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Abstract—In recent years, containers have gained popularity as a lightweight virtualization technology. This rise in popularity has gone
hand in hand with the adoption of microservice architectures, mostly thanks to the scalable, ethereal and isolated nature of containers.
More recently, edge devices have become powerful enough to be able to run containerized microservices, while remaining flexible
enough in terms of size and power to be deployed almost anywhere. This has triggered research into several container placement
strategies involving edge networks, leading to concepts such as osmotic computing. While these container placement strategies are
optimal in terms of workload placement, current container orchestrators are often not suitable for running on edge devices due to their
high resource requirements. In this article, FLEDGE is presented as a Kubernetes-compatible container orchestrator based on Virtual
Kubelets, aimed primarily at container orchestration on low-resource edge devices. Several aspects of low-resource container
orchestration are examined, such as the choice of container runtime and how to realize container networking. A number of evaluations
are performed to determine how FLEDGE compares to Kubernetes and K3S in terms of resource requirements, showing that it needs
around 60MiB memory and 78MiB storage to run on a Raspberry Pi 3, including all dependencies, which is significantly less than both
studied alternatives.
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1 INTRODUCTION

IN recent years, containers have quickly gained popular-
ity as a lightweight virtualization technology, owing to

their limited resource requirements and fast spin-up times
compared to virtual machines [1]. In the cloud, the rise of
containers has gone hand in hand with the adoption of
microservice architectures, mostly thanks to their isolated
and ethereal nature [2]. The complexity of managing large
amounts of containers has led to container orchestrators
such as Kubernetes [3] which manage the lifecycle, scaling
and load-balancing of containerized service deployments.

More recently, edge devices have become powerful
enough to be able to run containerized microservices, while
remaining flexible enough in terms of size and power
consumption to be deployed almost anywhere. This has
triggered a wave of research and development aimed at
deploying containers on clusters including edge devices,
and moving containerized workloads from the edge to
the cloud and vice versa. This trend, starting with cloud
offloading and edge offloading, has led to concepts such as
osmotic computing [4], which aims to optimally distribute
workloads based on any number of geographical, hardware
and software parameters.

Such a strategy is useful in IoT data processing, where
instead of sending large amounts of raw data directly to
the cloud, containers are deployed on edge devices to pre-
process the data and act on it locally. Aggregated, filtered
data can then be sent to the cloud for reporting, advanced
processing or to fine-tune the system.

Other examples exist in the field of machine learning,
where dynamically moving basic algorithms to edge devices
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can cut response times drastically while reducing traffic and
the load on the cloud. On the other hand, edge devices have
to be powerful enough to actually run these algorithms,
meaning that constant monitoring is needed in case the
cloud needs to step in when the workload is too high.

The applications stated above need container orchestra-
tors that can work optimally in the cloud and on the edge,
but most container orchestrators are meant to run in the
cloud. As a result, they are usually very flexible, modular
and do not need to be overly critical of resource con-
sumption. However, edge devices are typically low-resource
devices, especially in terms of memory. Additionally, con-
tainer deployments on edge containers are often specifically
meant for a particular device and cannot easily be relocated
without an extensive migration process. To address this,
the proposed solution is aimed at minimal resource use,
and is designed to run workloads to completion instead of
constantly scaling and shifting them.

In addition to being low-resource devices, consumer-
grade edge devices often operate in heterogeneous networks
with potentially less focus on organization and security.
Connecting these to the cloud can result in some commu-
nication and security problems. For example, the network
could be hidden behind a router, IP addresses can be unpre-
dictable, existing port mappings can interfere with container
requirements, etc.

In the cloud, these problems are usually not present.
Infrastructure is well-organized and as homogeneous as
possible, while all network resources are predictable and
controlled. Furthermore, while all communications between
container orchestrator nodes (e.g. Kubernetes) are secured
by default, this is not always the case for service endpoints
of containers deployed on those nodes.

Therefore, it is important that the solution can secure
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traffic to and from the cloud, and that other network traffic
is either blocked or also secured. To simplify the inter-node
network and to ensure smooth deployment of containers,
a uniform network environment can be created for edge
nodes to be deployed on, capable of supporting a container
network on top of it.

Continued development of container management tools
such as Kubernetes and Docker [5] has led to the develop-
ment of a number of standards.

For example, to make sure that every container is reach-
able and uniquely addressable, container runtimes and or-
chestrators use an overlay network to assign IP addresses
to nodes and containers. Since there are many methods to
achieve this on individual nodes, various container run-
times leave this up to network plugins to implement. This
has resulted in, among others, the Container Network Inter-
face (CNI [6]), which simply defines a number of high-level
operations that governing software can use to organize the
container network on a node.

Another example is the Open Container Initiative (OCI
[7]), which defines standards for the structure and execution
of container images. These standards make sure that a
single container image can be deployed and executed with
predictable results on any runtime that implements them.
At the time of writing, they are implemented by many
container runtimes, making it easy to switch runtimes once
an orchestrator has basic support for one of them.

The solution is aimed at maximum compatibility with
existing container standards, as far as their implementation
is possible on edge devices. While it is not absolutely
required to implement the full standards, care is be taken
that any missing functionality does not result in problems
for the rest of the cluster. In addition, if the solution does
ignore any standards, it should make sure that other nodes
are not affected in any way.

To summarize, the requirements for the proposed con-
tainer orchestrator for edge devices are:

• To be compatible with modern standards for con-
tainer orchestration, or to provide an adequate al-
ternative.

• To provide secure communications between edge de-
vices and the cloud by default, with minimal impact
on local networks.

• To have low resource requirements, primarily in
terms of memory but also in terms of processing
power and storage.

This article presents FLEDGE as a low-resource container
orchestrator which is capable of directly connecting to Ku-
bernetes clusters by incorporating modified Virtual Kubelets
[8] and a VPN. A Kubelet is the part of Kubernetes which is
deployed directly on devices to join them into a Kubernetes
cluster. A Virtual Kubelet is a small software service which
can be deployed anywhere, and which acts as a proxy
between the Kubernetes API and a random device that can
deploy containers. Behavior is defined by brokers, which
form a translation layer between Kubernetes and the devices
on which pods are deployed. Because the Virtual Kubelet is
designed to work with the Kubernetes orchestrator, it has to
work with the limitations inherent in Kubernetes clusters.
Kubernetes is designed for use in the cloud, so it is implicitly

aimed at orchestration on groups of powerful servers. Since
the scalability of Kubernetes constantly evolves, it is consid-
ered outside the scope of this article, but the repercussions
are discussed where applicable.

