

Mitigating Potential Trust Issues in Ad Hoc Collaborations

Laurens Van Hoye

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Computer Science Engineering

Prof. Filip De Turck, PhD - Prof. Bruno Volckaert, PhD
Department of Information Technology
Faculty of Engineering and Architecture, Ghent University

Supervisors

December 2022

Wettelijk depot: D/2022/10.500/108
NUR 986
ISBN 978-94-6355-667-5

Members of the Examination Board

Chair

Honorary Prof. Ronny Verhoeven, PhD, Ghent University

Other members entitled to vote

Prof. Rémi Badonnel, PhD, Laboratoire lorrain de recherche en informatique et ses
applications & Université de Lorraine, France
Marc De Leenheer, PhD, Tunitas
Prof. Jeroen Hoebeke, PhD, Ghent University
Davy Preuveneers, PhD, KU Leuven
Tim Wauters, PhD, Ghent University

Supervisors

Prof. Filip De Turck, PhD, Ghent University
Prof. Bruno Volckaert, PhD, Ghent University

Preface

“But, dear readers, all this well-intentioned advice is just a run-up
to my tenth and final golden rule which transcends all others.

Don’t listen to advice.”

– Robbert Dijkgraaf, Ten rules for success, NRC, May 30th 2009

This quote is extracted from an article written by the renowned math-
ematical physicist Robbert Dijkgraaf. It describes ten action points
people (considering) working in an academic environment should do
to become successful. The aim of inserting this citation is twofold.

Although I do not know dr. Dijkgraaf personally, he is a truly in-
spiring person, as became clear to me in recent years when watching
episodes of DWDD University, a Dutch television show popularizing
science among a wide audience. He is able to fascinate people like no
one else, really someone to look up to, and therefore a short tribute is
included here. The fundamental research topics he discusses, driven
by mathematics and physics, are of the most complex category and
therefore in no way comparable with the more practical topics dis-
cussed here. Taking into account this wider picture makes me feel
humble, but also proud at the same time, as I have been able to ex-
perience and contribute to academia myself during a period of my
life.

On the other hand, the quote itself is quite funny as the article has
only one goal, to provide advice, while you should thus not listen
to advice, which is an advice itself. I guess this setup was intended
this way. Apart from that, it definitely is something to think about.
When you ask people their opinion about doing research or obtaining
a PhD, you get a diverse set of responses. Listening to other opinions

ii

is definitely important, but in the end, I learned that it is always
important to listen to yourself, in this case to grab the opportunity.
Although it was not always easy, especially during the COVID-19
period, I really enjoyed the PhD trajectory. I improved my research
skills, writing skills, speaking skills and last but not least I got to
know myself better. If people would ask me whether doing a PhD
brings value, I would strongly confirm, but remind you, this is only
an advice.

First and foremost, I would like to thank my promotors prof. dr.
Filip De Turck and prof. dr. Bruno Volckaert. For sure, you gave
me the opportunity to start this journey at IDLab, but your contri-
bution entails way more than this prerequisite alone. Bruno, thank
you for the interesting discussions we had, either in person or online.
You have the same earlier mentioned talent to inspire people. Each
time I felt to be stuck at some point, you provided new pointers to
start from, a bit of fresh air you could say. Even at home they knew
after a while whether I had talked to you lately, based on my mood
regarding the PhD. I feel lucky to have had the opportunity to work
with you for five years. Every person can identify a few people who
have had a major influence on their career, and you are definitely
part of my selection. Filip, you breath teaching, engaging students,
fostering collaboration, managing people, everything related to be-
ing a professor. Your feedback, either on articles or cover letters,
was of incredible value, because you are able to understand issues
quickly and provide constructive answers which are spot-on. We fur-
thermore communicated quite a lot to discuss practicalities related
to the C/C++ project for the Programming (PGM) course you are
teaching. I am happy to be one of the few people who can say that
they were able to send, but also receive, emoticons when communi-
cating with a professor. Furthermore, I will never forget that both
of us received chocolates from a student for solving an urgent issue.
Both of you, a massive thanks, and we will of course keep in touch.

Other exceptional colleagues have been part of my journey. The
gentleman of office 200.012, more specifically Sander Borny, Vincent
Bracke, Tom Goethals, Jerico Moeyersons, Leandro Ordonez Ante,
Stefano Petrangeli, Merlijn Sebrechts, Wim Van de Meerssche and
Thijs Walcarius, you are both very friendly and smart guys. Coming
to the office, in the pre-pandemic period, was never boring due to

iii

the unique blend of personalities and backgrounds present. I am
grateful for all enjoyable conversations we had. Also thanks to Sarah
Kerkhove who, at the time, could be considered the Swiss Army knife
for software development. Both Pieter-Jan Maenhaut and Gregory
Van Seghbroeck need to be acknowledged for their help at the start of
the research process, especially for constructing the FWO proposal.
Furthermore, I would like to thank Laurens D’hooge, Bart Moons
and Jeroen van der Hooft for their contribution to PGM and the
relatively short yet pleasant interactions we had. A special thanks
goes to dr. Tim Wauters for thoroughly reviewing our articles. The
quality of all presented publications improved significantly due to
your constructive feedback. Finally, I would like to thank Mathias
De Brouwer for discussing particularities of PhD live and the further
continuation of our friendship.

Of course, my family needs to be credited as well for the immense
support they have given me throughout the years. My father Georges,
my mother Marianne, and my brother Vincent. I guess this preface is
not needed anymore to make clear how much I appreciate you. You
are irreplaceable.

This year marks my tenth anniversary at UGent, from 2012 starting
the bachelor to 2022 finishing the PhD. It has been a great time so
far and I would therefore like to thank the university UGent, the
research group IDLab, and Piet Demeester in particular as head of
the lab. I am really proud to have been a part of the institute. Last
but not least, enjoy reading the dissertation, and feel free to contact
me at any point in time.

Ghent, October 2022
Laurens Van Hoye

Table of Contents

Preface i

List of Figures ix

List of Tables xiii

List of Acronyms xv

Samenvatting xxi

Summary xxv

1 Introduction 1
1.1 Urgent Collaborations 1

1.1.1 Types of Federations 1
1.1.2 Envisioned Emergency Situation 2
1.1.3 Centralized Operator Setup 5

1.2 Problem Statement . 7
1.3 Research Contributions 11

1.3.1 Logging mechanism to generate irrefutable proofs 11
1.3.2 Framework to authorize container deployments 12
1.3.3 Probe swarm to explore unknown clusters . . . 12
1.3.4 Rankings to express and negotiate preferences . 13
1.3.5 Analysis of the presented contributions 13

1.4 Publications . 14
1.4.1 Publications in International Journals 14
1.4.2 Publications in International Conferences . . . 14
1.4.3 Code Repositories 15

Bibliography . 16

vi

2 Trustful ad hoc cross-organizational data exchanges
based on the Hyperledger Fabric framework 19
2.1 Ad hoc cross-organizational collaborations 21
2.2 Related work . 23
2.3 Data and service sharing through exposed Web API

features . 26
2.4 Storing logs of data exchanges 32

2.4.1 Trusted third party 32
2.4.2 Blockchain applicability 33
2.4.3 Hyperledger Fabric 35
2.4.4 Validation mechanisms 40

2.5 Extension of the logging mechanism 44
2.6 Evaluation proof of concept 49

2.6.1 Data exchange model 49
2.6.2 Measurement setup 51
2.6.3 Evaluation results 54

2.7 Conclusions . 57
Bibliography . 61

3 A secure cross-organizational container deployment
approach to enable ad hoc collaborations 67
3.1 Ad hoc cross-organizational collaborations 68
3.2 Related Work . 71
3.3 Breaking down the Kubelet 74

3.3.1 The Kubelet loop 74
3.3.2 Interaction with the container runtime 76
3.3.3 Opportunities to enhance control 77

3.4 Integrating the UMA 2.0 protocol into the Kubelet . . 82
3.5 Evaluation . 95

3.5.1 Setup . 95
3.5.2 Overhead in time 97

3.6 Conclusion . 100
Bibliography . 101

4 Enabling the rescheduling of containerized workloads
in an ad hoc cross-organizational collaboration 105
4.1 Ad hoc pod rescheduling in a cross-organizational cluster106
4.2 Related Work . 109
4.3 Necessity of probes in a cross-organizational context . 111
4.4 Probe swarms enabling pod rescheduling 115

vii

4.4.1 Probes as performance indicators 115
4.4.2 Probe swarm architecture 118

4.5 Evaluation . 123
4.6 Conclusion . 131
Bibliography . 133

5 Enabling organizations to participate in the ad hoc
scheduling of a cross-organizational data pipeline 137
5.1 Introduction . 138
5.2 Related Work . 141
5.3 Enabling organizations to agree on a reward scheme . 143

5.3.1 Extending the probe rescheduling mechanism . 144
5.3.2 Components required to negotiate contribution 144

5.4 Evaluation . 150
5.5 Conclusion . 155
Bibliography . 157

6 Conclusions and Perspectives 159
6.1 Reflecting on the Research Questions 159
6.2 Future Perspectives . 168
Bibliography . 171

A Logging mechanism for cross-organizational collabo-
rations using Hyperledger Fabric 173
A.1 Introduction . 174

A.1.1 Context . 174
A.1.2 Goal of logging mechanism 174

A.2 Related work . 176
A.3 Logging mechanism . 179

A.3.1 Design decision 179
A.3.2 Architecture of logging mechanism 181

A.4 Performance evaluation 185
A.4.1 Setup . 185
A.4.2 Measurements 187

A.5 Conclusions and future work 191
Bibliography . 192

List of Figures

1.1 A terrorist attack at an airport is an example of an
emergency situation requiring the temporary installa-
tion of a crisis centre being connected to both public
safety instances and private security firms. 3

1.2 The trade-off which plays a crucial role in the pre-
sented use case. 5

1.3 The operator is able to deploy, move and delete ser-
vices across the collaborating organizations. Further-
more, services can be linked together graphically. . . . 6

1.4 An organization willing to contribute is able to protect
itself by enabling (some of) the extensions proposed
throughout the dissertation. 9

2.1 Sample ad hoc cross-organizational collaboration where
multiple organizations work on a common project: a
control room operator requests data from other orga-
nizations in order to offer a dashboard as a service to
speed up a decision-making process. 21

2.2 Recap of the components needed for the proposed log-
ging mechanism. [19] 26

2.3 The proposed web API consisting of features which
can be reused by multiple organizations. 28

2.4 Overview of possible topologies discussed in this chapter. 32
2.5 Flow chart to assess whether a blockchain solution may

add value to an application. [26] 34
2.6 Cross-organizational hash verification request which

allows organizations to assess whether they share the
same state up to some point. 45

2.7 Markov chain for an Org Y participating in a collabo-
ration with O = 4. 50

x

2.8 Overview of the different VMs used in the evaluation
setup. 54

3.1 An example cross-organizational deployment scenario
with the goal to share access to a private camera owned
by Org X with the control room dashboard hosted by
Org Y. 69

3.2 Kubernetes networking when the Flannel VXLAN back-
end is used for inter-host networking. 71

3.3 The Kubelet components which constitute the con-
tainer runtime interface. 77

3.4 Overview of the proposed container deployment pro-
cess needed to enable each organization to decide on
cross-organizational container deployments. The blue
components and white indexed interactions represent
software present in the vanilla Kubernetes code base.
The red components and blue / orange / green in-
dexed interactions represent the proposed integration.
The three colors of these newly added interactions each
match a deployment phase as will be explained in Sec-
tion 3.5. 82

3.5 A subset of the steps extracted from Figure 3.4. 83
3.6 A subset of the steps extracted from Figure 3.4. 85
3.7 A subset of the steps extracted from Figure 3.4. 89
3.8 A subset of the steps extracted from Figure 3.4. 92
3.9 A subset of the steps extracted from Figure 3.4. 94

4.1 The operator, having a central overview of all cross-
organizational workloads, needs assistance in the reschedul-
ing of misplaced pods. 108

4.2 Overview of node capacity as interpreted by vanilla
Kubernetes [26]. 112

4.3 The architecture needed to deploy the proposed probe
swarm. 119

4.4 An example use case to which the proposed probe
swarm is applied. 124

4.5 The analysis of all probe cycles, suggesting the selec-
tion of Node B. 129

4.6 The analysis of the latest three probe cycles, suggest-
ing the selection of Node D. 130

xi

4.7 The analysis of all probe cycles, but with an extra
condition, again suggesting the selection of Node B. . 130

5.1 The set of stakeholders contributing to a cross-organizational
data pipeline may change dynamically during the col-
laboration period. 139

5.2 The additional software components and their oper-
ations in chronological order that can be identified
during the adaptation of a cross-organizational data
pipeline. 145

5.3 An organization, in this case Org Y, has the power to
influence scheduling decisions related to a data pipeline
in which it is involved. 148

5.4 An illustrative scenario showing three out of six organi-
zations wishing to construct multiple video processing
pipelines. The purple-colored information is unknown,
from the perspective of the operator, and thus needs
to be uncovered during the scheduling process. 151

6.1 A more fine-grained evaluation of trust relationships. . 170

A.1 Sample collaboration scenario showcasing an equip-
ment builder gaining access to internal APIs of ma-
chines it installed at different manufacturers. 175

A.2 Which architectural blockchain model is most appro-
priate for an application? [2] 177

A.3 Components needed for the proposed logging mechanism.180
A.4 Sequence diagram showing the asynchronous execution

flow of one data exchange between two organizations. . 184
A.5 Sequence diagram showing the integration of Hyper-

ledger Fabric. 185
A.6 An overview of the evaluation setup when the Kafka

ordering service is used. 186
A.7 The asynchronous approach has an average through-

put of 17.6 data exchanges per second. The logging
mechanism is able to keep up with the speed of the
data exchange process. 189

A.8 The decoupling of the data exchange and logging mech-
anism processes emerges when the number of organi-
zations is scaled. 190

List of Tables

2.1 Overview of ordering service implementations for Fab-
ric version 1.0-1.4. 37

2.2 The parameter set used for the reported experiments. 56
2.3 Overview of both cross-organizational interactions and

generated logging data when the parameter set defined
in Table 2.2 is used, and when the logging mechanism
is turned on/off. 58

2.4 Overview of cross-organizational interactions when the
parameter set defined in Table 2.2 is used, when the
logging mechanism is turned on, and when the param-
eter M is lowered. 59

3.1 Overhead in time introduced by the different phases of
the proposed container deployment process. 99

4.1 Time measurements in seconds of tree probe execu-
tions at Nodes II, III, IV and V for different config-
urations of N and S, which represent the number of
tree nodes and size of a tree node in orders of bytes
respectively. 128

5.1 The proposed scheduling flow, allowing organizations
to contribute to scheduling decisions controlled by a
central operator, enables the resolution of potentially
conflicting requirements. 154

A.1 Throughput values for an increasing number of orga-
nizations . 189

List of Acronyms

A

ABAC Attribute-Based Access Control
AI Artificial Intelligence
API Application Programming Interface
ASN.1 Abstract Syntax Notation One
AVC Advanced Video Coding

B

BFT Byzantine Fault Tolerant
BST Binary Search Tree

C

CA Certificate Authority
CC Chaincode
CCTV Closed-Circuit Television
CFT Crash Fault Tolerant
CIDR Classless Inter-Domain Routing
CNI Container Networking Interface
CPU Central Processing Unit
CRI Container Runtime Interface

xvi

D

DB Database
DNS Domain Name System

E

EP Endorsing Peer

F

FPS Frames Per Second
FUSE Flexible federated Unified Service Environ-

ment

G

GCC GNU Compiler Collection
GPPL General-Purpose Programming Language
GPU Graphics Processing Unit
gRPC gRPC Remote Procedure Calls

H

HEVC High Efficiency Video Coding
HTTP Hypertext Transfer Protocol

xvii

I

IaaS Infrastructure as a Service
ID Identifier
IP Internet Protocol
IQR Interquartile range
IRI Internationalized Resource Identifier

J

JSON JavaScript Object Notation
JWT JSON Web Token

K

KVP Key-Value Pair

L

LD Linked Data
LoRa Long Range
LTS Long Term Support

M

MPEG Moving Picture Experts Group

xviii

O

OCI Open Container Initiative
OOM Out of Memory
OPA Open Policy Agent
OSN Ordering Service Node

P

PaaS Platform as a Service
PAT Protection API Token
PBFT Practical Byzantine Fault Tolerant
PID Process Identifier
PLEG Pod Lifecycle Event Generator
PSNR Peak Signal-to-Noise Ratio

Q

QR Quick Response

R

RAM Random-Access Memory
RBAC Role-Based Access Control
RBI Received Block Indication
RDF Resource Description Framework
REST Representational State Transfer
RPT Requesting Party Token
RTT Round-Trip Time

xix

S

SaaS Software as a Service
SBI Sent Block Indication
SDK Software Development Kit
SGX Software Guard Extensions
SHA Secure Hash Algorithm
SLA Service Level Agreement
SQL Structured Query Language
SSD Solid-State Drive

T

TCP Transmission Control Protocol
TLS Transport Layer Security
TTP Trusted Third Party
TX Transaction

U

UMA User-Managed Access
URL Uniform Resource Locator

V

VM Virtual Machine
VPN Virtual Private Network
VXLAN Virtual Extensible Local Area Network

xx

Y

YAML YAML Ain’t Markup Language

Samenvatting
– Summary in Dutch –

Organisaties kunnen een dringende reden hebben om een samenwer-
king op te starten. Wanneer levens in gevaar zijn of ernstige financi-
ële schade dreigt, zijn spoedig oplossingen vereist. Een terroristische
aanval is een evidente aanleiding voor ad-hoc-kennisdeling. Veelal is
het zo dat relevante databronnen (bijvoorbeeld lijsten van personen
aanwezig in het gebouw, camerabeelden van de omgeving, tracking-
gegevens van mobiele telefoons, etc.) enkel beschikbaar zijn door
afzonderlijke applicaties te raadplegen die verspreid zijn over ver-
schillende organisaties. Vanwege de urgentie is het daarom vereist
om een duidelijk georganiseerde procedure te volgen die toelaat om
deze interne databronnen binnen enkele minuten samen te brengen.
Hoewel de samenstelling van een dergelijke ad-hoc-federatie realiseer-
baar is vanuit een technisch oogpunt, moet aandacht besteed worden
aan specifieke uitdagingen die deze urgente samenwerkingen tussen
organisaties met zich meebrengen. Meer specifiek kan niet zomaar
verondersteld worden dat de deelnemers aan de samenwerking, een
groep die gedurende de samenwerkingsperiode kan wijzigen, elkaar
kennen en vertrouwen, aangezien deze ongepland tot stand wordt
gebracht. Dit betekent dat, in tegenstelling tot een langdurige samen-
werking waarbij contracten op voorhand kunnen worden opgemaakt,
beoordelingen en overeenkomsten terstond moeten worden samenge-
steld. Vertrouwen is dus het sleutelwoord in een aantal belangrijke
lastigheden die veroorzaakt worden door dit type van tijdelijke sa-
menwerking en die besproken worden in dit proefschrift.

De eerste kwestie die wordt behandeld, heeft betrekking op het delen
van interne databronnen. De ad-hoc-samenwerking maakt dat het
voor organisaties ondoenlijk is om de handleiding van elke beschik-
bare databron te bestuderen en dus is het vereist dat deze vlot navi-

xxii Samenvatting

geerbaar zijn. Dit realiseren is onmogelijk zonder een bepaald niveau
van standaardisatie te introduceren waarmee vastgelegd wordt hoe
interfaces op generieke wijze door clients kunnen worden aangespro-
ken. Hoofdstuk 2 en Appendix A presenteren daarom een prototype
dat laat zien hoe een volledig geautomatiseerd scenario voor gege-
vensuitwisseling geïmplementeerd kan worden. Een belangrijk on-
derdeel hiervan is een mechanisme dat zorgt voor het genereren van
onomstotelijke bewijzen van alle gegevensuitwisselingen die tijdens
een samenwerking plaatsvinden. Deze bewijzen worden opgeslagen in
een daarvoor passende gedistribueerde databank die voor alle belang-
hebbenden inzichtelijk maakt welke (types) uitwisselingen onderling
plaatsvinden. Een dergelijk mechanisme is noodzakelijk, aangezien
deelnemende organisaties mogelijk geen volledig vertrouwen hebben
in alle entiteiten die onderdeel uitmaken van de samenwerking. On-
enigheden moeten ten alle tijden vermeden worden, aangezien deze
ertoe kunnen leiden dat organisaties (i) deelname aan gegevensuitwis-
selingen met anderen weigeren of (ii) zich terugtrekken uit lopende
uitwisselingen. Evaluatie toont aan dat de voorgestelde oplossing,
die toelaat om inbreuken in verband met logging te detecteren, asyn-
chroon dient uitgevoerd te worden ten opzichte van het proces voor
gegevensuitwisseling, wanneer de performantie van dit proces een fac-
tor van belang is.

De tweede kwestie die wordt behandeld, heeft betrekking op het veilig
plaatsen van software in de organisatieoverschrijdende clusteromge-
ving. Wanneer geen controlemechanismes aanwezig zijn, is het moge-
lijk voor een deelnemende organisatie om geconfronteerd te worden
met een kwaadwillende externe partij die kwaadaardige software in
zijn domein installeert. Deze potentiële kwetsbaarheid dient opgelost
te worden om bijbehorend vertrouwensprobleem weg te werken. In
Hoofdstuk 3 wordt daarom een gedetailleerd stappenplan voorgesteld
waarmee relatief kleine deployments van hoogstens tien containers op
veilige wijze kunnen worden geplaatst. Aangezien de veelgebruikte
orchestrator Kubernetes gekozen is doorheen dit proefschrift om con-
tainers te beheren, wordt de werking van de Kubelet, een computer-
programma dat op elke machine zorg draagt voor het daadwerkelijk
opstarten van containers, nauwkeurig bestudeerd en beschreven. De
uitbreidingsmogelijkheid die hiermee wordt blootgelegd, wordt ver-
volgens gebruikt om een integratie van het autorisatieprotocol UMA
2.0 te bespreken. De resulterende architectuur laat lokale administra-

Summary in Dutch xxiii

tors toe om voorstellen tot uitrol van software op asynchrone wijze te
verifiëren en te autoriseren. Evaluatie toont aan dat het mogelijk is
om met het geïmplementeerde prototype binnen een seconde contai-
ners te plaatsen wanneer verificatie volledig geautomatiseerd is. Deze
tijdsduur zal significant toenemen wanneer manuele verificatie door
de hosting administrators wenselijk is.

De derde kwestie die wordt behandeld, heeft betrekking op het plaat-
sen van containers in een organisatieoverschrijdende clusteromgeving
die typisch sterk heterogeen is. Het kan lastig zijn voor de cluster
operator, de verantwoordelijke partij voor clusterbeheer, om worklo-
ads te (her)verdelen aangezien de machines en de indeling van het
cluster volledig onbekend zijn. Het stap voor stap verkennen van
de beschikbaarheid van resources in het cluster is dus een essentiële
voorwaarde om inschattingsfouten ten aanzien van de (her)verdeling
van containers, die zorgen voor onwenselijke performantieproblemen,
te voorkomen. Hoofdstuk 4 bespreekt daarom verschillende types
probes. Dit zijn metingen die lokaal worden uitgevoerd om inzicht te
verwerven in bijvoorbeeld de computationele kracht van een machine.
Door het inzetten van een zwerm van probes kan op verschillende
tijdstippen snel een overzicht bekomen worden van de technische mo-
gelijkheden van machines, hun onderlinge verbindingen, en eventuele
verborgen performantierestricties die zijn ingeschakeld door hosting
administrators vanwege een gebrek aan volledig vertrouwen. Een
integratie van dit probing concept in de Kubernetes scheduler wordt
daarom voorgesteld. Evaluatie van een illustratief scenario waarbij
workloads dienen te worden verplaatst, toont aan dat de performan-
tie van een applicatie significant zou kunnen stijgen: met een factor
vijf, tien of honderd in vergelijking met wanneer deze probes niet
gebruikt zouden worden.

De vierde kwestie die wordt behandeld, heeft eveneens betrekking op
het verdelen van workloads. Hierbij wordt gekeken naar (her)verdel-
ingsopdrachten waarbij het eindresultaat organisatieoverschrijdende
verwerking van data mogelijk moet maken. Het verwerven van een
technisch overzicht van het cluster is slechts één deel van de oplossing
voor dergelijke gevallen. Onbekende niet-technische vereisten kunnen
beslissingen over (her)verdeling van containers ook beïnvloeden. Deze
vereisten moeten dus ontdekt worden tijdens het verdelingsproces om
zinloze pogingen tot plaatsing te vermijden. Hoofdstuk 5 presen-

xxiv Samenvatting

teert daarom rangschikkingen voor bijdrage en beloning die dienen
als uitbreiding op het in vorig hoofdstuk voorgestelde verdelingspro-
ces. Door middel van deze rangschikkingen is het mogelijk voor orga-
nisaties om zowel technische (hints die evaluatie door probes sturen)
als niet-technische vereisten op een toegankelijke wijze te communice-
ren. Vereisten van het laatste type laten toe om limieten in bijdrage
te specifiëren en garanties over de erkenning van een contributie te
eisen. Op deze manier kunnen organisaties, die deelnemen aan een
proces waarbij data organisatieoverschrijdend verwerkt wordt, verde-
lingsbeslissingen sturen, hetgeen ervoor zorgt dat hun vertrouwen
in de samenwerking toeneemt. Het mogelijk maken voor betrokken
belanghebbenden om voorkeuren onder elkaar te uiten, laat een on-
derhandelingsprocedure toe. Evaluatie van een illustratief scenario
waarbij workloads dienen te worden verplaatst, laat zien dat deze
vereisten een stevige impact kunnen hebben op de performantie van
een applicatie, maar ook dat onderhandeling het mogelijk maakt om
dit (deels) te verhelpen.

De voorgestelde oplossingen, of delen daarvan, kunnen bediscussieerd
en in vraag gesteld worden, zoals gebruikelijk is in wetenschap. Dit re-
flectieproces kan ervoor zorgen dat extra inzicht verworven wordt. In
Hoofdstuk 6 wordt daarom voor elk voorstel een aantal noemenswaar-
dige overwegingen besproken. Bovendien worden pistes voor verder
onderzoek geïdentificeerd, aangezien ad-hoc-samenwerkingen tussen
organisaties aanleiding geven voor een reeks interessante uitdagingen
die opgelost dienen te worden.

Summary

Organizations may have an urgent reason to initiate a collaboration.
Scenarios in which lives are at risk or severe financial damage is at
stake require solutions quickly. A terrorist attack is an obvious cause
for ad hoc knowledge sharing. Typically, relevant data sources (e.g.
lists of persons present in building, camera feeds of vicinity, cellphone
tracking information, etc.) are only available through isolated appli-
cations scattered over different organizations. Due to the urgency, it
is therefore required to follow a streamlined operation allowing these
internal data sources to be merged in a matter of minutes at most.
Although the composition of such an ad hoc federation is feasible
from a purely technical point of view, attention needs to be paid
to specific challenges imposed by these urgent cross-organizational
collaborations. More specifically, the collaboration participants, a
group which could possibly change over time, may not necessarily
know and trust each other as the collaboration needs to be enabled
ad hoc. This means that, contrary to a long-lasting collaboration
in which contracts can be arranged upfront, evaluations and agree-
ments need to be constructed on the fly. A number of significant
trust difficulties introduced by this type of temporary collaboration
are addressed throughout this dissertation.

The first difficulty is related to the sharing of internal data sources.
The ad hoc nature of the collaboration requires these data sources to
be easily navigable, i.e. without organizations having to study the
manual of each available endpoint. This is impossible without a cer-
tain level of standardization dictating how interfaces can be consumed
by clients in a generic way. Chapter 2 and Appendix A therefore
present a prototype showing how a fully automated data exchange
scenario could be implemented. A crucial part of this setup is a log-
ging mechanism generating irrefutable proofs of all data exchanges
that happen during a collaboration. As these proofs are stored in

xxvi Summary

a tailored distributed database, it is clear for all stakeholders which
(types of) exchanges occur between them. Such a mechanism is re-
quired, as participating organizations may not fully trust all entities
present in the collaboration. Disputes should be prevented in any
case as they may cause organizations (i) to refuse to participate in
data exchanges with others or (ii) to withdraw from ongoing ones.
Evaluation shows that the presented logging solution, allowing to de-
tect infringements, should be executed asynchronously with respect
to the data exchange process if performance is considered relevant.

The second difficulty is related to the secure deployment of software
in the cross-organizational cluster environment. When no verifica-
tion mechanisms are present, it is possible for a participating orga-
nization to be faced with a malicious external entity willing to host
malicious software in its domain. Tackling this potential vulnerabil-
ity is required for the associated trust issue to be resolved. Chapter 3
therefore proposes a detailed container deployment flow for relatively
small deployments of at most ten containers. The widely used con-
tainer orchestrator Kubernetes is chosen throughout this dissertation
and therefore the operation of the Kubelet, which is a node agent re-
sponsible for the actual deployment of containers, is closely examined
and described. Using the extension point identified in this analysis,
an integration of the authorization protocol UMA 2.0 is discussed.
The resulting architecture allows local administrators to verify and
authorize deployments asynchronously. Evaluation shows that the
implemented prototype allows containers to be deployed with a sub-
second overhead in case verification is fully automated. This duration
will increase significantly in case manual verification by the hosting
administrators is desirable.

The third difficulty is related to the deployment of containers in a,
typically highly heterogeneous, cross-organizational cluster environ-
ment. The cluster operator, being responsible for cluster manage-
ment, may have a challenging time (re)scheduling workloads as the
nodes and the cluster layout will be completely unknown. Gradu-
ally exploring resource availability in the cluster is thus an essential
prerequisite to prevent scheduling mistakes leading to costly perfor-
mance issues. Chapter 4 discusses types of probes, which are locally
executed code fragments, that can be used to obtain insight in, for
example, the computational power of a node. The deployment of a

Summary xxvii

probe swarm can then quickly provide an overview, at different points
in time, of the technical capabilities of nodes, their interconnections,
and possible hidden performance restrictions enabled by the hosting
administrators due to a lack of full trust. An integration of this
probing concept into the Kubernetes scheduler is proposed. Evalu-
ation of an illustrative rescheduling scenario shows that application
performance could increase significantly: a factor five, ten or hundred
compared to the scenario in which no probes are used.

The fourth difficulty is also related to the scheduling of workloads. It
considers (re)scheduling assignments in which the end result should
become a cross-organizational data pipeline. Obtaining a technical
overview of the cluster is only one part of the solution for these cases.
Unknown non-technical requirements may also influence (re)schedul-
ing decisions. These requirements need to be discovered during the
scheduling process to prevent useless deployment attempts. Chap-
ter 5 therefore extends the scheduling process proposed in the previ-
ous Chapter by introducing a load and reward ranking. Using these
rankings, it is possible for organizations to communicate both tech-
nical (probe evaluation hints) and non-technical requirements in an
accessible way. Requirements of the latter type allow to specify con-
tribution limits and to demand guarantees about the recognition of
a contribution. This way, organizations participating in a cross-
organizational data pipeline are able to steer scheduling decisions,
causing their trust level to increase. Allowing involved stakeholders
to express preferences among each other paves the way for a negoti-
ation procedure. Evaluation of an illustrative rescheduling scenario
shows that these requirements could severely impact application per-
formance, but also that negotiation allows for mitigation.

The proposed solutions, or parts of them, can be discussed and ques-
tioned, as is common in science. This reflection process can cause
additional insight to come to mind. Chapter 6 therefore discusses,
for each of the proposals, a few considerations that are worth men-
tioning. Furthermore, avenues for future research are identified, as
the cross-organizational collaboration topic allows for an abundance
of interesting challenges to be solved.

1
Introduction

1.1 Urgent Collaborations
A cross-organizational collaboration is the key subject of the research
discussed throughout this dissertation. The paragraphs below pro-
vide more details on the type of collaboration that is exactly envi-
sioned.

1.1.1 Types of Federations
The coupling of otherwise isolated experimentation testbeds avail-
able in research institutes is a well-researched topic. For example,
the federation framework proposed by Wauters et al. [1] provides
an overview of the Fed4FIRE federation architecture. It covers all
required lifecycle management functionality and integrates existing
tools, allowing to conduct research experiments over very hetero-
geneous experimentation facilities worldwide (covering clouds, ad-
vanced networking, big data, 5G, smart cities, etc.). Special con-
cern has been given to strong access controls so that industry parties
can maintain the confidentiality of their commercially-sensitive ex-
periments. It is possible for new participants to integrate with this
federation on two levels: (1) advanced federation, where all testbed

2 Introduction

APIs must be implemented so the complete lifecycle of all infras-
tructural resources can be managed, or (2) light federation, where
only service-level APIs must be made available, without full access
to the individual infrastructural resources [2]. Typical implementa-
tion times for option (1) are in the order of several months, while
for (2) this is reduced to several weeks. Although these federation
solutions are useful for mid- to long-term collaborations, they do not
fit the emergency situations described below. These cases require
short-term federations to be set up instantly, i.e. in a matter of min-
utes at most. Enabling such ad hoc cloud environments is however
not straightforward as additional management concerns pop up, es-
pecially those dealing with security threats are of primary importance
[3]. This dissertation further elaborates on this topic.

1.1.2 Envisioned Emergency Situation
An emergency situation should be mitigated urgently. This sense of
urgency may be easily explainable, for example, there are cases in
which lives need to be saved, environmental damage needs to lim-
ited or the amount of money in lost revenues needs to be reduced.
Finding a decent solution under time pressure may however be hard
for decision-makers if not all relevant data sources are available. The
goal should therefore be to link these data consumers to the correct
data producers, preferably immediately. This topic is discussed in the
FUSE research project [4]. As the relevant data sources will likely be
located and exclusively available in their own isolated domain, there
will undoubtedly be service linking issues when they need to be made
available to external parties. It is therefore required to federate them
using a well-prepared Flexible federated Unified Service Environment
(FUSE) providing an automated solution to link heterogeneous do-
mains. The goal of such a platform is thus to allow for smoother
integration and to enable the desired successful sharing of data. The
research project aims to solve two specific use cases:

Use case in manufacturing: manufacturing pipelines may stall
due to machine interruptions, causing a major decline of production
capacity. Equipment builders, possessing the knowledge to debug
these issues, should therefore be able to quickly manage any of the
machines, located in heterogeneous manufacturing environments, in
the remote fleet it is supervising. It is important to note that this
supervision is only due to a temporary intervention as manufacturers
are not willing to grant permanent access to external entities. A

Chapter I 3

Figure 1.1: A terrorist attack at an airport is an example of an emergency
situation requiring the temporary installation of a crisis centre being con-
nected to both public safety instances and private security firms.

solution allowing machines to be monitored and managed remotely
may eventually create a backdoor which could be exploited, a risk
which increases significantly in case multiple vendors require access.

Use case in control room setup: all kinds of data, especially video
streams, need to be merged into a single dashboard solution. Control
room operators should therefore be able, at least, to access the data.
The possibility to manipulate the data source remotely may also be
relevant, for example to allow a camera sensor to be controlled, to
lock/unlock electronic doors, etc. A detailed example illustrating a
control room scenario is shown in Figure 1.1. Imagine an urgent
event, for example a terrorist attack, occurring at an airport. This
requires a crisis centre enabling data sharing to be in place, preferably
immediately, until the crisis is resolved. The goal of such a centre is
to provide local government bodies with an overview of relevant data
sources to steer the operation. These data sources are located in
different organizational domains, in which they are deployed either
locally or in a cloud. Multiple relevant data sources can be identified
in this case: video streams from body cams or helicopters produced
by the police, video streams from monitoring drones deployed by
firefighters, video streams from both indoor and outdoor networks of
security cameras possibly maintained by external entities, etc.

These use cases clearly show the need for an urgent cross-organizat-
ional collaboration. In general, there are three important character-

4 Introduction

istics for each of the discussed collaborations in this dissertation:

■ The collaboration needs to be set up ad hoc, i.e. in a few
minutes at most. The level of preparation is limited, as it is not
possible to make any detailed cross-organizational agreements
upfront.

■ The collaboration is dynamic, i.e. nodes or even entire organi-
zations may join at any time. In a realistic scenario, the size of
the collaboration will likely increase gradually, as each of the
organizations will require a different setup time. Likewise, orga-
nizations may leave at any time, for example due to disruption
of (a part of) the network.

■ The collaboration period is short, i.e. the collaboration is only
needed for a limited amount of time and organizations therefore
return to their normal state after a while. The exact duration
depends on the specific use case, but will likely be in the order
of minutes or hours at most.

