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We report on determining the optical constants of Ta in the sub-extreme ultraviolet (EUV) spectral range 5.0–24.0
nm from the angle-dependent reflectance (ADR) measured using monochromatized synchrotron radiation. Two
sputtered samples with differing thicknesses were investigated. Complementarily x-ray reflectance was measured
at shorter wavelengths and evaluated by Fourier transform to facilitate an unambiguous selection of a model for
the data evaluation based on an inverse solution of the Fresnel’s equations for a layered system. Bayesian infer-
ences coupled with a Nested Sampling (NS) algorithm were utilized to derive the optical constants with their
corresponding uncertainties. This report further emphasizes the applicability of an acclaimed NS algorithm on a
high-dimensional inverse problem. We explore the possibility of addressing the correlations between the optical
constants of thin films and their structural parameters based on other established studies. © 2022 Optica Publishing

Group under the terms of theOpticaOpen Access Publishing Agreement
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1. INTRODUCTION

The year 2019 saw extreme ultraviolet lithography (EUVL)
systems using extreme ultraviolet (EUV) radiation, and manag-
ing high-volume manufacturing (HVM) standards [1,2]. The
shift to EUVL utilizing a wavelength of 13.5 nm opened wider
possibilities for the integrated circuit (IC) industry. Meanwhile,
optical components and photoresists have been studied to exam-
ine the potential applicability of a wavelength in the vicinity of
6.5 nm for the so-called “beyond EUVL” (BEUVL) [3–5]. The
applications of EUV radiation surpass lithography; they span
EUV astronomy (EUVA) [6], in situ imaging and microscopy
[7–9], ptychography [10], and surface modification [11]. All
the aforementioned applications require accurate optical data,
where designing any optical component requires knowledge of
the optical constants of its constituents.

In the soft x-ray and EUV spectral ranges, the optical
constants are usually given as dependencies of the wave-
length as denoted by the complex index of refraction n̄ : (
n̄(λ)= 1− δ(λ)+ iβ(λ) . At a given wavelength λ , consider-
ing an electromagnetic wave, the real part of complex index of
refraction 1− δ(λ) is known as the refractive index and relates
to the phase velocity, while the imaginary part β(λ) is known
as the extinction coefficient and relates to the absorption. For
many elements that are pertinent to EUV-based technologies,

there have been significant inconsistencies in the reported opti-
cal constants regarding different sources. Zr, Co, and Mo are
examples [12–14]. There are various explanations for such sig-
nificant differences, but for most materials these differences have
not been explained. Even for some highly chemically stable and
oxidation resistant materials, significant differences were found
as in the case of Pt [15]. Such issues motivate a comprehensive
effort to examine the optical constants, especially for promising
optical materials. Relevant discussions on the discrepancies
found regarding different sources are available in [14,16].

For EUV photomasks, Mo/Si multilayer mirrors (MLMs)
with Ta-based absorber layers are widely used. Ta is known for
its chemical stability, corrosion resistance, and high extinction
coefficient in the EUV. Etching processes of Ta-based absorbers
would not severely degrade its reflectance [17]. Known from
proximity x-ray lithography, Ta absorbers are known for their
good pattern ability and relatively low lattice stresses [18]. These
traits have given Ta considerable attention. TaTe2O7 films
were reported for their potential applicability as an alternative
for known TaN absorbers [19]. Concerning our recent work,
some Ta-Ru and Ta-Co binary alloys were found promising in
partially mitigating the so-called “3D mask effects” of absorber
layers intended for high-numerical aperture (NA) EUVL
scanners [20,21].
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Optical constants are usually determined either using
angle-dependent reflectance (ADR) or transmission-mode
measurements (TMM) in the EUV spectral range. Numerous
other methods can be also used [22–25] (reviews are available
elsewhere [13,26–29]). However, for TMM, thin standing films
are usually needed, and only the extinction coefficients are mea-
sured experimentally. The refractive indices are calculated using
Kramer–Kronig analysis, and this optimally requires extinc-
tion coefficients measured through the entire electromagnetic
spectrum. However, ADR offers an option enabling the simul-
taneous determination of two parts of the complex refractive
index, at any wavelength. ADR is preferred here since it better
supports the so-called “at-wavelength metrology” approach
[30].