The remainder of this paper is structured as follows. Sec-
tion 2 presents existing research related to the topics in this
introduction. Section 3 details the different aspects of using
Virtual Kubelets and creating the framework, while Section
4 discusses possible alternatives and how they relate to this
work. In Section 5, an evaluation setup and methodology are
presented to compare the solution in this article to similar,
popular orchestrator software. The results are presented and
discussed in Section 6, with suggestions for future work in
Section 7. Finally, Section 8 gives a short overview of the
goals stated in this introduction, and how the results and
conclusions meet them.

2 RELATED WORK
Shifting workloads between the cloud and edge hardware
has been extensively researched, with studies on the use
of edge offloading [9], cloud offloading [10], [11], fog com-
puting [12] and osmotic computing [4]. Many studies exist
on different container placement strategies, from simple but
effective resource requests and grants [13], to using deep
learning for allocation and real-time adjustments [14].

Kubernetes is capable of forming federations of multiple
Kubernetes clusters [15], but this article aims to use a single
cluster for both the cloud and the edge. There are several
federation research projects that have resulted in useful
frameworks, such as Fed4Fire [16], Beacon [17], FedUp! [18]
and FUSE [19]. Fed4Fire requires the implementation of an
API to integrate devices into a federation and works on
a higher, more abstract level than container orchestration.
BEACON is focused on cloud federation and security as a
function of cloud federation. FedUp! is a cloud federation
framework focused on improving the setup time for het-
erogeneous cloud federations. FUSE is designed to federate
private networks in crisis situations, but it is very general
and primarily aimed at quickly collectivizing resources, not
for deploying specific workloads across edge clusters.

Studies exist that focus on security between the edge and
the cloud, for example [20] which identifies possible threats,
and [21] which proposes a Software Defined Membrane as
a novel security paradigm for all aspects of microservices.
However, FLEDGE aims to provide only a basic but univer-
sal layer of security, leaving advanced security policy up to
individual choice.

VPNs are an old and widely used technology. Recent
state of the art studies appear to be non-existent, but older
ones are still informative [22]. Some studies deal with the
security aspects of a VPN [23], while many others focus
on the throughput performance of VPNs [24], [25]. While
studies exist on using overlay networks in osmotic comput-
ing [26], they deal mostly with container network overlays
such as Flannel and Weave [27] which are integrated into
Kubernetes. Others present a custom framework, for ex-
ample Hybrid Fog and Cloud Interconnection Framework
[28], which also gives a good overview of the challenges of
connecting edge and cloud networks. Xu et al. [29] presents
a hardware solution against a number of software and
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physical attacks for untrusted cloud infrastructure, which
could be integrated into edge devices.

A study by Pahl et al. [30] gives a general overview of
how to create edge cloud clusters using containers. While
FUSE [19] is capable of deploying Kubernetes worker nodes
on edge devices, the resulting framework is too resource-
intensive for most edge hardware. Cloud4IoT [31] is capa-
ble of moving containers between edge networks and the
cloud, but it uses edge gateways which indirectly deploy
containers on minimalistic edge nodes. K3S [32], which has
not yet been the subject of academic studies, is based on the
source code of Kubernetes. It achieves lower resource con-
sumption by removing uncommon and legacy features, but
it requires its own master nodes to run and can not directly
connect to Kubernetes clusters. MicroK8s [33] is another
Kubernetes-based solution for edge container orchestration.
In addition to having low resource requirements, it is easy
to set up, has fast starting times and has built-in GPGPU
(General-Purpose computing on Graphics Processing Units)
and CUDA support. However, it is aimed at creating smaller
clusters for testing, CI/CD and small-scale deployments.
KubeEdge [34] is a recent development, aiming to extend
Kubernetes to edge clusters. Despite being based on Kuber-
netes, it also is not directly compatible with Kubernetes mas-
ter nodes and needs an extra cloud component to function
properly. While this article presents a Kubernetes-oriented
solution, Docker Swarm has been used for similar purposes
in fog computing [35].

Kubernetes CRDs (Custom Resources Definition [36])
can be used to a similar effect as a Virtual Kubelet. CRDs al-
low IoT devices or resources to be registered in Kubernetes,
where they can be assigned workloads through through
a custom controller. The main difference with a Virtual
Kubelet is that the controller must be hosted on Kubernetes
and can control all IoT devices simultaneously. Microsoft
uses CRDs for the inverse approach; IoT Edge can integrate
with Kubernetes [37] by defining IoT Edge workloads as
CRDs, which are converted to pods by the IoT Edge Agent
so they can be deployed by the Kubernetes scheduler.

Kubernetes has very limited resource monitoring by
default. It keeps a rough overview of the total and re-
quired CPUs and memory on each node, but these numbers
are unreliable when container orchestration itself takes a
significant amount of total resources. Several third party
systems have come and gone, such as cAdvisor [38] and
Heapster [39], many of which are based on the resource
metrics API [40] exposed by Kubelets. There are studies that
present their own framework, such as PyMon [41], which is
a general container monitoring framework. FLEDGE aims
to be compatible with the resource metrics API exposed by
Kubelets, so tools such as cAdvisor can monitor them the
same way as normal worker nodes.

3 FLEDGE
This section details how the requirements put forth in the
introduction are met by FLEDGE, starting with a general
overview of what a Virtual Kubelet is and how the solution
is based on it.

A Virtual Kubelet acts as a proxy for Kubernetes to
any platform or device that can run containers. A Virtual

Fig. 1: Conceptual overview of FLEDGE and its use of a
Virtual Kubelet.

Kubelet interacts directly with the Kube API on the master
node, and passes API calls to brokers that implement them
for the system they represent, for example Amazon AWS,
Microsoft Azure or an edge device. The API calls supported
by a Virtual Kubelet consist of pod management, pod status,
node status, logging and metrics.