The relevance of these types of collaborations is further motivated by
Figure 1.2. What is crucial to consider in any kind of collaboration is
the level of preparation that can be achieved. When pre-planned sce-
narios and contingency plans are available, it is possible to increase
the level of trust between organizations as they are less vulnerable
to misbehavior by other participants. Generally speaking, this can
be neatly captured as follows: “If we were blessed with an unlimited
computational ability to map out all possible contingencies in enforce-
able contracts, trust would not be a problem” [5]. Achieving a decent
level of preparation thus seems to be important to enable fruitful
collaboration. However, for the case discussed here, there may arise
a lack of flexibility introduced by these plans and agreements. For
example, in case a video stream of a camera needs to be shared to
display a chemical plant fire, there may be situations which are not
covered by pre-set policies as listed in the figure, causing access to
required data to be refused. This example illustrates that prepared-
ness may dramatically impact the way an emergency situation will
be handled. As data is required immediately as every second counts,
it is needed to bypass procedures which would normally be in place.
As organizations may therefore doubt whether they should join the
collaboration, it is needed to investigate generally applicable enablers
which allow them to find an acceptable trade-off between flexibility
and vulnerability.

Chapter I 5

Figure 1.2: The trade-off which plays a crucial role in the presented use
case.

1.1.3 Centralized Operator Setup
A crucial element is the way organizations communicate to initiate
such a collaboration. When there is a lack of synchronization, it
will take too much time to set up. Therefore it is assumed that a
central operator will take the lead during the setup and deployment
phase. Orchestration overhead should be kept away from the other
organizations, which are possibly inexperienced end-users, as much as
possible. The operator may be one of the participating organizations,
but it may equally be another organization which acts as an enabling
third party offering ”Collaboration as a Service”. The idea behind the
central operator is thus purely based on practical reasoning, i.e. to
have a single point of contact allowing for smoother communication
and orchestration and thus shorter setup times. Note that this does
not mean that the contributions discussed throughout this disserta-
tion are fully committed to this centralized setup. Contrary, each
of the contributions tries to shift or decentralize power towards the
participating organizations to motivate them to join.

Joining the collaboration will be a hybrid process, i.e. it will con-
sist of both manual and automated steps. Initially, an organization
should contact the others, for example by joining an online call or
chat. It needs to provide details on its online reachability and au-
thenticate through the exchange of certificates. After downloading a
FUSE client, it is then possible for the organization to join a VPN
network and become a participant of a cross-organizational deploy-

6 Introduction

Figure 1.3: The operator is able to deploy, move and delete services across
the collaborating organizations. Furthermore, services can be linked to-
gether graphically.

ment cluster. A detailed setup, which keeps in mind that (1) the
orchestrator environment should be fully isolated from the host, and
(2) an organization should be able to join in a few minutes, is out-
lined by Goethals et al. [6]. It is thus not mandatory for participants
to run a specific stack or to comply with specific software as the en-
tire service orchestration environment will be installed at runtime.
Given this platform, it is then possible to automate the orchestra-
tion of containerized services across the different organizations, for
example the software enablers outlined in the contributions. Figure
1.3 shows how the operator is able to manage services via a central
overview. Services needed for the collaboration can easily be de-
ployed, moved, deleted and linked. Clearly, manual steps should be
avoided as much as possible, but they are mentioned here because
they might be present due to the limited level of preparation that is
assumed.

As this deployment platform allows write-once-run-anywhere services
to be deployed in a cross-organizational setup, it is assumed through-
out this dissertation that the networking part required to set up these
collaborations is already available. Therefore, no further analysis is
available discussing topics related to networking. Evidently, there
are relevant venues which need further research. A VPN network is
currently needed to provide communication channels for the compo-
nents of the orchestration platform. These components need to com-
municate continuously, for example to reconcile desired and actual
container state. Further automating the composition of the cluster
through software-defined networking is one such venue. Programma-
bility of the network would for instance allow to quickly open and
close firewall ports required by the orchestration platform. A com-

Chapter I 7

pletely different venue can be found in the development of zero trust
architectures [7]. These architectures tend to shift businesses away
from the traditional network view in which the perimeter-based topol-
ogy is considered trusted. VPN is typically part of this setup, as
the trusted network is simply extended through encrypted tunneling.
Due to issues with security and scalability, amongst others, it might
be more beneficial to trust nothing and to verify everything. The
impact of this trend on cross-organizational collaborations and espe-
cially on the deployment of the orchestration platform needs further
research. What seems to be a risk, is that too fine-grained access con-
trol, meaning an extensive set of attributes is required for access to
be granted, may lead to the issue of being overprepared as discussed
above. The absence of a single attribute, for example a behavioral
attribute, may have a disproportionate consequence.

1.2 Problem Statement
From a technological point of view, a cross-organizational collabora-
tion may thus be set up in an ad hoc way making extensive usage
of container technology. Services can be orchestrated and connected
to local data sources on demand. Apart from a few technological
deviations, there does not seem to be much difference between an or-
chestration environment spanning a single organization and an envi-
ronment spanning multiple organizations like the one discussed here.
There is however a single important difference: potential trust is-
sues due to the required level of flexibility discussed in Section 1.1.2.
Three types of situations may be distinguished:

■ There is mutual trust between all participating organizations.
In this case, the operator has a set of nodes at its disposal,
which it can use to distribute any required service. A partic-
ipating organization contributes resources as much as possible
and shares data to support the collaboration as much as needed.
Clearly, there is no need to further complicate a collaboration
of this type.

■ An organization does not trust any or a subset of the organiza-
tions. In this case of no trust, it is difficult to imagine that an
organization is willing to collaborate at all. For example, inter-
nal data may be confidential, and might be abused by others
to gain competitive advantage. This case thus illustrates that
in order to collaborate, there at least needs to be a certain level

8 Introduction

of trust.

■ This automatically leads to a more hybrid situation in which
an organization has some trust in the participants but no full
trust. It is willing to share data, but the actions of external
entities need to be supervised to a certain extent.

It is this last type of collaboration that is further studied in this dis-
sertation. Doubts should be eliminated as the goal is to enable and
maintain fruitful collaborations that are of utmost importance. As
the cross-organizational container orchestration platform mentioned
in Section 1.1.3 is used to facilitate collaboration, it is needed to eval-
uate which additional software components are needed to mitigate
potential trust issues within this cluster environment. As “trust is a
function of user perceptions of technical trustworthiness characteris-
tics” [8], it is thus the challenge to identify and address the most sig-
nificant concerns organizations willing to contribute may have based
on how they might perceive the collaboration framework. Four signif-
icant concerns are addressed throughout this dissertation as shown in
the overview diagram in Figure 1.4. Each of them focuses on the pro-
tection of an honest organization willing to participate in the presence
of potentially malicious participants. Ultimately, the goal is to allow
organizations to switch on/off the presented enablers based on their
desired level of protection. This way, it is possible to increase the con-
fidence level of organizations, which could be inexperienced end-users
interpreting the enablers as black boxes, and thus to convince them
to join the collaboration. Note that the overall trustworthiness of
the entire collaboration system is a multifaceted problem which may
definitely be further researched. For example, in terms of resilience,
it is needed to prepare the central operator to achieve a production-
level grade, possibly through replicated control plane components
executing algorithms for leader election and/or through handover of
the operator role in case of failure. Given the discussed positioning
and purpose of the contributions, it is possible to introduce the four
non-trivial research questions, which are discussed below.

Due to the ad hoc and urgent nature of the collaboration it is required
to quickly open up internal services providing data relevant for the
collaboration. A scenario similar to a break-the-glass procedure, as
is typically studied in the context of healthcare [9], needs to be sup-
ported. This means that data sources should be available in a short
amount of time, preferably immediately, and this can only be realized

Chapter I 9

Figure 1.4: An organization willing to contribute is able to protect itself by
enabling (some of) the extensions proposed throughout the dissertation.

by bypassing protection mechanisms that are in place. Fine-grained
access control is thus not possible in such a scenario. Opening up
internal data sources to external parties without any additional pre-
cautions thus leaves possibilities for disputes. Both parties, both the
data producer and consumer, may be faced with malicious behavior.
Data access could be denied by the consumer, falsely, or data not
relevant for the collaboration could be accessed. Data consumption
could be claimed by the producer, falsely, potentially leading to an
unjustified claim. In either case, such disputes could lead to reputa-
tional and financial damage and should therefore be avoided. This
potential trust issue leads to the first research question addressed in
this dissertation:

Research Question 1: How can potential disputes, related
to the sharing of data between organizations, be prevented
in case of an urgent collaboration?

To enable organizations to quickly share data at all, it is required for
the cluster operator to deploy software components into the different
network domains. This is only possible if a participating organiza-
tion contributes one or more nodes, otherwise it is impossible to run
any process supporting the collaboration. Although containerized
applications are isolated from local processes, assuming no bugs in
the container runtime or orchestrator are present, it is not desirable
to allow external entities to deploy any kind of software into your
network domain. Resources could be allocated for malicious pur-

10 Introduction

poses, for example to contribute to distributed bot nets attacking
vital network infrastructure. In such a severe case, the damage may
be permanent, when network domains of the hosting organization get
blacklisted. Such an infringement could for example be caused by the
deployment of a container using a slightly modified container image.
This does not necessarily need to happen on purpose. The origin of
the container image might not be verified, or the deployment of an
outdated version is suggested. In any case, it is required to prevent
these kinds of trust issues related to deployment. This leads to the
second research question:

Research Question 2: How can the deployment of contain-
ers, proposed by a potentially malicious external entity, be
verified by the hosting organization?

When an organization refuses to deploy a container, or workload in
general, there are two options: (i) the functionality enabled by the
deployment of the container cannot be realized outside that specific
domain or (ii) the container can be moved to any other node in the
cluster. The second case allows for further steps in the scheduling
procedure as a set of candidate nodes is available. The selection of
a node, however, may not be straightforward for the cluster opera-
tor. The layout of the cluster and the diverging capabilities of the
nodes contributed by different organizations will likely be unknown.
These conditions may even vary over time. Furthermore, local ad-
ministrators may decide to limit the capabilities available to external
workloads, which may again be due to a lack of trust. Nodes could
be tried on a trial and error basis, but this might take a consid-
erable amount of time in case rescheduling operations are required
to fix workload underperformance. Clearly, an operator has to deal
with much uncertainty, and should therefore be assisted to lower the
chance of scheduling mistakes. This leads to the third research ques-
tion dealt with in this dissertation:

Research Question 3: How can the scheduling of containers,
a task for which the cluster operator is responsible, be fitted
to an unknown heterogeneous cluster environment?

Gaining insight in the cluster based on technical assessments clearly
is a crucial requirement. However, it may not be sufficient to match
any cross-organizational setup. Organizations may have additional,
hidden, requirements which may not immediately be clear to the op-
erator. Most likely, these non-technical requirements act as protec-

Chapter I 11

tive measures to increase the trust level of the hosting organization.
Finance is an important reason to activate such preferences. Each or-
ganization may have its own vision of how the collaboration should be
organized, or its own interpretation of how the collaboration went.
To prevent any ambiguity, organizations should be able to express
such requirements. Scheduling should therefore take into account
these concerns as no suitable workload placement may be realized
otherwise. Ultimately, the negotiation of requirements between or-
ganizations is desirable, as scheduling issues may be solved quickly.
This gives rise to the fourth and final research question discussed in
this dissertation:

Research Question 4: How can the scheduling of contain-
ers, a task for which the cluster operator is responsible and
which is fitted to an unknown heterogeneous cluster envi-
ronment, be extended to allow for negotiation between the
participating organizations?

1.3 Research Contributions
A summary of the research conducted to solve the aforementioned
research questions is presented in the paragraphs below. The parts of
the dissertation which can be consulted to find more detailed answers
for each research question are also mentioned. The outline of the
dissertation is thus structured as follows:

1.3.1 Logging mechanism to generate irrefutable proofs
Chapter 2, corresponding with publication I listed in Section 1.4.1,
and Appendix A, corresponding with publication II listed in Section
1.4.2, address the first research question. Preventing disputes requires
actions to be registered and verified, a concept which is commonly
referred to as traceability, meaning that each exchange of data needs
to be fully captured. Three interesting topics need to be researched
to allow this. Firstly, organizations need to be able to exchange data
in the first place. Each of them will have exposed APIs available,
but exploring these becomes a time-consuming task if an organiza-
tion needs to do this manually. This clearly is an issue in case of an
urgent collaboration. It should therefore be examined how API ex-
ploration can be unified. Secondly, proofs of the data exchange need
to be securely stored. As these proofs, or logs, are of interest to any

12 Introduction

stakeholder in the collaboration, it is needed to set up a distributed
database. The architecture of this database needs to be closely ex-
amined though, as possibly no trusted third party could be found,
especially in this ad hoc scenario. Dealing with potentially malicious
entities should thus definitely be supported and the concepts brought
by recent blockchain solutions therefore need to be studied. Finally,
it is needed to bring together the proposed data exchange and log-
ging solutions. Their interaction is of specific importance, as in this
urgent case, it is questionable to what extent the exchange of data
should be interrupted by a supportive mechanism.

1.3.2 Framework to authorize container deployments
Chapter 3, corresponding with publication II listed in Section 1.4.1,
addresses the second research question. Enabling an organization to
stay in control over the software it hosts, requires the introduction of
an intermediate step between the scheduling and deployment phase
of a container. Three parts need to be researched in order for this
verification phase to be constituted. Firstly, it needs to be examined
how the cluster orchestration platform, in this case Kubernetes [10],
should be unravelled to be able to intervene in the container deploy-
ment process. The proposed integration should ideally be activated
transparently, i.e. it should be possible to turn on the intervention
extension without having to alter any code in the vanilla Kubernetes
implementation. Secondly, an appropriate state of art authoriza-
tion protocol needs to be matched against the scenario in which a
hosting organization can assess, asynchronously, whether it wants to
grant access to an external organization. Identifying an open source
implementation of this protocol needs to occur as well. Finally, an in-
tegration of the protocol into the orchestrator should be found based
on the earlier researched manner, providing the local administrators
with a dashboard overview of open container deployment requests
ready for inspection and review.

1.3.3 Probe swarm to explore unknown clusters
Chapter 4, corresponding with publication III listed in Section 1.4.1,
addresses the third research question. Assisting the operator in the
scheduling of containers in an unknown heterogeneous cluster envi-
ronment, requires supportive tooling to be integrated in the process.
Again, three steps need to be researched in order for a solution to be
proposed. Firstly, the steps followed by the default scheduling pro-

Chapter I 13

cess in Kubernetes need to be examined. As this process should be
extended with a custom phase, it is needed to identify which exten-
sion points are available. A particular aspect to investigate is whether
both type of deployments, verified and unverified, could coexist. Sec-
ondly, it needs to be detailed why this default process is technically
not able to meet the conditions of a heterogeneous environment as
considered here. Based on this identification of missing elements, it is
then possible to discuss how scheduling should advance, i.e. how fur-
ther insight in the capabilities of unknown nodes can be gained. The
usage of compile-once-run-anywhere tooling needs to be discussed to
realize this. Finally, a proposal for integration of this tooling should
be presented based on the earlier research findings. This proposal
needs to present a flow of steps enabling a hybrid solution consisting
of both manual decisions by the operator and automatic evaluations
provided by the suggested components.

1.3.4 Rankings to express and negotiate preferences
Chapter 5, corresponding with publication IV listed in Section 1.4.1,
addresses the fourth research question. Enabling negotiation be-
tween participating organizations to schedule a cross-organizational
data pipeline, requires the previously discussed scheduling adaption
to be further extended. The first research task is to determine which
guarantees are likely to be specified by contributing organizations.
Although the set of guarantees may be infinite, theoretically, it is
needed to align negotiable requirements among organizations. This
does not mean that this set is static by definition, the only demand
is uniformity, as otherwise no structured way of finding agreement is
possible. The second research task is to examine how the adminis-
trators of organizations, either manually or automatically, should be
given the opportunity to assess scheduling proposals, and to commu-
nicate or discuss requirements among them. The interaction between
the newly proposed and previously discussed components is of partic-
ular interest here. The presented result should be an extended flow of
steps allowing for the composition and scheduling of a data pipeline
based on the input of multiple stakeholders.

1.3.5 Analysis of the presented contributions
Finally, Chapter 6 concludes the research contribution. This means
that the research questions are revisited and, given the content of
the different parts discussed above, further analysed. This analysis

14 Introduction

entails a short summary of the main research findings, a critical view
on the presented content and a perspective of future work.

1.4 Publications
The results of the research during this PhD study have been pub-
lished in scientific journals and presented at different international
conferences. This section provides an overview of these publications.

1.4.1 Publications in International Journals
I. L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert,

Trustful ad hoc cross-organizational data exchanges
based on the Hyperledger Fabric framework, Interna-
tional Journal of Network Management, vol. 30, no. 6, p.
e2131, 2020, doi: 10.1002/nem.2131.

II. L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert, A
secure cross-organizational container deployment ap-
proach to enable ad hoc collaborations, International
Journal of Network Management, vol. 32, no. 4, p. e2194,
2022, doi: 10.1002/nem.2194.

III. L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert, En-
abling the Rescheduling of Containerized Workloads in
an Ad Hoc Cross-Organizational Collaboration, Journal
of Network and Systems Management, vol. 31, no. 1, article
no. 10, 2023, doi: 10.1007/s10922-022-09699-9.

IV. L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert,
Enabling organizations to participate in the ad hoc
scheduling of a cross-organizational data pipeline, Jour-
nal of Network and Systems Management, Submitted for review,
2022.

1.4.2 Publications in International Conferences
I. T. Goethals, S. Kerkhove, L. Van Hoye, M. Sebrechts,

F. De Turck, and B. Volckaert, FUSE: A Microservice
Approach to Cross-domain Federation using Docker
Containers, in the 9th International Conference on Cloud
Computing and Services Science (CLOSER), 2019. doi:
10.5220/0007706000900099.

https://doi.org/10.1002/nem.2131
https://doi.org/10.1002/nem.2194
https://doi.org/10.1007/s10922-022-09699-9
https://doi.org/10.5220/0007706000900099
https://doi.org/10.5220/0007706000900099

Chapter I 15

II. L. Van Hoye, P-J. Maenhaut, T. Wauters, B. Volckaert, and
F. De Turck, Logging mechanism for cross-organizational
collaborations using Hyperledger Fabric, in the 1st IEEE
International Conference on Blockchain and Cryptocurrency
(ICBC), 2019. doi: 10.1109/BLOC.2019.8751380.

1.4.3 Code Repositories
Source code is available as well. Due to the cooperation agreement in
force in the FUSE research project, the decision was made to prevent
disclosure of the different repositories. However, the most impor-
tant parts of the code, which is a relatively small set for the topics
discussed throughout this dissertation, are presented in the different
chapters. The authors can, of course, be contacted to request more
information in case interest is expressed.

https://doi.org/10.1109/BLOC.2019.8751380

16 Introduction

Bibliography
[1] T. Wauters, B. Vermeulen, W. Vandenberghe, P. Demeester,

S. Taylor, L. Baron, M. Smirnov, Y. Al-Hazmi, A. Willner,
M. Sawyer, D. Margery, T. Rakotoarivelo, F. Lobillo Vilela,
D. Stavropoulos, C. Papagianni, F. Francois, C. Bermudo,
A. Gavras, D. Davies, J. Lanza, and S.-Y. Park, “Federation
of Internet experimentation facilities: architecture and imple-
mentation,” in Proceedings - European Conference on Networks
and Communications (EuCNC), (Bologna, Italy), pp. 1–5, 2014.

[2] T. Vanhove, G. Van Seghbroeck, T. Wauters, F. De Turck,
B. Vermeulen, and P. Demeester, “Tengu: An Experimenta-
tion Platform for Big Data Applications,” in Proceedings - IEEE
35th International Conference on Distributed Computing Sys-
tems (ICDCS) Workshops, (Columbus, OH, USA), pp. 42–47,
2015. https://doi.org/10.1109/ICDCSW.2015.19.

[3] D. M. Shila, W. Shen, Y. Cheng, X. Tian, Shen, and X. Sher-
man, “AMCloud: Toward a Secure Autonomic Mobile Ad Hoc
Cloud Computing System,” IEEE Wireless Communications,
vol. 24, no. 2, pp. 74–81, 2017. https://doi.org/10.1109/MWC.
2016.1500119RP.

[4] “FUSE: Flexible federated Unified Service Environment.” https:
//www.imec-int.com/en/what-we-offer/research-portfolio/fuse.

[5] D. Gambetta, “Can we trust trust?,” in Trust: Making and
Breaking Cooperative Relations, pp. 213–237, Blackwell, 1988.

[6] T. Goethals, S. Kerkhove, L. Van Hoye, M. Sebrechts,
F. De Turck, and B. Volckaert, “FUSE: A Microservice Ap-
proach to Cross-domain Federation using Docker Containers,” in
Proceedings - 9th International Conference on Cloud Computing
and Services Science (CLOSER), (Heraklion, Greece), pp. 90–99,
SciTePress, 2019. https://doi.org/10.5220/0007706000900099.

[7] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust
Architecture,” tech. rep., National Institute of Standards and
Technology (NIST), 2020. https://doi.org/10.6028/NIST.SP.
800-207.

[8] B. Stanton and T. Jensen, “Trust and Artificial Intelligence,”
tech. rep., National Institute of Standards and Technology

https://doi.org/10.1109/ICDCSW.2015.19
https://doi.org/10.1109/MWC.2016.1500119RP
https://doi.org/10.1109/MWC.2016.1500119RP
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://doi.org/10.5220/0007706000900099
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.6028/NIST.SP.800-207

Chapter I 17

(NIST), 2021. https://tsapps.nist.gov/publication/get_pdf.
cfm?pub_id=931087.

[9] Y. Yang, X. Liu, and R. H. Deng, “Lightweight Break-Glass
Access Control System for Healthcare Internet-of-Things,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3610–
3617, 2018. https://doi.org/10.1109/TII.2017.2751640.

[10] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, Omega, and Kubernetes: Lessons Learned from Three
Container-Management Systems over a Decade,” ACM Queue,
vol. 14, no. 1, p. 70–93, 2016. https://doi.org/10.1145/2898442.
2898444.

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931087
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931087
https://doi.org/10.1109/TII.2017.2751640
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2898442.2898444

18 Trust Issue I: Trustful Automated Data Exchanges

2
Trustful ad hoc cross-organizational

data exchanges based on the
Hyperledger Fabric framework

This chapter presents a published research article tackling the first
research question: how can potential disputes, related to the
sharing of data between organizations, be prevented in case
of an urgent collaboration? The first part of the chapter deals
with generic clients, which are required to allow distinct APIs to be
consumed in a standardized way. These pave the way for a fully
automated data exchange evaluation. Furthermore, logging solutions
are discussed to prevent data exchange disputes. The position of
Hyperledger Fabric (version 1.0-1.4) within the distributed database
space is described, its architecture is analyzed, and shortcomings are
discussed. Given the level of decentralization required here, a verifi-
cation mechanism is presented allowing for logging mistakes, either
on purpose or not, to be detected by participating organizations. Most
noticeable is the focus on the asynchronous interaction between the
logging process on the one hand and the data exchange process on the
other, to reduce delay overhead for these urgent collaboration cases.

⋆ ⋆ ⋆

20 Trust Issue I: Trustful Automated Data Exchanges

L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert

Published in International Journal of Network Management,
August 2020

Abstract Organizations share data in a cross-organizational context
when they have the goal to derive additional knowledge by aggre-
gating different data sources. The collaborations considered in this
chapter are short-lived and ad hoc, i.e. they should be set up in a few
minutes at most (e.g. in emergency scenarios). The data sources are
located in different domains and are not publicly accessible. When
a collaboration is finished, it is however unclear which exchanges
happened. This could lead to possible disputes when dishonest or-
ganizations are present. The receipt of requests / responses could
be falsely denied or their content could be point of discussion. In
order to prevent such disputes afterwards, a logging mechanism is
needed which generates a replicated irrefutable proof of which ex-
changes have happened during a single collaboration. Distributed
database solutions can be taken from third parties to store the gener-
ated logs, but it can be difficult to find a party which is trusted by all
participating organizations. Permissioned blockchains provide a solu-
tion for this as each organization can act as a consensus participant.
Although the consensus mechanism of the permissioned blockchain
Hyperledger Fabric (version 1.0-1.4) is not fully decentralized, which
clashes with the fundamental principle of blockchain, the framework
is used in this chapter as an enabler to set up a distributed database
and a proposal for a logging mechanism is presented which does not
require the third party to be fully trusted. A proof of concept is
implemented which can be used to experiment with different data
exchange setups. It makes use of generic web APIs and behaves ac-
cording to a Markov chain in order to create a fully automated data
exchange scenario where the participants explore their APIs dynami-
cally. The resulting mechanism allows a data delivering organization
to detect missing logs and to take action, e.g. (temporarily) suspend
collaboration. Furthermore, each organization is incentivized to fol-
low the steps of the logging mechanism as it may lose access to data
of others otherwise. The created proof of concept is scaled to ten
organizations, which autonomously exchange different data types for
ten minutes, and evaluation results are presented accordingly.

Chapter 2 21

Figure 2.1: Sample ad hoc cross-organizational collaboration where multiple
organizations work on a common project: a control room operator requests
data from other organizations in order to offer a dashboard as a service to
speed up a decision-making process.

2.1 Ad hoc cross-organizational
collaborations

The context of this research is the exploration of technical enablers
for allowing the rapid creation and configuration of ad hoc cross-
organizational collaborations aiming to share knowledge (e.g. data,
services) among the different participants. Although any type of col-
laboration between different organizations can be considered a valid
use case for this chapter, a prominent one is that of an emergency
situation [1] or a smart city scenario [2]. An example collaboration
scenario is illustrated in Figure 2.1 where a control room operator
wants to access data sources from different participating organiza-
tions. The aggregated data stream will be shown on the control room
dashboard, such that the operator can offer this service to speed up
a decision-making process. Persons are involved in enabling and dis-
abling a stream of data exchanges, more specifically in granting and
revoking authorization to internal data sources.

Although it might be necessary to collaborate, there may be trust
issues between the involved organizations. Trust in this context can
be defined as an assumption of belief in the honest and truthful oper-
ation of another organization at a particular point in time. When an
organization shares data with the operator as shown in Figure 2.1, it

22 Trust Issue I: Trustful Automated Data Exchanges

wants to be sure that it has a proof of each data exchange, such that
it can be compensated for each unique and valuable piece of data
it delivers, and that the operator only requests data relevant to the
problem at hand. In general, it should not be possible for any data
requesting organization to falsely deny (the integrity of) a request /
response in order to avoid any responsibility or obligation towards
the sending party. Most companies will therefore not trust others,
especially in the case of ad hoc collaborations, for which there is no
time to negotiate data exchange contracts or service level agreements
upfront. Not only the time is an issue, but it may also be difficult
to determine upfront which data needs to be exchanged in an ad hoc
situation. For the remainder of this chapter, it is thus assumed that
there is a lack of full trust between the collaborating organizations.

The core problem is that, after a collaboration is finished, it is unclear
which organization performed which action when no logging mech-
anism is used. This means that disputes between the partners are
possible when dishonest organizations are present. Two types of pos-
sible disputes are (1) disputes concerning the (integrity of) a request /
response and (2) disputes concerning potentially wrongful acts. The
latter could be the case when there are no fine-grained access control
policies in place due to the collaboration being set up ad hoc. A so-
lution to this problem is to provide the different partners with a pair
of cryptographic keys and to let them execute the following steps:

1. Organization Y (Operator) sends a signed request to Organiza-
tion X

2. Organization X sends a signed notification confirming it re-
ceived the request of Organization Y (Operator)

3. Organization X sends a signed response to Organization Y (Op-
erator)

4. Organization Y (Operator) sends a signed notification confirm-
ing it received the response of Organization X

This mechanism provides both Org X and Y with the logs it would
need to prove which data exchanges happened in case of a possible
dispute in the future. It is important to note that these logs only
capture the data streams that took place, not whether the data was
relevant. For example, when a camera stream is requested and only
empty frames are sent, compensation for sending this stream is ques-
tionable. The logging mechanism thus provides a way to observe the

Chapter 2 23

exchanges that have happened and to impose consequences after the
collaboration is finished.

Although this solution is sufficient to solve the proposed problem, it
also needs to be examined how the logs need to be stored. Org X
and Y could store their exchanged logs separately, but this has two
drawbacks. First, when one of them loses its logs, disputes are again
possible. Data replication is thus needed instead. Second, there is
no central overview of all exchanges that happened during a single
collaboration. As multiple organizations will join a collaboration to
achieve a common goal, it would be better to aggregate all the dif-
ferent logs, e.g. to allow participating organizations to create a live
overview of the current status of the collaboration, to execute data
exchanges according to a predefined regulated process (e.g. when
data needs to be exchanged and processed according to consecutive
steps), to easily provide all logs to an organization higher-up (e.g. to
the headquarters in case different business units of a company collab-
orate), to determine the exact contribution of each organization, etc.
Finding an appropriate storage solution is examined in this chapter.

The remainder of the chapter is structured as follows. Section 2.2
presents recent related work integrating or extending the Hyperledger
Fabric framework [3], which is a so called permissioned blockchain.
Before elaborating on the proposed logging mechanism, Section 2.3
presents the integration of generic web APIs to allow collaborating
participants to explore their APIs dynamically. Section 2.4 then out-
lines possible topologies to store the logs and explains how the Hyper-
ledger Fabric framework fits within this use case. Missing verification
mechanisms are identified and further detailed in Section 2.5, after
which the implemented proof of concept is explained and evaluation
results for a specific setup is shown in Section 2.6. Finally, conclu-
sions are drawn for the presented work and future research directions
are described.

2.2 Related work
This section presents related work building further on the Hyper-
ledger Fabric framework [3] [4]. The uptake of the Fabric framework
is clearly visible, both in industry and academia. Applications have
been proposed for various use cases, e.g. banking [5], transparency for
personal data handling [6], global trading [7], Internet of Things [8],
Community Mesh Networks [9], etc. Furthermore, there are research

24 Trust Issue I: Trustful Automated Data Exchanges

papers on the performance of the framework [10], possible perfor-
mance improvements [11] [12] [13], risks related to the implementa-
tion of a smart contract [14], the mitigation of attacks by a malicious
peer [15], etc. This enterprise framework provides a so called permis-
sioned blockchain, which is a shared ledger where the writers of the
system, i.e. the consensus participants, are formed by a restricted
set of members. The transactions (TXs) are stored in a chain of
cryptographically linked blocks and define the changes applied to
key-value pairs (KVPs) stored in a separate database. Its execute-
order-validate architecture, referred to as the consensus mechanism,
is novel compared to other permissioned blockchains as TX execu-
tion, i.e. passing an input through the business logic of the applica-
tion, and TX validation are separated from the consensus protocol
for ordering [4]. This allows TX endorsement policies to be created
in which it is defined which endorsing peers (EPs) need to execute
and sign a TX before it is considered valid. The framework is also
open-source, i.e. it can be extended in any way, and modular, e.g.
new consensus protocols can easily be integrated. Furthermore, it
allows general-purpose programming languages (GPPLs) to be used
to code the business logic of the application into so called smart con-
tracts without the need for cryptocurrencies, and provides identity
management tools. Why Fabric is chosen for this problem, is further
detailed in Section 2.4.

The cross-organizational data exchange applications built on Fabric
that can be found in literature serve different purposes, but it is pos-
sible to divide them into two categories. The applications in both
categories have in common that they require the data sender and
receiver to communicate via both on-chain and off-chain communica-
tion channels. However, applications in the first category cause the
receiver to wait for off-chain data to be consumed until certain inter-
action with the blockchain is successfully completed [16] [17]. This is
what we refer to as a synchronous data exchange approach. A spe-
cific case of this situation is when physical instead of digital goods
are exchanged, as the sender and receiver need to meet in person and
acknowledge the handover on-chain before the actual package trans-
fer happens [18]. The earlier proposed logging mechanism by the
authors [19] is in a second category, as the data receiver can immedi-
ately consume the received data without having to wait for on-chain
information to be received. This is referred to as an asynchronous
data exchange approach. The goal behind this design choice is to
minimize the additional latency imposed by the logging process on

Chapter 2 25

the actual data exchange, at the cost of less logging certainty.

The goal of the proposed mechanism is to allow a data delivering
organization to assess the integrity and correctness of the entire col-
laboration setup such that it can decide whether it wants to share its
data with the other participants in a trustful way. Trustful means
that every data exchange is logged, both request and response, in
order to prevent possible disputes afterwards. Both the sending and
receiving organization are incentivized to log properly: the sending
organization may miss its compensation otherwise, while the receiv-
ing organization may lose access to the required data stream. There
are thus only two direct stakeholders in providing appropriate data
exchange logs. Furthermore, it is not an issue if any couple of orga-
nizations would agree on some fake logs to try to fool other organiza-
tions, as the actions of these indirect stakeholders are not influenced
by these logs in a, for the dishonest couple, positive way.

Figure 2.2 shows the components of the architecture together with
the content of the messages that are exchanged. The client compo-
nents each expose an API to the partners in the collaboration and
invoke other APIs. The proxy components receive logging requests
from their corresponding client and invoke the EP to execute a func-
tion of the smart contract (=chaincode). Before Org Y sends an
HTTP data request (RQ2) via channel 2, it logs the request with
the chaincode (CC) function logRequest (RQ1) via channel 1. Note
that TX IDs are sent along in the HTTP header to allow the coun-
terparty to search for the expected TXs. When Org X receives the
request, it queries its internal service, and sends the corresponding
HTTP response (RS2) via channel 2 and executes the CC functions
inspectRequest and logResponse (RS1) via channel 1. Finally, Org Y
executes the CC function inspectResponse via channel 1 based on the
received response. Note that the actual data request and response
are replaced by hashes in RQ1 and RS1 respectively and that all
interactions with channel 1 are executed asynchronously to prevent
channel 2 from blocking. This flow thus generates four logging TXs
for each data exchange in order to obtain an irrefutable proof of its
existence and its integrity. This chapter explains the properties of
the mechanism more extensively, applies the concept of generic web
APIs as found in literature to the cross-organizational problem, and
shows additional evaluation results.

26 Trust Issue I: Trustful Automated Data Exchanges

Figure 2.2: Recap of the components needed for the proposed logging mech-
anism. [19]

2.3 Data and service sharing through exposed
Web API features

Collaborating organizations make use of client-server relationships,
i.e. Org Y sends a request to Org X, X processes the request, and
sends a response back to Y. Each organization, willing to share ser-
vices, exposes a web API to the partners in the collaboration to allow
them to request data from internal resources. Authentication and au-
thorization, although crucial in this scenario, are not further detailed
here but will be treated separately in future work. The focus in this
section is on the design of these APIs.

Each organization could define its own API using e.g. OpenAPI [20]
to automatically generate server stub code, client library code and
documentation. However, this should not be left to the organiza-
tions themselves, as it would result in a number of heterogeneous
APIs being tightly coupled to different backend systems, imposing
two severe drawbacks. First, an organization would need to study
the documentation of each API to be able to use it. This is not pos-
sible when an ad hoc collaboration is initiated in case of an emergency
situation. Second, even minor changes in the backend system of an
organization could lead to API changes, resulting in many software
updates to solve incompatibilities. It would instead be more use-

Chapter 2 27

ful to let connecting organizations, also called clients, couple to one
or more reusable features. This feature-based vision, enabling auto-
mated clients, is extensively described by its founders Verborgh and
Dumontier [21]. It is important to note that their vision is aimed at
the entire web API ecosystem and that the selection and granularity
of the different features needs to be agreed upon by the community.
Their vision is applied here on a much smaller subset of this ecosys-
tem, i.e. on cross-organizational collaborations. They propose five
principles describing how a feature-based web could be realized:

■ “Web APIs should consist of features that implement a common
interface.” The advantage this provides is that clients consum-
ing the API can be generalized, i.e. an organization can connect
or switch to (a subset of) features offered by different organi-
zations without changing any code. Also, server-side interface
code can be reused by multiple organizations.

■ “Web APIs should partition their interface to maximize feature
reuse.” An organization should only define a new feature when
there is no feature available which already provides the required
functionality. As no common repository of features is available
yet, a specific repository for cross-organizational collaborations
can be defined to illustrate the concept.

■ “Web API responses should advertise the presence of each rel-
evant feature.” The advantage this provides is that the offered
API functionality can be discovered at runtime by any organiza-
tion, which is necessary in case of a time-critical collaboration.

■ “Each feature should describe its own invocation mechanics and
functionality.” Feature identification is one thing, using them is
equally important. Communicated feature URLs can be deref-
erenced to find new API routes, request body formats in case
of HTTP POST request, etc. This hypermedia constraint is
important for the cross-collaboration scenario, as it allows or-
ganizations to explore how features can be used at runtime.

■ “The impact of a feature on a Web API should be measured
across implementations.” This principle is not further discussed
here, as the idea of using generic clients for cross-organizational
collaborations is more important for this chapter than the exact
composition of the feature set.