Determining optical constants from ADR is challenged
with a high-dimensional and, most likely, multimodal inverse
problem. This is the main disadvantage of ADR as a method for
determining optical constants. Adding to the challenge, classical
optimization methods do not normally retrieve the correlations
and uncertainties of the problem’s parameters. Most classical
optimization methods merely yield best-fits for the targeted
parameters. Also, since ADR solution space is complex and
likely multimodal, classical optimization methods are also
vulnerable to local minima bias [31]; hence, they are deemed
suboptimal in many cases. To mitigate some of the aforemen-
tioned limitations, Bayesian-based inferences can be used.
Bayesian-based inferences can be classified either as parameter-
estimation or model-selection methods [32]. The former
class, to which Markov chain Monte Carlo (MCMC) based
Bayesian inferences belongs, proved to be a capable formalism in
treating highly dimensional problems [33]. In the Physikalisch-
Technische Bundesanstalt (PTB), MCMC-based Bayesian
inferences have been used in treating ADR targeting optical
constants determination [13,34–36]. However, MCMC-based
Bayesian inferences have a prime limitation since they do not
automatically calculate the evidence of the inverse-problem
[37,38]. Also, the convergence diagnostics are often not well-
defined [38], and many of them are not straightforward (see
[39]). Moreover, depending on the problem, MCMC methods
can be inefficient in treating highly degenerate parameter spaces
[32]. Arguably, the aforementioned issues, among others, can
be alleviated using a model selection class Bayesian method, i.e.,
nested sampling (NS) [37,38]. NS was proposed in 2004 by
Skilling as a Monte Carlo algorithm to calculate the evidence
while delivering the posterior distribution consequentially
[37,40]. The value of the estimated evidence serves as a robust
stopping criterion for the sampling process, as it aids model
selection in highly degenerate posteriors [32,38]. A prime aspect
of our work is further demonstrating the applicability of a NS
algorithm in treating ADR for the determination of optical
constants in the EUV spectral range.

Recently, NS has been successfully utilized to infer statis-
tical information in many fields, such as the pharmaceutical
industry [41], potential energy surfaces studies [42], and most
notably astronomy. Generally, every inferences (or optimiza-
tion) method has its own advantages and drawbacks [38,43].
Thus, for the EUV community, it is quite handy to establish as
many additional computational approaches aiding in the deter-
mination of optical constants using ADR. Also, NS is receiving

substantial developments; for example, variants such as diffusive
nested sampling have been implemented [43]. Widening the
user community of a computational approach automatically
assist its further development.

In our work, the optical constants are determined in the
spectral range 5.0–24.0 nm (ca. 250–ca. 52 eV). Also, we report
on examining the potential correlation between the optical con-
stants of Ta thin films and their thicknesses, since two samples
with differing thicknesses (30 and 50 nm) were characterized.
The optical constants of Ta in the EUV spectral range have been
investigated [44–49]. Of the aforementioned references, only
Windt et al . [48] provided uncertainties for their tabulations;
however, merely four points were measured between 5.0 and
24.0 nm in the latter work. Here, the fine-structure is properly
sampled, the uncertainties, and the correlations of the inverse-
problem free parameters are retrieved. Our results are compared
with five published data sets [44–48,50].

2. EXPERIMENTAL METHODS

A. Samples Preparation

The two samples were fabricated using direct current (DC)
magnetron sputtering. The substrates were super-polished 300
mm Si wafers. After evacuating the sputtering chamber to a
pressure level below 10−7 mbar, highly pure Ar gas was purged.
The two examined samples here are square coupons each with
a side length of 25 mm, cleaved from the sputtered 300 mm Si
wafers. Additional details on the sputtering process can be found
in [51].

The nominal thicknesses for the two samples were 30.0 and
50.0 nm; throughout this report, these samples will be denoted
as Sample 30 and Sample 50, respectively.

