi (x J∗

i
) and Ji (x f ∗

i
) < Ji (x J∗

i
), according to the definition of Pareto dominance,

Let xdi f f := x J∗
i
, we have J(xdi f f ) ∈ F∗

J and f (xdi f f ) /∈ F∗
f . Meanwhile, as �x ∈

{x ∈ X | f (x) ∈ F∗
f } such that the i th component of its outcome: Ji (x) ≥ Ji (xdi f f ), hence

F∗
f �= F∗

J and the proposition holds.

The proposition conveys that if the objective function fi has a different global maximum
location x J∗

i
(for Bayes risk) which is also not Pareto optimal in the objective space, then

there will be a distinct robust Pareto front.

3.2 Inference of the Bayes risk

3.2.1 Robust Gaussian process (R-GP)

Each black-box function i is assumed to be a realization of Gaussian Process. Hence, given
limited training data D, the i th GP model M fi ’s posterior representing fi at x is:

m fi (x|D) = k fi (x)T K−1
i Fi (2)

Cov fi (x|D) = k fi (x, x′) − k fi (x)T K−1
i k fi (x

′) (3)

where Fi is the training data for the i th black-box function, K i is the kernel matrix of the
i th objective.
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Fig. 4 1D example of a standard GP (blue) and Robust GP (orange and green) considering a Gaussian input
uncertainty distribution (with variance 0.008), illustrated at input x = 0.5. It can be observed that the Bayes
risk favors the less risky maxima. The comparison of the posterior distribution using analytical KE (orange)
and SAA-MC based KE (green) GP is also shown. The SAA-MC KE results in a differentiable approximation
of the GP posterior

Nowconsider the transformationof expectation through input uncertainty. Since the expec-
tation in Eq.1 is a linear operator, we can obtain a Gaussian Process for inferring Bayes risk
Ji by applying linear transformation rules [21, 23], resulting in:

p(Ji |D, x) = N (mJi ,CovJi ) (4)

mJi (x|D) = kJi fi (x)T K−1
i Fi (5)

CovJi (x|D) = kJi (x, x′) − kJi fi (x)T K−1
i k fi Ji (x

′) (6)

where kJi fi and kJi are defined using the following Kernel Expectation (KE):

kJi fi (x) =
∫

k fi (x + ξ)p(ξ)dξ (7)

kJi (x, x′) =
∫ ∫

k fi (x + ξ , x′ + ξ ′)p(ξ)p(ξ ′)dξdξ ′ (8)

We refer to the derived GP that infers the robustness measure as the robust GP. For some
kernels and uncertainty distributions p(ξ), an analytical expression exists for the KE. One of
the most well-known analytical KE is the squared exponential kernel under Gaussian input
uncertainty [6], see Fig. 4 (orange posterior mean and uncertainty interval). Unfortunately,
for more generic cases, an analytical expression is non-trivial to obtain. In this case, one can
defer to Monte Carlo (MC) approximations1:

mJi (x|D) ≈ 1

N

N∑
j=1

[
k fi (x + ξ j )

]
K−1

i Fi (9)

CovJi (x|D) ≈ 1

N

N∑
j=1

[
k fi (x + ξ j , x

′ + ξ ′
j ) − k fi (x + ξ j , x

′)K−1
i k fi (x, x′ + ξ ′

j )
]

(10)
While the common approach is to redraw samples ξ for every evaluation point x to

obtain the posterior predictive distribution, we apply the sample average approximation [2,

1 To improve the numerical stability, we leverage the methodology of [16] with a nugget term to search for
the nearest positive definite matrices for Eq.10 when a full covariance posterior matrix is needed.
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Table 1 Inference complexity of a standard GP and R-GP, where ntr is the training sample size and ntest is
the test sample size

Standard GP R-GP

Computation

Complexity

Not full-cov inference ntr ntest N · ntr ntest
Full-cov inference ntr n2test N · ntr n2test
Memory

Consumption (parallized)

Not full-cov inference max(ntest ntr ) N · max(ntest ntr )

Full-cov inference max(n2test , ntest ntr ) N · max(n2test , ntest ntr )

N is the MC sample size for the kernel expectation

19] through the MC based kernel expectation (SAA-MC KE). This is illustrated in Fig. 4
(green posterior mean and uncertainty interval). Given a differentiable kernel, by holding
MC samples fixed: E = {ξ1, ..., ξ N } for KE, we are able to provide a deterministic and
differentiable approximation of the posterior distribution, which is easily utilizable by off-
the-shelf acquisition functions. Furthermore, we can still use gradient-based optimizers for
optimizing the acquisition function.