An illustrative setup is proposed in Figure 2.3. An Org X has three

28 Trust Issue I: Trustful Automated Data Exchanges

Figure 2.3: The proposed web API consisting of features which can be
reused by multiple organizations.

features available to share data of employees, image files and text files.
Implementing a feature per resource type is a reasonable mapping as
organizations will most likely share similar types of data and code
can be reused. Furthermore, this separation allows an organization
to easily start, stop and scale the sharing of individual resource types
at runtime, as features are implemented as independent services. The
labeled links in the figure are now discussed:

I The only information Org Y knows in advance about Org X is
an entry point defined by a fixed URL, e.g. example.org/collab.
The client component of Org Y uses this URL to send an initial
HTTP GET request to the hypermedia-driven API exposed by
the client of Org X. The JSON-LD [22] data format, being com-
patible with the Resource Description Framework (RDF) [23],
is used to define the semantics of an organization’s resources
in plain JSON. The Hydra vocabulary, proposed by Markus
Lanthaler, is furthermore used to allow dereferenceable Inter-
nationalized Resource Identifiers (IRIs) to be described [24].
This vocabulary consists of several classes and properties which
are commonly found in web APIs. The base class of Hydra is
the Resource class, from which all other classes inherit, and
indicates that an IRI is dereferenceable and thus further infor-
mation can be retrieved [24]. The code snippets below show
how the proposed API can be dressed up with keywords from
this vocabulary. This vocabulary provides a useful addition to
RDF, as the latter uses IRIs for identification without any de-
scription related to their dereferenceability, forcing clients to

Chapter 2 29

blindly dereference each IRI in order to discover whether fur-
ther information can be retrieved [24].

II When features are deployed, they first register themselves with
the entry point of the API, i.e. the collaboration feature. This
way, it is possible for the collaboration feature to have an up-
to-date overview of all enabled features. When queried, an
HTTP response is sent to the client of Org Y which contains
an overview of all enabled features for which it is authorized.
An example definition of the entry point is shown in Listing
2.1. Note that the listings presented in this section are strongly
based on the demo code of the generic client Hydra Console
[25].

{
"@context": {

"prefix": "http://example.org/collab",
"docs": "prefix:/docs#",
"EntryPoint": "docs:EntryPoint",
"employees": {

"@id": "EntryPoint:/employees",
"@type": "@id"
=> Property value is an IRI

},
=> Analogous for other features

},
"@id": "prefix:",
"@type": "EntryPoint",
"employees": "prefix:/employees",
=> Analogous for other features

}

Listing 2.1: Entry point of the Web API

Each HTTP response furthermore contains a URL /collab/docs,
stored in the HTTP Link header [24], allowing the receiving or-
ganization to send a web API documentation request D. When
such a request is received by the collaboration feature of the
sending organization, a documentation is constructed by query-
ing all active features and merging their documentations into
one response. The merged documentation used in this work is
presented in Listing 2.2. The merge in this approach boils down
to the aggregation of the supported classes and supported prop-
erties from the different features as indicated in the comments
in the code below.

30 Trust Issue I: Trustful Automated Data Exchanges

{
"@context": {

"prefix": "http://example.org/collab",
"docs": "prefix:/docs#",
"hydra": "http://www.w3.org/ns/hydra/core#",
"ApiDocumentation": "hydra:ApiDocumentation", ...

},
"@id": "prefix:/docs",
"@type": "ApiDocumentation",
"supportedClass" : [

{
"@id": "docs:EntryPoint",
"@type": "Class",
"title": "The main entry point of the API",
"supportedOperation": [

{
"@type": "Operation",
"method": "GET",
"description": "Retrieves the entry point

↪→ of the API.",
"returns": "docs:EntryPoint",
"possibleStatus": [

{
"description": "The entry point

↪→ was retrieved successfully.",
"statusCode": 200

}
]

}
],
"supportedProperty": [

{
// Define a new property
"property": {

"@id": "docs:EntryPoint/employees",
"@type": "Link",
=> Property value is a dereferenceable

↪→ IRI
"domain": "docs:EntryPoint",
=> Property is found in Entrypoint

↪→ instances
"range": "docs:EmployeeCollection"
=> IRI points to an EmployeeCollection

↪→ instance
},
"title": "employees",
"description": "Link to the collection of

↪→ employees of Org X"
},
=> Analogous properties for other features (

↪→ aggregation)
]

}, {
"@id": "docs:Employee",
"@type": "Class",

Chapter 2 31

"subClassOf": "schema:Person",
"title": "An employee of Org X",
"supportedOperation": [=> Similar as above
],
"supportedProperty": [=> e.g. name, employer,

↪→ department, IP address, etc.
]

}, {
"@id": "docs:EmployeeCollection",
"@type": "Class",
"subClassOf": "Collection",
"title": "The collection of employees of Org X",
"supportedOperation": [=> Similar as above
],
"supportedProperty": [=> e.g. number of items,

↪→ members, etc.
]

},
=> Analogous classes for other features (aggregation)

]
}

Listing 2.2: Documentation of the Web API

III The client component instructs the proxy component to execute
the CC functions according to the steps of the proposed logging
mechanism.

IV The requests sent by the client of Org Y are authenticated and
authorized by the client of Org X after which they are for-
warded to the correct feature. As the resulting web API is
Hydra-compliant, it can be consumed by the aforementioned
Hydra Console [25]. When a collaboration is set up, this con-
sole can be used by every organization to explore such an API in
an interactive way, i.e. by displaying dynamically constructed
HTTP request forms, by showing HTTP responses and the cor-
responding documentation.

V The constructed web API provides a level of abstraction as the
client of Org Y does not know whether it is actually commu-
nicating with an internal API, database, etc. Writing code,
called plugins, to map the functionality of the generic features
to the company-specific internal services is the responsibility of
Org X. This requires coding effort upfront, e.g. the connection
with an SQL database, before a collaboration can be initiated.
Once these plugins are implemented, an organization only has
to provide configuration settings such as file path, URL, port,
type of database, credentials, etc. An additional advantage of

32 Trust Issue I: Trustful Automated Data Exchanges

Figure 2.4: Overview of possible topologies discussed in this chapter.

the feature based approach could be the reuse of plugin imple-
mentations amongst organizations. On the one hand, an orga-
nization could copy a full plugin implementation and use the
same initial internal API / database structure. On the other
hand, plugins could be implemented in a more generic way, e.g.
by searching for matching tables, columns and/or records in
metadata based on feature related attributes.

2.4 Storing logs of data exchanges
As discussed in Section 2.1, a database with shared write access is
needed in order to store the logs generated by the collaborating or-
ganizations. An overview of possible topologies is given in Figure
2.4. First, topology T1 and T2 are discussed, which both rely on a
trusted third party. The applicability of a blockchain solution is then
investigated, after which the topologies T3, T4 and T5 integrating
the permissioned blockchain Hyperledger Fabric are discussed.

2.4.1 Trusted third party
The first solution, visualised by topology T1, is to delegate the logs to
an online trusted third party storage solution provided by companies
like Amazon, Google, Microsoft, IBM, etc. As all logs are stored at
that single organization, there are two requirements for this topology
to work. First, a third party offering a Platform as a Service (PaaS)
/ Software as a Service (SaaS) solution needs to be found which is
trusted by all collaborating organizations. Although this might be

Chapter 2 33

difficult, it is not unlikely. Second, the organization operating as the
admin of the cloud solution also needs to be trusted as it has the
power e.g. to provide different views of the database to the different
organizations. The second solution, visualised by topology T2, is to
use a master-slave topology, i.e. where one organization takes the lead
in processing updates and distributing them to the others. Obvious
solutions in this context are e.g. Google Docs / Drive or Dropbox to
share a file or folder among authorized organizations. Without any
countermeasures, this solution also requires all organizations to agree
on a trusted third party and on a trusted share owner, as both have
the power to e.g. delete the share and corresponding file activity at
any point in time. Trust is the key requirement for both topologies
and only when this requirement is fulfilled, a suitable storage solution
is found. For the general collaboration case, it is however not possible
to make assumptions about trust, so alternative topologies are to be
examined.

2.4.2 Blockchain applicability
Due to the potential impossibility of finding a trusted third party, a
blockchain solution can be applied to this problem. This observation
can be verified using the commonly used flow chart in Figure 2.5.
The steps of the chosen path are discussed below:

1. The organizations need to store state, i.e. the different logs, in
a structured way.

2. As each organization wants to store its logs, multiple writers
are present.

3. As is clear from Section 2.4.1, it might be difficult to find an
online trusted third party to delegate the logs to. An offline
trusted third party acting as a certificate authority could po-
tentially be found.

4. The set of writers, i.e. the collaborating organizations, is known
at each time. The on-boarding process is guided by a set of
admins which grant or revoke permissions for writers.

5. As explained in Section 2.1, the trust assumption between the
collaborating organizations might not hold. It is therefore need-
ed to identify each of the known writers using a public key
infrastructure to be able to guarantee authentication and data

34 Trust Issue I: Trustful Automated Data Exchanges

Figure 2.5: Flow chart to assess whether a blockchain solution may add
value to an application. [26]

integrity for each action taken by any of the writers. This way,
malicious behavior can easily be traced.

6. The set of readers is also restricted, as the collaborating orga-
nizations are the only involved stakeholders.

The result of the analysis is that a private permissioned blockchain
solution may be utilised to solve the issue at hand. Note that this
type of blockchain does not meet the criteria of a public blockchain
[27]: a blockchain is a digital ledger which is (1) decentralized, i.e.
independent entities are involved in the consensus process, (2) im-
mutable or permanent, i.e. it is impossible to revert previous state
transitions and (3) transparent, i.e. anyone can verify the correctness
of the ledger. A permissioned blockchain should be fully decentral-
ized, but this is not the case for Fabric (version 1.0-1.4) as will be
explained in the next section. The immutability guarantee always
needs to be evaluated against the probability of a certain scenario
happening and is not a binary guarantee, as extensively described
by Greenspan [28]. Assume that at least ≥ 50% of the organizations
unanimously create a fork because they do not agree with the cur-
rent version, e.g. two out of four organizations do this, it is unknown
which ledger should be seen as the correct one, as there exists no ma-
jority for any chain. As the number of copies of the chain is rather

Chapter 2 35

low in a permissioned enterprise setup, it is more prone to such an
attack. Finally, a private permissioned blockchain is not transparent
as the set of readers is restricted.

2.4.3 Hyperledger Fabric
A key property of each distributed database is the chosen consensus
mechanism in order to keep the different copies of the ledger in-sync.
Blockchain architectures in particular should be able to cope with
Byzantine faults [11]. Byzantine Fault Tolerant (BFT) systems are
able to reach consensus on the state of the ledger among the honest
nodes in the presence of faulty nodes. The general purpose of this
class of algorithms is to provide safety and liveness guarantees by
masking Byzantine faults, e.g. a lost TX due to a network error or
due to a malicious node. The safety guarantee implies that a dis-
tributed system behaves like a centralized one from the viewpoint
of a client, while the liveness guarantee implies that clients of the
system will eventually receive a reply to their requests [29]. These
guarantees only hold under certain assumptions. The first assump-
tion is a (partially) synchronous network, as the FLP theorem [30]
proves that it is impossible to reach consensus in a fully asynchronous
network when there is only one faulty process. Second, for e.g. the
Practical Byzantine Fault Tolerance (PBFT) protocol, consensus is
possible as long as there are at most f number of faulty nodes in a
set n of size 3f + 1. This means e.g. that when two out of four con-
sensus nodes are faulty, the ordering system already malfunctions.
Facebook’s LibraBFT consensus mechanism [31] is a recent example
of a BFT protocol deployed on a larger scale, i.e. n = 100 and thus
f = 33. It is clear that, the more consensus participants there are in
the ordering system, the more fault tolerant it becomes.

The consensus mechanism used in Fabric consists of three phases:
simulation of TX execution, TX ordering and TX validation. As
already mentioned, the separation of TX execution and validation
from the consensus protocol for ordering allows an application-specific
endorsement policy to be specified defining which trust assumptions
hold, i.e. which EPs need to endorse a TX in order for it to be
considered valid. This policy allows to prevent Byzantine behavior on
the application level, at least when the policy requires endorsements
from multiple EPs to be available when the TX is validated. The
ordering of TXs in Fabric is done by the so called ordering service
which basically collects TXs and packages them into blocks. At the

36 Trust Issue I: Trustful Automated Data Exchanges

time of writing this chapter, Fabric has not officially released a BFT
ordering service as is visible in the overview of Table 2.1. This thus
means that this phase is not decentralized and consequently that the
consensus mechanism is not fully decentralized. Fabric advertises
itself as a permissioned blockchain solution, but the versions 1.0-1.4
do not fully meet the expected requirements yet.

Topology T5 displayed in Figure 2.4 is thus not possible yet, and
a master-slave topology using a crash fault tolerant (CFT) cluster
of Kafka brokers, which is topology T3 in Figure 2.4, needs to be
used instead. A second option is to use topology T4 which uses
an implementation of the Raft protocol [32]. As this algorithm also
uses a leader node to dictate the commands to its followers, the only
difference is that it is more crash fault tolerant as the consensus nodes
can be deployed at different organizations in the network. Topology
T3, which is examined in the remainder of this chapter, thus has
no decentralized consensus mechanism for ordering TXs. Given this
constraint, it is needed to find a solution in which the third party,
which hosts the crash fault tolerant ordering service, does not need to
be fully trusted. This third party could be an external organization,
e.g. one which provides a SaaS solution for Fabric, or one of the
participating organizations in case one of them is the initiator of the
collaboration, e.g. the operator in a control room scenario as show in
Figure 2.1. An important observation is that masking faulty behavior
for the ordering phase is not necessarily required for this application.
The goal is to allow each organization to detect faulty behavior, as
will be described in Section 2.4.4.3, such that it can pause its data
sharing with a specific organization or even its participation in the
collaboration and it can assess whether it still wants to be part of the
current cooperation. Although faulty behavior will only be detected
once the faults wrongly influence the state of the ledger, i.e. safety
is not guaranteed at all, it is not a crucial issue for this application
as it should only provide a way to verify whether the collaboration
setup can be trusted. The requirements for this application are thus
less strict compared to these of critical BFT systems for which any
propagation of faults may be disastrous.

One could argue why a blockchain framework like Fabric, given the
restriction of topology T3, would be used over already existing dis-
tributed database technologies. The differences between both sys-
tems and the reasons why Fabric is used for this use case are listed
below:

Chapter 2 37

Ta
bl

e
2.

1:
O

ve
rv

ie
w

of
or

de
rin

g
se

rv
ic

e
im

pl
em

en
ta

tio
ns

fo
r

Fa
br

ic
ve

rs
io

n
1.

0-
1.

4.

O
rd

er
in

g
se

rv
ic

e
C

FT
B

FT
M

ax
.

m
al

ic
io

us
co

ns
en

su
s

no
de

s

So
lo

(o
nl

y
on

e
no

de
)

-
-

0
K

af
ka

cl
us

te
r

(c
en

tr
al

iz
ed

co
ns

en
su

s
in

a
sin

gl
e

do
m

ai
n)

X
-

0
R

af
t

[3
2]

(c
en

tr
al

iz
ed

co
ns

en
su

s
ov

er
m

ul
tip

le
do

m
ai

ns
)

X
-

0
PB

FT
pr

op
os

al
[3

3]
(d

ec
en

tr
al

iz
ed

co
ns

en
su

s)
X

X
x

w
he

n
#

no
de

s
≥

3
x
+

1

38 Trust Issue I: Trustful Automated Data Exchanges

■ Fabric provides identity management out of the box, allowing
TXs to be cryptographically signed and to be tamper proof.
Every state update can thus be linked to an individual orga-
nization. Furthermore, as the authentication and integrity of
each block is guaranteed by a digital signature of one of the
ordering service nodes (OSNs), it is impossible for malicious
entities to tamper blocks and to convince others of having the
correct version of the ledger, as they do not have corresponding
block headers signed by an OSN.

■ A traditional CFT system, using leader-backup replication, re-
quires a single entity to be responsible for the execution of all
TXs, which is not desirable due to the earlier mentioned trust
issue. A traditional BFT system, e.g. using PBFT consen-
sus, requires all organizations to execute all TXs sequentially,
which causes an unnecessary performance penalty and a prob-
lem with confidentiality [4]. Fabric provides a hybrid approach
through the endorsement policy, which is further detailed in
Section 2.4.4.2, allowing the execution and validation of TXs to
be parallelized.

■ The chain data structure in blockchain systems like Fabric and
the recovery log as used for traditional databases have similar
properties, i.e. they are both append-only and describe state
updates [34]. However, there are also four differences, as iden-
tified by Mohan [35]: read operations are often also recorded in
Fabric, a recovery log could be truncated when databases are
backed up, log records of multiple TXs are interspersed in a
recovery log whereas all information related to a single TX is
packed together in a blockchain, and a hash chain is not used
in a recovery log as Byzantine faults are not considered.

■ The purpose of chaining blocks is completely different in the
case of Bitcoin, being the first generation blockchain, compared
to Hyperledger Fabric. Assume an attacker in Bitcoin wants to
tamper history, i.e. wants to take its previously spent money
back [36], and tries to mine this adapted block. The expected
number of hash calculations C that needs to be executed to
mine a block with difficulty D in Bitcoin is [37] [38]:

C =
1

P (validhash)
=

D · 2256

0xFFFF · 2208
=

D · 248

216 − 1

The expected time T in seconds to mine a block, when hardware

Chapter 2 39

with a hashrate H is used, therefore equals:

T =
C

H
≈ D · 232

H

At the time of writing, D ≈ 7.93 · 1012. When an attacker
would use one GPU, e.g. the Nvidia GTX680 with 120 Mhash/s
[39], it would take about 9 million years to mine a valid block.
This shows that an attacker would need a significant amount
of hashrate to do the proof-of-work for one block in a reason-
able amount of time. Assume the attacker can control such
an amount (≤ 50% of the network hashrate) or is lucky and
mines a block much faster. This is not a problem as, due to
the longest chain principle, all succeeding blocks x after the
tampered block need to be re-mined in order to become the
longest chain. The original paper [40] shows that the proba-
bility for such an attack to occur decreases exponentially when
x increases, assuming the hashrate of the attacker is not more
than half the network hashrate. Note that this assumption is
crucial, as otherwise a private fork can be generated faster than
the longest chain. Although this assumption seems to be valid
due to the size of the Bitcoin network, it may not be true as
mining is dominated by a few large pools [41]. Nevertheless, the
goal of the chain of blocks is to lower the probability of double
spending and to increase the probability of immutability.

In Fabric however, forks are not possible assuming a correct op-
eration of the ordering service, as the consensus mechanism is
deterministic, and double spending is solved by the read-write
conflict check at validation phase [4]. Thus, the presence of the
chain does not change the difficulty with which the consensus
protocol for ordering could be attacked. However, the purpose
of chaining blocks is only to allow the peers to audit the in-
tegrity of the sequence of blocks more efficiently [4]. Another
efficiency advantage of the chain is discussed in Section 2.4.4.3.

■ Smart contracts have similar properties as stored procedures in
traditional databases [42]. However, Fabric allows the business
logic defined in smart contracts to be written in GPPLs such as
Go, while stored procedures are often written in a SQL dialect.
This allows the database for the KVPs to be freely chosen in
Fabric.

40 Trust Issue I: Trustful Automated Data Exchanges

■ When a scalable BFT ordering service is provided by Fabric in
the future, it can easily be swapped in, as ordering is totally
separated from other parts of the architecture. Switching to
a decentralized ordering service will make malicious behavior
within the ordering phase harder.

■ Fabric is open source and the components can easily and rapidly
be deployed using Docker containers.

2.4.4 Validation mechanisms
This section investigates which validation mechanisms are required
for the discussed use case. First, validation mechanisms which are
already present in the code of the EPs are identified. Second, the
validation of TXs according to the endorsement policy is discussed.
Finally, two additional mechanisms, which are not yet present in
Fabric, are proposed.

2.4.4.1 Block validation

At a certain point in time, the ordering service creates a block of TXs
and attaches a block header which contains the block number number,
the hash of the header of the previous block previous_hash, and the
hash of the data included in the current block data_hash [43]. This
block header is signed with the private key of one of the OSNs and
the corresponding signature, public key and certificate are attached
to the metadata section of the block. When a block is received by a
Fabric peer, authentication and data integrity are verified using the
digital signature and the data_hash field is checked for correspondence
with the TXs in the block [44]. This last check is important as it
allows a peer to detect whether a malicious OSN sends a chain of
block headers which does not match with the actual content of the
blocks. When these checks are validated, the peer performs two other
checks before it adds an incoming block to its ledger:

1. The code shown in Listing 2.3 only processes a new block when
its number corresponds with the current height of the local
chain. This check prevents TXs from being executed multiple
times, e.g. when a block with number x is replayed, it guar-
antees that blocks are processed in the correct order, and it
prevents already received blocks from being overwritten by a
tampered version.

Chapter 2 41

func (mgr *blockfileMgr) addBlock(block *common.Block) error {
bcInfo := mgr.getBlockchainInfo()

if block.Header.Number != bcInfo.Height {
return errors.Errorf(

"block number should have been %d but was %d",
mgr.getBlockchainInfo().Height,
block.Header.Number,)

} ...
}

Listing 2.3: Check one of block storage functionality [45] in Fabric version
1.3.

This check should go one step further. Each received block
with height x needs to be exactly the same due to the finality
property [46] of Fabric. This property guarantees that forks are
not possible when the ordering service is honest as it operates
deterministically. This means that, when a block with number x
is received for which a different block with number x was already
received, an attacker controlling one or more OSNs might try
to tamper the history of the logs. Instead of only reporting an
error in that case, an organization may decide to (temporarily)
withdraw itself from the collaboration.

2. The code shown in Listing 2.4 focuses on the integrity of the
chain: the hash, set by an OSN in the header of an incoming
block, at height x (PreviousHash) needs to be the same as the
hash of the header of the latest received block at height x− 1,
as calculated by the EP of Org X (CurrentBlockHash). Both hash
values are calculated over the ASN.1 encoded block header [47].
This check thus verifies that a valid chain is received and that
no operational mistakes are made by an OSN.

42 Trust Issue I: Trustful Automated Data Exchanges

func (mgr *blockfileMgr) addBlock(block *common.Block) error {
... if !bytes.Equal(block.Header.PreviousHash, bcInfo.
↪→ CurrentBlockHash) {

return errors.Errorf(
"unexpected Previous block hash. Expected

↪→ PreviousHash = [%x], PreviousHash referred in the
↪→ latest block= [%x]",

bcInfo.CurrentBlockHash,
block.Header.PreviousHash ,)

}
blockBytes, info, err := serializeBlock(block) ...

}

Listing 2.4: Check two of block storage functionality [45] in Fabric version
1.3.

2.4.4.2 TX validation

Individual TXs are validated against the endorsement policy. This
policy is coupled to the CC and defines which EPs, one deployed at
each organization, need to simulate and sign a TX proposal by eval-
uating the CC deployed in their local Docker container. The policy
chosen for this application is that only one organization needs to sign
the proposal in order to be valid. The reason for this is twofold. On
the one hand, each ledger update an organization triggers is signed,
meaning it can be held responsible for this update. This means that,
when an organization removes the logging information entered by an-
other organization, it is immediately clear which organization is re-
sponsible for this undesirable behavior. On the other hand, the data
exchange and logging process are separated, in order to avoid latency
for the exchange [19]. Conceptually, two layers can be identified, the
application layer and the blockchain layer. Due to this, it is impos-
sible to choose an alternative policy requiring the two organizations
involved in a data exchange to endorse a single TX, as the actual
data exchange can only be known by the EPs when it is commu-
nicated top-down, i.e. from the application layer to the blockchain
layer. Creating a bottom-up dependency, i.e. from the blockchain
layer to the application layer, is not desirable as the logging process
should be abstracted as much as possible. A consent by the counter-
party to confirm the correctness of a log proposal is thus not directly
provided via an endorsement in the same TX, but through a separate
TX generated using the inspect CC functions. This approach thus
leads to four TXs per data exchange as mentioned in Section 2.2.

Chapter 2 43

2.4.4.3 Validation collaboration setup

The validation mechanisms yet present in Fabric are not enough to
check for any faulty behavior in this application. Two additional
checks are required to be able to verify the correct operation of the
entire collaboration setup [19].

■ As each organization can store the logs it wants and as TXs
can get lost, intentionally (e.g. malicious ordering service) or
not (e.g. network failure), it is needed for each organization to
verify the presence and integrity of all expected logs. It is im-
portant to note that the involved organizations should obtain
complete logging cycles, i.e. both for request and response, as
external parties are not able to know what exactly happened
during their private communication without those logs. This
is a consequence of the asynchronous approach, implemented
using two channels, to limit the delay on the data exchange
caused by the integration of the logging mechanism. The im-
plementation of the first check was already done, as the CC
functions inspectRequest and inspectResponse were defined for
this purpose. These functions allow an organization to inspect
the logs, which are stored by the counterparty using the CC
functions logRequest and logResponse, in order to verify whether
they match with the actual data exchange. The implementation
of the smart contract is straightforward, i.e. is mainly based on
getters and setters, as is partially illustrated in Listing 2.5.

■ As a malicious ordering service may create a separate fork for
each organization satisfying check one, it is needed to verify
whether this service replicates the data correctly. As the hash
previous_hash stored in the block header at height x provides a
summary of all TXs that modified the database from the genesis
block up to and including the TXs of block x − 1, it is possi-
ble for the organizations to perform an efficient check among
each other. They only have to exchange the previous_hash value
together with the corresponding block height to know whether
they share the same state. As already mentioned in Section
2.4.3, the main purpose of chaining blocks is to allow for effi-
cient auditing techniques.

44 Trust Issue I: Trustful Automated Data Exchanges

func (t *Collab) inspectResponse(stub shim.ChaincodeStubInterface ,
↪→ exchangeId string, data string) pb.Response {
// (Step I) Unpack string by Org Y to Response object and hash
↪→ it
response := Response{}
err := json.Unmarshal([]byte(data), &response)
if err != nil {

return shim.Error(err.Error())
}
responseString := fmt.Sprintf("%v", response)
sum := sha256.Sum256([]byte(responseString))
hashResponse := hex.EncodeToString(sum[:])

// (Step II) Get log stored by Org X
logByte, err := stub.GetState(exchangeId + "_response")
if err != nil {

return shim.Error(err.Error())
}
// ... and unpack string by Org X to Response object =>
↪→ loggedResponse

// (Step III) Compare hash of log reported by Org X with hash of
↪→ response observed by Org Y
if loggedResponse.Hash == hashResponse {

return shim.Success(nil)
} else {

return shim.Error("POSSIBLE FRAUD: Hashes of responses Org X
↪→ and Org Y did not match!")
}

}

Listing 2.5: Snippet of the proposed smart contract.

2.5 Extension of the logging mechanism
The implementation of the second check outlined in Section 2.4.4.3
has not been discussed before. Figure 2.6 shows a high level overview
of how it is integrated in the architecture. The idea is to extend the
API of each organization with a /hash[/blocknumber] endpoint, such
that the hash of the header of a specific block x can be requested by
any of the collaborators. Each Org Y then randomly picks another
Org X each I seconds and sends a hash verification request H to
it. As such, it is possible to verify whether the same chain of block
headers is received by both organizations up to that block number.

The queryBlock function of the Node.js Software Development Kit
(SDK) [48] of Fabric can be used to retrieve the full block located at
a certain height. The hash of the header of a block x can either be

Chapter 2 45

Figure 2.6: Cross-organizational hash verification request which allows or-
ganizations to assess whether they share the same state up to some point.

found as previous_hash in block x + 1, but as it is not sure whether
block x+1 exists, the hash value for block x is calculated separately in
the same way as mentioned previously, i.e. using the ASN.1 encoded
block header. It is important to note that this hash verification check
can be turned on or off, depending on the needs for a specific appli-
cation. When for example a BFT ordering service is used instead
of a CFT ordering service, an organization might find it sufficient
to trust the assumption(s) under which the service operates. In our
proof of concept, this code is written in JavaScript and executed pe-
riodically using the setInterval function, and it runs in the browser
when the user clicks the verification button in the dashboard of the
collaboration.

As the goal is to allow Org Y to specify a specific block number B
for which Org X needs to send its hash, it is needed for Org Y to
know which blocks are already received by Org X. Finding a gen-
eral solution to solve this problem is difficult, as there may be a(n)
(accumulating) difference in block processing latency, e.g. due to a
difference in network latency between the ordering service and each
of the organizations. A more specific solution can however be found
when the interaction of the different logging functions is used. To be
able to explain this, it is needed to show the code in Listing 2.6. The
listenToEvent function receives a set of TX IDs and returns a promise
which only resolves when the local ledger of the EP contains all cor-
responding TXs. The different TXs are looked up concurrently, by

46 Trust Issue I: Trustful Automated Data Exchanges

scheduling the execution of the lookUpTx function each two seconds.
In order to search more efficiently, block indications are exchanged
between Org Y and X, i.e. the RQ2 and RS2 messages as shown in
Figure 2.2 are extended with block indication headers. This means
that, for each data exchange, an organization receives a block in-
dication (receivedBlockIndication (RBI)) and sends a block indication
(sentBlockIndication (SBI)). These values are only communicated to
make searching for TXs more efficient, i.e. instead of traversing all
blocks starting from genesis until the TX is found, these lower limits
can be used to skip blocks for which it is certain that the looked for
TX is not in there. The values of these indicators are determined
in the client code, just before the logRequest and logResponse func-
tions are invoked as shown in Listing 2.7 and 2.8 respectively, and
correspond with the number of the latest inspected incoming block
+ 1. The client receives updates on this block number from the
proxy, as each time a logging cycle is completed, a block number is
communicated back from the proxy to the client, as is visible in the
waitForCycle function.

Chapter 2 47

// Map filled with blocks, based on block events sent by EP
var blocks = new Map();

// FUNCTION I
function lookUpTx(txId, index, resolve, reject) {

while (index <= latestReceivedBlockNumber) {
var block = blocks.get(index);

if (block) {
var txs = block['filtered_transactions'];
var result = txs.findIndex(tx => tx['txid'] === txId);
if (result > -1) {

return resolve(index); // Return number of block in
↪→ which TX is found

}
}

index++;
}

setTimeout(function() { lookUpTx(txId, index, resolve, reject);
↪→ }, 2000);

}

// FUNCTION II
function listenToEvent(txIds, RBI) {

var promises = [];

for (var i = 0; i < txIds.length; i++) {
promises.push(new Promise(function(resolve, reject) {

var txId = txIds[i];
setTimeout(function() {

lookUpTx(txId, RBI, resolve, reject); // FUNCTION I
}, 2000);

}));
}

return Promise.all(promises);
}

// FUNCTION III
function waitForCycle(txIds, RBI, SBI, ...) {

// Wait until inspect TXs are received (i.e. the logging cycle
↪→ is completed)
listenToEvent(txIds, RBI) // FUNCTION II
.then((blockNumbers) => {

// Reply to client max(blockNumbers)

// Store SBI for future hash verification requests with
↪→ counterparty
});

}

Listing 2.6: Proxy code which is needed to wait for logging cycles to be
completed.

48 Trust Issue I: Trustful Automated Data Exchanges

This waitForCycle function lets both Org Y and X wait until a logging
cycle is completed, i.e. when their copy of the ledger contains the two
inspect TXs, of which the IDs are passed via the txIds parameter.
The solution to know which block numbers are already received by
the counterparty, can be found in this function. When a logging
cycle is completed, the inspect TX generated by the counterparty
is received, meaning that the counterparty should have received the
block containing the original logging TX. The block indication sent
to the counterparty (SBI) thus provides a trustful sharp lower limit for
the block numbers in which this original logging TX can be stored.
When the time has come to execute a hash verification check, this
stored block number can then be used in the query to the selected
organization to report its hash value corresponding with that number.
The only assumption for this to work properly is that couples of
organizations exchange data. As long as this is true, they will learn
the number of blocks received by other organizations, allowing it to
perform hash verification checks and to gain confidence in the correct
replication of the logging data.

For the logging mechanism to work properly, it is needed to enforce
organizations to follow the proposed steps. The data delivering orga-
nization X sets two protections for this purpose, i.e. it refuses requests
R from Org Y when (Protection I) there is an unanswered hash ver-
ification request, as explained above, sent to Org Y and (Protection
II) the difference between the number of data responses sent to Org
Y and the number of corresponding logging cycles by Org Y exceeds
M . These protections incentivize Org Y to behave as expected by
Org X, as it could lose access to the data of Org X otherwise. The
first protection prevents Org X from not being able to compare the
state of its local ledger with those of others and to be fooled by a ma-
licious ordering service. Org X should repeat this hash verification
request until it is fulfilled. The second protection prevents Org X
from sending its data without receiving any corresponding log from
Org Y. In case this scenario occurs, Org X should repeatedly send
the exchange IDs which it expects to be re-executed by Org Y, in
order to obtain complete logging cycles for these exchanges. Each
Org X can set its own value M ≥ 0, even per Org Y. The selection
of this value is a trade-off between performance and security, i.e. a
high value allows more data exchanges per time interval but provides
less logging guarantees and vice versa.

Chapter 2 49

2.6 Evaluation proof of concept
A proof of concept of this logging mechanism is developed, deployed
and evaluated. The details of the evaluation phase are given in the
following sections.

2.6.1 Data exchange model
In order to improve upon the fixed evaluation scenario where only
one organization requests data from the other O − 1 organizations
[19], a Markov chain can be used to simulate generic pseudorandom
collaboration scenarios. Figure 2.7 shows the four states in which
each organization can reside when the collaboration consists of four
participants. The red arrows indicate the probability x of moving to
the sleep state in which an organization does not request any data.
The blue arrows indicate the probability y of remaining in the same
state. In general, an organization will likely try to query the same
organization multiple times in a row, meaning that this probability
needs to be different than the one of the black arrows. The state
transition matrix Pi,j , defining the probabilities of moving from state
i to state j, is a right stochastic matrix and equals for a collaboration
of O > 2 organizations:

Pi,j =

x 1−x

O−1
1−x
O−1

x y 1−x−y
O−2

1−x−y
O−2 . . .

x 1−x−y
O−2 y 1−x−y

O−2 . . .

.

The Markov chain determines the model that is used for each orga-
nization deciding on the next organization to send a request for data
to. It is however also required to define which data needs to be re-
quested. The experiments consider two different data sources: (1) an
image feature mapping to a REST API written in Python and (2) an
employee feature mapping to an SQLite database. The former data
source provides three base64 encoded images with an original size of
75, 21 and 45 KiB, while the latter data source is a database file with
size 88 KiB consisting of one thousand records of dummy employ-
ees. Both data sources are spawned at each organization such that
they can be used in the data exchange process. In order to realize
a fully autonomous collaboration scenario, the implemented generic
client needs to execute a number of steps automatically based on the

50 Trust Issue I: Trustful Automated Data Exchanges

Figure 2.7: Markov chain for an Org Y participating in a collaboration with
O = 4.

response sent by Org X. Although multiple approaches are possible,
the following steps are sufficient for our purpose:

1. The JSON-LD expansion algorithm is applied to the response
of Org X

2. The type of the resource is inspected and looked up in the
supported class section of the API documentation

3. One of the supported class properties of type Hydra Link is
randomly selected, as the values of these properties are known
to be dereferenceable IRIs

4. Org Y executes an HTTP GET request using the IRI of the
selected property

This way, the execution trace of a client will be extended indefinitely.
Note that this sequence of requests is constructed step by step per
organization, meaning that Org Y postpones new requests P until
it has received a response from Org X. The steps can be illustrated
using the code listings shown in Section 2.3: Org Y retrieves the
entry point of Org X and discovers, using the documentation, that
the value of the employees property is a dereferenceable IRI which
points to an instance of the class EmployeeCollection. Detailed in-
formation on this GET request and any other supported operations
are found in the supportedOperation property of that class. Note that
for this evaluation resources are only retrieved and not created, up-

Chapter 2 51

dated or deleted, which covers most cross-organizational collabora-
tions. When the EmployeeCollection is received, the documentation
can again be used to discover its supported properties. Only the
hydra:member property is eligible as it is an instance of the Hydra Link
class. Finally, when an Employee is received, no further dereferencing
is possible, and the process is repeated. Changing functionality can
be dealt with at runtime as requests and responses are constructed
dynamically. The speed at which changes can be incorporated de-
pends on the refresh rate of the API documentation, which is set to
one minute for this evaluation. Note that documentation exchanges
are the only exchanges which do not get logged in the experiments.

2.6.2 Measurement setup
Additional code fragments are presented in this section to show how
data exchange and logging cycles are processed and how the measure-
ments, as shown in the next section, are exactly obtained. The code
fragments in Listings 2.7 and 2.8 highlight the setup as used in the
client code.

var repeat = setInterval(function() {
if ((Date.now() - startTime > timeLimit)) {

return clearInterval(repeat);
}
// Select recipient using matrix P (Section 2.6.1)

// Dynamically construct a request (Section 2.6.1)

// Determine latest inspected block number + 1 (= SBI)

// FUNCTION IV: Log Request asynchronously (RQ_1)

// Request data from Org X asynchronously (RQ_2, SBI)
var call = http.request(options, response => {

// FUNCTION V: Inspect Response asynchronously (args: SBI,
↪→ and RBI from Org X)

var call = http.request(options , response => {
// Update latest inspected block number

});

// Process received data
});

}, delay);

Listing 2.7: Client code to periodically generate cross-organizational data
requests.