Fig.1 shows how a Virtual Kubelet fits into the FLEDGE
framework. When FLEDGE is started, the Virtual Kubelet
is initialized and the FLEDGE broker connects to it, receiv-
ing commands from Kubernetes through it. Depending on
its configuration, the broker will initialize a specific Con-
tainer Runtime Interface which decomposes the commands
into container networking, cgroup management, namespace
management, or passes them on to a container runtime (e.g.
Docker, Containerd). The collection of FLEDGE components
deployed on an edge device will be referred to as a FLEDGE
agent.

3.1 Compatibility

One of the requirements for FLEDGE is that it should sup-
port container standards and existing container runtimes.
There are a few aspects to this requirement, some of which
are limited by the APIs of existing software.

The first aspect is the choice of container runtime. While
Docker may seem like a logical choice because it is very
widely supported, Containerd is also an option. Since ver-
sion 1.11, Docker relies on Containerd for some operations,
such as container execution. Both runtimes support the OCI
standards, so they can both create and run OCI containers
(Docker containers). In terms of compatibility, both are valid
choices, so ultimately it comes down to a trade-off between
ease of implementation and resource requirements, which
will be discussed in Section 3.3.

Related to the choice of container runtime is compatibil-
ity with Linux cgroups. Some devices and operating systems
do not support all cgroups by default, making it hard or
impossible to correctly run Kubernetes deployments. On a
Raspberry Pi 3 running Raspbian for example, cgroups used
for CPU throttling may be missing from the kernel, which
must be custom-built in order to guarantee compliance
with Kubernetes specs. If these kernel options are missing,
FLEDGE will generate a warning, but still continues with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCC.2020.3033807

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 IEEE TRANSACTIONS ON CLOUD COMPUTING

the deployment if possible. Since neither Kubernetes nor
Docker seem affected by the absence of the cgroups in
question, this approach seems to be the standard.

Another aspect of compatibility is how container net-
working is handled. In Kubernetes, container networking
is implemented as an overlay network [42] in which each
pod can be assigned a distinct IP address on a virtual
network interface. This is achieved by assigning sub-ranges
of a configurable IP range to each node, from which they
in turn assign IP addresses to their pods. Kubernetes itself
makes high-level decisions on container networking, such
as assigning IP ranges to the Kubelets on the nodes. The
assignment of IP addresses to pods and the setup of network
namespaces and virtual network interfaces is handled by
CNI compatible network plugins (e.g. Flannel, Weave) on
the nodes themselves. To use a specific network plugin, it is
deployed on the master node, which in turn makes sure it
runs on all worker nodes.

In FLEDGE, this is implemented differently. By fulfilling
the role of both Kubelet and container network plugin,
there is no need for the CNI layer usually present between
Kubelet and network plugin. Additionally, the number of
pods that can be deployed on edge devices is rather limited
compared to cloud infrastructure. This means that it is
preferable to implement a simple and naive, but effective
pod networking handler (Fig.1 Container networking) which
hands out IP addresses on a first come, first serve basis. This
pod networking handler is also responsible for configuring
networking namespaces correctly (Fig.1 namespace manager),
independent of the active container runtime. The deploy-
ment of the network plugin itself is prevented by labeling
the node so it is not eligible for deployment.

Since FLEDGE uses the Kubernetes-assigned IP ranges
to configure its container networking, this approach does
not influence container networking in the rest of the cluster.
The master node is unaware that the node does not deploy
the default network plugin and handles its networking
needs, and the container networking plugin is still deployed
and functioning normally on other nodes.

As stated in the introduction, Kubernetes node resource
monitoring is sufficient to determine if any additional pods
can be deployed on a node. This monitoring is based on the
total resources of a system and the maximum resources allo-
cated to pods, actual resource use is not taken into account.
This is a problem for edge devices, since operating system
and orchestrator resource use can constitute a significant
portion of total resources, making it hard to gauge if a device
can take additional load based on pod-allocated resources
alone.

Luckily, Kubelets also provide the Resource Metrics API
which is used by several third-party monitoring tools. In
order to support these monitoring tools, one needs to im-
plement the Resource Metrics API up to a level sufficient for
monitoring edge device resources and pods (Fig.1 Resource
monitoring). By default, the Resource Metrics API is hosted
on the same port as on a normal Kubelet.

3.2 Security and stability
Edge devices often find themselves in heterogeneous net-
works with little to no organization or security. This ran-
domness of topology, IP address assignments and port

Fig. 2: High-level overview of network traffic flow of
FLEDGE, using OpenVPN to connect edge nodes to the
cloud.

mappings is not an ideal situation for building a cluster and
deploying containers. Furthermore, the situation could be
exacerbated by the presence of a router with either NAT or a
firewall. Finally, while Kubernetes node traffic is secured by
default, the same is not always true of services deployed on
nodes, so all traffic between the cloud and the edge should
be secured by default.

In FLEDGE, this is solved by setting up a VPN, more
specifically OpenVPN, and building the cluster and con-
tainer network on top of its interfaces. The basic traffic flow
of this setup is shown in Fig.2. While simple, this approach
fixes the problems described above:

• IP addresses of nodes are predictable and directly
reachable by the master node.

• The VPN interface is a proverbial clean slate; all ports
are open and available for use.

• Physical layout of the network no longer matters, the
VPN can be organized according to logical parame-
ters.

• UDP hole punching might be required to overcome
NAT or a firewall, but this is taken into account by
OpenVPN.

• Packets are encrypted by default for a basic layer of
security.

However, the effectiveness of using a VPN also depends
on the software used and its exact configuration:

• The effectiveness of packet encryption depends on
the chosen algorithm, and encryption can even be
turned off entirely for performance reasons. FLEDGE
uses default OpenVPN encryption.

• Using a VPN is a drain on system and network
resources, likely reducing the scalability of clusters.
OpenVPN has another drawback in that it can only
use a single CPU core, which may quickly saturate
and limit its performance on edge devices.

• Anyone with physical access to the device can piggy-
back on the VPN connection and reach any cluster
services. Preventing this requires physical and OS-
level security.