3.2.2 Inference complexity

We derive the computation complexity of inferencing the Bayes risk J with respect to the test
sample size ntest , as well as the memory consumption2 in Table 1. Fortunately, the main extra
computation effort only affects the inference stage instead of the model training stage. The
latter is usually regarded as the main bottleneck of GPs. For common GP implementations,
the introduction ofMC samples increases the complexity N times, i.e., it grows linearwith the
number of MC samples. We propose to parallelize the computation through N MC samples
and so, we trade of the time increment against memory consumption.

3.3 Two-stage acquisition function optimization process

3.3.1 First stage: acquisition optimization

As the R-GP provides a (multivariate) normal posterior distribution p(J |x, D), it is conve-
nient to utilize existing (multi-objective) acquisition functions to search for the Pareto frontier
F∗

J . We use common myopic acquisition functions for MOBO (e.g., Expected Hypervolume
Improvement (EHVI) [29], Parallel Expected Hypervolume Improvemet (qEHVI) [7, 8] and
Expected Hypervolume Probability of Improvement (EHPI) [5, 29]), with a brief remark
below.

2 We report the single storage component that can possibly take themaximummemory, andwe do not consider
the memory consumption for the original kernel matrix storage as it is not correlated with ntest .
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Fig. 5 Illustration of the non-observable property of the posterior distribution of R-GP at input location x. The
R-GP prediction of the Bayes risk’s uncertainty of is illustrated as the orange shaded area. The blue shaded
area represents the uncertainty of the predictive objective distribution which comes from the modelM f . This
implies since we do not have direct observation {x, J(x)}, only when the blue shaded area is reduced by
sampling the Bayes risk predictive uncertainty will be reduced to zero

Recall that many acquisition functions can be written in the following form [27]:

α(Xq ;ψ, D) =
∫

J Xq

�(J Xq ;ψ)p(J Xq ;mJ ,CovJ )d J Xq (11)

where � denotes the utility function (using the acquisition function parameter ψ), Xq :=
{x1, ..., xq} represents a batch of q input candidates. For myopic acquisition functions,
ψ can be defined as the current best Pareto frontier inferred using the R-GPs: ψ :=
Arank(JD|MJ , D), and results in the following expression:

α(Xq ;ψ, D) =
∫
JD

∫
JXq

�(J Xq ; Arank(JD|MJ , D))

p(J Xq ;m J Xq
,CovJXq

)p(JD;m JD ,CovJD )d J Xq d JD

≈
∫
J Xq

�(J Xq ; Arank(JD|MJ , D))p(J Xq ;m J Xq
,CovJXq

)d J Xq

(12)

The operator Arank is the non-dominated sorting operation.We note that the extracted current
best Pareto frontier is also a distribution due to the fact that the Bayes risk J is not observ-
able. We could simplify the problem by making use of the posterior mean of the R-GP:
Arank(JD|MJ , D) as an approximation to avoid the integration of Pareto frontier distri-
bution [15], resulting in the last line of Eq.12. Nevertheless, the distribution of the Pareto
frontier can also be considered, for instance, by leveraging MC sampling [8]. Finally, we
remark the last line of Eq.12 can be analytically calculated exactly for EHVI, EHPI, and
approximately calculated by qEHVI acquisition functions.

3.3.2 Second stage: active learning for reducing uncertainty

While we can already use the acquisition function to search for the Pareto front F∗
J , we

note that there is an inconsistency between the R-GP’s inference p(J |x, D) and what the
acquisition functions mentioned above expects. More specifically, as illustrated in Fig. 5,
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the posterior variance of the R-GP posterior aggregates uncertainty coming from the input
uncertainty and the model approximations M f . This means the inferred Bayes risk J |x, D
could still be uncertain (i.e., the posterior variance of p(J |x, D) doesn’t vanish to zero)
at x even if the model has already included data at x. Nevertheless, the myopic acquisition
function, which build on the assumption that its predictive quantity p(J |x, D) to be directly
observable [14, 17], cannot handle this inconsistency intrinsically.

This results in two possible issues when applying of standard BO. First, as the input
uncertainty could result in a design that is outside the bounded design space, the inference
variance of the Bayes risk cannot be lowered to zerowhen restricting sampling only inside the
design space. This results in the acquisition function adding duplicate samples at boundary
locations. Secondly, common acquisition functions will waste resources on the same sample
within the design space in a futile effort to reduce uncertainty, resulting in another duplication
issue, which can also impose numerical instabilities to the model.