52 Trust Issue I: Trustful Automated Data Exchanges

// Receive requests from Org Y
app.receive('/collab/*') {

// Protection I (Section 2.5): Check for pending hash
↪→ verification requests with Org Y

// Protection II (Section 2.5): dataResponsesToOrgY -
↪→ loggingCyclesByOrgY <= M

// Retrieve requested data from internal feature
var call = http.request(options, response => {

// Determine latest inspected block number + 1 (= SBI)

// FUNCTION IV: Log Response asynchronously (RS_1)

// FUNCTION V: Inspect Request asynchronously (args: SBI,
↪→ and RBI from Org Y)

var call = http.request(options, response => {
loggingCyclesByOrgY++;

});

dataResponsesToOrgY++;
});

// Send requested data (RS_2, SBI)
});

Listing 2.8: Client code to process incoming data requests.

The core of the client code is the periodically executed function
getData which allows data requests to be sent concurrently to different
organizations. The delay in milliseconds with which the function is
executed can be expressed in terms of S, which represents the num-
ber of state transitions per second: 1000

E ms. Each time it executes,
it selects a recipient according to the process described in Section
2.6.1, logs the request asynchronously, executes the request asyn-
chronously, inspects the response asynchronously when the request
is resolved and processes the received data. The periodic execution
of the function stops when a preset deadline, e.g. ten minutes, is
exceeded. When a request is received, the two protections as de-
scribed in Section 2.5 are evaluated. Only when both are passed, the
requested data is retrieved from the internal feature, the response is
logged asynchronously, the request is inspected asynchronously and
the data is sent. Listings 2.9 and 2.10 highlight the setups as used in
the proxy code. The core of this code is the inspect function. It first
waits until the request/response to be inspected is received. When
this is the case, it then invokes the callCc function to do the inspec-
tion. This latter function returns a promise in which it first sends
a TX proposal to the EP, which sends back its endorsement, after

Chapter 2 53

which the endorsement is sent to the ordering service in order to be
integrated in a block. When this is done, the previously discussed
waitForCycle function is invoked as a final step.

// FUNCTION IV
function callCc(ccFunction, txId, args) {

return new Promise((resolve, reject) => {
var phase_one = // Struct: CC ID, CC function, TX ID,

↪→ transient map, targeted EP

// Let EP execute TX proposal
channel.sendTransactionProposal(phase_one)
.then(endorsement => {

var phase_two = // Struct: endorsement, original
↪→ proposal and TX ID

// Send TX to the ordering service
channel.sendTransaction(phase_two)

})
.then(() => { resolve(); });

});
}

Listing 2.9: Proxy code to execute a chaincode function.

// FUNCTION V
function inspect('request' / 'response', SBI, RBI, ...) {

var txIdLog = RQ_2[TX_ID_LOG_REQUEST] / RS_2[TX_ID_LOG_RESPONSE
↪→];

// Listen for log of counterparty to come in
listenToEvent(txIdLog, RBI) // FUNCTION II
.then(() => {

var txIdInspect = RS_2[TX_ID_INSPECT_REQUEST] / RQ_2 [
↪→ TX_ID_INSPECT_RESPONSE];

// Inspect log of counterparty
callCc('inspect_request' / 'inspect_response', txIdInspect,

↪→ ...); // FUNCTION IV
})
.then(() => {

// txIds = [txIdInspect, RQ_2[TX_ID_INSPECT_RESPONSE] / RS_2
↪→ [TX_ID_INSPECT_REQUEST]]

waitForCycle(txIds, SBI, RBI, ...); // FUNCTION III
});

}

Listing 2.10: Proxy code to inspect the log of a counterparty.

54 Trust Issue I: Trustful Automated Data Exchanges

Figure 2.8: Overview of the different VMs used in the evaluation setup.

2.6.3 Evaluation results

The experiment setup, as summarized in Figure 2.8, consists of six-
teen virtual machines (VMs). Each of these VMs runs Ubuntu 18.04
LTS and is equipped with four vCPUs of an Intel Xeon E5645 2.4
GHz processor and 4 GiB of RAM. The different VMs act as worker
nodes in the Kubernetes v1.13 cluster. The Docker images of Fabric
version 1.3 are used for the EPs and the OSNs and the default key-
value store LevelDB [49] is used as database in the peers’ secondary
memory. Furthermore, three Kafka [50] and three ZooKeeper [51]
instances are deployed to set up a Kafka cluster with replication fac-
tor three and with at least two in-sync replicas. The tc command
is used to add an equal latency of 25 ms to both the incoming and
outgoing packets for the VMs of the organizations and the VMs of
the OSNs, leading to a round trip time of 100 ms. The VMs of the
Kafka cluster do not impose an artificial delay on packets, as it is
assumed that the different brokers are running in the same data cen-
ter. This latter assumption is important, as a serious drop in logging
cycle completion can be observed when an artificial delay between
these brokers is set. Finally, the Node.js codes of the client, proxy
and feature components use HTTP agents which reuse existing TCP
connections in order to heavily lower the different number of sockets
that need to be used.

The goal of the evaluation section is not to present an exhaustive

Chapter 2 55

performance overview of a data exchange service implementing the
proposed logging mechanism. The reason for this is that performance
results are influenced by many use case specific parameters, such as
the number of organizations, the number of data streams per second,
the direction of data streams, the type of data, the collaboration
duration, the number of clients and proxies per organization, the la-
tencies between the virtual machines, etc. Therefore, a typical case
is selected, i.e. a short-term collaboration of ten minutes between a
limited set of ten organizations, and the performance impact of the
logging mechanism is evaluated. The complete set of parameters used
to evaluate the software is shown in Table 2.2. Data is exchanged in a
fully automated way as described in Section 2.6.1. A part of the data
requests will be refused due to the protections discussed in Section
2.5, as these have the goal to protect a data delivering organization
from a potentially malicious collaboration setup. As no truly mali-
cious entities are present in this controlled experimental setup, both
protections will always be satisfied eventually (depending on the dif-
ferent loads of the involved organizations), causing subsequent data
requests to be processed on an ongoing basis.

Table 2.3 compares the performance results when the logging mech-
anism is turned on and off. Both experiments are repeated ten times
and the median values together with the corresponding interquartile
ranges (IQRs) are shown (percentiles are calculated using the nearest-
rank method). The number of completed exchanges reduces with
around 5% when the mechanism is turned on, but still more than ten
data exchanges per second per organization are finished. The logging
mechanism thus has an impact, but it certainly does not drastically
interrupt the data exchange processes under this configuration. The
ten minute collaboration is, thanks to the logging mechanism, fully
captured and stored in a replicated directory of size 1.1 GiB. Note
that this, by Fabric created, directory includes the chain of blocks
and the LevelDB database, but not the actual request and response
data which are needed to reconstruct the stored hash values. The
number of hash verification requests agrees with the setting of pa-
rameter I as displayed in Table 2.2, as each organization does 120
chain synchronization communications in 10 minutes. The number
of API documentation requests is also expected, as each organization
refreshes the API documentation of the other nine organizations ev-
ery minute. Finally, the average TX size is 3.5 KiB. This average TX
size is a bit lower than the earlier reported 4.8 KiB [19]. The reason
for this is that the transientMap field instead of the args field is now

56 Trust Issue I: Trustful Automated Data Exchanges

Table
2.2:

T
he

param
eter

set
used

for
the

reported
experim

ents.

P
aram

eter
V

alue
#

O
rganizations

(O
)

10
#

State
changes

per
second

per
org

(S)
25

C
ollaboration

duration
10

m
inutes

Probability
ofm

oving
to

sleep
state

(x)
15

Probability
ofrem

aining
in

sam
e

state
(y)

31
0

T
im

e
betw

een
cross-organizationalhash

checks
(I)

5
seconds

M
ax(#

data
responses

to
counterparty

-#
logging

cycles
by

counterparty)
(M

)
20

Fabric’s
m

ax.
block

size
(B

S)
512

K
iB

Fabric’s
block

creation
tim

eout
(B

T
)

2
seconds

Chapter 2 57

used when the sendTransactionProposal function (shown in Listing 2.9)
is called. This prevents the arguments passed to each CC function to
be logged in a TX, i.e. it prevents the actual request and response
data to be logged unintentionally.

Table 2.4 shows the performance results when the value of M is fur-
ther lowered, i.e. when the data exchange processes between or-
ganizations are more tightly coupled to their corresponding logging
processes. The experiments are repeated ten times and the median
values together with the corresponding interquartile ranges (IQRs)
are shown (percentiles are calculated using the nearest-rank method).
The results show that setting low M values seriously impacts the per-
formance of the data exchange processes. When M is decreased from
twenty to zero, the number of completed data exchanges drops sig-
nificantly. Compared to the situation when the logging mechanism is
disabled, it leads to a performance reduction of more than 80%. The
selection of the parameter M is thus a crucial decision. A trade-off
has to be made by each data delivering organization, i.e. they have
to decide whether they prefer more logging certainty or whether they
are willing to contribute to a higher performance of the exchange pro-
cesses. This value could possibly be changed according to the level
of trust and the required performance at a specific moment in time.

2.7 Conclusions
This chapter focuses on a logging mechanism for temporary and ad
hoc cross-organizational collaborations using the Hyperledger Fabric
framework which implements a so called permissioned blockchain. In
the normal case, i.e. when a complete logging cycle is generated,
the logging mechanism provides proof of what has happened during
a collaboration in order to prevent possible disputes. When faulty
behavior is introduced, intentionally or not, a data delivering orga-
nization will be able to detect this, and pause its data sharing with
a specific organization or even its participation in the collaboration
until the problem is solved. Although the cause of the fault can-
not be proven, it provides a way for data delivering organizations to
share data in an untrusted setup. Important is that organizations
are incentivized to execute the logging functions properly, as they
may lose access to the data of other organizations otherwise. The
contributions compared to a previously published paper by the au-
thors [19], are a more extensive explanation of the properties of the

58 Trust Issue I: Trustful Automated Data Exchanges

Table
2.3:

O
verview

ofboth
cross-organizationalinteractions

and
generated

logging
data

w
hen

the
param

eter
set

defined
in

Table
2.2

is
used,and

w
hen

the
logging

m
echanism

is
turned

on/off.

Logging
disabled

Logging
enabled

#
C

om
pleted

Exchanges
(E

to
ta

l)
70941

IQ
R

:317
67785

IQ
R

:230
#

/collab
23673

22620
#

/collab/images
11812

11310
#

/collab/employees
11805

11274
#

/collab/images/[0-9]
11796

11295
#

/collab/employees/[0-9]
11788

11256
#

Postponed
R

equests
(P

to
ta

l)
47528

IQ
R

:156
45982

IQ
R

:214
#

R
efused

R
equests

(R
to

ta
l)

0
IQ

R
:0

672
IQ

R
:14

#
H

ash
Verification

R
equests

(H
to

ta
l)

0
IQ

R
:0

1200
IQ

R
:1

#
A

PI
D

ocum
entation

R
equests

(D
to

ta
l)

900
IQ

R
:0

900
IQ

R
:0

#
B

locks
received

by
each

O
rg

0
IQ

R
:0

1974
IQ

R
:2

#
T

X
s

received
by

each
O

rg
0

IQ
R

:0
271810

IQ
R

:972
Size

ledger
data

at
each

O
rg

(G
iB

)
/var/hyperledger/production/ledgersData

0
IQ

R
:0

1.1
IQ

R
:0

Chapter 2 59

Ta
bl

e
2.

4:
O

ve
rv

ie
w

of
cr

os
s-

or
ga

ni
za

tio
na

li
nt

er
ac

tio
ns

w
he

n
th

e
pa

ra
m

et
er

se
t

de
fin

ed
in

Ta
bl

e
2.

2
is

us
ed

,
w

he
n

th
e

lo
gg

in
g

m
ec

ha
ni

sm
is

tu
rn

ed
on

,a
nd

w
he

n
th

e
pa

ra
m

et
er

M
is

lo
we

re
d.

M
=

2
0

M
=

1
0

M
=

5
M

=
1

M
=

0
#

E
to

ta
l

67
78

5
IQ

R
:2

30
67

64
1

IQ
R

:2
40

56
57

9
IQ

R
:1

81
22

18
3

IQ
R

:2
5

11
51

7
IQ

R
:2

8
#

P
to

ta
l

45
98

2
IQ

R
:2

14
45

96
5

IQ
R

:4
26

44
51

2
IQ

R
:4

9
39

50
0

IQ
R

:1
79

37
76

1
IQ

R
:2

33
#

R
to

ta
l

Pr
ot

ec
tio

n
I:

Pe
nd

in
g

ha
sh

ve
rifi

ca
tio

n
67

2
IQ

R
:1

4
68

7
IQ

R
:3

2
67

9
IQ

R
:6

3
66

6
IQ

R
:2

9
69

5
IQ

R
:2

7

Pr
ot

ec
tio

n
II

:
M

ex
ce

ed
ed

0
IQ

R
:0

97
IQ

R
:3

13
18

1
IQ

R
:7

4
54

59
0

IQ
R

:5
9

67
00

9
IQ

R
:2

49

60 Trust Issue I: Trustful Automated Data Exchanges

proposed mechanism, the idea of applying generic web APIs as found
in literature to this use case and a more detailed evaluation of the de-
signed proof of concept. Future work will need to investigate how this
work can be combined with existing access control solutions which
allow person-to-person data sharing and how container orchestration
could be applied to cross-organizational scenarios.

Acknowledgments
The work described in this chapter, is partly funded by the FUSE
project [52], in which a Flexible federated Unified Service Environ-
ment is investigated. The project is realized in collaboration with
imec. Project partners are Barco, Axians and e-BO Enterprises, with
project support from VLAIO (Flanders Innovation & Entrepreneur-
ship).

Chapter 2 61

Bibliography
[1] J. Moeyersons, B. Farkiani, T. Wauters, B. Volckaert, and

F. De Turck, “Towards Distributed Emergency Flow Prioriti-
zation in SDN Networks,” Int J Netw Manag, vol. e2127, 2020.
https://doi.org/10.1002/nem.2127.

[2] J. Dos Santos, T. Wauters, B. Volckaert, and F. De Turck,
“Fog computing : enabling the management and orchestration of
smart city applications in 5G networks,” Entropy, vol. 20, no. 1,
pp. 1–26, 2018. https://doi.org/10.3390/e20010004.

[3] “Hyperledger Fabric.” https://www.hyperledger.org/projects/
fabric. Accessed December 1, 2019.

[4] E. Androulaki, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolić, A. Barger, S. W. Cocco, J. Yel-
lick, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, and G. Laventman, “Hyperledger Fabric:
A Distributed Operating System for Permissioned Blockchains,”
in Proceedings - 13th EuroSys Conference, pp. 1–15, ACM, 2018.
https://doi.org/10.1145/3190508.3190538.

[5] “we.trade | The Platform.” https://we-trade.com/the-platform.
Accessed December 1, 2019.

[6] C. Schaefer and C. Edman, “Transparent Logging with Hyper-
ledger Fabric,” in Proceedings - 1st IEEE International Con-
ference on Blockchain and Cryptocurrency (ICBC), pp. 65–69,
IEEE, 2019. https://doi.org/10.1109/bloc.2019.8751339.

[7] “TradeLens.” https://www.tradelens.com. Accessed December
1, 2019.

[8] R. Han, V. Gramoli, and X. Xu, “Evaluating Blockchains for
IoT,” in Proceedings - 9th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pp. 1–5, IEEE,
2018. https://doi.org/10.1109/NTMS.2018.8328736.

[9] M. Selimi, A. R. Kabbinale, A. Ali, L. Navarro, and A. Sathiasee-
lan, “Towards Blockchain-enabled Wireless Mesh Networks,” in
Proceedings - 1st Workshop on Cryptocurrencies and Blockchains
for Distributed Systems (CryBlock), pp. 13–18, ACM, 2018.
https://doi.org/10.1145/3211933.3211936.

https://doi.org/10.1002/nem.2127
https://doi.org/10.3390/e20010004
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://doi.org/10.1145/3190508.3190538
https://we-trade.com/the-platform
https://doi.org/10.1109/bloc.2019.8751339
https://www.tradelens.com
https://doi.org/10.1109/NTMS.2018.8328736
https://doi.org/10.1145/3211933.3211936

62 Trust Issue I: Trustful Automated Data Exchanges

[10] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance
Benchmarking and Optimizing Hyperledger Fabric Blockchain
Platform,” in Proceedings - 26th IEEE International Sympo-
sium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 264–276, IEEE,
2018. https://doi.org/10.1109/MASCOTS.2018.00034.

[11] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich,
“How to Databasify a Blockchain: the Case of Hyperledger
Fabric,” tech. rep., Saarland Informatics Campus, 2018. http:
//arxiv.org/abs/1810.13177.

[12] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: Scal-
ing Hyperledger Fabric to 20,000 Transactions per Second,” in
Proceedings - 1st IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), pp. 455–463, IEEE, 2019. https:
//doi.org/10.1109/bloc.2019.8751452.

[13] C. Gorenflo, L. Golab, and S. Keshav, “XOX Fabric: A hybrid
approach to transaction execution,” tech. rep., University of Wa-
terloo, 2019. https://arxiv.org/abs/1906.11229.

[14] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, “Po-
tential Risks of Hyperledger Fabric Smart Contracts,” in Pro-
ceedings - IEEE 2nd International Workshop on Blockchain Ori-
ented Software Engineering (IWBOSE), pp. 1–10, IEEE, 2019.
https://doi.org/10.1109/IWBOSE.2019.8666486.

[15] N. Andola, Raghav, M. Gogoi, S. Venkatesan, and S. Verma,
“Vulnerabilities on Hyperledger Fabric,” Pervasive and Mobile
Computing, vol. 59, p. 101050, 2019. https://doi.org/10.1016/j.
pmcj.2019.101050.

[16] Z. Xiao, Z. Li, Y. Liu, L. Feng, W. Zhang, T. Lertwuthikarn,
and R. S. M. Goh, “EMRShare: A Cross-Organizational Medical
Data Sharing and Management Framework Using Permissioned
Blockchain,” in Proceedings - The International Conference
on Parallel and Distributed Systems (ICPADS), pp. 998–1003,
IEEE, 2018. https://doi.org/10.1109/PADSW.2018.8645049.

[17] S. Kiyomoto, M. S. Rahman, and A. Basu, “On Blockchain-
Based Anonymized Dataset Distribution Platform,” in Proceed-
ings - 15th IEEE/ACIS International Conference on Software
Engineering Research, Management and Applications (SERA),

https://doi.org/10.1109/MASCOTS.2018.00034
http://arxiv.org/abs/1810.13177
http://arxiv.org/abs/1810.13177
https://doi.org/10.1109/bloc.2019.8751452
https://doi.org/10.1109/bloc.2019.8751452
https://arxiv.org/abs/1906.11229
https://doi.org/10.1109/IWBOSE.2019.8666486
https://doi.org/10.1016/j.pmcj.2019.101050
https://doi.org/10.1016/j.pmcj.2019.101050
https://doi.org/10.1109/PADSW.2018.8645049

Chapter 2 63

pp. 85–92, IEEE, 2017. https://doi.org/10.1109/SERA.2017.
7965711.

[18] M. Muller, S. R. Garzon, M. Westerkamp, and Z. A. Lux, “HI-
DALS: A Hybrid IoT-based Decentralized Application for Logis-
tics and Supply Chain Management,” in Proceedings - IEEE 10th
Annual Information Technology, Electronics and Mobile Com-
munication Conference (IEMCON), pp. 802–808, IEEE, 2019.
https://doi.org/10.1109/IEMCON.2019.8936305.

[19] L. Van Hoye, P.-J. Maenhaut, T. Wauters, B. Volckaert, and
F. De Turck, “Logging mechanism for cross-organizational col-
laborations using Hyperledger Fabric,” in Proceedings - 1st IEEE
International Conference on Blockchain and Cryptocurrency
(ICBC), pp. 352–359, IEEE, 2019. https://doi.org/10.1109/
BLOC.2019.8751380.

[20] “What Is OpenAPI?.” https://swagger.io/docs/specification/
about. Accessed December 1, 2019.

[21] R. Verborgh and M. Dumontier, “A Web API Ecosystem
through Feature-Based Reuse,” IEEE Internet Computing,
vol. 22, no. 3, pp. 29–37, 2018. https://doi.org/10.1109/MIC.
2018.032501515.

[22] “JSON-LD 1.1.” https://www.w3.org/TR/2019/WD-json-ld11-
20191112/. Updated November 12, 2019. Accessed December 1,
2019.

[23] “RDF 1.1 Concepts and Abstract Syntax,” 2014. https://
www.w3.org/TR/rdf11-concepts. Updated February 25, 2014.
Accessed December 1, 2019.

[24] M. Lanthaler, Third Generation Web APIs - Bridging the Gap
between REST and Linked Data. PhD thesis, TU Graz, 2014.
http://www.markus-lanthaler.com/research/third-generation-
web-apis-bridging-the-gap-between-rest-and-linked-data.pdf.

[25] M. Lanthaler, “Hydra Console.” http://www.markus-lanthaler.
com/hydra/console. Published March, 2014. Accessed December
1, 2019.

[26] K. Wüst and A. Gervais, “Do you need a Blockchain?,” in Pro-
ceedings - 1st Crypto Valley Conference on Blockchain Tech-

https://doi.org/10.1109/SERA.2017.7965711
https://doi.org/10.1109/SERA.2017.7965711
https://doi.org/10.1109/IEMCON.2019.8936305
https://doi.org/10.1109/BLOC.2019.8751380
https://doi.org/10.1109/BLOC.2019.8751380
https://swagger.io/docs/specification/about
https://swagger.io/docs/specification/about
https://doi.org/10.1109/MIC.2018.032501515
https://doi.org/10.1109/MIC.2018.032501515
https://www.w3.org/TR/2019/WD-json-ld11-20191112/
https://www.w3.org/TR/2019/WD-json-ld11-20191112/
https://www.w3.org/TR/rdf11-concepts
https://www.w3.org/TR/rdf11-concepts
http://www.markus-lanthaler.com/research/third-generation-web-apis-bridging-the-gap-between-rest-and-linked-data.pdf
http://www.markus-lanthaler.com/research/third-generation-web-apis-bridging-the-gap-between-rest-and-linked-data.pdf
http://www.markus-lanthaler.com/hydra/console
http://www.markus-lanthaler.com/hydra/console

64 Trust Issue I: Trustful Automated Data Exchanges

nology (CVCBT), pp. 45 – 54, IEEE, 2018. https://doi.org/10.
1109/CVCBT.2018.00011.

[27] B. Rodrigues, E. Scheid, R. Blum, T. Bocek, and B. Stiller,
“Blockchain and Smart Contracts - From Theory to Prac-
tice.” http://icbc2019.ieee-icbc.org/files/2019/05/ICBC-2019-
Tutorial-1-Blockchain-and-Smart-Contracts.pdf. Published
May 14, 2019. Accessed December 1, 2019.

[28] G. Greenspan, “The Blockchain Immutability Myth.”
https://www.multichain.com/blog/2017/05/blockchain-
immutability-myth. Published May 4, 2017. Accessed De-
cember 1, 2019.

[29] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,”
in Proceedings - 3rd Symposium on Operating Systems Design
and Implementation (OSDI), pp. 173–186, ACM, 1999. https:
//dl.acm.org/doi/10.5555/296806.296824.

[30] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of Distributed Consensus with One Faulty Process,” J Assoc
Comput Machin, vol. 32, no. 2, pp. 374–382, 1985. https://doi.
org/10.1145/3149.214121.

[31] Z. Amsden, R. Arora, S. Bano, M. Baudet, S. Blackshear,
A. Bothra, and G. Cabrera, “The Libra Blockchain,”
tech. rep., Facebook, Calibra, 2019. https://www.
semanticscholar.org/paper/The-Libra-Blockchain-Amsden-
Arora/59df4bdd67ed1cde5191447bcc80fba2d70bee71.

[32] D. Ongaro and J. Ousterhout, “In Search of an Under-
standable Consensus Algorithm,” in Proceedings - USENIX
Annual Technical Conference, pp. 305–320, USENIX As-
sociation, 2014. https://www.usenix.org/conference/atc14/
technical-sessions/presentation/ongaro.

[33] J. Sousa, A. Bessani, and M. Vukolic, “A Byzantine Fault-
Tolerant Ordering Service for the Hyperledger Fabric Blockchain
Platform,” in Proceedings - 48th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN),
pp. 51–58, IEEE, 2018. https://doi.org/10.1109/DSN.2018.
00018.

[34] C. Mohan, “State of Public and Private Blockchains: Myths and
Reality,” in Proceedings - ACM SIGMOD/PODS International

https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1109/CVCBT.2018.00011
http://icbc2019.ieee-icbc.org/files/2019/05/ICBC-2019-Tutorial-1-Blockchain-and-Smart-Contracts.pdf
http://icbc2019.ieee-icbc.org/files/2019/05/ICBC-2019-Tutorial-1-Blockchain-and-Smart-Contracts.pdf
https://www.multichain.com/blog/2017/05/blockchain-immutability-myth
https://www.multichain.com/blog/2017/05/blockchain-immutability-myth
https://dl.acm.org/doi/10.5555/296806.296824
https://dl.acm.org/doi/10.5555/296806.296824
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://www.semanticscholar.org/paper/The-Libra-Blockchain-Amsden-Arora/59df4bdd67ed1cde5191447bcc80fba2d70bee71
https://www.semanticscholar.org/paper/The-Libra-Blockchain-Amsden-Arora/59df4bdd67ed1cde5191447bcc80fba2d70bee71
https://www.semanticscholar.org/paper/The-Libra-Blockchain-Amsden-Arora/59df4bdd67ed1cde5191447bcc80fba2d70bee71
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1109/DSN.2018.00018
https://doi.org/10.1109/DSN.2018.00018

Chapter 2 65

Conference on Management of Data, pp. 404–411, ACM, 2019.
http://doi.acm.org/10.1145/3299869.3314116.

[35] C. Mohan, “Slides accompanying [34].” https://drive.google.
com/file/d/1wJm4K7_7CkvyzmyuySmqDGH0N-mwICSX.
Published July 3, 2019. Accessed December 1, 2019.

[36] “Bitcoin is not ruled by miners.” https://en.bitcoin.it/wiki/
Bitcoin_is_not_ruled_by_miners. Updated August 17, 2017.
Accessed December 1, 2019.

[37] “Difficulty.” https://en.bitcoin.it/wiki/Difficulty. Updated
November 25, 2019. Accessed December 1, 2019.

[38] A. Bogomolny, “Number of Trials to First Success.” https:
//www.cut-the-knot.org/Probability/LengthToFirstSuccess.
shtml. Accessed December 1, 2019.

[39] “Non-specialized hardware comparison.” https://en.bitcoin.it/
wiki/Non-specialized_hardware_comparison. Updated June 10,
2019. Accessed December 1, 2019.

[40] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem,” tech. rep., bitcoin.org, 2008. https://bitcoin.org/bitcoin.
pdf.

[41] S. Micali, “Algorand’s Core Technology (in a nutshell).”
https://www.algorand.com/resources/blog/algorands-core-
technology-in-a-nutshell. Published April 4, 2019. Accessed
December 1, 2019.

[42] G. Greenspan, “Blockchains vs centralized databases.”
https://www.multichain.com/blog/2016/03/blockchains-vs-
centralized-databases. Published March 17, 2016. Accessed
December 1, 2019.

[43] “Hyperledger Fabric - Blocks.” https://hyperledger-fabric.
readthedocs.io/en/release-1.3/ledger/ledger.html#blocks. Up-
dated April 19, 2018. Accessed December 1, 2019.

[44] “Github Fabric Release 1.3 - mcs.go.” https://github.com/
hyperledger/fabric/blob/release-1.3/peer/gossip/mcs.go#L120.
Updated October 10, 2017. Accessed December 1, 2019.

[45] “Github Fabric Release 1.3 - blockfile_mgr.go.” https:
//github.com/hyperledger/fabric/blob/release-1.3/common/

http://doi.acm.org/10.1145/3299869.3314116
https://drive.google.com/file/d/1wJm4K7_7CkvyzmyuySmqDGH0N-mwICSX
https://drive.google.com/file/d/1wJm4K7_7CkvyzmyuySmqDGH0N-mwICSX
https://en.bitcoin.it/wiki/Bitcoin_is_not_ruled_by_miners
https://en.bitcoin.it/wiki/Bitcoin_is_not_ruled_by_miners
https://en.bitcoin.it/wiki/Difficulty
https://www.cut-the-knot.org/Probability/LengthToFirstSuccess.shtml
https://www.cut-the-knot.org/Probability/LengthToFirstSuccess.shtml
https://www.cut-the-knot.org/Probability/LengthToFirstSuccess.shtml
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.algorand.com/resources/blog/algorands-core-technology-in-a-nutshell
https://www.algorand.com/resources/blog/algorands-core-technology-in-a-nutshell
https://www.multichain.com/blog/2016/03/blockchains-vs-centralized-databases
https://www.multichain.com/blog/2016/03/blockchains-vs-centralized-databases
https://hyperledger-fabric.readthedocs.io/en/release-1.3/ledger/ledger.html#blocks
https://hyperledger-fabric.readthedocs.io/en/release-1.3/ledger/ledger.html#blocks
https://github.com/hyperledger/fabric/blob/release-1.3/peer/gossip/mcs.go#L120
https://github.com/hyperledger/fabric/blob/release-1.3/peer/gossip/mcs.go#L120
https://github.com/hyperledger/fabric/blob/release-1.3/common/ledger/blkstorage/fsblkstorage/blockfile_mgr.go#L240
https://github.com/hyperledger/fabric/blob/release-1.3/common/ledger/blkstorage/fsblkstorage/blockfile_mgr.go#L240

66 Trust Issue I: Trustful Automated Data Exchanges

ledger/blkstorage/fsblkstorage/blockfile_mgr.go#L240. Up-
dated September 17, 2018. Accessed December 1, 2019.

[46] “Hyperledger Fabric - Peers.” https://hyperledger-fabric.
readthedocs.io/en/release-1.3/peers/peers.html. Updated May
17, 2018. Accessed December 1, 2019.

[47] “Github Fabric Release 1.3 - block.go.” https://github.com/
hyperledger/fabric/blob/release-1.3/protos/common/block.go#
L51. Updated February 19, 2017. Accessed December 1, 2019.

[48] “Hyperledger Fabric SDK for node.js.” https://github.com/
hyperledger/fabric-sdk-node/tree/release-1.3. Updated January
21, 2019. Accessed December 1, 2019.

[49] “LevelDB.” https://github.com/google/leveldb. Accessed De-
cember 1, 2019.

[50] “Kubernetes Kafka.” https://github.com/kubernetes-
retired/contrib/blob/master/statefulsets/kafka/kafka.yaml.
Updated April 17, 2017. Accessed December 1, 2019.

[51] “Kubernetes ZooKeeper.” https://github.com/kubernetes-
retired/contrib/blob/master/statefulsets/zookeeper/zookeeper.
yaml. Updated October 20, 2017. Accessed December 1, 2019.

[52] “FUSE: Flexible federated Unified Service Environment.” https:
//www.imec-int.com/en/what-we-offer/research-portfolio/fuse.

https://github.com/hyperledger/fabric/blob/release-1.3/common/ledger/blkstorage/fsblkstorage/blockfile_mgr.go#L240
https://github.com/hyperledger/fabric/blob/release-1.3/common/ledger/blkstorage/fsblkstorage/blockfile_mgr.go#L240
https://hyperledger-fabric.readthedocs.io/en/release-1.3/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/peers/peers.html
https://github.com/hyperledger/fabric/blob/release-1.3/protos/common/block.go#L51
https://github.com/hyperledger/fabric/blob/release-1.3/protos/common/block.go#L51
https://github.com/hyperledger/fabric/blob/release-1.3/protos/common/block.go#L51
https://github.com/hyperledger/fabric-sdk-node/tree/release-1.3
https://github.com/hyperledger/fabric-sdk-node/tree/release-1.3
https://github.com/google/leveldb
https://github.com/kubernetes-retired/contrib/blob/master/statefulsets/kafka/kafka.yaml
https://github.com/kubernetes-retired/contrib/blob/master/statefulsets/kafka/kafka.yaml
https://github.com/kubernetes-retired/contrib/blob/master/statefulsets/zookeeper/zookeeper.yaml
https://github.com/kubernetes-retired/contrib/blob/master/statefulsets/zookeeper/zookeeper.yaml
https://github.com/kubernetes-retired/contrib/blob/master/statefulsets/zookeeper/zookeeper.yaml
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse

3
A secure cross-organizational container
deployment approach to enable ad hoc

collaborations

This chapter presents a published research article tackling the sec-
ond research question: how can the deployment of containers,
proposed by a potentially malicious external entity, be ver-
ified by the hosting organization? The first part of the chapter
presents an analysis of what the pipeline of the container orchestrator,
in this case Kubernetes, looks like at each of the worker nodes. This
analysis is needed to allow organizations to intervene locally and thus
to prevent any trust assumptions. Most noticeable is the integration
of the authorization protocol UMA 2.0 into this Kubelet container
deployment flow, resulting in a procedure consisting of three phases.
The steps of each phase are detailed including the implementation of
the UMA protocol in the Identity and Access Management solution
Keycloak. The procedure successfully allows organizations to verify,
asynchronously, potentially malicious deployments. Either manual or
automatic verification is possible, a choice based on the desired level
of supervision balanced against the level of deployment urgency.

⋆ ⋆ ⋆

68 Trust Issue II: A Secure Container Deployment Approach

L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert

Published in International Journal of Network Management,
December 2021

Abstract When organizations need to collaborate urgently, for ex-
ample in the case of an emergency situation, it is needed to deploy
software components into the different domains in order to allow
crucial data to be exchanged. The ad hoc aspect is important as
it does not allow the participating organizations to negotiate entire
workflows and/or contracts upfront. To enable these ad hoc cross-
organizational collaborations, a container orchestration platform, like
Kubernetes, can be used to quickly deploy pods of containers in
a cross-organizational overlay network, even fully automated. Al-
though this is technically feasible, there may be a trust issue from
the perspective of a participating organization when an external or-
ganization is capable of deploying any software inside its network
domain. This concern is examined and resolved in this chapter, by
proposing an extension to the existing deployment scheme used in
vanilla Kubernetes. It allows the participating organizations to as-
sess whether a suggested deployment conforms to the goal of the
project and to maintain an overview of all activities related to a
single collaboration. This intermediate step prevents an honest orga-
nization against potentially malicious behaviour of external entities,
either the orchestrator and/or the other organizations, solving the
aforementioned trust issue. Evaluation of the implemented proto-
type shows that a secure collaboration, which requires at most tens
of containers, can be attained with sub-second deployment overheads
per container, apart from the required manual interventions for trust
management purposes.

3.1 Ad hoc cross-organizational
collaborations

Organizations that want to share in-house data sources urgently, need
to set up an ad hoc cross-organizational collaboration. The common
goal of such a collaboration could be the exchange of data, e.g. to al-
low intervention services retrieving names of people that are badged
in at a building where an emergency situation is unfolding, or the

Chapter 3 69

Figure 3.1: An example cross-organizational deployment scenario with the
goal to share access to a private camera owned by Org X with the control
room dashboard hosted by Org Y.

sharing of access to internal applications / services, e.g. a building
security system. An example use case is shown in Figure 3.1: Organi-
zation X wants to share access to a private camera in order to allow
Organization Y to remotely control the point of view and as such
to constitute a more comprehensive operational picture. In order for
this to work, software components need to be deployed at the differ-
ent sites. An example of a required technical enabler is a transcoder,
which is responsible for encoding the video stream before it is sent.
Other examples are the client components which are needed to per-
form cross-organizational data sharing. As the collaboration needs
to be set up ad hoc, the deployment of such components needs to be
done as quickly as possible. The remainder of this chapter therefore
assumes that a container orchestration platform is used, in this case
Kubernetes [1], which allows containers to be deployed in a cluster of
network domains which are connected via a layer-3 network.

Each cluster has one or more Kubernetes master nodes, managed by
a third party orchestrator, while the participating organizations join
the cluster by hosting a labeled worker node. This way, it is possible
to deploy the required containers, in the form of pods, in the different
domains in a minimum amount of time, without the individual or-
ganizations having to deploy all software themselves. Although this
solution works, there may be a trust issue from the perspective of a
participating organization, as it depends on an external entity to de-
cide which software may be deployed inside its domain. The cluster
administrator plays an important role in this matter of trust, as (s)he
has the power to decide if / which authorization policies are set for

70 Trust Issue II: A Secure Container Deployment Approach

the Kubernetes API. When vanilla Kubernetes is used, each organi-
zation could therefore be susceptible to the deployment of malicious
configurations. As this chapter studies ad-hoc cross-organizational
collaborations, the probability of misuse of resources is even higher,
as deployment needs to be executed ad hoc without thorough ne-
gotiation and investigation upfront. For this specific use case, it is
instead needed to integrate an intermediate step, allowing the admins
of each of the participating organizations to check whether any pro-
posed deployment configuration matches with the collaboration goal
of a certain project.