B. Reflectivity Measurements

To enable the determination of optical constants using ADR,
extreme-ultraviolet reflectance (EUVR) profiles in the spectral
range 5.0–24.0 nm were collected. The data acquisition was
carried out at the soft x-ray radiometry beamline (SX700) in the
radiometry laboratory of the PTB, in the electron storage facility
BESSY II of Helmholtz Centre for Materials and Energy (HZB)
[52–54].

The S -polarized EUVR of Sample 30 and Sample 50 was
measured in the spectral ranges of 5.0–24.0 and 10.0–20.0
nm, respectively. The EUVR of Sample 30 was measured
regarding the angular range 3.0◦–85.5◦, where Sample 50 was
measured regarding 4.5◦–87.0◦. For both samples, the wave-
length increment and the angular step were 0.25 nm and 1.5◦,
respectively.

Furthermore, to assist in reconstructing a model for the rel-
evant EUVR inverse-problems, x-ray reflectance (XRR) profiles
were taken from Sample 30 and from a twin sample of Sample
50 at Cu−Kα in the in the laboratories of OptiX fab GmbH
and imec. Sample 50 and its twin were realized using the same,
nominal, deposition settings.
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3. NESTED SAMPLING BAYESIAN INFERENCES
AND MODEL SELECTION

To retrieve the optical constants with their correlations and
the uncertainties (among other parameters) from the collected
EUVR data, the inferences problem can be formulated given
Bayes’ theorem as [36]:

Pr ( p|Rmeasured)=
Pr(Rmeasured| p) Pr( p)

Pr(Rmeasured)
. (1)

Here, p denotes the ensemble of parameters to be deter-
mined given the measured EUVR ( Rmeasured ) from an assumed
model. Pr( p|Rmeasured) is the posterior distribution quantify-
ing the probability of the ensemble p to stand for the measured
EUVR. Pr(Rmeasured| p) is the likelihood function, which indi-
cates the fitness regarding the measured against the simulated
EUVR based on the information content of the prior knowledge
about the sample. For a number ( n ) of measured points and
corresponding absolute uncertainties ( σ ), the likelihood is in
our case formulated as [36]:

Pr (Rmeasured| p)=
∏

n

1
√

2πσn
2

× exp

[
−

(
Rsimulated, n ( p)− Rmeasured, n

)2

2 σn
2

]
,

(2)

where Pr( p) is the prior knowledge, which reflects our beliefs
about the sample and the targeted ensemble p . The prior
knowledge is named as it contains information that is known
a priori, even before collected the data. Pr(Rmeasured) is the
evidence (also known as the marginal likelihood or the inte-
grated likelihood), and this particular normalizing factor is the
target of NS [55]. In the parameter-estimation methods, such
as the MCMC Bayesian-based inferences, the evidence is often
omitted from Eq. (1), and the posterior distribution is given as
a proportionality to the product of the likelihood and the prior
distributions [32].

For a more concise notation, Eq. (1) can be rewritten as:

P (θ)= L(θ) π(θ)
Z , (3)

where θ denotes the parameters of the model. The evidence Z
is basically and integral, and it can be written as:

Z =
∫
2

L(θ) π(θ) dnθ . (4)

Calculating the n -dimensional integral of Eq. (4) can be
facilitated where it can be transformed to a single-dimension
integration problem [40]. That is, upon partitioning the prior
volume, denoted X(θ) so that dX(θ) equals π(θ) dnθ , Eq. (4)
becomes [38,40]:

Z =
∫ 1

0 L(θ) dX(θ) . (5)

Then, Eq. (5) can be estimated using a series:

Z ≈
N∑
i

L i wi . (6)

N is the number of points to be sampled, wi denotes the
weight with the i th point and is given by:

wi =
X i−1− X i

2 . (7)

The numerator of Eq. (7) is the residual regarding the seg-
ment of the prior volume constrained between the projected
iso-contour lines of the likelihood from L i through L i−1

[56]. The NS core value is in estimating the summation of Eq.
(6); details on the relevant statistical evaluation are explained
elsewhere [55].