The custom container network implementation in
FLEDGE uses IPtables to configure the routing between
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Fig. 3: Overview of network traffic flows in a cluster using
FLEDGE nodes. Green arrows indicate possible traffic flows.

pods and the rest of the cluster. Properly configuring IPt-
ables with respect to the VPN interface allows the exclusion
of certain traffic flows, as shown in Fig.3. The solid green
arrows indicate traffic flows allowed by FLEDGE, showing
that any container running on a FLEDGE agent can access
any device or container in the VPN and the pod network.
Not all devices need to be connected to the VPN, nor do
they all need to be part of the pod network. Note however,
that traffic from devices in the pod network that are not
connected to the VPN can easily be blocked by configuring
IPtables differently.

Fig.4 reiterates Fig.2, but on the level of network inter-
faces. This figure shows how the entire container network
is built on the VPN network, and that all traffic uses the
VPN interfaces. CNI (solid red) arrows represent container
network traffic, while Normal arrows represent VPN and
ethernet traffic. The Host map arrows indicate traffic to con-
tainers that use the host network namespace, meaning that
they have direct access to the network interfaces of the node
they run on rather than operating through a virtual network
interface. The OpenVPN and FLEDGE containers run in
privileged mode, since they need the authority to create
and modify network interfaces, cgroups and namespaces.
Similarly, they run in the host network namespace because
they need to cooperate and create network infrastructure for
the container runtime and the master node. While the figure
indicates that all container traffic goes via the container
network, they can still be assigned to the host network
namespace. After all, FLEDGE simply executes Kubernetes
deployments. However, putting them on the host network
namespace is discouraged, since that might make it harder
to communicate with other cluster services.

Container images may contain proprietary software that
needs to be protected from local and remote unauthorized
access, and the resulting risk of reverse engineering. Because
FLEDGE agents have to run as root, they present a prime
attack vector to access all of the images and containers they
manage. However, a few steps can be taken to mitigate this:

• Running containers are by default assigned to dif-
ferent file system namespaces by most container
runtimes. While a root account can easily access the
file system of a container, it can be protected against

any user that is not root, apart from the user running
the container.

• To minimize the chance of images being copied and
reverse-engineered, they can be removed when the
containers in a pod are finished. While this also frees
up some extra storage for reuse, it may slow down re-
deployments of the same pod because the container
runtime needs to download the images again.

• FLEDGE cleans up all network infrastructure, con-
tainers and images on shutdown. This is also re-
quired for leaving the system in the same state it was
in before deploying FLEDGE.

3.3 Low resource use

The choice of container runtime is very important for re-
source use. Because Docker relies on Containerd to actu-
ally run containers, Containerd is likely the most resource-
friendly option. On the other hand, the Containerd APIs
require more low-level implementation to use effectively
than those of Docker.

For low-resource edge devices it is reasonable to put
resource requirements before ease of implementation, and
since the compatibility section has shown that there is little
to no difference in supported standards between the con-
tainer runtimes, it stands to reason to propose Containerd
as the runtime for FLEDGE. The Results section will further
validate this choice.

3.3.1 Networking

The compatibility section argued in favor of a custom CNI
facility in FLEDGE, rather than using one of the existing
containerized network plugins such as Weave or Flannel.

This design choice is optimal in terms of resource re-
quirements, considering that all container plugins are de-
ployed as containers. While using containers is flexible
and more durable than other forms of plugins (e.g. host
process or in the same process), it also means that a plugin
requires a significant amount of resources to run. While this
is not explicitly reflected in any results in this article, the
requirements for Flannel are determined and discussed in
Section 6 to support this claim.

3.3.2 Namespaces and cgroups

Using the low-level APIs of Containerd means that some
functionality needs to be implemented explicitly. Two of the
most important aspects of this functionality are cgroups and
namespace handling.

While both Docker and Containerd create the required
namespaces for a new container, FLEDGE takes care of
all namespace management after the creation of the first
container of a pod. This is to make sure that no matter which
container runtime is used, the behavior is the same.

On the other hand, container resource restrictions are
much easier to pass directly via the Docker API, which pop-
ulates the required cgroups automatically. While Containerd
is also capable of making cgroups, the actual restrictions
need to be set by the program using the Containerd APIs.
Therefore, FLEDGE only allows the creation of one cgroup
of each type (memory, cpu, ...) per pod. After configuring
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Fig. 4: Overview of network traffic flows in a cluster using FLEDGE nodes, on the interface level. Note that OpenVPN and
FLEDGE always run in the host network namespace.

the resource restrictions, it forces Containerd to reuse them
for the rest of the containers in a pod.

Similar to container networking, the complexity of
cgroup and namespace management on edge devices is
much reduced compared to cloud infrastructure. Therefore,
despite increasing the complexity of FLEDGE, handling
cgroups and namespaces in FLEDGE itself using a mini-
mal implementation allows conserving resources for actual
workloads.

3.3.3 Virtual Kubelet location
As explained above, the Virtual Kubelet is only a small part
of FLEDGE. While instrumental in the communication with
Kubernetes master nodes, its location matters very little
since a custom broker implementation can forward API calls
to other devices.

In terms of resource requirements, this allows for two
options when considering where to run the Virtual Kubelet:

• In the cloud: the Virtual Kubelets are run as pods in
the cloud, entirely separate from the FLEDGE agents
which are running on edge devices. Kubernetes API
calls received by Virtual Kubelets are forwarded to
FLEDGE agents via REST services. This approach
shifts some of the resource requirements from the
edge to the cloud, while allowing for a more robust
system. For example, when a FLEDGE agent loses its
connection to a Virtual Kubelet, the Virtual Kubelet
can queue commands and give default responses
until the agent comes back online.

• On the edge: the Virtual Kubelet is integrated into the
FLEDGE agent and run as a container or a normal
process on the edge device. Kubernetes API calls
are executed directly in the same process. While this
approach requires more resources on the edge and
is less resistant against network problems, it does
reduce the operational and technical complexity of
FLEDGE.

The two options are further illustrated in Fig.5. On the
left, the Virtual Kubelets run in the cloud, while on the right
the Virtual Kubelet is shown in its pass-through role on the
edge device.