A major potential issue with running external software is its ability to
connect to the outside world. The resources of another organization
could be used to take part in a botnet, to perform hash calculations
for cryptocurrency mining, to send SPAM mails, etc. These kinds
of issues could however be solved by inspecting the Kubernetes net-
work configuration: the VXLAN backend specified by Flannel [2] is
used as an enabler to create a layer-3 network for inter-host com-
munication. This mechanism, together with the Flannel Container
Networking Interface (CNI) plugin for Kubernetes [3], realizes inter-
container communication. Figure 3.2 shows the (virtual) network
interfaces and their interactions when this network setup is used. It
also indicates which network traffic should be dropped to block com-
munication between a container and the outside world. Note that the
details shown are not necessary to understand the remainder of this
chapter. This network level restriction already solves a lot of poten-
tial problems. However, it is still possible for a malicious organization
to misuse the CPU/memory/disk/network resources of others, as the
result of malicious computations could simply be sent back to the
malicious organization. This problem can not be solved as data shar-
ing between the organizations is the goal of a cross-organizational
collaboration. Some data thus always needs to cross the perimeter of
an organization in order for it to be used by others.

The research question answered in this chapter is thus to reduce this
potential vulnerability. The goal is to allow a niche use case as de-
scribed above to be realised in a more trustful way. The decentraliza-
tion of authorization decisions in a common container orchestration
platform like Kubernetes needs to be examined to enable the differ-
ent organizations to decide whether they want to execute deployment
configurations proposed by external entities. The remainder of this
chapter is structured as follows. Section 3.2 highlights work related to

Chapter 3 71

Figure 3.2: Kubernetes networking when the Flannel VXLAN backend is
used for inter-host networking.

cross-organizational deployments and the protocols and frameworks
used in this chapter. Section 3.3 then highlights the internals of
the Kubelet component, which is a binary that runs at each worker
node in a Kubernetes cluster, and discusses how additional software
components could be integrated into the existing pod deployment
flow (first contribution). Section 3.4 presents the proposed software
components needed to solve the aforementioned trust issue and intro-
duces the steps of the User-Managed Access (UMA) 2.0 protocol [4]
[5] which are executed by these components (second contribution).
Section 3.5 then discusses the evaluation of a prototype with the goal
to measure the overhead introduced by the proposed deployment flow
(third contribution). Finally, Section 3.6 provides a conclusion and
discusses directions for future work.

3.2 Related Work
The starting point of an ad hoc cross-organizational collaboration is
the realization of a cross-domain deployment environment. Goethals
et al. propose a setup for microservice-based applications using a
single Kubernetes cluster [6], allowing organizations to quickly setup,
join and tear down a federation. The proposed environment does not
consider the trust issue mentioned in Section 3.1. Using this envi-
ronment, it is possible for an orchestrator to deploy any kind of ap-
plication in the federated cluster with only minimal installation and

72 Trust Issue II: A Secure Container Deployment Approach

configuration input needed from the participating organizations. One
such application is proposed in a previous article by the authors [7],
where a logging mechanism using a decentralized database setup is
suggested in order to persist logs describing cross-organizational data
exchanges. This mechanism allows an honest organization to protect
itself against the potentially malicious behaviour of other participat-
ing organizations. Such a mechanism is needed as organizations need
to collaborate ad hoc, meaning there is no time to negotiate any
contract or service-level agreement upfront. The ultimate goal of the
proposed logging mechanism is the same as for the solution presented
in this chapter: reduce a potential trust issue between collaborating
organizations. The difference is that a trust issue related to cross-
organizational deployment is researched in this chapter as opposed
to a trust issue related to cross-organizational data sharing. Preuve-
neers et al. discuss an access control solution for microservice APIs
in the presence of multiple (cross-domain) stakeholders and resource
owners [8]. It proposes a separate microservice enabling multi-party
delegated authorization, which can be used in combination with the
UMA 2.0 protocol in a fully transparent way, in order to allow a re-
source to be protected by different UMA 2.0 authorization servers.
As the proposed access control solution is generally applicable, the
paper does not narrowly focus on secure container deployment. Note
that this UMA 2.0 protocol, as outlined by Schwartz and Machu-
lak [9], is also used in this chapter as an enabler for secure cross-
organizational container deployments as will become clear in Section
3.4. Finally, there are papers available in which the aforementioned
trust issue is addressed, thus coming closest to our goal. Wild et
al. propose a workflow for decentralized automated application de-
ployment in a cross-organizational context [10]. The decentralization
aspect of their deployment solution is crucial as it enables partici-
pating organizations to retain control over their infrastructure. Our
chapter however, although it shares the same trust issue related to
the provisioning of local resources in a cross-organizational context,
does assume the need for a central orchestrator due to the ad hoc
nature of the collaborations studied. After all, a central orchestrator
will need less time to coordinate and find agreement between par-
ticipating organizations. A kind of hybrid solution is thus examined
here allowing a central operator to be used to set up an ad hoc inter-
vention, while participating organizations should not fully trust it.
The SLATE architecture [11] [12] then considers a set of Kubernetes
clusters and federates them through their custom central API server

Chapter 3 73

with the goal to simplify multi-institution scientific collaborations.
The administrators of the individual clusters retain control of their
cluster and are able to decide who is allowed to deploy applications
from a reviewed catalog. For our use case, in which ad hoc collabora-
tions are examined, it is more efficient to let each organization spin up
a lightweight Kubelet process and join the collaboration as a worker
node. In summary, to the best of our knowledge, no other papers dis-
cuss a solution which allows the secure deployment of containerized
services in the context of ad hoc cross-organizational collaborations.

This chapter gives special attention to Kubernetes, which “is an open-
source system for automating deployment, scaling, and management
of containerized applications” [1]. This orchestrator deploys contain-
ers in so called pods. These units, each with their own unique IP
address, consist of one or more containers which share an interpro-
cess communication, network and (optionally) process ID namespace
and which belong to the same pod control group [13]. An important
aspect of Kubernetes is its centralized API: it allows people, internal
Kubernetes components, and external automation tools to control de-
ployments [14]. In Kubernetes, access control is possible through the
Kubernetes API and through the Kubelet API. For the Kubernetes
API, authentication, authorization and admission control are inte-
grated in the API server [15]. When the server is configured accord-
ingly, it is possible to enable attribute-based access control (ABAC),
role-based access control (RBAC) or webhooks [16] in order to au-
thorize requests. For the Kubelet API, (bearer) authentication and
authorization decisions are delegated to the API server [17]. The API
server thus plays a crucial role in access control decisions. These off-
the-shelf authorization mechanisms are however not sufficient for our
use case, as the cluster administrator is fully responsible for enabling
and configuring the corresponding modules. As long as participat-
ing organizations are not given the power to decide on authorization
decisions themselves, there might be a trust issue from their perspec-
tive, as addressed in Section 3.1. Finally, as already mentioned, it is
more efficient for our use case to focus on a single Kubernetes cluster,
stretching different domains, for the cross-organizational deployment
environment. The out-of-the-box Kubernetes solution for the feder-
ation of multiple Kubernetes clusters [18], which consists of multiple
guest clusters and a single host cluster, thus provides no solution ei-
ther. Furthermore, like a single Kubernetes cluster, the idea behind
it is that a single organization is responsible for managing these clus-
ters, as they can be managed using a single federated control plane. It

74 Trust Issue II: A Secure Container Deployment Approach

could therefore not be mapped to the use case presented here without
further modifications.

3.3 Breaking down the Kubelet
To be able to identify which additional software components are re-
quired to realize the goal mentioned in Section 3.1, it is first needed to
explain the operation of the Kubernetes Kubelet component. Section
3.3.1 highlights the first part of the trajectory of a pod update when it
is processed by a Kubelet. This part is included to obtain a complete
overview of the container deployment process, but is not crucial to
understand the remainder of the chapter. Section 3.3.2 describes the
pipeline between the Kubelet runtime abstractions and the specific
container runtime. Crucial is the existence of the container runtime
interface (CRI) which allows the container deployment process to be
intervened in a transparent way. Finally, Section 3.3.3 discusses the
different CRI functions by means of their different functionalities and
the possible security threats they may pose to participating organi-
zations.

3.3.1 The Kubelet loop
The core function executed by the Kubelet binary is syncLoop, which
executes an infinite loop with the goal to converge the current state
of the locally deployed pods to their desired state. This desired state,
which is also referred to as PodSpec, reaches the Kubelet via so called
configuration updates. These updates can come from multiple sources
[19], but the ones retrieved from the Kubernetes master node are of
main interest in this chapter. The Kubelet pulls these configuration
updates from the API server in a specific manner. It uses a mecha-
nism of listing and watching. It first pulls, from the API server, a list
of pods allocated to its node, by performing an HTTP GET request
for /pods, and filters the JSON response for spec.nodeName = X. It then
starts watching pod updates given the resourceVersion of the received
list. The PodUpdate objects from the different sources are merged into
a single configuration update channel using a mux, which is passed to
the syncLoop function. Starting from this syncLoop function, it is pos-
sible to explain numerous different components, like all the different
managers. As these are not immediately important for the remainder
of this chapter, only a summary of the Kubelet core functions is given
below.

Chapter 3 75

1. syncLoopIteration: This function executes a single iteration of
the syncLoop function. It fetches events from five distinct Go
channels, among which configCh and syncCh. The configCh chan-
nel is the aforementioned configuration update channel. When
a new configuration update is received, the PodUpdate object is
inspected for its operation, e.g. addition of a new pod, and the
pods specified in this PodUpdate object are passed to the appro-
priate handler, like the HandlePodAdditions function below.

2. HandlePodAdditions: The specified pods are further processed in
this function. The pod specification of each pod is added to the
pod manager, as it is responsible for storing the desired state
of all pods belonging to the node. An admission process is then
started to verify whether the pod can safely be deployed, e.g.
whether the node is not under disk pressure. When admitted,
the dispatchWork function is invoked, which in turn invokes the
UpdatePod function below.

3. UpdatePod: Each pod has a corresponding pod worker. This is a
Goroutine which executes the managePodLoop function below. A
channel is passed to this Goroutine, in order to inject synchro-
nization updates. This update function first checks whether a
channel belonging to the specified pod already exists. If so, the
update is passed to it, initiating the asynchronous synchroniza-
tion of the pod. If no channel is present yet, one is created after
which it is passed to a new pod worker.

4. managePodLoop: This function is thus executed by each pod work-
er. Every time a synchronization update is received via the
channel, the current state of the pod is retrieved via the pod
cache, a component which is available to all pod workers. This
cache is filled by the Pod Lifecycle Event Generator (PLEG),
a component which periodically invokes the container runtime
to retrieve the state of all containers. The retrieved current
state from the cache, together with the desired state of the pod,
as specified in the synchronization update, are then passed to
the syncPod function below. After a successful synchronization
update is executed, a subsequent synchronization is scheduled
with a re-sync interval of one minute, causing the HandlePodSyncs
handler to be triggered.

5. syncPod: This thread-safe function executes a preparatory work-
flow related to the synchronization of a single pod. The code

76 Trust Issue II: A Secure Container Deployment Approach

can be inspected to discover every single step. At the end of
the workflow, the current state and the desired state of the
pod are passed to the SyncPod function of the container runtime
manager, which is further highlighted in the next section.

Given the PodUpdate objects received from the API server, one may
suggest to allow the administrator of the hosting organization to filter
them in an early stage, before they are passed to the configuration
update channel. Although possible, it might be a time-consuming
task for the administrator to find out which containers in the pod
are already running, which containers cannot be admitted, etc. It is
instead more efficient to allow the Kubelet to perform these checks
and computations with the code it already possesses. The proposed
extension will then allow the administrator to intervene after the
Kubelet has computed which actions need to be performed.

3.3.2 Interaction with the container runtime
The Kubelet is designed in such a way that the container runtime
is pluggable meaning that different runtimes can be used. This
is realized using the structs, and the noticeable interfaces each of
them implements, as shown as blue and purple components in Fig-
ure 3.3 respectively. What is created, since Kubernetes release 1.5,
is a so called CRI [20]. The CRI API, more specifically the ver-
sion reviewed in this chapter [21], consists of two APIs: a so called
client API and a server API. The client API, of which the imple-
mentation acts as a client sending container runtime requests, pro-
vides an interface to other Kubelet components, allowing them to
invoke container runtime functions. The RuntimeServiceClient and
ImageServiceClient interfaces constitute this client API. The server
API, of which the implementation acts as a server handling con-
tainer runtime requests and sending responses, provides an inter-
face to the gRPC [22] server, allowing it to handle requests. The
RuntimeServiceServer and ImageServiceServer interfaces constitute this
server API. As is clear, the server part, which is also called a shim in
the case of Docker, can easily be changed without having to recom-
pile the Kubelet code. It is only necessary to pass the endpoint of a
gRPC server to the Kubelet, and this server should have a component
registered which implements both server interfaces. An example of
such a component is the dockerService struct, which provides commu-
nication with the Docker daemon in order to manage containers. A
customService struct will be defined in Section 3.4.

Chapter 3 77

Figure 3.3: The Kubelet components which constitute the container runtime
interface.

The client API is consumed by the kubeGenericRuntimeManager, a struct
which implements the Runtime interface. The SyncPod function, men-
tioned in the previous section, belongs to this interface. This function
is largely based on a helper function, computePodActions, which com-
pares the given desired and current state of the pod and determines
whether there are actions, such as pods or containers that need to be
(re)created or killed, that need to be performed. For example, when
kubectl replace is used to change the image of a running container,
this function is able to detect this change by comparing the hash val-
ues of both the old and updated container specifications. This causes
the running container to be killed and the updated container to be
restarted, again resulting in the invocation of the startContainer func-
tion implemented by the same kubeGenericRuntimeManager. The latter
function causes the container image to be pulled, the container to be
created and started, and any post start lifecycle hooks to be executed.
This means that client API functions, such as CreateContainer, are in-
voked due to this function, resulting in container runtime updates to
be executed. The set of CRI API functions is discussed below.

3.3.3 Opportunities to enhance control
The gRPC client-server architecture, discussed in the previous sec-
tion, thus allows for an additional software component to be inte-
grated without having to recompile the existing Kubelet code. The
red dotted line in Figure 3.3 indicates this integration visually. In this
chapter, such a component is introduced, which acts as a middleman
between the client and the server. It has the goal to intercept and
relay container runtime requests in order for them to be reviewed and
rejected / accepted by the administrator(s) of an organization. This
way, it is possible for an organization running the Kubelet to gain

78 Trust Issue II: A Secure Container Deployment Approach

control over the software that is deployed in their domain. Before
discussing the architecture of this component in the next section, it
is needed to identify which CRI API functions should be intercepted
and evaluated before they are executed. Note that only the functions
of the RuntimeServiceServer interface are discussed, as the functions of
the ImageServiceServer for image management are not considered to be
potentially harmful from the perspective of the hosting organization.

■ CRI functions that pose no security threat

□ Version, Status, PodSandboxStatus, ListPodSandbox,
ContainerStatus, ListContainers, ContainerStats,
ListContainerStats, ReopenContainerLog: These functions are
all allowed without further evaluation as they only try to
collect information. Their goal is not to change the state
of the hosting node in any way.

□ UpdateRuntimeConfig: This function, which currently is only
able to update the pod CIDR attached to a node, is in-
voked when the Kubelet is initialized. It may also be in-
voked by an internal Kubelet Goroutine which synchro-
nizes node status with the master. These Kubelet inter-
nals do no expose any security risk and thus the function
is allowed without further evaluation.

□ RunPodSandbox: This function creates and starts a pod sand-
box. For the Docker container runtime, this sandbox boils
down to the creation of a container with the required
pod namespaces [20]. The ContainerCreate function of the
Docker Engine API is invoked with the image k8s.gcr.io/
pause:<version>, after which it is started with the function
ContainerStart of the same API. The required networking
configuration for the pod is, given the new network names-
pace, then set up as the chosen CNI plugin, such as Flannel
[3] or Canal [23], gets executed eventually. This function
is allowed without further evaluation, as it only prepares
a sandbox environment for regular containers which will
be spawned later on.

□ StartContainer: This function causes the container process,
as specified by the ENTRYPOINT or CMD command, to run in
the earlier created container environment. This function
is allowed without further evaluation as the administra-

Chapter 3 79

tors of the hosting organization already verified whether
the container is allowed to be deployed, including the en-
trypoint or command as specified by the deployment file,
either explicitly or implicitly.

□ StopPodSandbox, RemovePodSandbox, StopContainer,
RemoveContainer: These functions are all allowed without
further evaluation as stopping and removing containers, ei-
ther with a forced SIGKILL or gracefully SIGTERM signal, does
not necessarily harm the hosting organization. The deci-
sion could however be made, depending on the use case,
that killing containers should also be protected, which is
possible. Note however that an internal Kubelet garbage
collector may also invoke these functions, e.g. when a pod
has no corresponding regular containers. This garbage col-
lector does not remove a container which is already created
but not yet running. This is important for the interven-
tion of the CreateContainer function discussed later on, as
an arbitrary delay between container creation and startup
will be introduced by the proposed extension.

□ UpdateContainerResources: This function may be invoked in
the CPU manager of the Kubelet depending on configu-
ration. It enables one to match CPU cores to a container
in a way that they are assigned exclusively, i.e. such that
other containers are coupled to different cores, in order
to prevent many CPU context switches [24]. There are
two execution paths which lead to the invocation of this
function. First, when the function PreStartContainer is exe-
cuted, which happens after a container is created with the
function CreateContainer. This is allowed as the creation of
the container will already be verified by the administra-
tor(s). Second, the function executes due to an internal
Kubelet Goroutine which periodically reconciles the CPU
sets as known by the CPU manager with the container
runtime, which does not cause any risk. This function is
thus allowed without further evaluation.

■ CRI functions that need to be evaluated

□ CreateContainer: This function causes a new container en-
vironment to be prepared in the container runtime, given
its full configuration (image, command, arguments, work-

80 Trust Issue II: A Secure Container Deployment Approach

ing directory, environment variables, mounting directories,
etc.) and the configuration of the pod sandbox to which it
belongs. Note that, based on annotations attached to the
pod specification, it is possible for the middleman com-
ponent to figure out which of the sources mentioned in
Section 3.3.1 caused the container to be created. This is
valuable information for the middleman component, as it
allows it to decide whether function evaluation could be
skipped, when the update source is internal like a file lo-
cal to the Kubelet, or whether function evaluation is nec-
essary, when the update source is external like the API
server.

□ PortForward: The goal of port forwarding is to allow a client
of the Kubernetes cluster to connect to a containerized ap-
plication running in a pod. When the Kubelet receives a
port forwarding request via its Kubelet API, this function
is invoked. It returns a URL /portforward/<token>, like http
://127.0.0.1:33793/portforward/KT874aVP, which points to an
internal port forwarding streaming server. An internal re-
verse proxy uses this URL to proxy this stream between
the internal server and an external entity. An invocation
of this function should be evaluated, as otherwise it could
be possible for any organization in the cluster to get net-
working access to a certain pod in the cluster.

□ Exec: The goal of the exec operation is to allow a client
of the Kubernetes cluster to run a command in a con-
tainer and as such to create a new process. The stdout
and stderr emerging from executing the command are dis-
played to the client. Passing stdin to the newly created
process is possible, and could even be upgraded to a shell
when the sh or bin/bash command is used and a TTY is
allocated. When the Kubelet receives an exec request via
its Kubelet API, a similar streaming approach is used as
for the PortForward function. An invocation of this func-
tion should be evaluated, as otherwise it could be possible
for any organization in the cluster to deploy new processes
inside other operational domains.

□ Attach: The goal of the attach operation is to allow a client
of the Kubernetes cluster to receive stdout and stderr of

Chapter 3 81

an existing container process, which has ID 1 in its own
isolated PID namespace, and all its child processes and to
send stdin to this process if required. Note that stdin can
only be a TTY when one was already allocated by the con-
tainer process. When the Kubelet receives such an attach
request via its Kubelet API, a similar streaming approach
is used as for the PortForward function. An invocation of
this function should be evaluated, as it could be possible
for any organization to manipulate the running container
process using instructions sent from stdin.

□ ExecSync: The goal of this function is to execute a command
in a container synchronously, without the intervention of a
separate streaming server as discussed above. The results
of stdout, stderr and the exit code of the executed pro-
cess constitute the response. This function is invoked for
both (1) internal and (2) external requests: (1) when the
container YAML file has exec defined as postStart and/or
preStart container lifecycle hook, and/or when the YAML
file has exec defined as livenessProbe and/or readinessProbe
; (2) when the Kubelet API receives a request to execute
a command in a container. For the same reason as with
Exec, this function should be evaluated, but only for the
external requests. To allow our middleman component to
know whether an invocation of this function is the result
of an internal or external request, it is needed to inspect
the container YAML file at creation time to find any of
the aforementioned hooks and/or probes and to store the
corresponding commands that are thus allowed according
to its definition. When a command is received that does
not match with one of these stored commands, it must be
the result of an external request.

The analysis of the API functions above shows that five functions
qualify for further verification by the administrator(s). Note that
there is a difference between the CreateContainer function and the
other four debugging functions. It is assumed that the Kubelet guar-
antees unique identification of each container deployment / update
request using the triple (1) pod sandbox ID (2) container name and
(3) attempt number. These values are included in the
CreateContainerRequest parameter of the CreateContainer function. The
AttachRequest parameter of the Attach function, as similar to the other

82 Trust Issue II: A Secure Container Deployment Approach

Figure 3.4: Overview of the proposed container deployment process needed
to enable each organization to decide on cross-organizational container de-
ployments. The blue components and white indexed interactions represent
software present in the vanilla Kubernetes code base. The red components
and blue / orange / green indexed interactions represent the proposed in-
tegration. The three colors of these newly added interactions each match a
deployment phase as will be explained in Section 3.5.

three debugging functions, does not provide such a unique combina-
tion, which could lead to two equal Kubelet API invocations from
two different cluster clients to be processed as being the same request.
Furthermore, this could cause the debugging function response, such
as a stream, to be claimed by the wrong client. An additional mech-
anism is needed in order to solve this problem, e.g. using a token per
client session. The flow presented in the next section, which shows
the details for the CreateContainer function, should thus be extended
for the debugging functions.

3.4 Integrating the UMA 2.0 protocol into
the Kubelet

What is needed is an authorization framework which allows the re-
source owner, in this case the administrators of a hosting organiza-

Chapter 3 83

Figure 3.5: A subset of the steps extracted from Figure 3.4.

tion, to grant access to its internal infrastructure in order to allow
containers to be created on request of an external entity. The UMA
2.0 protocol, which is an extension to the OAuth 2.0 authorization
framework [25], provides authorization functionalities that can be
used to enable this, as it allows a resource owner to authorize data
requests from requesting parties in an asynchronous manner. For this
use case, it is sufficient to define an analogous scenario based on the
standard flow, suited to deploy a pod with one or more containers.
The result of this analysis is displayed in Figure 3.4. The remain-
der of this section will focus on the implementation of the different
steps. Parts of Figure 3.4 are replicated in Figures 3.5-3.9 for conve-
nience. Note that, although the example given is ented on the Docker
container runtime, it is possible to integrate this extension for every
runtime that supports the CRI. This means that it is equally possi-
ble to support Open Container Initiative (OCI) compliant runtimes,
such as runc and Kata Containers, through the CRI-O runtime [13].

The steps 1-4, highlighted in Figure 3.5, are discussed in more detail
below.

1. The requesting party, being one of the participating organiza-
tions or the orchestrator, uses the Kubernetes API server to
communicate deployment instructions. For example, a com-
mand like kubectl create or kubectl delete is executed together
with a YAML deployment file, either automatically via a script

84 Trust Issue II: A Secure Container Deployment Approach

or manually, to propose the deployment of a pod.

2. The pod scheduling logic present in the Kubernetes master
node reads the deployment instruction and based on its con-
tent, e.g. whether a nodeSelector is present or whether memory
or CPU requests are specified, it assigns the pod to an ap-
propriate node. The pod specification is then pulled by the
corresponding Kubelet.

3. The Kubelet loop processes the pod configuration update as
described in Section 3.3.1.

4. This step marks the start of the startContainer function men-
tioned in Section 3.3.2. This function causes the CRI API func-
tion CreateContainer to be invoked eventually. In order to in-
troduce the middleman component suggested in Section 3.3.3,
which is referred to as the custom Kubelet from now on, it
is needed to alter the existing gRPC setup. First, the gRPC
server code used by the Docker shim is duplicated for the cus-
tom Kubelet and the endpoint unix:///var/run/custom-server.
sock is passed as a parameter to the Kubelet binary. This cre-
ates a gRPC connection between the Kubelet and the custom
Kubelet. Second, the gRPC client code used by the Kubelet is
duplicated for the custom Kubelet and the endpoint unix:///var
/run/dockershim.sock is passed as a parameter to it, such that a
similar gRPC connection is created between the custom Kubelet
and the Docker shim. It is thus possible to intercept container
runtime requests only by duplicating existing Kubelet code and
setting endpoint parameters. Additional steps need to be in-
tegrated once container requests are intercepted by the gRPC
server of the custom Kubelet. To enable this, a customService
struct is foreseen which implements custom request handlers for
the five CRI API functions discussed earlier.

The steps 5-9, highlighted in Figure 3.6, are discussed in more detail
below.

5. Inside the custom handler of the CreateContainer function, an
HTTP POST request to the endpoint http://<resource-server-
ip>:<resource-server-port>/containers is made, a path which is
part of the REST API exposed by the resource server. This re-
source server is a confidential client of the authorization server
as it is able to securely keep a shared secret which it needs

Chapter 3 85

Figure 3.6: A subset of the steps extracted from Figure 3.4.

for further communication. The authorization server used in
this research is provided by the open source identity and access
management solution Keycloak [26]. Keycloak Authorization
Services [27] is enabled for the resource server, meaning that the
authorization server can be used to enforce policies associated
with the paths exposed by the resource server in order to protect
them from unauthorized access. The resource server implemen-
tation consists of a Spring Boot application, which is secured by
Spring Security, and for which Keycloak provides an out-of-the-
box adapter which hooks into the existing Spring Security au-
thentication filter chain. This adapter adds four additional fil-
ters as defined in the KeycloakWebSecurityConfigurerAdapter class,
of which two of them are most important: a
KeycloakAuthenticationProcessingFilter to handle multiple auth-
entication strategies, like bearer token authentication and
OAuth authentication, and a KeycloakAuthenticatedActionsFilter
to intercept authenticated requests and check for authorization.
Note that the Keycloak adapter can be configured to fit for dif-
ferent use cases. The configuration used for this research is
displayed in Listing 3.1. The bearer-only setting indicates that
the resource server should act as a REST service rather than as
a web application. This means that it should only verify bearer
tokens sent along by public clients and not try to login users
of these clients by redirecting their user agent according to the
OAuth 2.0 Authorization Code Grant [25].

86 Trust Issue II: A Secure Container Deployment Approach

{
"realm": "secure-container-deployment",
"auth-server-url": "http://<auth-server-ip>:<auth-server-

↪→ port>/auth/",
"resource": "resource-server",
"bearer-only" : true,
"credentials": {

"secret": "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
},
"policy-enforcer": {

"user-managed-access": {},
"lazy-load-paths": true,
"paths": [

{
"path" : "/containers",
"enforcement-mode": "DISABLED"

},
{

"path" : "/containers/*",
"methods" : [

{
"method": "POST",
"scopes" : ["CREATE"]

},
{

"method": "DELETE",
"scopes" : ["DELETE"]

}
]

}
]

}
}

Listing 3.1: Configuration of the Keycloak adapter

The resource server API has both an internal and external
part. It is consumed by a component inside its own domain,
the custom Kubelet, and by a component outside its domain,
the authorization client respectively. Authentication and au-
thorization for both parts are different. The following policy
is chosen for the internal part: it is only allowed to invoke /
containers when a bearer access token, which is a JSON Web
Token (JWT) [28], is sent with the HTTP authorization header
of the request which contains the role ROLE_ADMIN. This RBAC
policy is hard-coded in the resource server code in the following
way:

Chapter 3 87

http.authorizeRequests().antMatchers("/containers").
hasRole("ADMIN")

Listing 3.2: Hard-coded role-based policy for internal API requests

The last filter of the Spring Security authentication filter chain,
the FilterSecurityInterceptor, will then check whether the au-
thenticated security context has the required role. As this pol-
icy is hard-coded, it is not needed to execute the steps of the
Keycloak authorization filter. More specifically, each path of
the internal API needs to have a disabled enforcement mode, as
shown in Listing 3.1, in order to skip the creation of a Keycloak
authorization challenge, as will be the case for the external part
of the API, discussed from step 11.

The custom Kubelet thus needs to obtain an access token
(JWT) from the authorization server with the admin role. The-
refore, a second confidential client is registered at the autho-
rization server, of which the secret is shared with the custom
Kubelet. As a service account is associated with this confiden-
tial client, and the ROLE_ADMIN role is assigned to it, the custom
Kubelet is able to obtain an access token conform the OAuth
2.0 Client Credentials Grant [25]. Access to POST /containers
path is now granted.

6. The resource server handler associated with the POST
/containers path is then executed. It extracts the received con-
tainer specifications, adds it to a ResourceRepresentation object,
and sends it to the resource registration endpoint of the au-
thorization server. Note that a protection API token (PAT) is
needed in order to register the resource [5]. This PAT, which is
an access token with the scope uma_protection, can be obtained
using the service account associated with the confidential client
of the resource server, again conform the OAuth 2.0 Client Cre-
dentials Grant [25]. The following specifications are set:

□ The path is set to /containers/<container-hash>. The con-
tainer hash placeholder is equal to the SHA-256 hash of
the triple pod sandbox ID, container name, and the at-
tempt number. This triple is chosen as it is assumed to be
unique per Kubelet specification.

□ The resource owner is set to be the admin user. Further-

88 Trust Issue II: A Secure Container Deployment Approach

more, owner-managed access is turned on, allowing the
administrator to evaluate permission requests.

□ Several container specifications such as the required im-
age and the command to be executed are set as resource
attributes. These specifications are extracted from the
CreateContainerRequest parameter by the custom Kubelet.
A lot of other attributes could be added here. These at-
tributes allow the administrator to make a decision on con-
tainer deployment.

□ Scopes are also associated with each resource. Both the
CREATE and DELETE scope are added, such that killing
a container could easily be evaluated too using the same
resource, in case it would be needed at a later stage.

7. Once resource registration is finished successfully, the resource
server handler completes the request with the storage of the
container hash together with a WAITING tag in a thread-safe hash
map.

8. A 201 HTTP response is sent back to the custom Kubelet. The
body of this response contains the URL of the resource server
http://<resource-server-ip>:<resource-server-port>/containers.

9. When the custom Kubelet receives a 201 HTTP response, it
creates a message indicating that the container deployment re-
quest is started, together with the received resource server URL,
and sends this message back to the Kubelet as an error. A con-
tainer creation error is returned purposely, as it causes, via
the aforementioned syncCh channel of the Kubelet loop, a new
iteration of the SyncPod function to be executed after at least
backOffPeriod seconds. This way, synchronization of a pod is
rescheduled automatically, trying to deploy all containers for
which no authorization was granted yet. This thus means that
the steps 3-5 and 8-9 are repeated as long as the Kubelet deter-
mines an error for a container deployment. The steps 6 and 7
are skipped as long as the WAITING tag is associated with the cor-
responding container hash. Further progress is described from
step 23 onwards.

The steps 10-16, highlighted in Figure 3.7, are discussed in more
detail below.

Chapter 3 89

Figure 3.7: A subset of the steps extracted from Figure 3.4.

10. The requesting party, the entity which triggered the pod de-
ployment, then tries to set up an HTTP connection using its
browser with the resource server of the hosting organization.
There are two scenarios for the requesting party to know which
resource server URL to use. First, the pod deployment was
targeted, meaning that the pod specification file contained a
nodeSelector element. The requesting party will thus, most
likely, know the URL of the resource server of the targeted
organization. Second, the pod deployment was not targeted,
meaning that the Kubernetes scheduler decided which organi-
zation to use for deployment. The requesting party is then
able to extract the required URL of the resource server, either
manually or automatically, by observing the pod state via the
Kubernetes API and interpreting the CreateContainerError mes-
sage reported by the associated Kubelet.

The browser of the requesting party then downloads the re-
quired authorization client code from the resource server. The
authorization client is a public client of the authorization server
which acts on behalf of the requesting party. A login page is
shown to the requesting party in order to supply its user creden-
tials and to obtain an access token according to the OAuth 2.0
Authorization Code Grant [25]. When logged in, the request-
ing party is presented with a dashboard showing an overview
of all pods at the hosting organization which are waiting to be

90 Trust Issue II: A Secure Container Deployment Approach

claimed. This provides the requesting party the opportunity
to claim its pod deployment request and, if applicable, accept
associated conditions such as estimated operational costs. The
manual intervention at this stage thus allows a requesting party
to assess the proposed deployment scenario and give a final de-
cision. This intervention is especially useful for this research
as we are dealing with ad hoc cross-organizational collabora-
tions, for which it is nearly impossible to exchange deployment
constraints and/or preferences upfront.

11. When the requesting party claims a pod deployment, a button
is clicked, causing an HTTP GET request to be sent to http://
<resource-server-ip>:<resource-server-port>/containers/
<container-hash>. This request is unauthenticated, meaning that
authentication fails in the
KeycloakAuthenticationProcessingFilter. As policy enforcement
is enabled for the paths /containers/*, as is visible in Listing
3.1, the Keycloak adapter does not immediately send an access
denied response. The local path configuration defines which
scopes should be granted to allow a certain HTTP method.
This local configuration is further extended by the adapter in
the following way: as the path contains an asterisk and lazy
loading of paths is enabled, the adapter causes the authorization
server to be queried at /auth/realms/secure-container-deployment
/authz/protection/resource_set in order to find a path configu-
ration which matches exactly with the target URL. Note that
a PAT is also required for this request. This configuration is
always found, as it is created in step 6. The local and re-
ceived path configurations are merged, more specifically the
local HTTP-method-to-scope mapping is added to the received
configuration. The Keycloak adapter then follows the same pro-
cedure as when an authenticated request would be processed,
but without the required permissions: the UMA response is
prepared.

12. In order to prepare this response, it is first needed to obtain a
permission ticket from the authorization server, summarizing to
which resources and scopes access is requested. To do so, the re-
source server first inspects its path configurations, as mentioned
in previous step, to determine which resource and scope(s) are
required, and constructs an HTTP POST request to the permis-
sion endpoint of the authorization server at /auth/realms/secure

Chapter 3 91

-container-deployment/authz/protection/permission. Note that a
PAT is also required for this request.

13. The received permission ticket is a JWT. Its internal structure is
defined by the authorization server and thus completely opaque
to other entities.

14. A 401 HTTP response is returned to the authorization client.
The permission ticket as well as the URL of the authorization
server are included in the WWW-authenticate response header.

15. The authorization client uses the received permission ticket to
construct an authorization request, which is sent to the to-
ken endpoint of the authorization server at /auth/realms/secure-
container-deployment/protocol/openid-connect/token. The goal of
the authorization client is to request a Requesting Party Token
(RPT), which is a grant of type urn:ietf:params:oauth:grant-type
:uma-ticket. This is an access token with a separate permissions
section stating the resource IDs and scopes to which access is
granted. Note that the access token obtained in step 10 is
added to the HTTP authorization header of the authorization
request in order to authenticate the authorization client and
the requesting party on which behalf the client is requesting
access.

16. The response to the authorization request is a 403 HTTP access
denied response together with the message request_submitted.
This message indicates that a manual intervention of the re-
source owner, in this case the administrator(s), is needed in
order to evaluate the permission request. The reason for an in-
tervention is because no permissions are pre-set by the resource
owner, as it is not able to know which containers will ever be
deployed in the future. Note that a discrepancy exists between
the authorization server as implemented by Keycloak and the
formal UMA protocol. More specifically, the protocol requires
permission tickets to be single-use, i.e. once they are sent to
the token endpoint, they should be invalidated, and a new per-
mission ticket should be returned to the authorization client in
order to check for access at a later point in time. Keycloak
does not return a new permission ticket and allows the same
permission ticket to be reused until it is not active anymore,
i.e. once its expiration time is passed.

92 Trust Issue II: A Secure Container Deployment Approach

Figure 3.8: A subset of the steps extracted from Figure 3.4.

The steps 17-22, highlighted in Figure 3.8, are discussed in more
detail below.

17. The administrator then uses its browser to navigate to /auth
/realms/secure-container-deployment/account in order to view its
Keycloak account web page. Again, the steps of the OAuth
2.0 Authorization Code Grant [25] are followed for login. The
administrator uses its user agent to interact with the Keycloak
account web application, configured as a confidential client, in
order to allow this application to retrieve an access token with
the user-role mappings manage-account and view-profile. The ac-
count page provides a dashboard displaying an overview of all
resources owned by the administrator. For this scenario, this
boils down to all resources associated with the paths /containers
/*. The open permission request from the requesting party is
visible here. When the administrator agrees with the container
deployment request after studying the corresponding attributes
as highlighted in step 6, the permission grant is stored. The con-
tainer deployment request is, from now on, associated with the
requesting party, meaning that, once a collaboration is finished,
the costs of deployment can easily be audited and invoiced, if
necessary. Note that multiple administrators can be considered,
according to the extension proposed in literature as explained

Chapter 3 93

in Section 3.2, and e.g. a majority vote could be required in
order to grant permission.