The evidence is crucial when judging between two rival mod-
els. In other words, if there existed two different models with
identical priors describing our sample, then the known Bayes’
factor (BF) given by [57]:

B F1, 2 =
Z1
Z2

(8)

could provide a criterion where an increasing B F1, 2 indi-
cates that Model 1 is preferred over Model 2 [58]. In Bayesian
inferences, the numerical evaluation of the evidence is difficult,
so estimation methods are opted for, such as thermodynamic
integration and steppingstone sampling [59].

The importance of the evidence in model selection in the
realm of reflectivity inverse problems has been addressed
[60,61]. NS has been applied recently to infer information from
XRR data [62,63], also from neutron reflectometry (NR) data
[64,65]. NS is used here to examine another statistical probe
when determining optical constants using ADR in the EUV
spectral range. There are multiple levels of Bayesian inferences.
The first level is when a single model is assumed uncontested;
the second level is when there are multiple competing models
to be sampled [66]. The inferences problem here is considered
of the first level. Arguably, the uncontested model here is con-
structed with the aid of complementary XRR measurements.
XRR data are known for their potential to define a structural
model with a minimally assumptive manner when analyzed
using frequency analysis [67]. Yet, additional complementary
measurements are not always available or even feasible when
determining optical constants from EUVR data; in such cases,
NS would be even of a greater merit.

NS is not exploited in its full capacity here, as in no Bayesian
model selection is conducted based on the evidence. Still,
this report is highly relevant for enhancing optical constants
determination schemes from EUVR data. In addition to the
indicated, general, advantages in the introduction of NS over
MCMC methods, in some cases, NS has even higher efficiency
in achieving the presumed convergence.

4. INVERSE PROBLEM ADJUSTMENT AND
DATA ANALYSIS

Determining optical constants via ADR requires solving an
inverse problem. To better initialize a model for the samples
and to verify the realization of the targeted structures, the XRR
profiles measured at Cu−Kα energy were analyzed using the
fast Fourier transform (FFT) formalism (Fig. 1) [68,69]. The
benefits of using the FFT for XRR analysis are well known
[70,71]. The FFT spectrum ideally shows the interfacial depths
within a stratification from which separate layers’ thicknesses
could be inferred [70]. The interpolated FFT profiles shown in
Fig. 1 were calculated using the Poust et al . method [72].
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Fig. 1. Frequency analysis of the XRR profiles collected from Sample 30 and a twin sample of Sample 50. (a) Collected XRR profiles from the
two samples. Data are scaled for better visibility. (b) Normalized FFT of Sample 30 XRR profile. Vertical red line marks the peak at ca. 29.0 nm. (c)
Normalized FFT of an XRR profile for the twin of Sample 50. Line marks one peak at ca. 48.0 nm.

The marked peaks [Figs. 1(b) and (c)] from the FTT spectra
of the XRR profiles collected from Sample 30 and the twin
of Sample 50 indicate good agreement with the depositions’
nominal settings. The attained thicknesses are less than 5% off
the targeted.

The peak regarding the spectrum of the twin of Sample 50
[Fig. 1(c)] above 50.0 nm could indicate the presence of another
layer. Presumably, a surface layer on top of the Ta deposition is
due to oxidation and contamination. Ta thin films’ oxidation
has been extensively investigated [73,74]. Concerning pre-
vious work of ours, x-ray photoelectron spectroscopy (XPS)
measurements on a Ta thin film revealed the presence of an
oxide layer [20]. Therefore, modeling an oxide layer with the
stoichiometry of Ta2O5 can be assumed. No evident second
peak was observed in the FTT spectrum regarding Sample
30; one possible cause for that is the preparatory processing
carried on the experimental data prior to calculating the FTT
spectrum. The experimental data were interpolated, differenti-
ated, and further windowed. There could be other reasons, too.
However, in order to include the side effects of the physiosorbed
and chemisorbed hydrocarbons and other contaminants that
are known to build up on optical surfaces, a third layer is also
assumed. Oxidation and contamination layers are not sharply
bounded and well-defined but rather intermixed and nonsto-
ichiometric [36]. With the argument elaborated in our earlier
work considering the optical constants of Ru [36], oxidation
and contamination are modeled as two discrete layers since
modeling nonuniform profiles (gradients) is computationally
laborious and time-consuming [75]. Optimally, a more realistic
approach with a gradient profile is intuitively favored. However,
the computational prerequisites make a more realistic modeling
prohibitive here, given the large number of EUVR profiles,
especially since we adopt a global optimization strategy [13,36].
Summing up, for modeling the two samples we assume a trilayer
stratification consisting of a carbonaceous contamination layer,
an oxidation layer followed by the main Ta deposition on top of
the Si substrate.