Note that when the Virtual Kubelets are run in the
cloud, a small web service (FLEDGE service) is required
on Kubernetes master nodes to simplify Kubernetes API
access for FLEDGE agents. Without this service, FLEDGE
agents would have to include the full Kubernetes API,
increasing their size by about 20MiB. When the Virtual
Kubelet is integrated into the FLEDGE agent, they share
the Kubernetes API and the FLEDGE service is no longer
required. The resources required for the FLEDGE service are
insignificant when deployed on a server, so they will not be
taken into account for the rest of the article.

To properly determine where to put the Virtual Kubelet,
a model needs to be constructed which takes into account
the resource use in both situations, and the relative impor-
tance of edge resources versus cloud resources. Kubernetes
v1.14 has a limit of 5000 nodes per cluster [43]. Because
there is always at least one master node, this means a
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(a) Virtual Kubelet in the cloud. (b) Virtual Kubelet on the edge.

Fig. 5: Overview of FLEDGE architecture for different locations of the Virtual Kubelet. In Fig.5a, the Virtual Kubelet is
run in the cloud, communicating with FLEDGE over VPN. Fig.5b shows how the Virtual Kubelet can be integrated into
FLEDGE on the edge device, passing Kubernetes calls directly to the FLEDGE broker.

cluster can contain at most 4999 edge nodes. However, if
the Virtual Kubelets are deployed in the cloud as pods, the
maximum number of pods per node is also important. For
v1.14 this limit is 110, but taking plugins and default pods
into account, 100 pods per node is a safe estimate. This
means that for every 100 edge nodes, there would need to
be an additional master node to manage them, increasing
the complexity of the management structure in the cloud.
Modeling all the requirements starts with calculating the re-
quired number of management nodes NM and management
efficiency E:

NM = d LN

LP + 1
e (1)

E =
LN −NM

LN
(2)

Where LN is the limit of nodes per cluster and LP is
the pod limit per node. Eq. (1) and eq. (2) can be used to
construct the total memory used by all pods MPods and
nodes MNodes:

MPods = LN · E ·MPod +MShr · (NM − 1) (3)

MNodes = (NM − 1) ·MKube (4)

Where MPod is the amount of non-shared memory re-
quired per Virtual Kubelet, MShr is the amount of memory
shared by all Virtual Kubelets on a node, and MKube is the
amount of memory required for a Kubernetes installation.
MKube can be extended to the memory requirement of
an entire operating system or virtual machine, depending
on how Kubernetes master nodes are instantiated in cloud
infrastructure. Eq. (3) and eq. (4) can in turn be used to calcu-
late the maximum additional amount of memory the Virtual
Kubelet should require per edge node for edge placement to
be more memory efficient than cloud placement:

ME = CM ·
LN · E ·MPod + (MShr +MKube) · (NM − 1)

LN
(5)

Where CM is a constant representing the relative cost of
edge memory versus cloud memory. This constant is impor-
tant because cloud memory is cheap and easily extensible.
Similar to eq. (5), a formula can be constructed for storage
requirements:

SE = CS ·
LN · E · SPod + (SShr + SKube) · (NM − 1)

LN
(6)

Where CS , SPod, SShr and SKube fulfill the roles of CM ,
MPod, MShr and MKube respectively. The only factor not
considered in these equations is the cost of maintaining a
more complex cluster of master nodes in the cloud, which is
very case-dependent and hard to estimate.

CS is assumed to be 1, since the target class of edge
devices can routinely store several gigabytes, and the size of
a discrete Virtual Kubelet is merely 32MiB on x64. For such
small amounts, storage is equally cheap in the cloud and on
the edge. Furthermore, edge devices that are not equipped
with at least 512MiB (compressed) storage are unlikely to
be able to run a Linux based operating system with a kernel
capable of handling containers, so it is not useful to consider
such devices for container deployment. CM depends on a
lot of factors. Most important of all, cloud memory is often
priced in terms of GiB-seconds, while edge hardware is a
one time purchase but typically non-extensible. Both types
of memory have a wide range of pricing constantly in flux,
further complicating attempts to calculate CM . For the rest
of this article, it will naively be assumed to equal 1.

4 ALTERNATIVES
The previous section describes how FLEDGE solves most
of the requirements put forth in the introduction, specifi-
cally secure communications and compatibility with exist-
ing standards and APIs. However, proving that FLEDGE
resource requirements are lower than those of comparable
software requires some experiments.

This section discusses some alternative container orches-
trators, giving a short history and possible advantages and
disadvantages for each.
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4.1 Kubernetes
Kubernetes [3] is a very popular container orchestrator
originally inspired by Google Borg [44]. Years of Kuber-
netes development have contributed to several container
standards, some of which have been discussed in previous
sections. Kubernetes is made to run in the cloud, and while
it is very flexible and extensible, it also tends to use too
many resources when deployed on edge devices.

It has already been discussed how the most important
elements of FLEDGE relate to Kubernetes in previous sec-
tions. However, there is still an important difference be-
tween FLEDGE and Kubernetes in that the latter requires all
swapping to be disabled. This leads to serious performance
and stability issues on some edge devices (e.g. Raspberry
Pi 3), which are already low on memory after a Kubernetes
deployment. FLEDGE does not require swap to be turned
off, so all memory subsystems can perform as intended.

4.2 K3S
K3S [45] is a new container orchestrator based on the
Kubernetes source code, but modified specifically for edge
devices. Version 0.1.0 was released in February 2019, and
while v0.5.0 is currently available, the version used for the
evaluations is v0.3.0. Unlike FLEDGE, which is only meant
to be used on worker nodes, K3S also has its own master
nodes.

Where FLEDGE starts out from scratch and works to-
wards Kubernetes compatibility, K3S takes the inverse ap-
proach and eliminates unnecessary code and functionality
from the full Kubernetes source code. Unlike Kubernetes,
it has no choice of container runtime; Containerd is used
by default. Similarly, Flannel is integrated for container
networking.