While not explicitly discussed in most of the existing research, we remark that these
issues generically exist in single-objective robust BO when performing optimization on the
Bayes risk. In order to resolve these issues, we propose an AL policy. We introduce an
information-theoretic-based active learning acquisition function. As illustrated in Fig.6, its
intuitive interpretation is that we want to maximally reduce the uncertainty of the predictive
distribution of J |D at candidate x∗. Instead of directly sampling at x∗, we seek the candidate
that can maximally reduce its uncertainty, which is quantified by differential entropy.

αAL = H[J(x∗|D)] − E f (x)H[J(x∗|D, {x, f (x)})] (13)

where the expectation is taken through all possible f (x) described by the GP posterior. Given
the assumption that we fixed the GP model M’s hyperparameters during the acquisition
optimization, the variance of J(x∗|D, {x, f (x)}) is independent of f (x), and hence it is
sensible to avoid the expensive computation of the one dimensional integration by only
making use of the posterior mean of f (x):

αAL ≈ H[J(x∗|D)] − H[J(x∗|D, {x, f (x)})]

= 1

2
log

∏M
i=1 VJi (x

∗|D)∏M
i=1 VJi (x∗|D, {x, f (x)})

(14)

where VJi represents the variance of i th J . As AL brings extra computational complexity, it
is sensible to only use it when at least one of the following conditions is met: (i). when BO
has resulted in sampling at the design space boundary, which can be defined as:minvec(x∗ −
BXl ) < ε or minvec(BXu − x∗) < ε, where BXl , BXu represents the lowest and largest
point coordinates that can define the design space, ε is a small non-negative threshold,minvec

is the coordinate-wise minimum operator, (ii). when BO has resulted in duplicate sampling
in the design space: min||X − x∗|| < ε. Assuming the acquisition function has resulted
in sampling x∗, we propose to perform the AL optimization step within the bounded space
B : [x∗ − �x, x∗ + �x], where �x is a hyperparameter (illustrated in Fig. 6) that needs
to be specified upfront. For bounded input uncertainty distributions, this can be intuitively
specified as the distribution boundary; for the unbounded input uncertainty distribution like
Gaussian distribution, a distance between the mean and 97.5 percentage of the marginal
distribution can be chosen as �x.
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Fig. 6 Illustration of the boundary issue and the duplication issue in robust optimization. The predictive
uncertainty of Bayes risk at x = 1 (i.e., V(J (x = 1))) cannot be lowered to zero even by sampling exactly
at this location. The active learning (green) acquisition function is proposed to resolve the boundary issue.
The design space boundary is illustrated as the red vertical dashed line. The AL process can hence result in
sampling outside the original design space in order to reduce the uncertainty at the design space boundary.
(color figure online)

3.4 Framework outline

Algorithm 1: Robust Multi-Objective Bayesian Optimization considering Input Uncer-
tainty (RMOBO-IU)

1 Input: max iter: Niter , design space : X , training data D = {X,Y }, query pool:
Q = {}, design space boundary stack: BX = {BXl , BXu }, minimum distance
threshold: ε, �x ;

2 for i ter := 1 to Niter do
3 construct model based on D: MJ : {J1 ∼ GP ′

1, ..., JM ∼ GP ′
M }

4 X∗
q = argmax

x∈X α(Xq , ψ,MJ )

5 Augment query pool: Q = {Q ∪ X∗
q}

6 initialize AL and BO pool: X∗∗
k = {}, X∗

q\k = {}
7 for j := 1 to q do
8 if min||X − x∗

j || < ε or minvec(x∗
j − BXl ) < ε or minvec(BXu − x∗

j ) < ε

then
9 x∗∗

j = arg max
x∈[x∗

j−�x ,x∗
j+�x ]

αAL(x, x∗
j ,MJ ,M f )

10 X∗∗
k = X∗∗

k ∪ x∗∗
j

11 else
12 X∗

q\k = X∗
q\k ∪ x∗

j

13 end
14 Concatenate: X∗∗

q = X∗∗
k ∪ X∗

q\k
15 end
16 Query observations and augment training data: D = {D ∪ {X∗∗

q , f (X∗∗
q )}}

17 end
18 Concatenate optimal candidates : Xcand = {x ∈ X : x ∈ X ∪ Q}
19 Output ranking on model inferred optimal candidates: Arank(MJ (Xcand)), robust

model: MJ
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Table 2 Bi-objective benchmark function settings (see also appendix A.1), where t(·),N (·), TrN (·),U(·)
represents the student-t, normal, truncated normal and uniform distribution respectviely

Function ξ distribution Input Problem AL design
dimension type (Fig, 3) space �x

VLMOP2 t(200, 0, 0.012) 2 C.1 [0.0166, 0.0166]