When determining the optical constants from ADR, the two
components of the complex index of refraction δ and β are
left as free parameters. Seventy-seven EUVR scans were taken
between 5.0 and 24.0 nm for Sample 30; 41 scans were taken
between 10.0 and 20.0 nm for Sample 50. Regarding Sample
30, if all of the optical constants of the addressed trilayer stratifi-
cation with the structure’s characteristics would be included in
array p , then more than 600 parameters are to be sampled. Such

a large number of free parameters in a problem must be avoided.
Bellmann coined the term “curse of dimensionality” to indicate
a number of overwhelming issues ascribed with highly dimen-
sional optimization problems [36,76,77]. Therefore, the optical
constants of the substrate and those of C are to be taken from the
Center for X-Ray Optics (CXRO) database [45]. Additionally,
given the anticipated vulnerability of the optical response of the
samples to the correlations between the optical constants of Ta
and its oxide, the independent-atom approximation (IAA) is to
be used (Fig. 2) [45,36]:

n̄(λ)= 1− δ(λ)+ iβ(λ)= 1− re
2π λ

2
N∑

j=1
k j f (λ) j . (9)

Here, re denotes the classical electron radius, λ stands for the
wavelength, and k is the number of atoms of type j per unit
volume; f (λ) j is the complex atomic scattering factor (ASF)
for an atom of type j and is given as:

f (λ)= f1(λ)− i f2(λ) , (10)

where f1 relates to the dispersion and f2 relates to the absorp-
tion and an interacting electromagnetic wave.

The formalism now is to sample the ASFs of Ta, the density
of the (assumed) oxidation layer in addition to the structural
characteristics of the models. The ASFs of O are needed to
enable the IAA approach for decreasing the dimensionality of
the problem; they are fixed in our calculations from the CXRO
database [45]. The simulated reflectivity is produced using
Parratt’s recursive formalism coupled with Névot–Croce factors
to consider the effects of interfacial imperfections [78–80].
Névot–Croce factors are known for including the effects from
interfacial roughness and interdiffusion. Interfacial roughness
induces off-specular scattering, and interdiffusion reduces the
optical contrast for an interface, which increases its transmissiv-
ity [81]. Both imperfection types are indistinguishable, given
our collected EUVR data, since they both cause the damp-
ing of the measured (specular) signal. Hence, the potential
interdiffusion between Ta and the Si substrate is modeled here
using Névot–Croce factors. Additionally, the absolute weighted
uncertainties of the likelihood were expanded with an additional
linear contribution as the following [36,82,83]:

σ 2
= σexperimental

2
+
(
a · Rsimulated, n

)2
+ b2. (11)
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Fig. 2. Sketch of the assumed trilayer stratification of the samples with the corresponding IAA taken for the inverse problem and demonstrated for
the refractive indices of Ta and Ta2O5 . Red-marked parameters are those left free.