While K3S has better support for Kubernetes APIs, not
being built from scratch can be a disadvantage for it in terms
of resource requirements. Additionally, it has a slightly
different cluster join mechanism and a thin wrapper layer
which gives it its own shell commands. These changes
mean that, for now, K3S worker nodes cannot be used in
a Kubernetes cluster, but only in K3S clusters.

4.3 KubeEdge
KubeEdge [46] is a new, early-stage Edge Computing
Framework based on Kubernetes and designed specifically
for edge networks. It was initially released in December
2018, with the latest version being v0.3.0 as of early May
2019.

KubeEdge is built on open source software, including
Kubernetes and Docker, and aims to provide an ecosystem
for container orchestration on edge devices. It consists of
a cloud part and an edge part [47]. The cloud part com-
municates with the Kubernetes API in the cloud and has
high-level control over edge devices. The edge part takes
care of container deployment and provides an infrastructure
for storage and event-based communication, the latter being
based on MQTT [48].

Since it is much more than just a simple container orches-
trator, including it in the evaluations would not result in a
fair comparison for KubeEdge. Despite this, it is unlikely
to be a very-resource efficient solution because of its use of
Docker, a point which will be proven in the Results section.

Fig. 6: Overview of the hardware setup used for the evalu-
ations. Note that the OpenVPN containers are only used by
FLEDGE, other orchestrators connect directly to the master
node via LAN. Previous figures did not show OpenVPN
components as containers because they were more concep-
tual.

5 EVALUATION SETUP
Now that the FLEDGE architecture has been explained and
alternative approaches have been identified, an evaluation
environment can be constructed. The evaluations are in-
tended to confirm some of the choices made in earlier
sections, to back up some claims, and to give an indication
of how FLEDGE stacks up against Kubernetes v1.14 and
K3S v0.3.0 in terms of resource consumption.

The source code of FLEDGE is made available on
Github1.

This section first gives an overview of the evaluation
setup and general methodology. Subsequently, the specifics
of each evaluation are explained.

5.1 Methodology
Fig.6 shows the hardware setup used for the evaluations.
There are 3 devices involved:

• The VWall master node fulfills the role of a Kuber-
netes/K3S master node. Its specifications are not
important, since the worker nodes are the focus of
the evaluations.

• The VWall server (x64) is used to determine the re-
source requirements of orchestrator worker nodes on
an x64 CPU architecture. This server has an AMD
Opteron 2212 processor at 2GHz and 4GiB RAM,
running Ubuntu 18.04.

• The Raspberry Pi 3 is used to determine resource
requirements for FLEDGE on an ARM CPU architec-
ture. This device runs Raspbian with kernel version
4.14.98-v7+ on the default hardware configuration;
1GiB RAM and a quad-core 1.2GHz CPU.

All devices are in the same geographical location and
are connected by a Gigabit LAN. The OpenVPN server and
clients are only used when FLEDGE is deployed on the

1. https://github.com/togoetha/fledge
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worker nodes, Kubernetes and K3S connect to the master
node directly via LAN. All evaluations will be performed
on both ARM and x64.

The container runtime used in any evaluation depends
on the orchestrator being tested. For Kubernetes, Docker is
used, while K3S has Containerd by default. For FLEDGE,
both Docker and Containerd are possible.

The storage requirements for each orchestrator are de-
termined by using the df [49] command before and after
orchestrator setup. After every evaluation, the devices are
wiped to ensure the same state at the start of each eval-
uation. In addition to the orchestrator and the container
runtime, this approach also takes packages and libraries into
account that are required to run the orchestrator properly,
thus forming a complete picture of storage requirements.
Because no deployments or workloads are executed apart
from the default containers required for each orchestrator,
storage does not vary over time and thus it is not necessary
to measure beyond the successful start of each orchestrator.

Measuring memory use is more complex than determin-
ing storage requirements, for the following reasons:

• Unlike the thousands of files involved in setting up
an orchestrator, the processes involved in running it
can be easily identified, so a more granular approach
is possible. This is not only more accurate, but allows
for more detailed conclusions by studying subsets of
processes.

• It stands to reason that memory use is not as static
as storage requirements. During deployment, a lot of
memory will be used which may be released again
later. Therefore, memory use must be monitored
over a significant period of time to form a complete
picture.

• Processes can have private and shared memory.
While it is easy enough to obtain these numbers, a
fair method is required to calculate the exact memory
use of a process from both numbers.

During each evaluation, memory is measured every 30
seconds over a period of 15 minutes, while the pmap [50]
command is used to determine the Proportional Set Size
[51] (PSS) of each process, calculated using the following
formula:

Mtotal = P +
i∑

Si/Ni

where P is private memory, Si are various sets of shared
memory, and Ni is the number of processes using any piece
of shared memory.

5.2 Container runtime comparison

Previous sections have argued that the choice of container
runtime can have a large impact on resource requirements
for an orchestrator solution. In order to verify this, FLEDGE
is set up as in Fig.5a, using both Docker and Containerd.
No pods or containers other than the FLEDGE agent and a
VPN client are deployed, to reduce the influence of other
processes on memory use behavior. A third case is also
examined, in which the FLEDGE agent runs directly on the

host while using Containerd as a runtime, to determine the
containerization overhead of the FLEDGE agent.

In all cases, the processes monitored are container run-
time daemons, the FLEDGE agent, the VPN client and
Containerd shims [52].

5.3 Virtual Kubelet integration
As shown in Section 3, Virtual Kubelets can either be de-
ployed on the master node or merged with FLEDGE on edge
devices. This evaluation is meant to gather the required data
for Eq. 5 and Eq. 6 so an argument can be made for the
correct approach.

To gather the required data, FLEDGE is set up as de-
scribed in both Fig.5a and Fig.5b, and the same processes
are monitored as in the Container runtime comparison.

5.4 Orchestrator comparison
As presented in Section 2, there are a number of alternatives
to FLEDGE. Since the point of FLEDGE is to provide a
Kubernetes-compatible container orchestrator with minimal
resource requirements, this evaluation is meant to verify
that FLEDGE requires fewer resources than Kubernetes
worker nodes on edge devices. To fully prove this, Kuber-
netes is allowed to deploy a kube-proxy [53] on FLEDGE to
level the playing field. Flannel will be used as a CNI plugin,
but since FLEDGE has its own container networking it will
only be deployed on Kubernetes worker nodes.