18. The requesting party waits some time before it attempts the
next authorization request via the same dashboard as men-
tioned in step 10. As it is unknown for the requesting party
how long it will take for the administrator(s) to grant access,
it could be that multiple authorization attempts are neces-
sary. This step highlights the asynchronous characteristic of
the UMA flow, i.e. authorization is not immediately granted or
denied after successful authentication.

19. This step involves the same authorization request as sent in
step 15. Note that the same permission ticket is used, due to
the reason mentioned in step 16.

20. When the administrator(s) has/have granted permission, the
RPT is finally obtained.

21. The authorization client now has the RPT it needs. It executes
the same HTTP GET request to http://<resource-server-ip>:
<resource-server-port>/containers/<container-hash> as described
in step 11, but now with the RPT included in the HTTP au-
thorization header. As the required resource ID and scope are
included in the token, it is now allowed to execute the cor-
responding handler. This handler changes the WAITING tag, as
described in step 7, to the GRANTED tag.

22. A 200 HTTP response is sent back to the authorization client.
The requesting party now knows that its container deployment
request will be executed soon.

The steps 23-30, highlighted in Figure 3.9, are discussed in more
detail below.

23. Step 9 highlights how a new iteration of the SyncPod function is
scheduled due to the container creation error. This step repre-
sents the overhead caused by the last iteration.

24. This step is analogous to step 4.

25. This step is analogous to step 5.

26. The resource server again checks which tag is associated with
the specific container hash. At this stage, this will be the GRANTED
tag, and a 200 HTTP response is sent back to the custom

94 Trust Issue II: A Secure Container Deployment Approach

Figure 3.9: A subset of the steps extracted from Figure 3.4.

Kubelet.

27. When the 200 HTTP response is retrieved, it is finally allowed
for the custom Kubelet to instruct the Docker shim to create
the container by invoking the original CreateContainer function.
As explained in step 4, the custom Kubelet uses the same gRPC
client code as used by the Kubelet, but now to communicate
with the gRPC server of the Docker shim.

28. The Docker shim uses the Go client for the Docker Engine API
to communicate with the Docker daemon. The interaction with
the Go client is already provided by Kubernetes, so no addi-
tional step is integrated here.

29. The Docker shim returns a CreateContainerResponse struct back
to the custom Kubelet.

30. The custom Kubelet forwards this struct to the Kubelet, fin-
ishing the container deployment flow.

It is important to note that the proposed architecture is constructed
with two fundamental design choices in mind. First, it should not be
required to alter existing Kubelet code to allow the extension to work.
The proposed extension is fully transparent from the perspective of
the Kubelet, allowing future Kubelet releases and container runtimes
supporting the CRI API to be easily extended as well. Second, the
proposed architecture should not only handle the static scenario in
which the requesting party couples a container to a specific node via a

Chapter 3 95

so called nodeSelector field in the YAML file, but also the dynamic sce-
nario in which the Kubernetes scheduler decides on container place-
ment. Both design choices are satisfied when the proposed extension
is used.

3.5 Evaluation
The main purpose of the evaluation section is to show that a proof-
of-concept works and to characterize the overhead introduced by the
proposed extension presented in Section 3.4. What is clear for the
case discussed here is that we focus on ad hoc cross-organizational
collaborations, involving typically less than ten organizations. The
reasoning is that collaborations we envision are of the urgent kind,
e.g. emergency scenarios, and as such a much larger number of or-
ganizations would not make sense as they would not offer the kind
of agility we have in mind when urgent collaborations are needed.
This means that only a handful of pods will be placed in a cross-
organizational setting. Otherwise, it would not be realistic for an
administrator to validate container deployments manually. In this
context, we believe it is more valuable to evaluate a single iteration
of the proposed flow rather than its performance in a large-cluster
setup.

3.5.1 Setup
It is possible to separate the additional steps of the proposed con-
tainer deployment process into three phases. These phases are also
shown in Figure 3.4 by means of the blue / orange / green indexed
interactions. The white indexed interactions are attached to steps
which should not be taken into account when evaluating the ad-
ditional overhead caused by the proposed integration. The reason
is straightforward: these steps are executed by vanilla Kubernetes.
Note that Kubernetes version 1.19.15 is considered for the experi-
ment, more specifically, the blue components in Figure 3.4 belong to
this version.

1. During the first phase, which is also called the preparation
phase and which comprises the blue indexed interactions 5-9,
the pod specification is processed by the custom Kubelet and
the representations of the containers which need to be started
are set up in the authorization server. Both the authorization

96 Trust Issue II: A Secure Container Deployment Approach

server, Keycloak version 8.0.1, and the resource server, Spring
Boot version 2.2.2 with Spring Security version 5.2.1 and with
the corresponding Keycloak adapter [29], are containerized ap-
plications which are running on a single virtual machine (VM)
with following specifications: Ubuntu 18.04 LTS equipped with
four vCPUs of an Intel Xeon E5645 2.4 GHz processor and
4 GiB of RAM. The custom Kubelet, being a Go binary, is
also started on this machine. An artificial network latency
is set for the packet scheduler of this VM, being applied to
both the ingress and egress traffic. As the average ping round-
trip time (RTT) to Amazon servers in Western Europe varies
around 30 ms [30], this latency is set to 15 ms. All interac-
tions belonging to this phase are performed between compo-
nents in the same network domain, meaning that these will
not be impacted by this additional latency. The measurement
starts when the CreateContainer function of the custom Kubelet
is invoked and ends when the container creation error is received
by the Kubelet.

2. During the second phase, which is also called the approval phase
and which comprises the orange indexed interactions 10-22,
the requesting party claims certain container deployments and
awaits approval for these from the administrator of the hosting
organization. The cross-organizational interactions considered
in this phase are initiated in the browser of the authorization
client. The JavaScript code written for this prototype makes
use of the Keycloak JavaScript libraries keycloak.js and keycloak
-authz.js, both also of version 8.0.1. As the browser of the au-
thorization client could be running anywhere in the world, time
measurements related to the different API invocations could
vary per location and over time. Instead of recording mea-
surements in the browser, the command line tool curl will be
executed by a separate VM, representing Org Y, in the same
cluster as the VM of Org X, in order to obtain more stable
measurements.

As this phase consists of at least four cross-domain interactions
between the authorization client and the components of Org
X, it is heavily influenced by network latency. Assuming the
one-way latency between the domains of Org X and Y is in the
order of tens of milliseconds, the total latency of these interac-
tions will take at least in the order of hundreds of milliseconds

Chapter 3 97

per container. The exact latencies of these cross-domain inter-
actions are however negligible when two other interactions are
taken into account. Both authorization client and authoriza-
tion server introduce a manual intervention in interaction 10,
18 and 17 respectively. Such a manual intervention means that
decisions are taken sequentially, as the different containers are
analyzed one by one, both for requesting a deployment and for
deciding on deployment. As a human is part of this sequen-
tial process, the overhead for these steps will be in the order of
tens of seconds at least. To be able to measure the duration of
the second phase, these manual interventions are skipped. The
evaluation of this phase thus boils down to the time taken by
steps 11-16 and 19-22, which are labeled as phase II.A and II.B
respectively.

3. During the third phase, which is also called the execution phase
and which comprises the green indexed interactions 23-27 and
29, the custom Kubelet finally gets permission to perform the
actual container deployment. As already explained in step 9,
the duration of step 23 depends on the backOffPeriod parameter,
which is set to be ten seconds. The actual overhead introduced
by this step will depend on when permission for container de-
ployment is granted. In the worst case, the overhead is in the
order of seconds: when permission is granted immediately af-
ter a container creation attempt failed. The evaluation of this
phase thus boils down to the time taken by steps 24-27 and 29.
The measurement starts when the startContainer function is in-
voked in the Kubelet and ends when a CreateContainerResponse
is received by the custom Kubelet. The time the Docker shim
needs to create the container is subtracted from this duration
as this is a vanilla Kubernetes step.

3.5.2 Overhead in time
The analysis in the previous section shows that the manual inter-
ventions of both the requesting party and the administrator of the
hosting organization are dominating factors when overhead in time
is studied. It is however possible to measure the overhead in time of
the other steps, which are fully automated, and have a look at a best
case scenario: a scenario for which it is assumed that the manual
interventions occur instantly, that the last SyncPod iteration is exe-
cuted right after permission is granted, that only a single container

98 Trust Issue II: A Secure Container Deployment Approach

per pod needs to be deployed, and that Org X is known upfront.
This experiment, which deploys an Alpine-based Node.js container,
is repeated ten times and the results are presented in Table 3.1. The
first run is a dry run, i.e. it is executed in order to allow things to be
initialized, for example: during the first phase, the public key used
by the authorization server to sign tokens (JWTs) is retrieved by the
resource server to be able to verify signatures. Note that both the
requesting party and administrator are already logged in and that
their single sign-on session and corresponding tokens remain valid
throughout the experiment.

The measurements show that a sub-second overhead should be ex-
pected when the proposed container deployment process is used. The
overhead introduced by both the first and third phase is small as it
only counts for around ten percent of the total measured overhead.
The second phase, which is split into two sub-phases each consisting
of two API interactions, clearly suffers from the aforementioned ar-
tificial network latency. The time measurements presented for this
phase include twice the RTT latency of around 30 ms: once to per-
form the TCP handshake and once to perform the API invocation.
This thus means that around eighty percent of the total duration of
this phase is due to this network latency, and thus that the overhead
to prepare the different API responses is rather small. As already
mentioned, the presented overheads are based on the aforementioned
assumptions and a higher latency should be expected for practical
use cases due to the integrated manual interventions.

The total time overhead for a pod, consisting of multiple containers, is
not necessarily equal to the sum of the total overheads of the individ-
ual containers. The reason for this is that the flow of each container
deployment process is completely independent of others (except for
small steps, e.g. due to concurrent hash maps). This allows (1) the
authorization client, the resource server and the authorization server
to work on them in parallel on different machines, and (2) each of
these components to exhibit concurrent behaviour due to use of mul-
tiple threads or a single thread with asynchronous event handling.
However, it is important to note that this level of concurrency is only
interesting to consider for an automated evaluation scenario, as in
practice it will almost be nullified by the dominant, time consuming
manual interventions which exhibit a sequential character. Increas-
ing the number of independent administrators validating container
deployment suggestions is a possible solution to (partially) break this

Chapter 3 99

Ta
bl

e
3.

1:
O

ve
rh

ea
d

in
tim

e
in

tr
od

uc
ed

by
th

e
di

ffe
re

nt
ph

as
es

of
th

e
pr

op
os

ed
co

nt
ai

ne
r

de
pl

oy
m

en
t

pr
oc

es
s.

P
ha

se
I

(m
s)

P
ha

se
II

.A
(m

s)
P

ha
se

II
.B

(m
s)

P
ha

se
II

I
(m

s)
St

ep
s

5-
9

St
ep

s
11

-1
4

St
ep

s
15

-1
6

St
ep

s
19

-2
0

St
ep

s
21

-2
2

St
ep

s
24

-2
7

&
29

R
un

0
57

1
89

80
78

82
11

D
ry

ru
n

1
25

79
76

79
78

16
2

23
82

80
76

75
13

3
28

80
75

79
76

21
4

25
80

74
78

74
11

5
24

79
75

81
83

12
6

22
77

77
79

72
12

7
25

82
76

78
75

14
8

19
81

74
77

74
10

9
24

79
75

78
77

15
10

20
77

77
78

73
13

M
ed

ia
n

24
80

76
78

75
13

T
ot

al
:

34
6

m
s

100 Trust Issue II: A Secure Container Deployment Approach

sequentiality.

3.6 Conclusion
This chapter presents a software framework allowing for cross-organi-
zational container deployments to be executed in a secure manner. It
integrates the UMA 2.0 protocol into the existing Kubernetes work-
flow to create a way for hosting organizations to validate container
deployments suggested by other organizations in the same Kubernetes
cluster. This framework can be used for ad hoc cross-organizational
collaborations in which deployments should be realized quickly, but
also securely, assuming no time is available to negotiate contracts up-
front. Evaluation of a prototype shows that a sub-second overhead
should be expected for an individual container deployment, but that,
due to manual interventions of which the exact duration is unknown
upfront, a higher impact should be expected. A trade-off between
security and overhead in time should be made in order to decide
whether the proposed extension is appropriate for the use case at
hand. When organizations mutually trust each other, there is no rea-
son to deploy the proposed extension. When organizations do not
fully trust each other, this extension provides the perfect solution to
allow containers to be deployed securely, assuming no huge amounts
of containers need to be deployed. Future work should investigate
how the administrator(s) of the hosting organizations could be sup-
ported in their decision-making process in order to speed it up. Part
of the validation could for example be automated using pre-defined
policies. The policy engine OPA (Open Policy Agent [31]) is a perfect
enabler for this. Container image scanning tools could be integrated
too. This way, a combination of manual and automated decisions
could be realised, leading to a more secure cross-organizational col-
laboration.

Acknowledgments
The work described in this chapter, was partly funded by the FUSE
research project [32], in which a Flexible federated Unified Service
Environment was investigated. The project was realized in collab-
oration with imec. Project partners were Barco, Axians and e-BO
Enterprises, with project support from VLAIO (Flanders Innovation
& Entrepreneurship).

Chapter 3 101

Bibliography
[1] “Kubernetes.” https://kubernetes.io.

[2] “Flannel.” https://github.com/coreos/flannel. Accessed March
31, 2021.

[3] “CNI - Flannel plugin.” https://github.com/flannel-io/cni-
plugin. Accessed March 31, 2021.

[4] M. Machulak, J. Richer, and E. Maler, “User-Managed
Access (UMA) 2.0 Grant for OAuth 2.0 Authorization.”
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-
grant-2.0.html. Published January 7, 2018. Accessed March 31,
2021.

[5] M. Machulak, J. Richer, and E. Maler, “Federated
Authorization for User-Managed Access (UMA) 2.0.”
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-
federated-authz-2.0.html. Published January 7, 2018. Accessed
March 31, 2021.

[6] T. Goethals, S. Kerkhove, L. Van Hoye, M. Sebrechts,
F. De Turck, and B. Volckaert, “FUSE: A Microservice Ap-
proach to Cross-domain Federation using Docker Containers,” in
Proceedings - 9th International Conference on Cloud Computing
and Services Science (CLOSER), (Heraklion, Greece), pp. 90–99,
SciTePress, 2019. https://doi.org/10.5220/0007706000900099.

[7] L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert, “Trust-
ful ad hoc cross-organizational data exchanges based on the Hy-
perledger Fabric framework,” Int J Network Mgmt, vol. 30, no. 6,
p. e2131, 2020. https://doi.org/10.1002/nem.2131.

[8] D. Preuveneers and W. Joosen, “Towards Multi-party Policy-
based Access Control in Federations of Cloud and Edge Microser-
vices,” in Proceedings - IEEE European Symposium on Security
and Privacy Workshops (EuroS PW), pp. 29–38, IEEE, 2019.
https://doi.org/10.1109/EuroSPW.2019.00010.

[9] M. Schwartz and M. Machulak, “User-Managed Access,” in Se-
curing the Perimeter, pp. 267–299, Apress, Berkeley, CA, 2018.
https://doi.org/10.1007/978-1-4842-2601-8_8.

[10] K. Wild, U. Breitenbücher, K. Képes, F. Leymann, and
B. Weder, “Decentralized Cross-organizational Application De-

https://kubernetes.io
https://github.com/coreos/flannel
https://github.com/flannel-io/cni-plugin
https://github.com/flannel-io/cni-plugin
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html
https://doi.org/10.5220/0007706000900099
https://doi.org/10.1002/nem.2131
https://doi.org/10.1109/EuroSPW.2019.00010
https://doi.org/10.1007/978-1-4842-2601-8_8

102 Trust Issue II: A Secure Container Deployment Approach

ployment Automation: An Approach for Generating Deploy-
ment Choreographies Based on Declarative Deployment Mod-
els,” in Proceedings - 33rd International Conference on Advanced
Information Systems Engineering (CAiSE), pp. 20–35, Springer
International Publishing, 2020. https://doi.org/10.1007/978-3-
030-49435-3_2.

[11] J. Breen, L. Bryant, J. Chen, E. Ford, R. W. Gardner, G. Glup-
ker, S. Griffith, B. Kulbertis, S. McKee, R. Pierce, B. Riedel,
M. Steinman, J. Stidd, L. Truong, J. Van, I. Vukotic, and
C. Weaver, “Managing Privilege and Access on Federated Edge
Platforms,” in Proceedings - Practice and Experience in Ad-
vanced Research Computing on Rise of the Machines (Learning)
(PEARC), pp. 1–5, Association for Computing Machinery, 2019.
https://doi.org/10.1145/3332186.3332234.

[12] G. Carcassi, J. Breen, L. Bryant, R. W. Gardner, S. Mckee,
and C. Weaver, “SLATE: Monitoring Distributed Kubernetes
Clusters,” in Proceedings - Practice and Experience in Ad-
vanced Research Computing on Rise of the Machines (Learn-
ing) (PEARC), p. 19–25, Association for Computing Machinery,
2020. https://doi.org/10.1145/3311790.3401777.

[13] “cri-o.” https://cri-o.io. Accessed March 31, 2021.

[14] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, Omega, and Kubernetes: Lessons Learned from Three
Container-Management Systems over a Decade,” ACM Queue,
vol. 14, no. 1, p. 70–93, 2016. https://doi.org/10.1145/2898442.
2898444.

[15] “Controlling Access to the Kubernetes API.” https://kubernetes.
io/docs/concepts/security/controlling-access. Accessed March
31, 2021.

[16] M. S. Islam Shamim, F. Ahamed Bhuiyan, and A. Rahman, “XI
Commandments of Kubernetes Security: A Systematization of
Knowledge Related to Kubernetes Security Practices,” in Pro-
ceedings - IEEE Secure Development (SecDev), pp. 58–64, IEEE,
2020. https://doi.org/10.1109/SecDev45635.2020.00025.

[17] “Kubelet authorization.” https://kubernetes.io/docs/reference/
command-line-tools-reference/kubelet-authentication-
authorization. Accessed March 31, 2021.

https://doi.org/10.1007/978-3-030-49435-3_2
https://doi.org/10.1007/978-3-030-49435-3_2
https://doi.org/10.1145/3332186.3332234
https://doi.org/10.1145/3311790.3401777
https://cri-o.io
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2898442.2898444
https://kubernetes.io/docs/concepts/security/controlling-access
https://kubernetes.io/docs/concepts/security/controlling-access
https://doi.org/10.1109/SecDev45635.2020.00025
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-authentication-authorization
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-authentication-authorization
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-authentication-authorization

Chapter 3 103

[18] “Kubernetes Cluster Federation.” https://github.com/
kubernetes-sigs/kubefed. Accessed March 31, 2021.

[19] “Kubernetes Documentation - kubelet.” https://kubernetes.io/
docs/reference/command-line-tools-reference/kubelet. Accessed
March 31, 2021.

[20] Y.-J. Hong, “Introducing Container Runtime Interface (CRI)
in Kubernetes,” 2016. https://kubernetes.io/blog/2016/12/
container-runtime-interface-cri-in-kubernetes. Accessed March
31, 2021.

[21] “Github Kubernetes Release 1.19.15 - api.pb.go.”
https://github.com/kubernetes/cri-api/blob/kubernetes-
1.19.15/pkg/apis/runtime/v1alpha2/api.pb.go. Accessed March
31, 2021.

[22] “gRPC.” https://grpc.io. Accessed March 31, 2021.

[23] “Canal.” https://docs.projectcalico.org/master/getting-started/
kubernetes/flannel/flannel. Accessed March 31, 2021.

[24] B. Subramaniam and C. Doyle, “Feature Highlight: CPU Man-
ager,” 2018. https://kubernetes.io/blog/2018/07/24/feature-
highlight-cpu-manager. Accessed March 31, 2021.

[25] D. Hardt, “The OAuth 2.0 Authorization Framework.” https://
tools.ietf.org/html/rfc6749. Published October, 2012. Accessed
March 31, 2021.

[26] “Keycloak.” https://github.com/keycloak/keycloak. Accessed
March 31, 2021.

[27] “Keycloak - Authorization Services Guide.” https://www.
keycloak.org/docs/8.0/authorization_services. Accessed March
31, 2021.

[28] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token
(JWT).” https://tools.ietf.org/html/rfc7519. Published May,
2015. Accessed March 31, 2021.

[29] “Keycloak Spring Security adapter 8.0.1.” https://github.
com/keycloak/keycloak/tree/8.0.1/adapters/oidc/spring-
security/src/main/java/org/keycloak/adapters/springsecurity.
Accessed March 31, 2021.

https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes
https://github.com/kubernetes/cri-api/blob/kubernetes-1.19.15/pkg/apis/runtime/v1alpha2/api.pb.go
https://github.com/kubernetes/cri-api/blob/kubernetes-1.19.15/pkg/apis/runtime/v1alpha2/api.pb.go
https://grpc.io
https://docs.projectcalico.org/master/getting-started/kubernetes/flannel/flannel
https://docs.projectcalico.org/master/getting-started/kubernetes/flannel/flannel
https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager
https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://github.com/keycloak/keycloak
https://www.keycloak.org/docs/8.0/authorization_services
https://www.keycloak.org/docs/8.0/authorization_services
https://tools.ietf.org/html/rfc7519
https://github.com/keycloak/keycloak/tree/8.0.1/adapters/oidc/spring-security/src/main/java/org/keycloak/adapters/springsecurity
https://github.com/keycloak/keycloak/tree/8.0.1/adapters/oidc/spring-security/src/main/java/org/keycloak/adapters/springsecurity
https://github.com/keycloak/keycloak/tree/8.0.1/adapters/oidc/spring-security/src/main/java/org/keycloak/adapters/springsecurity

104 Trust Issue II: A Secure Container Deployment Approach

[30] “CloudPing.” https://www.cloudping.info. Accessed March 31,
2021.

[31] “Open Policy Agent - Policy-based control for cloud native envi-
ronments.” https://www.openpolicyagent.org. Accessed March
31, 2021.

[32] “FUSE: Flexible federated Unified Service Environment.” https:
//www.imec-int.com/en/what-we-offer/research-portfolio/fuse.

https://www.cloudping.info
https://www.openpolicyagent.org
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse

4
Enabling the rescheduling of

containerized workloads in an ad hoc
cross-organizational collaboration

This chapter presents a published research article tackling the third
research question: how can the scheduling of containers, a task
for which the cluster operator is responsible, be fitted to an
unknown heterogeneous cluster environment? The first part of
the chapter discusses the scheduling process available in Kubernetes
and identifies shortcomings when it is applied to an unknown het-
erogeneous cluster environment spanning multiple domains. Dealing
with these kinds of technical deployment uncertainties can be solved
using a probe swarm architecture allowing scheduling calamities to
be solved by quickly comparing node performance levels. Most no-
ticeable is making sure hidden technical restrictions are identified.
Organizations may wish to provide a restricted view of their techni-
cal capabilities and these artificial restrictions may even change over
time. To obtain an overview of cluster layout, it is thus needed to take
a more active approach compared to a rather passive one sufficient for
regular cluster setups in which nodes are managed by a single entity.

⋆ ⋆ ⋆

106 Trust Issue III: (Re)scheduling Containerized Workloads

L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert

Published in Journal of Network and Systems Management,
October 2022.

Abstract A group of organizations wishing to collaborate urgently,
for example in case of a crisis, needs to have a way to quickly de-
ploy applications which enable them to speed up a potentially crisis-
resolving decision-making process. A cross-organizational Kuber-
netes cluster, which is orchestrated by a central operator, allows to
initiate these deployments in an ad hoc way. Performance issues may
however arise at runtime, for example, a video pipeline belonging to
a CCTV camera may produce a too low number of frames per sec-
ond. The ad hoc cross-organizational collaboration case is especially
prone to such issues as the set of candidate nodes and the environ-
ment in which they run may not be fully known to the operator.
This chapter therefore motivates and describes the usage of a probe
swarm architecture, which allows the operator to quickly generate an
overview of the resource capabilities of a set of nodes, by executing
code fragments locally. The obtained measurements can then enable
the operator to decide on rescheduling operations. Evaluation of an
illustrative probe swarm intervention shows that the performance of
an example application could improve with factor five, ten or hundred
when the pod would be rescheduled. This indicates that the proposed
probe swarm architecture may complement other performance bot-
tleneck detection techniques to improve performance of applications
that need to be deployed urgently.

4.1 Ad hoc pod rescheduling in a
cross-organizational cluster

The case studied in this chapter is that of an ad hoc cross-organiz-
ational collaboration, more specifically a set of organizations need to
collaborate urgently in the case of a time-critical situation. For exam-
ple, in case of an explosion on a chemical site, the company, local gov-
ernment, police and firefighters need to share information. Another
case is that of an equipment builder connecting to the pipelines of
manufacturers to quickly analyze and solve machine interruptions. In
all cases, a central operator has the control over a cross-organizational

Chapter 4 107

cluster, as shown in Figure 4.1, which allows the deployment of soft-
ware components into the different network domains to be orches-
trated. The central operator thus has the role of cluster adminis-
trator. It is responsible for deploying data pipelines in the cross-
organizational cluster and is thus fully aware of the data flows and
dependencies that exist. It may or may not be part of a data pipeline
itself, i.e. it is either one of the collaborating organizations or a facil-
itating third party respectively, depending on the use case discussed.
One particular use case, which is practically relevant, is that of an
emergency control room, in which the operator is an experienced cri-
sis manager, managing a dashboard which is the endpoint of each
data pipeline in the cluster. The chapter is written with this sce-
nario in mind. The cluster itself, being a Kubernetes cluster [1],
uses the concept of pods to distinguish groups of containerized work-
loads. An important observation is that, contrary to a regular Kuber-
netes cluster, the operator does not have a comprehensive overview
of the types of nodes that are part of the cluster in such a cross-
organizational setup. This set of heterogeneous nodes is composed
of different hardware specifications, different network interconnec-
tions and different container runtime configurations. Furthermore,
unknown background loads may be present on the worker nodes of
the different organizations involved in the collaboration. The use-
fulness of labels indicating static hardware properties (e.g. a node
having a high speed storage system like SSDs instead of slower speed
physical hard disk drives) may be gone, as different organizations
will likely use different key-value pairs as labels. This uncertainty is
especially true when the set of nodes may change over time, due to
(nodes of) organizations which join or leave the collaboration. An
unknowing operator is more likely to select scheduling decisions that
lead to performance issues, something which should be avoided, espe-
cially in case of an urgent problem-solving process. A few examples
of cases in which a performance degradation may be noticed are:

■ A pod running a data-intensive job which suffers from a low-
capacity or saturated network link.

■ A pod running a storage-intensive job which suffers from slow
storage mount options.

■ A pod running a job which suffers from the absence of GPU-
acceleration.

These kinds of performance issues are all due to scheduling decisions

108 Trust Issue III: (Re)scheduling Containerized Workloads

Figure 4.1: The operator, having a central overview of all cross-organizat-
ional workloads, needs assistance in the rescheduling of misplaced pods.

based on limited context information from the environment on which
to schedule. The probe swarm architecture presented in this chapter
enables the rollback of these situations by providing insight in the
performance capabilities of the different nodes, allowing the operator
to decide on urgent pod rescheduling decisions. Note that providing
only node-related insight to support a rescheduling review by the op-
erator may prove to be insufficient, as performance issues may have
other causes as well, like badly written software, deadlocks, input /
output delay, slow human-software interactions, etc. The ultimate
goal of the rescheduling of pods is to shorten the execution time re-
quired to finish several jobs. Good scheduling decisions may impact
the way a critical case is solved. The time dimension is thus of utter-
most important in these ad hoc collaboration cases. In this regard, it
is also important to note that the goal is not to optimize scheduling
decisions, as this would require quite a lot of pod movements, causing
unnecessary delays. Providing support for scheduling decisions in a
(partially) unknown resource environment, based on time measure-
ments, is the goal of the research presented in this chapter. The out-
line is as follows, Section 4.2 presents work related to the scheduling
of workloads and advances for Kubernetes, Section 4.3 then presents
shortcomings in Kubernetes for the scheduling of pods in a cross-
organizational setup (first contribution), while Section 4.4 discusses
the composition of a probe swarm to solve the aforementioned prob-
lem (second contribution). The evaluation of an illustrative probe
swarm intervention is discussed in Section 4.5 (third contribution),

Chapter 4 109

after which the chapter is finalized with a conclusion and directions
for future work in Section 4.6.

4.2 Related Work
The contribution presented in this chapter is part of the FUSE re-
search project [2]. The goal of this project is to enable organizations
to collaborate in an ad hoc way by constructing a cross-organizational
service mesh. Goethals et al. [3] show which software components are
needed to initiate such a cross-domain federation in an ad hoc way.
The proposed federation allows cross-organizational deployments to
be realized in a few minutes at most. More extensive research is
available on the federation of scientific computing environments. Al-
though these types of federations have a less ad hoc character, there
are similar challenges to overcome, like the enforcement of diverse
local organizational policies. Wickboldt et al. [4] discuss a platform
which shortens the time an experienced operator and inexperienced
end-users, such as companies, need to provision ad hoc cross-domain
network circuits, mainly through the application of easy-to-use vi-
sual editors. This scenario closely resembles the case discussed in
this chapter, especially because of the mix of manual and automatic
decisions that is inevitably present within ad hoc processes.

Two other topics are already addressed by the authors in previous
work. Both consider trust issues that arise when different organi-
zations need to collaborate and thus share data. First, a logging
mechanism is needed to allow an honest organization to protect itself
against potentially malicious partners and to gain trust in the collab-
oration at hand [5]. Second, it should be possible for an organization
to perform checks and balances with respect to container deployments
that are suggested for its domain by a potentially malicious external
operator [6]. There was still a need to further research solutions to
enable these ad hoc cross-organizational collaborations as they have
some important characteristics: they are applied in critical situations
and should allow the involved organizations to quickly find a solution
for an urgency. The scheduling of workloads in such a context is an-
other topic that exhibits specific properties and is therefore discussed
in this chapter.

A multitude of papers present ideas on how the default Kubernetes
scheduler should advance. It is possible to build further on the con-
cept of resource requests, either manually by allowing an operator to

110 Trust Issue III: (Re)scheduling Containerized Workloads

classify an application based on its resource usage [7], or automati-
cally by means of extending the Kubernetes Vertical Pod Autoscaling
feature [8]. An improved scheduler is often required when the hetero-
geneity of a cluster, for example in the case of fog computing, plays
an important role in the performance of an application. Most papers
propose solutions which try to make the scheduler aware of a distinct
aspect. The focus could be on the minimization of the overall cost of
a Kubernetes deployment in a cloud environment [9]. Similarly, the
focus could be on reducing the end-to-end latency between applica-
tions while maintaining bandwidth requirements [10] [11], and their
placement in geo-distributed environments [12]. Another emerging
aspect is that of energy efficiency [13] [14], a strategy applied by a
specific set of schedulers among the wider group of topology-aware
[15] and hardware-aware schedulers. Examples of the latter are a
GPU-aware scheduler making use of historic pod executions to speed
up calculations [16] and an Intel SGX-aware scheduler [17]. Another
crucial aspect focuses on the real-time utilization of node resources
to schedule workloads [18]. This load-awareness is especially impor-
tant in multi-tenancy cases [19], as interference effects such as cache
misses and CPU context switches may lead to performance degrada-
tion. There are also papers which try to combine several of those
aspects and propose a weighted multi-criteria decision strategy with
the goal to optimize workload placement [20] [21]. The scale at which
a scheduling algorithm needs to operate is another distinctive charac-
teristic. A category of papers focuses on scheduling algorithms which
are backed by queuing theory fundamentals [22]. Those are crucial
in very large dedicated data center setups, but are thus less applica-
ble in this ad hoc case. Finally, there is a paper which proposes an
architecture that applies measurement probes at the different worker
nodes [23], a similar approach as is presented in this chapter. Bayer
et al. suggest the usage of both resource monitoring probes and
application-specific probes, the latter to perform security checks or
to monitor energy consumption. This scheduling strategy, focusing
on local observations, comes closest to the one presented here. How-
ever, as with other cited related work, no other research takes into ac-
count the cross-organizational aspect and its potential consequences.
The fact that the management of nodes is distributed among dif-
ferent organizations is specific for the Kubernetes clusters deployed
in the cross-organizational collaboration case. Furthermore, where
other scheduling approaches try to steer decisions based on generi-
cally applicable metrics, which are perfect for automated scheduling

Chapter 4 111

decisions, it is required here to gather higher-level metrics. These
should indicate consequences for the collaboration in a more easy to
interpret way for the operator such that a performance issue can be
solved quickly. To the best of our knowledge, no other work has been
conducted addressing specific concerns related to ad hoc workload
scheduling, which are discussed in the next section, introduced by a
cross-organizational setup.

4.3 Necessity of probes in a
cross-organizational context

The probing concept presented in this chapter assists an operator in
making rescheduling decisions when the cluster layout is largely un-
known. The goal of this assistance is to allow collaboration applica-
tions to operate efficiently, thus without severe bottlenecks increasing
execution time and downgrading quality of service. Before the probes
are detailed and discussed, it is necessary to identify why they should
be used in the first place. The remainder of this section therefore il-
lustrates why a vanilla Kubernetes cluster is not sufficiently capable
to achieve the proposed goal. The necessity of probes may be ex-
plained from different perspectives:

■ Requirements from the perspective of the operator

□ The collaborations considered in this chapter are of the
ad hoc type. The corresponding Kubernetes clusters are
thus composed dynamically. This means that the oper-
ator is either not or only in a limited way able to reuse
any previous knowledge related to cluster layout. For ex-
ample, a new heterogeneous cross-organizational hardware
setup does not have any Kubernetes labels attached that
are meaningful for the operator. Furthermore, the opera-
tor does not have the time to thoroughly study which re-
sources are offered by the different organizations. Ad hoc
cluster management is thus needed for this case, which
brings additional difficulties to making proper reschedul-
ing decisions.

□ The implementation of the default Kubernetes pod sched-
uler uses a node filter function, implemented in the
NodeResourcesFit plugin, which checks pod resource requ-
ests against the availability of resources on worker nodes

112 Trust Issue III: (Re)scheduling Containerized Workloads

Figure 4.2: Overview of node capacity as interpreted by vanilla Kubernetes
[26].

[24]. For example, when a pod requests a CPU time allo-
cation of 1.5 / 4 physical or virtual CPUs, the scheduler
will consider 2.5 CPUs to be allocatable for future pods.
Figure 4.2 shows how capacities are represented: except
for strictly required daemons, the remaining capacity is
considered to be available for pods. The resource avail-
ability checks present in the plugin thus only consider the
resource requests of pods, not their actual consumption,
and most importantly, the load of processes which are not
under the supervision of the Kubelet are neglected in the
scheduling process [25]. This predictability in container re-
source consumption and consequently performance, some-
thing which is an important aspect in a container orches-
trator like Kubernetes, may thus be broken in an ad hoc
cross-organizational setup due to the possible presence of
severe external background loads and their corresponding
unknown effects.

□ Only a very limited set of static node properties is avail-
able. It is limited to general properties such as the instruc-
tion set architecture, kernel version, operating system, Ku-
bernetes version and container runtime version [27]. This
set could easily be extended with other properties such as
CPU manufacturer, clock speed, hypervisor if the worker
node runs as a VM, disk manufacturer, etc. Furthermore,
the metrics endpoint of each Kubelet, /metrics/resource,

Chapter 4 113

could be used to gather resources metrics of a node over
time. A combination of these static and dynamic data
could already provide more insight to the operator and
solve some ad hoc scheduling questions. There are how-
ever two major concerns. The first concern is that it may
remain difficult to derive, in an ad hoc way, node perfor-
mance differences from such an extensive data set. For ex-
ample, quickly comparing the performance of CPUs from
different manufacturers and from different release years,
each with their own set of cores, caches, multithreading
settings, clock speed values, current workload, physical
vs. virtual cores, etc. is almost impossible. The same
observation holds for other hardware components such as
memory and disk. Furthermore, organizations should be
able to dynamically join or leave the collaboration at any
point in time, increasing the complexity even further. The
second concern is that, due to the fact that the nodes are
under management of different organizations, additional
node information may not always be available. Organiza-
tions may not always approve the sharing of potentially
sensitive node information with external entities. Organi-
zations may also decide to only share a restricted view on
local node settings. Finally, the sharing of metrics may be
limited keeping in mind the associated bandwidth cost. In
all cases, it cannot merely be assumed that the operator
is able to query every wished-for data.

□ When pods need to communicate according to a cross-
organizational flow, e.g. when they constitute a service
but are deployed using an anti-affinity rule on an organi-
zational level, it may also be needed to evaluate the per-
formance of the links between the hosting nodes. Severe
network bottlenecks may be prevented or discovered this
way, allowing the operator to pick another scheduling ap-
proach.

■ Requirements from the perspective of the hosting
organization

□ A hosting organization may impose additional and/or fur-
ther restricting resource constraints on the containers re-
ceived from the operator. These local constraints should

114 Trust Issue III: (Re)scheduling Containerized Workloads

definitely be taken into consideration for this particular
use case, as hosting organizations will highly likely want
to protect themselves against potentially malfunctioning
or malicious operators claiming most of the available re-
sources. It is important to note that these possible addi-
tional resource restrictions are completely unknown to the
operator. The theoretically infinite set of static and dy-
namic data, as suggested above, thus not necessarily forms
a sufficient base anymore to allow the operator to schedule
properly.