Table 1. Comparison of Selected Parameters
Relevant to the (Assumed) Structures of the Two
Samples as Retrieved from the EUVR Data Using the
Addressed NS Bayesian Inferences Approach

Sample

Parameter Sample 30 Sample 50

C, layer thickness/nm 1.326(22) 1.468(43)
Ta2O5, layer thickness/nm 2.4369(61) 2.135(37)
Ta, layer thickness/nm 28.334(12) 47.068(32)
Ta2O5, layer density/g/ cm3 8.568(18) 8.316(90)

This expanded error modeling is effective in compensating
the trilayer stratification’s deficiencies in describing the intricate
subtleties of the real thin film structure. The so-called “discrete-
layer approach” is used here, which assumes perfectly uniform
vertical and lateral homogeneities for each layer [13]. Relevant
to the aforementioned discussion, it is improbable that all layers
possess a perfect and unvarying stoichiometric structure. The
addressed error modeling and the IAA adaptation to decrease
the problems’ dimensionalities have been presented and tested
in a previous work of ours concerning the determination of
Ru optical constants [36]. To this end, to enable Bayesian
inferences, the inverse-problem was sampled using the Python
implementation of NS DYNESTY [38,84–86].

For the ASFs of Ta, the inferences’ priors were initialized
based on Henke’s tabulations of 1993 [45]. The density for
the two Ta depositions were assumed at 16.4 g/cm3 , equal to
the bulk density [87]. Each of the two EUVR data sets were
sampled independently, but the inferences were conducted
globally for the entire spectral range, which was measured from
each sample. The sampling resumed until meeting the default
stopping criterion of the used NS implementation [38]. Upon
assuming convergence attainment, the sampled prior modes
were integrated. The structural characteristics seem credible; the
simulated thicknesses of the Ta deposition for the two samples
(Table 1) agree with the results of the FT spectra. The oxides’
densities are also close to the experimentally reported value of
8.7 g/cm3 for tantalum oxide [73], though in [73] a specific
stoichiometry was not assumed.

For the two samples, the surface layers known to have built-
up grew under uncontrolled environments. The two samples
were not exposed to the exact identical conditions, either. The
effects of these buildups were modeled using the (assumed) two
uppermost layers. Hence, differences in the characteristics of

these two layers are not surprising. Additionally, atomic force
microscopy (AFM) images collected from similar samples to
Sample 30 and Sample 50 showed different surface roughness
[20,21]. That is also expected since crystallization of a thin film
is related to its thickness. The grain sizes in the two samples
are expected to be different, ultimately affecting the surface
roughness, which influences the sticking probability of volatile
contaminates. The correlation between surface roughness and
thickness in metallic thin films has been reported before [88,89].

5. DETERMINED OPTICAL CONSTANTS AND
SIMULATED EUVR

All the retrieved ASFs from the EUVR data collected from
the two samples exhibit Gaussian profiles, with clear cross-
correlations with the structural parameters. The uncertainty
of each parameter is defined as the confidence interval (CI) of
3−σ . The cross-correlations with the layers’ thicknesses and the
covariances of two selected ASF retrieved from Samples 30 are
shown in Fig. 3.

Although the ASFs were initialized for the sampling process
around those from 1993 of Henke (the old CXRO data set) [45],
the optical constants profiles for both δ and β converged to a
relatively closer agreement with updated values of the CXRO
(Fig. 4) [45,92]. The (minimal) prior region is shown in Fig. 4.
Our optical constants profiles show noticeable contradictions
with those updated values from the CXRO [45,92] for δ above
ca. 22 nm and regarding β above ca. 20 nm. Generally, our
results contradict the reported optical constants by Windt et al .
[47] and Palik [46], in addition to those calculated by Chantler
[49].

An interesting finding scrutinizing Fig. 4 is the inequality,
in some ranges, between the optical constants retrieved from
Sample 30 and Sample 50. The uncertainty bands are plotted
for two selected spectral segments, to better compare the opti-
cal constants retrieved from the two samples in Fig. 5. These
inequalities can be attributed to numerous causes. At a first
glance, one might assume the cause to be the dissimilarity in the
probed spectral ranges of the two samples, as in the anticipated
influence of including scans at shorter wavelengths regarding
Sample 30. Thus, one could argue that this provides higher sen-
sitivity to some structural characteristics, which consequently
alter the retrieved optical constants. However, determining the
optical constants from Sample 30 merely taking the spectral
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Fig. 3. Posterior distributions projected regarding five selected parameters retrieved from Sample 30 EUVR measurements. Fitted 1D histograms
modes are marked by red lines. Dashed black lines confine the CI of 3−σ . Contour plots of the 2D histograms show the 1, 2, and 3−σ density
regions [90,91].

range 10.0–20.0 nm has been tried, and the inequalities subsist.
With that in mind, the following discussion will focus on three
relevant aspects attempting to explain the addressed inequal-
ities: sample specifics; thickness correlation; and modeling
subtilties.