Additionally, FLEDGE is compared to K3S to show that it
is a useful alternative to K3S. Because K3S does not actually
include kube-proxy by default, this evaluation compares
K3S to a FLEDGE deployment without kube-proxy.

For this evaluation, the monitored processes are the
container orchestrator, the container runtime, shims and any
deployed containers (including VPN for FLEDGE). FLEDGE
uses Containerd as a container runtime.

6 EVALUATION RESULTS
This section presents the results of the evaluations described
in Section 5. For practical purposes, x64 numbers are shown
as blue series in the charts, while ARM is shown as red with
dashes. Storage requirements charts are bar charts showing
medians, memory charts also have error bars indicating the
median absolute deviation.

6.1 Container runtime comparison
Fig.7 shows the storage requirements for FLEDGE deploy-
ments using either Docker or Containerd.

The first important observation is that on ARM devices,
a FLEDGE deployment using either Containerd and Docker
requires far less storage than on x64. The difference is
especially large in the case of Docker and FLEDGE, which
needs 3 times as much storage on x64 as it does on ARM.

At first sight, it appears that Containerd is much less
efficient on ARM than Docker is, but this conflicts with
the fact that Docker uses Containerd for many container
tasks. However, in order to use a containerized version
of the FLEDGE agent with Containerd, many files and
resources need to be made available inside the FLEDGE
agent container for it to be able to deploy containers itself.
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Fig. 7: Storage requirements of FLEDGE using different
container runtimes, including all relevant processes. The
Host+ctd category shows the results for FLEDGE running
directly on the host, using Containerd to run deployments.

It turns out that mounting all these file paths inside the
FLEDGE agent container at runtime creates a multitude of
file system layers which inflate storage requirements up to
4 times the original size. In order to validate this, a FLEDGE
agent was run as a host service with Containerd as a con-
tainer runtime. Additionally, this version of Containerd was
cleaned of unnecessary support executables, most notably
the command line tool ctr, since only API interaction is
required. This is similar to the approach K3S uses, and the
most important downside is that the command line can
no longer be used for debugging purposes. This approach
(Fig.7 Host+ctd) is much more resource efficient, using only
about one third of the resources Docker requires on both x64
and ARM.

Note that the same approach does not work with Docker;
running the FLEDGE agent as a host service with Docker
as a container runtime gives nearly the same results as in
Fig.7. This indicates that while Docker may use Containerd
as a runtime, it has a much more efficient method of creating
and mounting file system layers.

The results in Fig.7 can thus be explained by two causes.
The first is how mounts are handled by the container run-
times, the second is the result of instruction set differences
and larger overall binaries on x64. The effects on required
storage are respectively additive and multiplicative. This is
reflected in Fig. 7, where the Host+ctd and Docker categories
scale more or less equally between x64 and ARM, but the
inflated layers in Containerd are similar added burdens
on both x64 and ARM. Note that the differences in the
latter case are not identical, since some of the mount points
include binaries that are also platform dependent.

Fig.8 shows the memory use of FLEDGE using either
Docker or Containerd. Again, the ARM versions are much
more resource efficient, using up to 50% less memory for
Docker and 65% for Containerd.
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Fig. 8: Memory use of FLEDGE using different container
runtimes, including all relevant processes.

As far as container runtimes go, Containerd is by far
the best option to use with FLEDGE. The ARM setup
of FLEDGE using Containerd requires only about 80MiB
storage and 50MiB memory in total, including a VPN client
container.

6.2 Virtual Kubelet integration

The effects of integrating the Virtual Kubelet into FLEDGE
are shown in Fig.9 and Fig.10. In Section 3, Eq. 5 and Eq.
6 were constructed to calculate the maximum amount of
storage and memory this integrated solution should use.
By measuring the resource consumption of Virtual Kubelet
pods on the master node, MPod is determined to be 10MiB
and MShr 20MiB. Other factors are harder to pin down, but
they are estimated at 500MiB for MKube, 0MiB for SPod,
40MiB for SShr and 1200MiB for SKube. Using the default
Kubernetes node and pod limits, ME and SE are calculated
and shown in the figures as horizontal lines, indicating the
useful limits for memory and storage respectively.

As Fig.9 shows, integrating the Virtual Kubelet into
FLEDGE is not optimal for storage, especially in the case of
x64, but considering that it only goes 3MiB over the “limit”
it is unlikely to matter much. Fig.10 shows slightly better
results for memory use. On ARM, there is a good reason to
run the Virtual Kubelet in FLEDGE on the edge, since it uses
about 10% less memory than the calculated useful limit. For
x64, moving the Virtual Kubelet to the edge is more or less
memory neutral, with median memory use being exactly the
limit.

6.3 Orchestrator comparison

Fig.11 shows the storage requirements of FLEDGE com-
pared to those of Kubernetes. For both x64 and ARM,
FLEDGE requires significantly less storage than Kubernetes,
but the difference is largest on x64 with about 75% less
storage. On an ARM device, FLEDGE requires about 60%
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Fig. 9: Storage requirements of FLEDGE while running the
Virtual Kubelet in the cloud or on the edge. The horizontal
lines indicate the useful upper limits for integrating the
Virtual Kubelet into FLEDGE on the edge for x64 and ARM,
calculated by adding the result of Eq. 6 to the numbers of
the Cloud category.
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Fig. 10: Memory use of FLEDGE while running the Virtual
Kubelet in the cloud or on the edge. The horizontal lines
indicate the useful upper limits for integrating the Virtual
Kubelet into FLEDGE on the edge for x64 and ARM, cal-
culated by adding the result of Eq. 5 to the medians of the
Cloud category.
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Fig. 11: Comparison of the storage requirements of Kuber-
netes and FLEDGE, both running a kube-proxy deployment.
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Fig. 12: Comparison of the memory use of Kubernetes and
FLEDGE, both running a kube-proxy deployment.

less storage than Kubernetes. This large difference can be
attributed to several factors, including the choice of Con-
tainerd over Docker and integrating several plugins instead
of running them as containers.