□ These locally enabled resource constraints may be the
same for each container that is proposed by the operator,
but they may also be different. The Docker container run-
time is one example of a runtime which allows resource
settings to be configured per container [28]. This dynamic
aspect makes it impossible for the operator to know un-
der which conditions the container will run. Examples of
such dynamic configurations are: (1) enabling/disabling
swap memory when a container process reaches the mem-
ory limit, or (2) configuring that three external containers
are allowed to consume half of CPU capacity at maxi-
mum, according to a specific partitioning like 1

4 , 1
6 and 1

12 .
It is clear that these examples negatively affect the pre-
dictability of container performance, an important reason
why Kubernetes did not support swapping to disk until
version 1.23, the most recent one at the time of writing
[29].

These observations lead to the conclusion that it is necessary for
the ad hoc cross-collaboration case to evaluate constraints locally.
Probes, which are discussed in the next section, pave the way for an
operator to gather more insights supporting a rescheduling decision
under these circumstances. Note that probing may not necessarily be
required during the entire collaboration duration. When the avail-
ability of node resources is identified, and when the cluster operates
in a more or less steady and predictable way, most uncertainties are
solved.

Chapter 4 115

4.4 Probe swarms enabling pod rescheduling
This section first discusses probes in general and what they could
look like in a few examples. Afterwards, a possible probe swarm
architecture with corresponding steps is proposed, providing an idea
how probing could be integrated in vanilla Kubernetes.

4.4.1 Probes as performance indicators

A probe, in its most general definition, is a software function or a
collection of functions, thus consuming (a combination of) resources
such as CPU, memory, disk, GPU, network bandwidth etc. They
are short-lived and finite as there are only a few tens of seconds at
maximum between the probe pod starting up and tearing down. It
is thus a code fragment which needs to be processed by a selection of
worker nodes, allowing an operator to obtain an overview of execu-
tion times and thus relative performance differences between nodes.
As is clear from this definition, a probe can be selected from an
infinite pool of possible functions. Two types of probes can be iden-
tified at both ends of the spectrum. The first type of probes, the
generic probes, could be applied independently of the workload that
needs to be scheduled. These probes allow to dynamically pressurize
target resources, as there may be a CPU-intensive probe, a memory-
intensive probe, a disk-intensive probe, etc. The output produced
by the probe execution is useless for the collaboration, i.e. only the
corresponding execution time is important. An example of such a
generic probe can be found in the class of algorithms calculating the
n-th digit of Pi. One well-known use case of these algorithms is to
benchmark compute infrastructure. A relevant implementation is for
example the calculator TachusPi [30], which is able to calculate bil-
lions of digits using only commodity hardware. The second type of
probes are exact copies of the considered workload. The containers
of a pod could simply be duplicated to other nodes in the cluster.
Both types of probes have clear disadvantages. The generic probes
will likely provide relative performance differences between nodes if
the operator can find an appropriate parameter set. However, it may
remain difficult for the operator to interpret these results with regard
to their impact to the collaboration at hand. A more insightful mea-
surement may thus be handy. The copy probes on the other hand, do
resemble the original pods, but their initialization may not be ad hoc
and their execution may also severely impact the probed nodes and

116 Trust Issue III: (Re)scheduling Containerized Workloads

the processes that are running there. A third option is to consider
application-specific probes which are somewhere in the spectrum dis-
cussed above. They could respectively allow for a more insightful
and more efficient probing solution when the two discussed types of
probes are not considered appropriate. Put generally, it would be
possible to use derived probes, i.e. representative functions, based
on the considered workload. Each workload boils down to an appli-
cation, being a main function, which could be further decomposed
into (much) smaller functions, each which could be used as a probe.
Decomposing an application on code level seems impossible for this
case, as both reverse engineering a binary and analysing the differ-
ent functions takes time. It is however possible to select probes,
which conceptually match several parts of the workload, from a well-
prepared cross-organizational probe catalogue. The granularity of
decomposition may differ per case. Theoretically, one could create
a service mesh of configurable and linkable probes reflecting a mul-
titude of applications. In reality however, due to time limitations
caused by the ad hoc character of the collaboration, a line needs to
be drawn between a portfolio of either more general or more specific
probes. A balance between reusability and efficiency in time needs
to be found.

Two application-specific probes are proposed in this chapter. Other
examples are possible, but these serve to illustrate the idea behind
the deployment of reusable probes, that is allowing the evaluation of
a certain algorithm which may resemble a pool of possible workloads.
This way, different resource consumption patterns can easily be tested
on the different nodes.

■ Video processing probe: The processing of video streams
is a frequently reoccurring application in a cross-organizational
collaboration. Different camera feeds may be shared in a cross-
organizational collaboration, for example to allow the monitor-
ing of an industrial site via static cameras and drones in case
of an emergency situation. A screen sharing session is another
application which may be used to produce a video stream. For
these use cases, different video probes could be defined, e.g.
a probe which pre-processes a data source and encodes it ac-
cording to a video coding standard, and a probe which decodes
the stream and does post-processing. These probes could then
be parametrized in a such a way that different codecs could
be applied, such as H.264/AVC and H.265/HEVC. As these

Chapter 4 117

video probes will be CPU-intensive, it might also be possible
to evaluate whether a node supports parallelization through
multithreading. Even more, it might be possible to shift some
calculations to the GPU and check which performance improve-
ments may be observed from GPU-enabled nodes in the cluster.
Note that, contrary to the generic probes, the measured execu-
tion time of the probe provides additional insight in resource
capabilities. For example, it might be interesting to know how
long it takes to encode a video stream of ten seconds, using
following command:

./encoder.exe --source cam01 --codec h.264 --time 10 --width
640 --height 480 --output encoded.h264

■ Data structure probe: Another frequently reoccurring ap-
plication is a data storage solution which allows a collection of
data to be stored. This data could for example be generated by
a video source, a case which would allow for a probing pipeline
connecting a video probe with a data structure probe. The col-
lection may be a simple data dump, but mostly a more efficient
processing solution is needed. When the collection needs to
be stored according to a a specific structure, a data structure
needs to be used. Well-studied data structures are for example
arrays, linked lists, (binary) search trees and (binary) heaps.
They only differ in their implementation of data operations,
such as an insertion, deletion, lookup, traversal, sorting, etc.
and corresponding asymptotic behaviors. This means that one
data structure could easily be swapped for another as long as an
interface of functions is implemented. Which structure needs
to be chosen depends on which requirements need to be ful-
filled, for example the performance of a lookup operation may
be more important to that of an addition operation. The per-
formance of these base operations may indicate how suitable a
node is to assign and deploy a data storage solution. Again, the
absolute execution time of the probe may be of interest here,
for example to know how much data could be processed by a
single node. Note that both the volatile storage in memory and
the persistent storage on disk could be analysed by this specific
probe. For the latter case, a tree could for example be written
to a file, as is illustrated for a binary search tree (BST) by the
C code in Listing 4.1.

118 Trust Issue III: (Re)scheduling Containerized Workloads

// Depth-first traversal to iterate tree with non-empty root
void traversalTree(node* root, funcptr func, meta* meta) {

if(root->left) {
traversalTree(root->left, func, meta);

}
func(root, meta);
if(root->right) {

traversalTree(root->right, func, meta);
}

}

// Probe function: write tree to disk
void storeTree(node* root, meta* meta) {

meta->output = fopen("tree.txt", "w");
...
// displayNode serializes a tree node
traversalTree(root, displayNode, meta);
fclose(meta->output);

}

Listing 4.1: A data structure probe should allow to evaluate disk
performance of a node as illustrated in this sample.

These probes focus specifically on the resource availability of nodes,
but they could also be extended to allow for the evaluation of specific
network links. In general, a network probe should allow for commu-
nication between two pods hosted at different nodes in the cluster.
The integration of such a network probe would allow for more end-
to-end based probing tests, for example a video stream could first be
pre-processed and encoded at Node X, after which it is sent to Node
Y, which then decodes and post-processes the data. This way, it is
possible to test whether the throughput of a network link supports
the bit rate of a corresponding video stream when it is encoded using
a certain parameter set, and whether certain quality of service met-
rics such as the number of frames per second or signal-to-noise ratio
can attain certain wished-for levels.

4.4.2 Probe swarm architecture
This section will present the flow of a probe swarm architecture,
more specifically the steps needed to integrate a probing solution
into vanilla Kubernetes. Figure 4.3 shows the different components.
Of particular interest are the purple colored components, because
they represent the additional elements that are needed to achieve the
proposed goal. The cross-organizational collaboration shown in the
figure, illustrates the processing of three camera streams into two

Chapter 4 119

Figure 4.3: The architecture needed to deploy the proposed probe swarm.

relevant results for the case at hand, which are displayed on a dash-
board under supervision of the central operator. The steps discussed
below assume the case of a pod rescheduling situation caused by per-
formance issues of a node in the cluster.

1. The operator runs a monitoring pod in its own domain, which
allows to obtain a complete overview of the cross-organizational
collaboration and the corresponding Kubernetes cluster. This
boils down to an overview of all nodes and deployed pods, cor-
responding resource consumption metrics, data flows between
the individual organizations based on a logging solution (e.g.
like the one proposed by the authors [5]), and alerts by an
alerting system. When an application needed for the cross-
organizational collaboration shows issues related to quality of
service, an operator may decide to reschedule the corresponding
pod. This manual decision may further be supported by auto-
mated bottleneck detection techniques, but the exact reschedul-
ing trigger does not immediately matter. In this example, a
scheduling issue is present at Node V, being one of the yellow
nodes of Organization Y, which will serve as an illustration in
the remainder of this section.

2. The operator thus needs to find a solution to move the load
of Node V. The Processing pod, responsible for analysing the
video stream, may put a too heavy load on this particular node.

120 Trust Issue III: (Re)scheduling Containerized Workloads

The operator therefore marks this pod as a candidate to be
rescheduled, causing the corresponding YAML file to be sent to
the Kubernetes scheduler to be inserted in the pod scheduling
queue. Note that there is a dependency between the Processing
pod and the Post-processing pod. The operator will first wait
for an alternative node to be found for the Processing pod, af-
ter which the Post-processing pod can easily be moved to this
new destination node. Although this rescheduling may not be
necessary from a load perspective, it may be desirable to pre-
vent cross-domain interactions due to accompanying network
latencies.

3. Each pending pod is then processed according to a scheduling
profile [31]. Such a profile consists of a number of scheduling
stages which each have their extension point. Plugins imple-
ment either a single or multiple of these extension points. This
step represents the pass of the Processing pod through the plu-
gins belonging to the stages before the filtering stage.

4. The filtering stage is constituted of plugins which check for ei-
ther soft or hard requirements, for example affinity/anti-affinity
rules, pod spreading rules, pod resource requests, etc. The sug-
gested probing solution is in fact an additional filtering step,
as only nodes with suited performance capabilities should be
considered for pod placement. A new scheduling profile should
thus be defined consisting of the stages and plugins as used
in the default scheduling profile, extended with a custom plu-
gin as the last filtering step. This custom scheduling profile is
then available for those pods that require a probe swarm in-
tervention. The Kubernetes Scheduling Framework [32] allows
custom plugins, implementing an extension point interface, to
be compiled into the scheduler.

5. The custom plugin needs to invoke the monitoring backend of
the operator using a webhook. This causes the considered pod
and corresponding filtered set of nodes to be registered in the
monitoring system and consequently to be presented to the
operator. As the plugins in the filtering stage may evaluate
nodes concurrently [32], multiple invocations per pod may be
expected.

6. The response to the webhook invocation may be either a (1)
request registered, response pending notification or (2) a fur-

Chapter 4 121

ther, by the probing solution, filtered set of nodes. In the first
case, the pod is marked as unschedulable by the custom plugin.
This causes the scheduling cycle to be aborted, after which the
pod is returned to the scheduling queue waiting for a consecu-
tive cycle to be initiated [32]. Steps 3-6 are thus repeated by
the scheduler as long as required. The final attempt is when
the second case occurs, i.e. when the scheduling process is able
to continue to step 13 with the nodes that passed the probing
selection.

7. The operator then investigates the set of proposed nodes. A
manual assessment of the filtered set of nodes takes place. There
are two possibilities for the pod to be rescheduled:

(a) The operator tries to reschedule the pod within an orga-
nization, so called intra-organization rescheduling. This
approach may have advantages. The pod was already al-
lowed to be deployed in the domain, meaning that a switch
between nodes in the same domain would not take addi-
tional verification time. Furthermore, nodes of the same
organization may be most nearby in the network, guaran-
teeing a more predictable continuation of operation of the
pod. Applying this to the discussed example, the opera-
tor may first consider Node VI of the same Organization
Y. As this node has already offloaded the Processing pod
to Node VII of Organization Z, it is clear that this node
should be skipped from probe evaluation.

(b) The operator tries to reschedule across organizations, so
called inter-organization rescheduling. This means, again
applied to the example, that the operator should select
Node III of the operator and Node VII of Organization Z,
assuming these nodes were indeed part of the filtered set
up to this point, together with the reference Node V, to
be evaluated by the probes.

This manual intervention may thus cause the set of potential
nodes to become smaller. It is important to note that node
selection is focused on finding an appropriate pod as quickly
as possible. The goal is not to search any further for a better
scheduling decision, as it would become an optimisation case
for the entire cluster, which does not fit the ad hoc and rapidly
changing scenario discussed here. This also means that it is not

122 Trust Issue III: (Re)scheduling Containerized Workloads

needed to run probes at each node, only at the selected nodes.

8. The types of probes and parameter sets selected by the operator
need to be pushed to the aggregator component. A series of
commands which need to be executed by the selected nodes are
thus communicated in an asynchronous way. Multiple different
configurations may be tested over time, enabling the operator
to do some live probing.

9. The aggregator is responsible for the deployment of the probes,
which are pods themselves. The kubectl create command thus
needs to be executed. The default scheduling profile is applied
to these pods, as probes should be deployed without the inter-
vention of a probe swarm. A probe pod consists of a container
which has all binaries required to probe available, and has a
process running which keeps the container alive. The aggre-
gator is then able to push commands, representing the probe
executions, to such a container and to obtain time measure-
ments. The kubectl exec command could for example be used
by the aggregator to enable this. It is of uttermost importance
to note that a probe, once selected by the operator via step 8,
needs to be executed multiple times with a specified frequency,
like every ten seconds. This is needed to filter outliers from
the time measurements. This is the reason to keep the probe
alive, as otherwise it would be needed to deploy it multiple
times, causing an unnecessary overhead for the hosting node.
The Processing pod in the example, may represent any video
processing step. Which kind of probe is selected by the opera-
tor, will thus differ per case. It may range from the deployment
of a generic probe to the deployment of a more specific probe
executing a computer vision algorithm. The latter is a perfect
example of a class of algorithms which could easily be prepared
in a probe catalogue. For example, when the processing of the
encoded video stream focuses on QR code detection, a probe
may easily simulate this as follows:

./cv.exe --lib opencv --module objdetect --class qrcodedetector
--function detect --input encoded.h264

10. It is possible to deploy multiple probe instances at a node.
These probes may be of the same type, for example multi-
ple video encoders. Such a probing intervention would allow
to evaluate how many video streams could concurrently be en-

Chapter 4 123

coded on a single node. The probes may also be of a different
type, for example a video probe and a data structure probe.
These different types may even be linked dynamically, for ex-
ample when it is needed to process video first and to store it
afterwards. These interactions allow for more complex probing
solutions. Such dynamic links should be prepared as well, to
allow the operator to quickly link different probes together.

11. The time measurements are collected by the aggregator, and
aggregated for each probe. Aggregation takes place on a rolling
basis, i.e. every measurement cycle, the x-th percentile may for
example be calculated and passed to the operator. It should be
possible for the operator to specify any custom aggregation.

12. Based on both absolute measurements, in case more specific
probes are used, and relative differences in probe executions,
the operator is able to obtain on overview of the resource capa-
bilities of the different nodes. A weighted evaluation of probe
results may be part of this assessment. The operator then man-
ually selects one or multiple nodes, which constitute the new
filtered set of nodes. This set of nodes is then passed as a
response to the webhook discussed in step 5-6, to allow the
scheduling process to progress.

13. The nodes are then further processed by the remaining schedul-
ing stages. Ranking the nodes based on different scoring crite-
ria is the main goal of this final evaluation. For example, nodes
which already have the required container image, may be fa-
vored. Finally, the most favored node is chosen and binding
between pod and node takes place. This flow thus allows an
operator to manually intervene a scheduling operation, based
on the deployment of probes, which inform the operator about
the potentially unknown underlying deployment cluster.

4.5 Evaluation
The case discussed in previous section can be simplified a bit, obtain-
ing a situation as shown in Figure 4.4. It defines a cross-organizat-
ional collaboration between organizations X, Y, Z which is orches-
trated by a central operator. An evaluation is presented in this sec-
tion to illustrate the potential of the proposed probe mesh and to
show to which performance improvements it could lead. The goal for

124 Trust Issue III: (Re)scheduling Containerized Workloads

Figure 4.4: An example use case to which the proposed probe swarm is
applied.

the operator is to reschedule one of the dark blue collaboration pods.
More specifically, the App-2 pod, which is deployed at Organization
Y initially, needs to be moved to another node, due to the reason
explained in the next paragraph.

The Kubernetes cluster used for this evaluation consists of homoge-
neous nodes: each node is a virtual machine (VM) running Ubuntu
18.04 LTS and is equipped with four vCPUs of an Intel Xeon E5645
2.4 GHz processor and 4 GiB of RAM. There are no hardware dif-
ferences between the nodes, and no additional background loads are
deployed. To realize performance differences between nodes, local re-
source limits are set, as explained in Section 4.3. These limits, for
now focusing on CPU and memory usage, are enforced by a hosting
organization, and are thus unknown to the operator. This way, a
heterogeneous cluster is realized, from the perspective of the opera-
tor. The local limits used in this example are shown in the figure.
Organization Y, hosting Node IV, applies a restrictive CPU limit to
the containers in the collaboration pod, as only one hundredth of a
core may be consumed. This hurts performance significantly, imply-
ing the need for a rescheduling. The set of candidate nodes consists
of Node II, III and V. Node VI is excluded from this set, as it al-
ready hosts the App-1 pod, and for example an anti-affinity rule may

Chapter 4 125

require to put both pods on different nodes to achieve certain crash
fault-tolerance.

It is assumed that the collaboration pods considered here represent
a storage solution. A data structure probe, as suggested in Section
4.4, is thus selected by the operator for this evaluation scenario. As-
sume further that the performance of data lookups is crucial for the
considered application. Therefore, a balanced BST tree may be se-
lected as data structure type, as it is known for its relatively short
lookup times. To obtain an idea of the relative performance differ-
ences between nodes and to obtain an idea of the time it takes to
store a certain amount of data given the chosen data structure, it is
sufficient to create, and to free afterwards, such a balanced BST tree
and to perform time measurements. The following code fragment,
written in C, shows how such a probing solution could be defined.

// Node representation
typedef struct _node {

int id; char* data; struct _node* left, right;
} node;

// Probe part I
// Create a balanced BST with 'max' nodes, each with 'bytes' data
void createTree(node** root, int min, int max, int bytes) {

int id = (min + max) / 2;
// Insert a leaf by following path from the root
insertNode(root, id, bytes);
if (min == max) { return; }
if (id > min) { createTree(root, min, id - 1, bytes); }
createTree(root, id + 1, max, bytes);

}

// Probe part II
// Free dynamic memory occupied by all tree nodes
void freeTree(node* root);

Listing 4.2: A tree probe to capture the performance differences between
nodes in the cluster.

The size of a tree node is equal to 32 bytes when the GCC compiler
is used on a 64 bit machine: 4 bytes for the ID integer plus 4 padding
bytes, 8 bytes for the data pointer, and 8 bytes for both the left and
right child pointer. The ID field ranges from 1 to N and is used to
sort the items in the BST, while the data field contains a string of
D random alphanumerical characters. Using this code, the operator
could launch multiple short-lived tree probes and experiment with
different tree sizes, to obtain an overview of the performance differ-

126 Trust Issue III: (Re)scheduling Containerized Workloads

ences between the nodes in the candidate set. A strategy could for
example be to gradually intensify the probing experiment, by tuning
the dominant parameters N and D, to prevent a probe from having
a too significant impact on the performance of a node. The results
of such an evaluation are presented in Table 4.1. The experiments
are executed using containers with Ubuntu 18.04 image running a
sleep process to keep the container alive. The probe executable file
and corresponding time measurements are then initiated using the
following command:

time -f %e ./tree.exe --type bst --balanced true --nodes N --data D

The table shows the sorted execution times of five probe cycles of
the tree probe at the different candidate nodes for six configurations
of N and the size of a single tree node S = 32 + D in bytes. Only
the configurations for which at least 100 MB needs to be allocated,
based on the analysis of dynamic memory allocations, are evaluated.
The reason for this is that smaller cases tend to only show negligi-
ble performance differences, while larger cases are too large for a 4
GiB RAM capacity. The obtained time measurements clearly match
with the ratios of the local CPU limits: compared with reference
Node IV, Node II executes about ten times quicker, Node III exe-
cutes about five times quicker, and Node V executes about hundred
times quicker. This result is to be expected from the evaluation setup
presented here, but such an insight is important for the operator in
an unknown setup. Significant performance increases may thus be
gained when the App-2 pod would be rescheduled. The deployment of
the probe swarm furthermore shows that different candidate nodes
may be recommended for the different probe configurations. This
thus proves the need for probes, as it may be completely unclear for
the operator which nodes will perform well under an unknown set of
local settings. It becomes clear that some probe pods are not able to
finish their execution, as their corresponding probe containers exceed
the memory limits as defined by the local administrator of the hosting
organization. This causes them to be terminated, more specifically
to be out of memory (OOM) killed. The evaluation also confirms
that parameter settings should be increased gradually, as suggested
above. The probe executions for memory sizes larger than 100 MB
may already take around one minute or more for the probe to finish.
A possibility to solve this issue partially, is to stop a running probe at
a Node X when its execution time significantly surpasses the one of an

Chapter 4 127

already finished probe at a Node Y. When no probe finishes quickly,
it is needed to specify an upper limit on execution time. Finally, it
is clear that when N increases, more overhead is present. The N =
106, S = 32 B + 1 kB configuration needs more time to execute and
results in an extra OOM killed container, although the data structure
allocates roughly the same amount of dynamic memory as in the N
= 104, S = 32 B + 100 kB case.

The five probe measurements executed at each node, as presented in
Table 4.1, are close to each other. This means that additional probe
executions or cycles would not lead to significantly different conclu-
sions, as no varying deployment conditions are considered. In a real
scenario however, as already mentioned in step 9 of Section 4.4.2, it
may be that dynamic factors such as background loads are present,
causing probing results to vary and insights in the performance of
nodes to change. It is therefore crucial that multiple probe cycles are
evaluated over time. It is possible to illustrate this using a hypothet-
ical scenario in which a probe swarm is deployed on four nodes and
the results of ten probe cycles are gathered. The probe swarm mea-
surements could and should be analyzed in multiple ways depending
on the situation at hand. Figures 4.5, 4.6 and 4.7 show a possible
evaluation under the assumption that it is needed to find the node
which is most likely to perform best. This results in a binary evalua-
tion per probe cycle, i.e. a node has the lowest probe execution time
or not. Based on this evaluation, it is possible to calculate for each
node its share in fastest probe executions. The three illustrations
should be interpreted as follows:

■ Figure 4.5: The default scenario is that of a weighted evalua-
tion of all cycles, for example using equal weights as shown here.
Node C is not a candidate node as it never has the fastest probe
execution. A reason could be that this node is lagging behind
clearly, for example when a single probe execution takes longer
than the time between two consecutive probe cycles, causing it
to be excluded from further evaluation to speed up the evalua-
tion process. Given the observations after ten cycles, the opera-
tor may decide to choose Node B as it has the highest chance of
being the most performing one. This result depends on a num-
ber of parameters such as the duration of probing, the number
of probing cycles and the weight distribution. The number of
required probing cycles could depend on the expected duration
of the application to be scheduled. When a longer-running job

128 Trust Issue III: (Re)scheduling Containerized Workloads

Table 4.1: Time measurements in seconds of tree probe executions at Nodes
II, III, IV and V for different configurations of N and S, which represent the
number of tree nodes and size of a tree node in orders of bytes respectively.

S: (32 + 10) B S: 32 B + 1 kB S: 32 B + 100 kB S: 32 B + 1 MB

N :
102

4.2 kB
≪

RAM
capacity

103.2 kB
≪

RAM
capacity

10.0 MB
≪

RAM
capacity

100.0 MB
II: 3.9 4.1

4.1 4.2 4.3 s
III: 8.0 8.1

8.2 8.2 8.3 s
IV: 41.1 41.4

41.5 41.7 42.1 s
→ V: 0.4 0.4
0.4 0.4 0.4 s

N :
103

42 kB
≪

RAM
capacity

1.0 MB
≪

RAM
capacity

100.0 MB
II: 4.3 4.3

4.4 4.6 4.7 s
III: 8.4 8.4

8.5 8.5 8.7 s
IV: 42.5 42.7

42.8 43.1 44.5 s
→ V: 0.4 0.4
0.4 0.4 0.5 s

1.0 GB
→ II: 39.9 40.0

40.7 41.6 42.4 s
III: 80.4 80.8

81.8 82.1 84.2 s
IV: 414.4 417.2

418.6 428.6
429.7 s
V: OOM

N :
104

420 kB
≪

RAM
capacity

10.3 MB
≪

RAM
capacity

1.0 GB
→ II: 42.3 42.4

42.6 42.9 43.3 s
III: 85.5 85.6

87.4 87.4 87.6 s
IV: 443.0 444.8

444.8 445.4
446.7 s
V: OOM

10.0 GB
≫

RAM
capacity

N :
105

4.2 MB
≪

RAM
capacity

103.2 MB
II: 5.8 5.8

5.9 6.6 6.6 s
III: 11.8 12.2

12.2 12.5 12.7 s
IV: 61.6 62.0

62.2 62.5 62.6 s
→ V: 0.6 0.6
0.6 0.6 0.7 s

10.0 GB
≫

RAM
capacity

100.0 GB
≫

RAM
capacity

N :
106

42 MB
≪

RAM
capacity

1.0 GB
II: OOM

→ III: 135.5
136.4 136.8

136.8 137.0 s
IV: 728.9 735.0

737.6 739.2
740.2 s
V: OOM

100.0 GB
≫

RAM
capacity

1.0 TB
≫

RAM
capacity

Chapter 4 129

Figure 4.5: The analysis of all probe cycles, suggesting the selection of Node
B.

is considered, it would be better to consider more probe cycles,
as it provides a more reliable historic view on node performance.

■ Figure 4.6: Contrary, for shorter-running jobs, it is less valuable
to take older probe cycles into account, as the more recent node
performance measurements are more relevant. Only evaluating
the latest three cycles is thus another possibility. The operator
would then select Node D in this example, as this one shows
promising results during the latest probe cycles.

■ Figure 4.7: Additional criteria could be applied to the evalua-
tion of the probe cycles. It could be chosen, for example, that a
node at cycle x is considered fastest only if it lowers execution
time with > 30% compared with the fastest node up until cy-
cle x − 1. This way it is prevented that marginal performance
changes have a significant impact on the decision of the oper-
ator. This would mean for the example that, although Node
D suddenly shows promising results during the latest probe cy-
cles, its performance results are only slightly better than those
of Node B. It is therefore conceivable to just ignore them, caus-
ing the operator to be more confident about the selection of
Node B.

This example makes clear that different data analyses are possible
and that there is not necessarily a single correct solution. Which

130 Trust Issue III: (Re)scheduling Containerized Workloads

Figure 4.6: The analysis of the latest three probe cycles, suggesting the
selection of Node D.

Figure 4.7: The analysis of all probe cycles, but with an extra condition,
again suggesting the selection of Node B.

Chapter 4 131

scheduling decision should be taken and which result it will bring
depends on many factors. The operator could for instance follow the
strategy to pick the node which is most likely to perform best based on
probe input. However, this may be an expensive node to schedule, in
case costs are considered relevant in the collaboration. Furthermore,
it may not necessarily be needed to pick the top-performing node.
Imagine a video pipeline, for which the video processing probe is used.
If it is only required to be able to process 25 frames per second, it
is unnecessary to select any node for which probe evaluation shows
a higher potential capacity, assuming the nodes considered show a
comparable stability over time. The key message of this chapter is
that probes are needed in a cross-organizational setup to fuel these
types of analyses. Without them, an operator would only be able to
perform limited analyses, and as such only gain limited insight in the
performance differences between nodes in the cluster.

4.6 Conclusion
Probes are needed in a cross-organizational cluster to allow an op-
erator to make ad hoc decisions on the placement of pods. There
are simply too many uncertain factors from the perspective of this
operator, as the worker nodes are managed by other organizations.
Background loads may thus be present, the state of underlying hard-
ware may be (partially) unknown, and local performance limits may
be applied. These unique conditions in a dynamically composed
cluster require the intervention of a probe swarm. As discussed,
different types of probes are possible, ranging from generic probes
to copy probes, and application-specific probes. The latter are per-
fectly suited to simulate performance differences between nodes when
typical cross-organizational applications are considered. A possible
integration of these probes into the vanilla Kubernetes scheduling
pipeline is presented, allowing for proper rescheduling of misplaced
pods. This rescheduling is especially important for the case at hand,
as an ad hoc collaboration should not be delayed due to resource
bottlenecks. Finally, a set of probes based on a BST are deployed
and evaluated when local resource limits are applied to the container
of the probe pod. It shows that these limits, which are unknown to
the scheduling operator, can have a significant impact on the execu-
tion time and thus performance of the proposed application-specific
probe: rescheduling the pod may improve performance with a factor
five, ten or even hundred. Future work should focus on bottleneck

132 Trust Issue III: (Re)scheduling Containerized Workloads

discovery of microservice applications, being it cross-organizational
services or not. There may be plenty of reasons for an application to
underperform. Automatic mechanisms are thus required to trace ap-
plication state, for example using a (distributed) tracing framework
like OpenTelemetry [33]. This may be a complex task to solve when a
multitude of services interact with each other. Based on gathered ob-
servations, it may be easier for an operator to pinpoint reasons behind
an application stall. One of these reasons may be the misplacement
of an application within the cluster, triggering the deployment of a
probe swarm in the case of a cross-organizational setup.

Acknowledgments
The work described in this chapter, was partly funded by the FUSE
research project [2], in which a Flexible federated Unified Service En-
vironment was investigated. The project was realized in collaboration
with imec. Industry project partners were Barco, Axians and e-BO
Enterprises, with project support from VLAIO (Flanders Innovation
& Entrepreneurship).

Chapter 4 133

Bibliography
[1] “Kubernetes.” https://kubernetes.io.

[2] “FUSE: Flexible federated Unified Service Environment.” https:
//www.imec-int.com/en/what-we-offer/research-portfolio/fuse.

[3] T. Goethals, S. Kerkhove, L. Van Hoye, M. Sebrechts,
F. De Turck, and B. Volckaert, “FUSE: A Microservice Ap-
proach to Cross-domain Federation using Docker Containers,” in
Proceedings - 9th International Conference on Cloud Computing
and Services Science (CLOSER), (Heraklion, Greece), pp. 90–99,
SciTePress, 2019. https://doi.org/10.5220/0007706000900099.

[4] J. A. Wickboldt, M. Q. Guerreiro, L. Z. Granville, L. P. Gas-
pary, M. F. Schwarz, C. Guok, V. Chaniotakis, A. Lake, and
J. MacAuley, “MEICAN: Simplifying DCN Life-Cycle Manage-
ment from End-User and Operator Perspectives in Inter-Domain
Environments,” IEEE Communications Magazine, vol. 56,
no. 1, pp. 179–187, 2018. https://doi.org/10.1109/MCOM.2017.
1601205.

[5] L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert, “Trust-
ful ad hoc cross-organizational data exchanges based on the Hy-
perledger Fabric framework,” Int J Network Mgmt, vol. 30, no. 6,
p. e2131, 2020. https://doi.org/10.1002/nem.2131.

[6] L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert, “A se-
cure cross-organizational container deployment approach to en-
able ad hoc collaborations,” Int J Network Mgmt, vol. 32, no. 4,
p. e2194, 2022. https://doi.org/10.1002/nem.2194.

[7] V. Medel, C. Tolón, U. Arronategui, R. Tolosana-Calasanz,
J. Á. Bañares, and O. F. Rana, “Client-Side Scheduling Based
on Application Characterization on Kubernetes,” in Proceed-
ings - 14th International Conference on Economics of Grids,
Clouds, Systems and Services (GECON), (Biarritz, France),
pp. 162–176, Springer International Publishing, 2017. https:
//doi.org/10.1007/978-3-319-68066-8_13.

[8] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, “Explor-
ing Potential for Non-Disruptive Vertical Auto Scaling and Re-
source Estimation in Kubernetes,” in Proceedings - IEEE 12th
International Conference on Cloud Computing (CLOUD), (Mi-

https://kubernetes.io
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://doi.org/10.5220/0007706000900099
https://doi.org/10.1109/MCOM.2017.1601205
https://doi.org/10.1109/MCOM.2017.1601205
https://doi.org/10.1002/nem.2131
https://doi.org/10.1002/nem.2194
https://doi.org/10.1007/978-3-319-68066-8_13
https://doi.org/10.1007/978-3-319-68066-8_13

134 Trust Issue III: (Re)scheduling Containerized Workloads

lan, Italy), pp. 33–40, IEEE, 2019. https://doi.org/10.1109/
CLOUD.2019.00018.

[9] Z. Zhong and R. Buyya, “A Cost-Efficient Container Orches-
tration Strategy in Kubernetes-Based Cloud Computing Infras-
tructures with Heterogeneous Resources,” ACM Trans. Internet
Technol., vol. 20, no. 2, pp. 1–24, 2020. https://doi.org/10.1145/
3378447.

[10] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Resource
provisioning in Fog computing: From theory to practice,” Sen-
sors, vol. 19, no. 10, p. 2238, 2019. https://doi.org/10.3390/
s19102238.

[11] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards
delay-aware container-based Service Function Chaining in Fog
Computing,” in Proceedings - IEEE/IFIP Network Operations
and Management Symposium (NOMS), (Budapest, Hungary),
pp. 1–9, IEEE, 2020. https://doi.org/10.1109/NOMS47738.
2020.9110376.

[12] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, “Geo-
distributed efficient deployment of containers with Kubernetes,”
Computer Communications, vol. 159, pp. 161–174, 2020. https:
//doi.org/10.1016/j.comcom.2020.04.061.

[13] P. Townend, S. Clement, D. Burdett, R. Yang, J. Shaw,
B. Slater, and J. Xu, “Invited Paper: Improving Data Center Ef-
ficiency Through Holistic Scheduling In Kubernetes,” in Proceed-
ings - IEEE International Conference on Service-Oriented Sys-
tem Engineering (SOSE), (San Francisco, CA, USA), pp. 156–
15610, IEEE, 2019. https://doi.org/10.1109/SOSE.2019.00030.

[14] I. Rocha, C. Göttel, P. Felber, M. Pasin, R. Rouvoy, and
V. Schiavoni, “Heats: Heterogeneity-and Energy-Aware Task-
Based Scheduling,” in Proceedings - 27th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based
Processing (PDP), (Pavia, Italy), pp. 400–405, IEEE, 2019.
https://doi.org/10.1109/EMPDP.2019.8671554.

[15] “Topology Aware Scheduling.” https://github.com/kubernetes-
sigs/scheduler-plugins/tree/master/kep/119-node-resource-
topology-aware-scheduling. Accessed March 1 2022.

https://doi.org/10.1109/CLOUD.2019.00018
https://doi.org/10.1109/CLOUD.2019.00018
https://doi.org/10.1145/3378447
https://doi.org/10.1145/3378447
https://doi.org/10.3390/s19102238
https://doi.org/10.3390/s19102238
https://doi.org/10.1109/NOMS47738.2020.9110376
https://doi.org/10.1109/NOMS47738.2020.9110376
https://doi.org/10.1016/j.comcom.2020.04.061
https://doi.org/10.1016/j.comcom.2020.04.061
https://doi.org/10.1109/SOSE.2019.00030
https://doi.org/10.1109/EMPDP.2019.8671554
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/119-node-resource-topology-aware-scheduling
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/119-node-resource-topology-aware-scheduling
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/119-node-resource-topology-aware-scheduling

Chapter 4 135

[16] G. El Haj Ahmed, F. Gil-Castiñeira, and E. Costa-Montenegro,
“KubCG: A dynamic Kubernetes scheduler for heterogeneous
clusters,” Software: Practice and Experience, vol. 51, no. 2,
pp. 213–234, 2021. https://doi.org/10.1002/spe.2898.

[17] S. Vaucher, R. Pires, P. Felber, M. Pasin, V. Schiavoni, and
C. Fetzer, “SGX-Aware Container Orchestration for Heteroge-
neous Clusters,” in Proceedings - IEEE 38th International Con-
ference on Distributed Computing Systems (ICDCS), (Vienna,
Austria), pp. 730–741, IEEE, 2018. https://doi.org/10.1109/
ICDCS.2018.00076.