Beginning with sample specifics, generally, it is well known
that the optical constants of a thin film depend on its morphol-
ogy [94,95]. Recently, Sinha et al . demonstrated the correlation
between the optical constants of zirconium-oxide thin films
and their morphologies in the 500–560 eV energy range [95].
It could be that there are slight differences in the morphologies
between the Ta depositions of Sample 30 and Sample 50. X-ray
diffraction data collected from similar samples in Sample 30
and Sample 50 showed similar diffractograms [20,21], which
could indicate an equal phase distribution but does not mean
identical morphologies regarding the two depositions of Sample
30 and Sample 50. The crystallization is expected to be different,
given the different thickness (as discussed in Section 4). Residual

traces of the sputtering gas might also play a role. The scenario
for the two Ta samples to have other morphological disparities
can only be excluded with additional parametric comparative
studies.

The second aspect is thickness correlation. Regarding thin
films, there are numerous reports claiming results retrieved from
experimental data that demonstrate a dependence of optical
constants on the thickness, e.g., Ag thin films in the visible light
range [96]. A few reports also exist regarding the EUV and the
soft x-ray spectral ranges. For instance, the optical constants
of Au thin films, in the words of Yanagihara et al . [97], “show
definite dependence” on the thickness. Yanagihara et al . inves-
tigated the energy range from 60 to 900 eV and found no clear
difference regarding Au phases regarding the different samples
investigated; yet, they indicated that further investigation of the
phases is needed [97].

Concerning the third aspect, modeling subtilties, for
instance, the two samples were modeled with an oxide layer
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Fig. 4. Calculated optical constants of Ta in our work for the two samples, with comparison to other literature data regarding the spectral range
5.0–24.0 nm [45–50,92,93]. The vertical axes are log-scaled. Top: Profiles of the refractive indices. Bottom: Profiles of the extinction coefficients.

Fig. 5. Retrieved profiles of the optical constants from the two
samples compared regarding two selected spectral segments; 13.0–15.0
and 17.0–20.0 nm. Curves show interpolated profiles considering the
calculated CI of 3−σ .

with the same stoichiometry, a plausible assumption but cannot
be acclaimed unequivocal. There could be slight differences
in the oxidation stoichiometries, however. Similarly, the tri-
layer model itself is a simplified one. The simulated EUVR was
assumed as perfectly S -polarized, and the interfacial imper-
fections were assumed to have a Gaussian distribution. The
latter assumption is made by default since Névot–Croce factors

were used [80]. The discussion given in Section 4 is pertinent
to this direction. The uncertainties in the angles’ values were
not included. Also, the optical constants of the substrate and
other materials were fixed in the sampling process. It is not
known exactly here how the systematic errors in the values of
the referenced data sets had affected the sampled parameters.
Although the superficial contamination was considered in the
model, which is quite critical in the EUV range, only elemental
C layers were considered. Contamination usually contains
residual process gases, i.e., adsorbed water from air moisture
among other peculiarities. On the other hand, including a fitting
parameter for every single detail is not an option. Tractability
plays a role here, which is the viability of attaining an expected
convergence for an inverse problem given tenable conditions
[55]. Constructing an inverse problem with an overwhelming
number of free parameters would aggravate the curse of dimen-
sionality and, in most cases, yield an intractable problem. Here,
a settlement is made between the curse of dimensionality and
tractability via simplified but sound models for the samples.
When determining optical constants using ADR, side effects
concomitant to the assumptions made to maintain the tractabil-
ity are expected. Consequently, that could be another reason
behind the observed inequalities in the determined optical
constants from the two samples.