The memory use of FLEDGE compared to Kubernetes
is shown in Fig.12. Again, FLEDGE requires significantly
fewer resources than Kubernetes, with both the x64 and
ARM versions requiring around 50% less memory than Ku-
bernetes. It is worth noting that simply eliminating Flannel
in favor of a custom container networking solution saves
around 24MiB of memory on ARM devices and 36MiB on
x64.

These results show that FLEDGE, while remaining Ku-
bernetes compatible, uses much less resources and is a
viable container orchestrator for edge devices.
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Fig. 13: Comparison of the storage requirements of K3S and
FLEDGE, without kube-proxy.
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Fig. 14: Comparison of the memory use of K3S and FLEDGE,
without kube-proxy.

The difference between K3S and FLEDGE, shown in
Fig.13 for storage and Fig.14 for memory, is less impressive.
However, FLEDGE still uses about 10% less storage than
K3S on x64, and around 30% less on ARM. As far as memory
goes, FLEDGE and K3S require more or less equal amounts
on x64, but FLEDGE uses 25% less on ARM devices.
Combined with the ability of FLEDGE to join Kubernetes
clusters, which K3S cannot do, this makes a strong case for
using FLEDGE as an edge container orchestrator compared
to alternative software.

Finally, Fig.15 shows the amount of memory used for
each container orchestrator, without any additional pro-
cesses. Only in the case of Kubernetes has Flannel been
included, since K3S and FLEDGE have pod and container
networking by default. This chart shows that while both

K3S and FLEDGE require only around 30% of the resources
of Kubernetes, FLEDGE is more efficient on ARM devices,
while K3S is more efficient on x64.

7 FUTURE WORK
This article presents a fully operational container orchestra-
tor for edge devices, but there are aspects of FLEDGE that
can be improved.

First of all, the integration of the Virtual Kubelet on the
edge is not ideal. While it is better than managing each
FLEDGE agent with separate pods in the cloud, the ideal
solution may be to create a single service in the cloud that
can manage hundreds or thousands of FLEDGE agents,
scaling up only as required. This approach would be optimal
for resource requirements, but it would likely require a lot
of processing power and create a single point of failure.

Only Docker and Containerd were considered as con-
tainer runtimes for FLEDGE, but many others exist, includ-
ing rkt [54] and CRI-O [55]. Docker and Containerd were
chosen because they are widely supported and popular, but
it is unknown if another container runtime could give better
results.

As orchestrator compatibility goes, K3S and FLEDGE
already use both the Kubernetes and Containerd APIs, so
with a little extra work it may be possible to have FLEDGE
connect to both Kubernetes and K3S clusters, even simulta-
neously.

While FLEDGE is built to be Kubernetes compatible, it
is unknown if optional features such as distributed storage
work properly at this point. For the envisioned use of
FLEDGE on edge devices, this is not important, but it could
prove a valuable addition in the future.

OpenVPN is used to build a homogeneous network
environment for FLEDGE to operate in, but other VPN
software exists that may be more stable or provide faster
connection speeds. Possible alternatives include Tinc, Wire-
Guard and ZeroTier.

In Eq. 5, CM represents the relative cost of edge memory
versus cloud memory. In this article, it is naively assumed to
be 1, but studies on the relative cost of edge resources and
cloud resources could be interesting for the further develop-
ment of software and container placement strategies.

The version of Kubernetes used in this article is limited
to a maximum of 5.000 nodes and 150.000 pods in total.
While this is sufficient for cloud clusters, the maximum
number of nodes in particular will be too low for edge
clusters. These numbers are not hard-coded, but based on
the performance of several subsystems, such as node syn-
chronization and pod status updates. It may be possible to
increase the maximum number of nodes by optimizing the
configuration of Kubernetes and severely limiting the maxi-
mum number of pods on an edge node. Another solution is
to federate a number of Kubernetes clusters using KubeFed
[56], thereby reducing the impact of the limits of a single
cluster.

8 CONCLUSION
In the introduction, a number of requirements are proposed
for FLEDGE:
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Fig. 15: Direct comparison of the memory use of the main
process(es) of each container orchestrator. For Kubernetes,
Flannel was included in the measurement because other
orchestrators provide the same functionality by default.

• Secure communications between edge devices and
the cloud by default, minimal impact on local net-
works.

• Compatibility with modern standards for container
orchestration, or provide an adequate alternative.

• Low resource requirements, primarily in terms of
memory but also in terms of processing and storage.

In this article, FLEDGE is shown to be a solution to these
requirements by using Virtual Kubelets and agents on edge
devices. A VPN is used to homogenize edge networks and
provide a basic layer of security for communication with the
cloud. Compatibility with container standards is achieved
by using OCI [7] APIs to build FLEDGE. Some standards,
such as CNI, can be safely ignored by using a custom imple-
mentation which does not impact the rest of the cluster. Low
resource requirements are achieved partially by choosing
Containerd as a container runtime, and partially through
custom implementations of specific functionality such as
CNI.

To further illustrate the low resource requirements of
FLEDGE, several evaluations are performed. A FLEDGE
setup is deployed using both Containerd and Docker, show-
ing that FLEDGE using Containerd requires about half of
the memory and storage of FLEDGE using Docker.

Similarly, the choice of running the Virtual Kubelets in
the cloud or integrating them into FLEDGE agents is backed
up by a theoretical model and an evaluation. The results
show that it is preferable to integrate the Virtual Kubelets
into FLEDGE agents, reducing overall complexity. On x64
platforms, the total amount of resources required is almost
identical for the two solutions, but on ARM the results are
slightly better when running everything on the edge.

Finally, Kubernetes and K3S are discussed as alternatives
to FLEDGE, followed by an evaluation to compare them
in terms of memory and storage requirements. The results

show that FLEDGE requires only about 40-50% of the re-
sources of a similar Kubernetes worker node, while it also
requires 25% less resources than K3S on ARM devices. On
x64 devices, FLEDGE and K3S resource requirements are
nearly equal.

The conclusion is that FLEDGE, despite its experimental
status, can deploy Kubernetes pods while using signif-
icantly less resources than other container orchestrators.
Several topics for future work are discussed, mostly focused
on improving FLEDGE itself.
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