SinLinForrester N (0, 0.052) 1 C.2 [0.098, 0.098]

MDTP2 TrN ([0, 0], [0.022, 0.042] 2 C.3 [0.05, 0.05]

[−0.05,−0.05],
[0.05, 0.05])

MDTP3 U([−2e-2, −0.1], 2 C.4 [0.02, 0.1]

[2e-2, 0.1])

BraninGMM U([−0.2, −0.2], 2 C.4 [0.02, 0.02]

[0.2, 0.2]

The complete RMOBO-IU approach is presented in Algorithm. 1. The main paradigm is
similar to a standard BOflow. Starting with a limited amount of data, the R-GP is constructed,
and the Bayes risks are inferred. The first stage acquisition optimization (line 4) is conducted
to search for the robust Pareto optimal points. Next, in the second phase, AL process (line
7–13) is utilized as needed to pursue better sampling candidates. Once the optimization has
stopped, the Pareto front F∗

J can be extracted based on the final models (out-of-sample) or
on the sampled points (in-sample). We also note that this framework can be used for single
objective robust BO if the objective number M = 1, and the ranking operation in Eq.12 is
defined as Arank := max(·).

4 Numerical investigation

There are relatively fewbenchmark functions in literature for robustmulti-objective optimiza-
tion. Therefore, we construct some new synthetic functions for benchmarking RMOBO-IU.
They are listed in Table 2 and detailed in appendix A.1, and used with various input uncer-
tainty distributions. We note that these new synthetic functions cover all 4 cases that we
have discussed in Sect. 3.1. We employ the squared exponential kernel with a Maximum A
Posterior (MAP) strategy, driven by the L-BFGS-B optimizer. We follow the same strategy
of [14] by specifying a log-normal prior on the lengthscales, and 2000 MC samples are used
for approximating the kernel expectation.

The code is implemented using the Trieste library [4], and we test the RMOBO-IU frame-
work using two popular acquisition functions for MOBO, i.e., EHVI and qEHVI. We start
each benchmark with 5d initial data points uniformly generated in the design space, where
d is the problem dimensionality. The experiments are conducted on a server with Intel(R)
Xeon(R) CPUs E5-2640 v4 @ 2.40GHz, and each synthetic problem is repeated 30 times
for robustness.

The performance is evaluated using the Averaged Hausdorff Distances (AVD) based indi-
cator (Eq. 45 of [25]) in the scaled objective space3 as the performance metric with p = 2.
The reference Pareto frontier F∗ is generated using an exhaustive NSGAII [10] search with

3 When calculating the AVD metric, we scale the objective space to [0, 1]M based on the real Pareto front.
This scaling aims to reduce bias from AVD if the magnitude between the objectives differ significantly.
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Fig. 7 Synthetic benchmark results for the AVD score with respect to the number of iterations. The median
across 30 experiments is represented as a line and the 25/75th percentiles are reported as the shaded area

population size 60. We compare RMOBO-IU (using an in-sample (IS) strategy) with stan-
dard MOBO, as well as a non-Bayesian MOO strategy. In the latter we use the NSGAII
evolutionary algorithm (EA) based on a one-shot learned standard GPs as an Out-of-Sample
(OS) strategy, which we refer to as the EA-GP-OS method. 4

The AVD’s convergence histories of different acquisition functions5 and strategies are
depicted in Fig. 7, and the final recommended Pareto fronts are shown in Fig. 8, more experi-
ment detailes are sent to appendix A.2. According to the results, it can be observed that for the
VLMOP2 problem (case 1), its robust Pareto frontier is similar to its original Pareto frontier
and that has led to similar convergence properties of the AVD measure. For the other cases,

4 The Bayes risk of the EA-GP-OS method is calculated using 2000Monte Carlo samples on the GP posterior
mean. For NSGAII we use a population size of 20 and 200 generations.
5 The qEHVI acquisition function has batch size q = 2.
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Fig. 8 Pareto front comparison of RMOBO and MOBO which doesn’t inherently consider input uncertainty.
With the consideration of input uncertainty, the Pareto front of MOBO (orange) is less optimal than RMOBO
(blue) based on in-sample recommendations. (color figure online)

RMOBO-IU converges to the robust Pareto frontier while the non-robust MOO identifies of
course non-robust solutions. We also note that in general a faster convergence speed in terms
of (batch) iterations can be observed by utilizing batch acquisition functions.