Nevertheless, the retrieved optical constants from the two
samples are not colossally different. In some segments, their
uncertainty ranges partially overlap (Fig. 5). This supports
our uncertainty estimation being realistic. Also, the simulated
EUVR maps are close to the measured ones; the maps regard-
ing Sample 30 are as shown (Fig. 6). The highest residuals are
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Fig. 6. Demonstration for the goodness-of-fit achieved by the NS algorithm. (a) Measured data, the two white points at the wavelength of 24.0
nm are two masked corrupted values. (b) Simulated EUVR map. (c) Absolute of the logarithm of the residual between the measurements and the
simulation.

Fig. 7. Plotting of the measured data and its simulation regarding
the two samples for the wavelength of 13.5 nm.

observed in the high-energy–high-grazing angular region [Fig.
6(c)], where Kiessig fringes (see [98]) are most prominent. This
can be explained by the high-sensitivity of modeling Kiessig
fringes to the assumed structure. The high-energy–high-grazing
angular region indicates information about the sample, given
the highest penetration depth. Hence, this region is the most
sensitive, in comparison with other data collected here, to use
the model’s deficiencies [36].

To better reveal the goodness-of-fit achieved by the NS algo-
rithm, the measured and the simulated EUVR profiles regarding
a wavelength of 13.5 nm are plotted (Fig. 7).

Although the divergence of the incident beam was not
modeled, most Kiessig fringes’ features were well simulated.
Moreover, the presented results here are to be understood as
strictly valid for the described tetralayer models. For example,
the optical constants of the (assumed) carbonaceous layer were
taken from the CXRO database [45]; if the optical constants
were taken from a different source, the retrieved optical con-
stants of Ta will be slightly different. That is a corollary when
treating such an inverse problem.

6. CONCLUSIONS AND PERSPECTIVES

We have determined the optical constants of Ta with the corre-
sponding uncertainties in the spectral range 5.0–24.0 nm from
EUVR measurements. Our results were compared with external
literature values and found close to those updated values of the
CXRO database ([45]). We have also reviewed three aspects rel-
evant to addressing the discrepancies regarding different optical
constants data sets, concerning the same material. It seems that
the optical constants of real samples can hardly be described
as universal optical parameters [95]. The review of this report
ascribes this dilemma to the probed samples’ specifics, con-
tamination, impurities, interface imperfections, and modeling
subtilties. In the EUV range, generally, it is not uncommon to
report slightly different optical constants for the same material
in a report. Maehara et al . [99] reported slightly different optical
constants for Pt and Rh thin films upon determining them using
ADR and the photoelectric yield measurements from the same
samples. Schlegel also showed different optical constants of Ru
regarding ADR and TMMs [100].

The applicability of an NS algorithm is successfully tested
here. NS is a known statistical approach for gleaning valuable
information in inverse problems and, in some situations, could
also provide higher efficiency than that of MCMC algorithms.
The estimated evidence was not used for model selection, since
this would require simulating multiple models to enable esti-
mating the BF [see Eq. (8)]. Nevertheless, the models were
selected based on the FFT analysis of the XRR profiles; further,
the estimated evidence was (partly) incorporated to address a
stopping criterion for the simulations here. Additional details
on how the estimated evidence is incorporated for the realization
of a stopping criterion are available in [38]. This report is a step
further in developing ADR for determining optical constants
in the EUV range, where estimating the evidence is valuable for
model selection, especially when no complementary data are
available.
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Nevertheless, we do not present NS as better than any other
Bayesian inferences or even other optimization methods (see
[38]). Benchmarking such methods requires test problems
and is laborious [101]. When comparing two computational
approaches, many technical features have to be scrutinized,
parallelization efficiency and user friendliness are such two.
Benchmarking NS is outside the context here. A comparison
between NS and other inferences methods was made by Allison
and Dunkley [102].

The results here are pertinent to further develop EUVL tech-
nology, particularly when assessing the applicability of Ta as an
absorber layer constituent.

The optical constants of Ta are available on the PTB’s online
Optical Constants Database (www.ocdb.ptb.de/home).
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