We also provide out-of-sample recommendations based on the R-GP for our RMOBO
method to compare with EA-GP-OS, which we denote as RMOBO-EHVI-OS.6 We note that
RMOBO-EHVI-OS has in general an improved performance over EA-GP-OS, while the EA-
GP-OS method is more robust for BraninGMM. Overall, while the out-of-sample strategies
demonstrate better results than in-sample strategies on some benchmarks, their performance
are not consistent across all problems. The worse performance can be shown especially on
MDTP2 and MDTP3, where we deduce that if the problem is more difficult for an accurate

6 We use the same NSGAII settings as used in EA-GP-OS.
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surrogate model, the out-of-sample recommendation can have outliers of the Pareto frontier
leading to a worse AVD score. Hence, we recommend to keep using in-sample strategies as
a more robust choice.

5 Conclusion

We presented RMOBO-IU: an approach for robust multi-objective optimization within the
Bayesian optimization framework which considers input uncertainty.

We optimize for Bayes risk, which is efficiently inferred using a robust Gaussian Process.
The robust Gaussian Process is integrated in a two-stage Bayesian optimization process to
search for the robust Pareto front. The effectiveness of the RMOBO-IU framework has been
demonstrated on various new benchmark functions with promising results.

Future research will focus on several aspects: the SAA-MC-based kernel expectation still
relies on sampling in the input space, which restricts its usage for a higher number of input
dimensions. A more scalable approach is needed. Moreover, Bayesian versions of other
robustness measures will also be investigated.
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and Chinese Scholarship Council under grant number 201906290032.

Data availability The code for reproducing the experiments for the current study are available from the
corresponding author on reasonable request.

A Appendix

A.1 Synthetic functions

Weprovide a detailed description of the synthetic functions thatwehave utilized for numerical
benchmarking, with a math formulation in Table 3.We note that the inverse of these synthetic
functions is used to perform MOO for maximization.
VLMOP2 [12] A bi-objective synthetic problem, where each objective function has only one
global optima within the design space.
MDTP2 A modified version of [9]’s test problem 2.
SinLinForrester A bi-objective problem with SineLiner [14] function and Forrester function
[13].
MDTP3 A modified version of [9]’s test problem 3.
BraninGMM A bi-objective problemwith Branin function [22] and GaussianMixtureModel
[14], the input uncertainty is taken from [3].
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Table 3 Bi-objective benchmark functions settings

Function Design space Function expression

SinLinForrester [0, 1] y1 = sin (5πx2) + 0.5x

y2 = (6x − 2)2sin (12x − 4)

VLMOP2 [−2, 2]2 y1 = 1 − exp
( − 	2

i=1(xi − 1√
2
)2

)

y2 = 1 − exp
( − 	2

i=1(xi + 1√
2
)2

)
MDTP2 [0, 1] × [−1, 1] y1 = x1

y2 = (1 − x21 ) + (10 + x22 − 10cos (4πx2))·( 1
0.2+x1

+ 10x21
)

MDTP3 [0, 1]2 y1 = x1

y2 = 1 − 0.9 e(−
x2−0.8
0.1 )2

−1.3 e(−
x2−0.3
0.03 )2

BraninGMM [0, 1]2 y1 = 1
51.95

[
(x2 − 5.1x21

4π2 + 5x1
π − 6)2

+(10 − 10
8π cos (x1)) − 44.81

]
y2 = ∑3

j=1 p(z = j)p(x |z = j)

where:

p(z = 1) = 0.04π, x |z = 1 ∼ N ([0.2, 0.2], 0.22δ)
p(z = 2) = 0.014π, x |z = 2 ∼ N ([0.8, 0.2], 0.12δ)
p(z = 3) = 0.014π, x |z = 3 ∼ N ([0.5, 0.7], 0.12δ)
where δ represents Kronecker delta.

A.2 Experiment details

In this section we demonstrate the experimental details. We first illustrated part of the objec-
tive functions as well as their robust contour parts in Fig. 9, where the reference Pareto
optimal points input are also illustrated in the figure. We demonstrate the final query points
of RMOBO-IU on the synthetic problem. The samples that RMOBO358 IU investigated is
illustrated in Fig. 10, once the AL process has been activated, the pending data is not the
same as query data and the difference has been noted with the arrows. The one dimensional
SinLinForrester function is omitted for its simplicity. It can be observed that RMOBO-IU is
searching for locating at the robust Pareto frontier. Meanwhile, the AL optimization helps to
alleviate the duplication and boundary issue in all the synthetic problems.
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Fig. 9 Comparison of non-robust and robust objective functions, the inverse ofwhich are used formaximization
in numerical experiments. The corresponding Pareto frontier input is also illustrated in the figure, which has
been obtained from NSGAII
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Fig. 10 Illustration of RMOBO-IU sample in input space (based on EHVI experiment)
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