[18] “KEP - Trimaran: Real Load Aware Scheduling.”
https://github.com/kubernetes-sigs/scheduler-plugins/tree/
master/kep/61-Trimaran-real-load-aware-scheduling. Accessed
March 1 2022.

[19] A. Tzenetopoulos, D. Masouros, S. Xydis, and D. Soudris,
“Interference-Aware Orchestration in Kubernetes,” in Proceed-
ings - International Conference on High Performance Comput-
ing, (Frankfurt, Germany), pp. 321–330, Springer International
Publishing, 2020. https://doi.org/10.1007/978-3-030-59851-8_
21.

[20] T. Menouer, “KCSS: Kubernetes container scheduling strategy,”
J Supercomput, vol. 77, no. 5, p. 4267–4293, 2021. https://doi.
org/10.1007/s11227-020-03427-3.

[21] T. Rausch, A. Rashed, and S. Dustdar, “Optimized container
scheduling for data-intensive serverless edge computing,” Fu-
ture Generation Computer Systems, vol. 114, pp. 259–271, 2021.
https://doi.org/10.1016/j.future.2020.07.017.

[22] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Job-
Aware Scheduling in Eagle: Divide and Stick to Your Probes,”
in Proceedings - Seventh ACM Symposium on Cloud Computing,
(Santa Clara, CA, USA), p. 497–509, Association for Computing
Machinery, 2016. https://doi.org/10.1145/2987550.2987563.

[23] T. Bayer, L. Moedel, and C. Reich, “A Fog-Cloud Computing
Infrastructure for Condition Monitoring and Distributing In-
dustry 4.0 Services,” in Proceedings - 9th International Con-
ference on Cloud Computing and Services Science (CLOSER),

https://doi.org/10.1002/spe.2898
https://doi.org/10.1109/ICDCS.2018.00076
https://doi.org/10.1109/ICDCS.2018.00076
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/61-Trimaran-real-load-aware-scheduling
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/61-Trimaran-real-load-aware-scheduling
https://doi.org/10.1007/978-3-030-59851-8_21
https://doi.org/10.1007/978-3-030-59851-8_21
https://doi.org/10.1007/s11227-020-03427-3
https://doi.org/10.1007/s11227-020-03427-3
https://doi.org/10.1016/j.future.2020.07.017
https://doi.org/10.1145/2987550.2987563

136 Trust Issue III: (Re)scheduling Containerized Workloads

(Heraklion, Greece), pp. 233–240, SciTePress, 2019. https:
//doi.org/10.5220/0007584802330240.

[24] “Kubernetes 1.19.16 - noderesources/fit.go.” https:
//github.com/kubernetes/kubernetes/blob/v1.19.16/pkg/
scheduler/framework/plugins/noderesources/fit.go#L230.
Accessed March 1 2022.

[25] “Nodes - Resource capacity tracking.” https://kubernetes.
io/docs/concepts/architecture/nodes/#node-capacity. Accessed
March 1 2022.

[26] “Reserve Compute Resources for System Daemons - Node Allo-
catable.” https://kubernetes.io/docs/tasks/administer-cluster/
reserve-compute-resources/#node-allocatable. Accessed March
1 2022.

[27] “Nodes - Info.” https://kubernetes.io/docs/concepts/
architecture/nodes/#info. Accessed March 1 2022.

[28] “Docker - Runtime options with Memory, CPUs, and
GPUs.” https://docs.docker.com/config/containers/resource_
constraints. Accessed March 1 2022.

[29] E. Hashman, “New in Kubernetes v1.22: alpha support for
using swap memory.” https://kubernetes.io/blog/2021/08/09/
run-nodes-with-swap-alpha (2021). Accessed March 1 2022.

[30] F. Bellard, “TachusPI Documentation.” https://bellard.org/pi/
pi2700e9/readme.html (2009). Accessed March 1 2022.

[31] “Scheduler Configuration.” https://kubernetes.io/docs/
reference/scheduling/config. Accessed March 1 2022.

[32] “Scheduling Framework.” https://kubernetes.io/docs/concepts/
scheduling-eviction/scheduling-framework. Accessed March 1
2022.

[33] “OpenTelemetry.” https://opentelemetry.io. Accessed March 1
2022.

https://doi.org/10.5220/0007584802330240
https://doi.org/10.5220/0007584802330240
https://github.com/kubernetes/kubernetes/blob/v1.19.16/pkg/scheduler/framework/plugins/noderesources/fit.go#L230
https://github.com/kubernetes/kubernetes/blob/v1.19.16/pkg/scheduler/framework/plugins/noderesources/fit.go#L230
https://github.com/kubernetes/kubernetes/blob/v1.19.16/pkg/scheduler/framework/plugins/noderesources/fit.go#L230
https://kubernetes.io/docs/concepts/architecture/nodes/#node-capacity
https://kubernetes.io/docs/concepts/architecture/nodes/#node-capacity
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable
https://kubernetes.io/docs/concepts/architecture/nodes/#info
https://kubernetes.io/docs/concepts/architecture/nodes/#info
https://docs.docker.com/config/containers/resource_constraints
https://docs.docker.com/config/containers/resource_constraints
https://kubernetes.io/blog/2021/08/09/run-nodes-with-swap-alpha
https://kubernetes.io/blog/2021/08/09/run-nodes-with-swap-alpha
https://bellard.org/pi/pi2700e9/readme.html
https://bellard.org/pi/pi2700e9/readme.html
https://kubernetes.io/docs/reference/scheduling/config
https://kubernetes.io/docs/reference/scheduling/config
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework
https://opentelemetry.io

5
Enabling organizations to participate

in the ad hoc scheduling of a
cross-organizational data pipeline

Finally, this chapter presents a submitted research article tackling the
fourth research question: how can the scheduling of containers,
a task for which the cluster operator is responsible and which
is fitted to an unknown heterogeneous cluster environment,
be extended to allow for negotiation between the participat-
ing organizations? In addition to data pipelines being deployed in a
single domain, it is possible to deploy data pipelines crossing multiple
domains. For the latter, multiple stakeholders can be identified which
may all have a vision on how this pipeline should be deployed among
them. Proactively taking into account their preferences is necessary
to limit the number of time-consuming scheduling attempts. Most no-
ticeable is thus the consideration of hidden non-technical scheduling
requirements during the scheduling process. Together with the earlier
discussed hidden technical limitations, resolved by means of the prob-
ing concept, they constitute the set of scheduling requirements. This
set may change through negotiation as discussed in the chapter.

⋆ ⋆ ⋆

138 Trust Issue IV: Negotiating the Setup of a Data Pipeline

L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert

Submitted for review to the Journal of Network and Systems
Management, October 2022.

Abstract In case of an emergency situation, it is required to come
up with solutions quickly. The supporting decision-making process
should therefore be based on relevant data sources which are fed to
data processing pipelines. These data sources may however be located
in different domains of distinct organizations. Although the technical
realisation of cross-organizational data pipelines is possible, for exam-
ple using a federated Kubernetes cluster managed by a central oper-
ator, it is unclear how those pipelines should be scheduled among the
participating organizations. Firstly, the cross-organizational infras-
tructure is unknown and highly heterogeneous, and secondly, there
may be undiscovered scheduling preferences present. The first is-
sue can be solved using software probes, while the second issue will
be solved through an extension of this probing concept. During the
proposed inter-domain scheduling process, organizations may specify
monetary reward requirements and requirements on the maximum
load they wish to bear. The former allows administrators to specify
a lower limit with respect to payment they request for their contri-
bution, the latter allows the specification of an upper limit on the
workload an organization wishes to process. This way, mismatch-
ing expectations on contribution level, which may potentially cause
harm from the hosting organization perspective, are prevented, in-
creasing the trust level of contributors. These kinds of requirements
have nothing to do with the technical assessment of a node, but they
do impact scheduling decisions and performance of an application, as
shown in our evaluation. The proposed scheduling flow not only al-
lows organizations to steer scheduling decisions, but also to negotiate
requirements among each other, giving rise to ad hoc conflict resolu-
tion all the while collaborating in solving the emergency situation.

5.1 Introduction
Ad hoc decision-making is crucial in case of an emergency situation.
An explosion at a chemical site, in case lives are at risk, or a shut-
down of a production plant, in case loss of revenue is at stake, are

Chapter 5 139

Figure 5.1: The set of stakeholders contributing to a cross-organizational
data pipeline may change dynamically during the collaboration period.

just two examples. Organizations should therefore have technical en-
ablers to allow them to quickly setup an ad hoc cross-organizational
collaboration between them. Such a collaboration consists of multiple
data pipelines in which data is gathered, processed and presented to
the relevant stakeholders. The orchestrator Kubernetes [1], allowing
a central operator to manage containerized workloads, can be used
to federate different domains and create this desired setup [2]. How-
ever, the orchestration of workloads in a cross-organizational setup is
more complex than the regular cluster scheduling process managed by
a single entity. The environment is highly heterogeneous, meaning
that nodes will have different performance levels due to variations
in hardware, container runtime, network connections, background
loads, artificial resource limits set by the local administrator, etc.
Furthermore, data pipelines may cross organizational boundaries, as
shown in Figure 5.1. These cross-organizational data pipelines re-
quire a certain contribution from different organizations. Finding an
agreement on the level of contribution by each of the stakeholders
is the challenge studied in this chapter. The figure illustrates the
following scenarios:

■ The initial situation is that of a red-colored data pipeline which
crosses organisations W, X, and Z. It terminates at the oper-
ator where it may be used to feed a dashboard. At a certain
point in time, it may become clear that an organization, imag-
ine Org Z, is responsible for the performance degradation of

140 Trust Issue IV: Negotiating the Setup of a Data Pipeline

the pipeline. When this organization is unable to reorganize
resources locally to mitigate this, it is required to reschedule
the workload to an external location. Assume this is the case
and that a technical assessment indicates that Org Y is capable
to solve this performance issue. Although Org Y hosts suit-
able nodes from a technical perspective, it is unclear whether
this organization is willing to contribute to this green-colored
pipeline. Furthermore, it may want to obtain guarantees about
its contribution to the pipeline and corresponding reward, as
it in fact pre-finances associated costs. This trust issue related
to compensation is not present in a regular deployment cluster
spanning a single organization.

■ In case of a divisible workload, it is possible to examine a more
generic solution compared to a full rescheduling. Balancing the
load between Org Z and Org Y is an alternative in that case.
These kinds of workloads allow for both parallel and concurrent
execution in the cross-organizational layout. Workload changes
may then even occur more frequently. Again, the organizations
involved in a data pipeline, here W, X and Y, need to have a say
in this workload division. The configuration of a load-balancing
component is thus not merely a decision by the operator.

■ The data pipeline may be extended, as shown by the blue-
colored pipeline to which Org Y contributes, as a mix of data
inputs may result in a more insightful dashboard overview. This
causes not only Org W, but also Org Y, to become a data source
owner. These owners may have specific requirements regarding
their contribution level, which are unknown upfront by the op-
erator. Due to their crucial role in the functioning of the data
pipeline, it is key to understand their desired participation con-
ditions.

It is with these types of cross-organizational dynamics in mind that
the remainder of this chapter is written. Section 5.2 discusses how
this chapter relates to other research papers which already address
the need for negotiation during the scheduling of workloads. The
different components and accompanying steps required to fit a cross-
organizational scheduling process are then presented in Section 5.3.
An illustrative evaluation is presented in Section 5.4, indicating what
performance differences may be observed when custom requirements
are negotiated upfront. Finally, Section 5.5 provides a conclusion on

Chapter 5 141

the topic and a possible direction for future work.

5.2 Related Work
This chapter is written in the context of the FUSE research project
[3], which aims to create an ad hoc federated unified service envi-
ronment among organizations involved in the collaboration. Earlier
publications have discussed other trust issues related to this setup.
Research has been published on how a cross-organizational deploy-
ment cluster based on Kubernetes could be deployed in a matter of
minutes [2], how data exchange disputes could be prevented using
a suitable logging mechanism [4], how container deployments pro-
posed by a potentially malicious external entity could be verified
pre-deployment [5], and finally how the Kubernetes scheduling pro-
cess should be adapted to take into account the technical uncertain-
ties related to the cross-organizational setup [6]. The latter topic is
further extended in this chapter and Section 5.3.1 therefore revisits
its contribution. In summary, what is still missing, is a negotiation
procedure allowing hosting organizations and the operator to commu-
nicate hidden requirements among each other. These requirements,
set out of a lack of full trust, may either be technical or non-technical
and hosting organizations are able to manipulate them.

When searching for related work addressing negotiation needs within
the cloud domain, it becomes clear that the management and es-
pecially negotiation of service level agreements (SLAs) is a widely
studied topic [7]. These SLAs are legal agreements between resource
consumers and cloud providers defining expectations of typical pa-
rameters such as average response time of a service, the price model
that is applied, the level of availability, etc. Fundamental to this ne-
gotiation process is the observation that providers want to maximize
their profit, while resource consumers want to have desired quality
of service at the lowest cost possible. The participants in an SLA
negotiation thus try to optimize their objectives. Dedicated papers
therefore exist which focus on the maximization of some objectives,
for example, in case of a cloud provider, it is possible to differentiate
SLA negotiation according to different business-level objectives, one
of them being revenue maximization [8]. The negotiation process it-
self is extensively studied as well. Multiple approaches are available,
for example to automate SLA negotiation in case a composite service,
i.e. a service which consists of a set of logically connected services,

142 Trust Issue IV: Negotiating the Setup of a Data Pipeline

needs to be negotiated [9] [10]. A recent paper by Omezzine et al.
even proposes a generic framework regarding automated negotiation,
identifying which types of agents and which interactions are needed
to allow negotiation between multiple layers: the users layer, SaaS /
PaaS layer, and IaaS layer [11]. The purpose of these more technical
papers is to identify which negotiation protocol is needed, how nego-
tiation should be coordinated, which negotiation strategy should be
used (e.g. based on game theory), which metrics need to be evaluated
to assess proposals, how counterproposals should be generated, etc.
Although these automated procedures could equally be used to nego-
tiate parameters relevant to a cross-organizational collaboration, at
least from a theoretical point of view, there is an important practical
consideration. The participating organizations in the ad hoc col-
laboration discussed here, may not be prepared to initiate a complex
SLA negotiation among them, meaning that the agents and strategies
required for this process will likely be missing. Even worse, organi-
zations may not have any prior experience with SLA negotiation. To
force the setup of an advanced negotiation infrastructure in this case,
it would be necessary for (a subset of) organizations to trust an exter-
nal entity for the proper configuration of its agent. This assumption
may not hold for any collaboration. Due to the urgency and tempo-
rariness, a negotiation procedure is therefore needed in which rules
are more basic, to allow for the ad hoc nature of decisions. Automa-
tion could still be considered relevant, in case agents are present, but
rather in a supportive role. The incorporation of manual decisions
should be investigated instead as it reduces the burden to participate
and as it allows decision-making to happen instantly. The focus in
this chapter is thus not necessarily on the procedure itself, but rather
on which elements need to be negotiated to increase the trust level of
organizations enabling a cross-organizational data pipeline. To the
best of our knowledge, no previous research is available addressing the
urgent negotiation of both technical and non-technical limitations for
each participant in an accessible manner.

What is particularly interesting to note in a significant subset of the
available SLA negotiation research, is the presence of a third party
broker, also commonly referred to as auctioneer, within the negotia-
tion process. This is typically the case in a double auction approach
in which the goal is to satisfy both sides, i.e. the resource consumer
and provider. The papers published by Samimi et al. [12] and Mao
et al. [13] are two such examples implementing a centralized auction-
based approach. There is however a security risk associated with this

Chapter 5 143

setup [14] [15]. Negotiation participants need to share potentially
sensitive information with this third party and it needs to be trusted
for that reason. Furthermore, it could become a performance bottle-
neck. The cluster operator present in the setup discussed here, plays
a similar role as central coordinator. It does not act as a broker,
but it is responsible for the technical support of the negotiation pro-
cess. The suggested concerns are however not immediately present
here. As the collaboration duration is short and as only a relatively
small portion of infrastructure is going to be offered by a hosting
organization, the security risks associated with the communication
of either technical or non-technical limitations seems to be minimal.
Furthermore, this leakage of information does not bring any advan-
tages to the other participants, as they will likely not be considered
as an opponent. Quite the opposite, openly expressing requirements
across participants is considered to be an asset in this case, as or-
ganizations gain maximum insight in each others behavior and can
adapt their own based on this. Maximum visibility of these other-
wise hidden requirements should thus be supported to ensure partic-
ipants have enough confidence to join and thus allow the deployment
of the cross-organizational data pipeline to succeed. Fostering this
openness through easy to interpret monitoring and dashboarding so-
lutions seems to be the best way to progress. This latter proposal is
supported by the observation that intuitive mechanisms need to be
accommodated, especially to inexperienced end-users which may be
omnipresent in this generic collaboration case, to ease collaboration
in inter-domain environments [16].

5.3 Enabling organizations to agree on a
reward scheme

As explained in Section 5.1, a cross-organizational deployment cluster
is characterized by the presence of cross-organizational data pipelines.
The use of such pipelines raises questions on the reward schemes that
need to be used in order to properly recognize the input brought by
each of the stakeholders and incentivize partners in participating.
This section highlights, using the discussed load-balancing scenario,
which components are required to turn scheduling into a collabora-
tive project, i.e. to construct a data pipeline which is the result of
decisions taken by multiple entities.

144 Trust Issue IV: Negotiating the Setup of a Data Pipeline

5.3.1 Extending the probe rescheduling mechanism
This chapter extends a rescheduling mechanism proposed by the au-
thors [6]. This mechanism uses probes, which are short-running soft-
ware programs, to assess the technical capabilities of individual nodes
and, ultimately, to determine how the availability of cluster resources
is distributed. Three types of probes may be present, either generic,
application-specific or copy probes. A generic probe may for exam-
ple calculate the n-th digit of Pi, an application-specific probe gets
selected from a well-prepared cross-organizational application cata-
logue, and a copy probe is a duplicate of the original application to be
(re)scheduled. These probes are required to understand the heteroge-
neous cross-organizational cluster layout with which the operator is
faced. Initially, this layout of nodes and their associated properties,
are fully unknown to the operator. Local administrators have the
ability to limit the resources available to external workloads, like the
amount they are allowed to consume. An important reason to put
this into operation is to ensure that local background loads have pri-
ority over external processes in case those are essential for business
continuity. The granularity of these limiting constraints may even
be on the level of individual containers. The concept of probing,
i.e. executing local code fragments implemented on a compile-once-
run-anywhere basis, is thus crucial for ad hoc scheduling of pods.
In addition to a purely technical evaluation, it is equally important
to evaluate whether there are unknown non-technical requirements,
specified by the organizations individually. Organizations may wish
to overrule the technical assessment of their nodes or may demand
a certain level of compensation. After all, there may be a lack of
mutual trust between them as organizations might have conflicting
interests, compelling them to protect themselves. Consequently, it is
required to allow involved organizations to negotiate both technical
and non-technical requirements, which is further discussed in the next
section. Figure 5.2 shows the Kubernetes scheduler as a black box,
figuratively, as its operation and shortcomings are already addressed
in [6]. The deviation from the default Kubernetes scheduling process
marks both the beginning and the ending of the flow explained below.

5.3.2 Components required to negotiate contribution
Three phases can be identified in the proposed scheduling mechanism.
Figure 5.2 shows the discussed components and steps. Note that the
purple components are new and detailed in this chapter.

Chapter 5 145

Figure 5.2: The additional software components and their operations in
chronological order that can be identified during the adaptation of a cross-
organizational data pipeline.

The steps belonging to the first phase are colored in green and cor-
respond with the following actions. These four steps are identical to
the ones explained in previous work [6].

1. The operator gets confronted with a scheduling assignment via
its monitoring solution. This enables the operator to pick nodes,
which should be probed, from the proposed selection. The selec-
tion may thus become smaller due to this manual intervention.
For now it is assumed that interaction with the Kubernetes
scheduler happens at the beginning and ending of the process.
More details on the integration of this custom scheduling strat-
egy can be found in [6].

2. The operator selects a suitable type of probe: either a copy
probe, generic probe or application-specific probe. The deploy-
ment of these probes on the selected nodes is then initiated by
the aggregator component.

3. After deployment is finished, the operator is able to manipu-
late the job the probe is executing. Commands can be pushed
dynamically, allowing the operator to perform live probing.

4. The aggregator component is responsible for the collection of

146 Trust Issue IV: Negotiating the Setup of a Data Pipeline

the obtained performance measurements. Multiple probe exe-
cutions need to be gathered for each of the considered nodes,
to obtain a robust overview of the capabilities of the different
nodes.

The steps belonging to the second phase are colored in blue and
correspond with the following actions:

5. The result of the first phase is a ranking of nodes based on
their probing performance. As explained in Section 5.3.1, un-
expected results may be obtained. Using this ranking, the op-
erator is then able to decide which of the probed nodes need
to be selected for the current scheduling cycle. Again, this will
likely be a manual assessment due to the ad hoc nature of the
collaboration. At this stage, the operator may also decide that
probing needs to be re-executed using an adapted set of nodes.
Steps 1-4 are repeated as long as this scenario happens.

6. Based on this performance ranking, the operator is able to de-
fine an initial reward scheme. For the remainder of this chapter,
it is assumed that this reward is credited on a pro rata basis, i.e.
each organization receives a share in the total reward expressed
in percents. What remains to be evaluated is whether there are
hidden reward requirements set by the organizations involved
in the specific data pipeline. The operator therefore pushes
both the ranking and reward scheme to them. Three types of
organizations may be distinguished based on their evaluation
approach:

■ Organizations which check the reward scheme manually.
These organizations have a monitoring solution available,
showing all active pipelines in the cross-organizational col-
laboration. This dashboard could for example be based on
the logging info produced by the blockchain-based mecha-
nism proposed by the authors [4]. The negotiation of con-
tribution is then an additional plugin within the multipur-
pose dashboard, which is a frontend enabling bi-directional
communication with the monitoring solution of the oper-
ator. The administrator will be notified when a new pro-
posal is received.

■ Organizations which check the proposed reward scheme
automatically. The evaluation is then based on pre-defined

Chapter 5 147

reward boundaries.

■ Organizations which do not care about rewards for their
contribution. They approve the reward scheme anyway.
These could be non-profit organizations like governmental
institutions wishing to contribute without any restrictions,
possibly due to legal regulations.

Organizations wishing to change the reward scheme, send their
counter proposal to the operator. This is an important insight
in this chapter, more specifically, organisations may have, for
the operator unknown, requirements related to their part of the
contribution to the overall pipeline. Such requirements are not
necessarily known upfront, because organizations may adapt
them based on the data pipeline proposal.

7. The administrator of the organization is able to change the
proposal in four ways as shown in Figure 5.3:

Increase probe ranking: the probe ranking allows each of
the administrators to gain insight in the performance of the
involved nodes. Based on this evaluation, an administrator
could decide to change the local configuration, i.e. to grant
more resources to an external container. For example, to grant
more CPU and/or memory resources or to upgrade a (virtual)
node. Another probe evaluation could therefore be requested
by the administrator. The probes will then evaluate whether
the claimed performance increase is noticeable, i.e. whether
the organization is capable of providing the correct response to
an unknown workload request. The response time should then
be decreased, with a certain factor, compared to latest probe
evaluation.

Decrease probe ranking: the administrator could also de-
cide, based on the probe ranking, to grant less local resources
to an external container, lowering the chance of being selected
in future probe evaluations. A second possibility for the admin-
istrator is to specify an upper limit on the amount of processing
capacity a node has to offer, either in absolute or relative terms.
This way, it is possible for the administrator to protect powerful
nodes against repetitive selection, preventing a skewed distri-
bution of workload among the partners. Clearly, such an upper
limit is artificial, as it is not related to the technical assessment

148 Trust Issue IV: Negotiating the Setup of a Data Pipeline

Figure 5.3: An organization, in this case Org Y, has the power to influence
scheduling decisions related to a data pipeline in which it is involved.

of a node.

Increase individual reward: the reward ranking represents
the recognition of the individual contributions per organization,
or even split up per node. In case of a financial reward, it could
represent the part of the budget each organization receives. By
default, the reward ranking could be derived from the probe
ranking, i.e. the workload capacity should be reimbursed pro-
portionally. However, it could be that administrators demand
a minimum reward, a lower limit, for their contribution. A
data source owner, for example, could demand a certain level
of reward for inserting its data into the pipeline. These hidden
requirements should become clear.

Decrease individual reward: a less probable case is that of
an administrator reducing the reward that is coupled to its or-
ganisation. This may happen when an organization does not
prioritize the reward it receives, for whatever reason, like the
organization being non-profit or possessing a huge data center
with plenty of available resources. The required budget to in-
stantiate the data pipeline, as managed by the operator, may
then decrease or the freed up budget may for example be used
to schedule an additional node.

These rankings thus play a significant role in the selection of the

Chapter 5 149

ultimate scheduling decision. It is even possible to go one step
further. Local administrators may use this monitoring solution
permanently to tweak requirements associated with one or more
cross-organizational data pipelines over time. This step can
then be considered as the entrypoint for a separate negotiation
procedure, i.e. not related to any scheduling procedure. A
typical cause for this would be an organization willing to tighten
its requirements. There is no immediate reason to shutdown the
pipeline from its side, as otherwise a more time-consuming full
rescheduling would be necessary. Instead, the organization may
specify a deadline by which an updated agreement honoring its
requirements should be composed. Such an approach could be
described as a graceful rescheduling. Contrary, fundamental
pipeline changes like the variations discussed in Section 5.1, in
fact result in completely new data pipelines for which a separate
scheduling cycle is deemed necessary.

8. The operator evaluates the rankings in a number of rounds.
Each consecutive round applies the scheduling hints sent by
the organisations. This process continues until all involved
organisations agree on both rankings. It may become clear
that no agreement can be found or that the negotiation process
takes too long, for example if a predefined maximum number
of rounds is exceeded. In that case, the operator should abort
the scheduling of this unschedulable configuration, adapt the
set of nodes, compose new rankings, and initiate the back and
forth gathering process. In a worst case scenario, no suitable
scheduling result can be found after several such restarts.

The steps belonging to the third phase are colored in orange and
correspond with the following actions:

9. From this point, an agreement between the organizations has
been found. To secure the probe and reward ranking, the op-
erator should put these in a distributed database spanning all
organizations involved in the cross-organizational collaboration.
Again, the logging mechanism cited in step six provides funda-
mentals to realize this. A new type of transaction should be in-
troduced, recording the agreements for a certain data pipeline.
The digital signature applied by the pipeline initiator, in this
case the operator, guarantees that the reward ranking is dis-
tributed in a secure way. In addition, the digital signatures

150 Trust Issue IV: Negotiating the Setup of a Data Pipeline

of the involved organizations could be asked for, in case the
corresponding transaction validation policy is configured this
way.

10. Based on the final probe ranking, it is needed to enforce the
workload division agreements that were made. A cross-organiz-
ational load balancer, being a separate pod, is therefore re-
quired. The most important property of this component is that
it should be externally configurable, as the operator needs to
be able to push balancing parameters. Network parameters
should not necessarily be passed as the load balancer can reach
the backing processing pods via their individual DNS name
processing-<ID>.processing-svc as is feasible using a Kubernetes
headless service. The ID is an integer ranging from 1 to N , with
N being the number of service replications. The implementa-
tion of the load balancer thus has the responsibility to split up
a workload according to a certain scheme, but should also allow
the data to be put together in a later phase if required. In case
of a video processing application, as shown here, this would
mean that metadata needs to be sent along with the split up
video data specifying the original camera ID and frame index
or interval.

5.4 Evaluation
The possibility for each of the participating organizations to steer
scheduling decisions may have a significant impact on the perfor-
mance of an application. To illustrate this, it is possible to study the
scenario shown in Figure 5.4. A cross-organizational collaboration
of six organizations is presented. Org X has three camera streams
available, each operating at 25 frames per second (FPS), and pre-
processes these. The further processing of these streams needs to be
executed by different organizations either for performance or analy-
sis reasons. Org X therefore selects Org Y and Org Z as candidates
for this job. These organizations provide a pool of ten nodes. Ini-
tially, it is assumed that the operator of the cluster does not have
any upfront knowledge related to the capabilities of the nodes and/or
requirements specified by the administrator(s) of the organizations.
All these hidden properties are labeled with a purple colour in the
figure. Again, this is the key distinctive element of the deployment
clusters studied in this chapter.

Chapter 5 151

Figure 5.4: An illustrative scenario showing three out of six organizations
wishing to construct multiple video processing pipelines. The purple-colored
information is unknown, from the perspective of the operator, and thus
needs to be uncovered during the scheduling process.

As shown, the scenario presents three custom requirements for load
and reward allocation. To obtain an overview of resulting perfor-
mance differences, it is possible to examine eight cases, in which each
of the requirements is either turned on or off. For this case, only
requirements on the level of an organization are specified, but it is
equally possible for them to be specified on the level of (a set of)
nodes.

■ No custom requirements: the operator initiates a few prob-
ing rounds and finds out that a processing capacity of 75 FPS
can be found. It is interesting to note that when a node is se-
lected in Org Y, it will either be a low-capacity or high-capacity
one, as Org Y has two categories of nodes available. Probing
could thus provide a performance of either 15 or 25 FPS. Using
the suggested probe ranking, it is possible for the administrator
of Org Y to assist the operator. It could suggest the deployment
of a new probing round on the same node, when its local limits
have been changed, or on another node with different capac-
ity. Such intervention, providing guidance based on scheduling
hints, is especially useful in this ad hoc collaboration case, as it
allows the operator to gain insight in the cluster more quickly.

152 Trust Issue IV: Negotiating the Setup of a Data Pipeline

■ Requirement by Org X: when a deployment proposal is sub-
mitted to the involved stakeholders, it is possible to commu-
nicate custom reward requirements via the suggested reward
ranking. Org X, in this case being the data source owner and
thus playing a significant role, may want to obtain a guarantee
related to its contribution. For example, it may demand more
than half of the reward available for the realisation of this data
pipeline. As the other organizations have no additional reward
requirements, in this case, the data pipeline will be realised in
the same way as in the previous one, but this time with a dif-
ferent reward distribution. The use of the reward ranking thus
provides a certain level of trust to an organization, eventually
leading to the setup of the collaboration. Note that absolute
reward requirements could exist as well. In case both types ex-
ist, a total budget (per time interval) should be communicated
to allow reward requests to be compared.

■ Requirement by Org Y: Org Y specifies a load requirement,
via the suggested probe ranking, on top of a reward require-
ment. Although it has sufficient resources available in its data
center, it requires other organizations to be responsible, i.e.
to pick up a part of the urgent processing job (see Figure 5.4:
load requirement < 75%). Note that absolute load requirements
can also be specified when a set of agreed metrics exists. This
is different from absolute reward requirements focusing on the
amount of money solely. The reward requirement is certainly
not an issue, in this case, as no other such requirements are
specified. The load requirement specifies that less than three
quarter of the workload should be deployed at Org Y, mean-
ing that Org Z should contribute as well, in order to increase
capacity. An exact capacity fit of 75 FPS can be found by se-
lecting three low-capacity nodes provided by Org Y and two
low-capacity nodes provided by Org Z. For this case, it would
thus not be needed to consume the resources of a high-capacity
node.

■ Requirement by Org Z: similarly, Org Z is able to specify
a load requirement via the suggested probe ranking. As Org Z
is only able to contribute two low-capacity nodes, it limits the
amount of capacity available for this specific pipeline. Only a
single node is available for contribution. For this case, there
is no noticeable impact, as Org Y has all requested capacity

Chapter 5 153

available.

■ Requirements by Org X, Y: the reward requirements spec-
ified by Org X and Y conflict. It is impossible to grant both
organizations more than half of the reward. The data provided
by Org X is vital for the pipeline, meaning that its requirement
should definitely be fulfilled. The result is that Org Y should
be neglected in the further scheduling of workload. The only
remaining solution is to pick the two nodes provided by Org
Z, resulting in a capacity of only 30 FPS. Clearly, imposing
strict requirements will have an impact on cross-organizational
scheduling, and thus on the performance output of an appli-
cation. Again, these requirements are hidden for the operator,
and should be discovered in a dynamic way via the suggested
probe and reward rankings.

■ Requirements by Org X, Z: both the reward requirement
by Org X and the load requirement by Org Z will be honoured,
as Org Y will be solely responsible for providing the required
capacity.

■ Requirements by Org Y, Z: the additional load require-
ment by Org Z makes it impossible to use the previously dis-
cussed solution of five low-capacity nodes. To approximate the
wished-for capacity of 75 FPS, it is therefore needed to select
a high-capacity node. The maximum capacity available at Org
Y is 55 FPS: one high-capacity node in combination with two
low-capacity nodes. An additional low-capacity node at Org Z
brings the total capacity to 70 FPS.

■ Requirements by Org X, Y, Z: the additional load require-
ment by Org Z does not provide a solution to the conflicting
reward requirements specified by Org X and Y. Org Y is there-
fore not able to provide candidate nodes. Only a single node in
Org Z may be selected, due to the additional load requirement,
leading to a resulting capacity of only 15 FPS.

The scenario above, which is only one from an infinite set, illustrates
which kinds of requirements could pop up during scheduling and what
impact they could have on the performance of an application. For
this requirement configuration, two problematic cases can be iden-
tified, both being caused by the conflicting reward requirements of
Org X and Y. The advantage of the use of both suggested rank-

154 Trust Issue IV: Negotiating the Setup of a Data Pipeline

Table 5.1: The proposed scheduling flow, allowing organizations to con-
tribute to scheduling decisions controlled by a central operator, enables the
resolution of potentially conflicting requirements.

Org X Org Y Org Z

Round I
X

Reward req.: > 50%
Tentative

Load req.: < 75%
Reward req.: > 50%

Detached

Load req.: < 30 FPS
X

Approved (15 FPS)

Round II
X

Reward req.: > 33%
Approved

Load req.: < 75%
Reward req.: > 50%
Approved (55 FPS)

Load req.: < 30 FPS
X

Approved (15 FPS)

Round III
X

Reward req.: > 33%
Tentative

X
Reward req.: > 66%
Approved (75 FPS)

Load req.: < 30 FPS
X

Detached

Round IV
X

Reward req.: > 41%
Approved

X
Reward req.: > 58%
Approved (75 FPS)

Load req.: < 30 FPS
X

Detached

ings is that they allow for negotiation between the different partners.
A problematic situation could trigger one or more of the organiza-
tions to loosen requirements. The additional insight this brings for
the operator but also for all the involved organizations is the main
advantage of the proposed scheduling approach. Note that instant
adjustment of the requirements is only possible when they are not
fixed, i.e. when they are managed by either an administrator or an
algorithm. As indicated in the figure through the face icons, Org X
and Y have managed requirements, while Org Z has an unmanaged
requirement.

The case in which all requirements are present can be further studied
given the possibility to negotiate. Table 5.1 provides an overview
of a possible set of negotiation rounds which eventually causes the
performance issue to be solved. The first evaluation round uncov-
ered all custom requirements set by the organizations and a resulting
capacity of only 15 FPS. While Org Y already detached due to its
unfulfilled requirements and Org Z is unmanaged, Org X moved in
the tentative state, i.e. it currently considers an adaptation of its re-
quirement. During evaluation round two, Org X takes the initiative
to force a breakthrough. It lowers its reward requirement to around
one third, based on the idea that all three companies involved in this
pipeline should receive a fair share, for example 34%, 51% and 15%
for Org X, Y and Z respectively. The result is that a deployment can
be found in which all requirements are fulfilled and 70 FPS can be
obtained. All organizations approve this deployment option.

Chapter 5 155

However, the operator is not yet satisfied with this solution, as the
resulting performance is less than 75 FPS. Evaluation round three
is therefore started, in which the operator proposes Org Y to loosen
its load requirement in exchange for a higher reward. Org Y has
enough capacity to process all frames, meaning that Org Z is not
necessarily needed to enable this pipeline. The proposal for Org Y
therefore suggests to drop the load requirement, given an increase
in reward to around two third of the total budget. Org Y approves
this proposal and its contribution of 75 FPS. However, Org X, which
initially decreased its reward requirement to force a breakthrough, is
not satisfied with this full shift of reward towards Org Y. It submits a
counter proposal in which it takes back halve of its initial concession.
Both Org X and Y approve this deployment and the negotiation
process comes to an end. The approval of Org Z is not required
anymore, as it is not part of the final pipeline.

5.5 Conclusion
Scheduling in a cross-organizational deployment cluster is less obvi-
ous than in a regular cluster controlled by a single organization. Each
of the organizations has its own local node setup, local limits set by
an administrator, interests, and ideas related to deployment. For the
central operator, managing the cluster, it is required to bring these
hidden requirements to the table to allow for decent scheduling de-
cisions. As some of those requirements may even change during the
procedure, it is required to evaluate them periodically. The schedul-
ing flow presented in this chapter extends the probing solution pro-
posed in previous work, by allowing organizations to steer scheduling
decisions and communicate their intentions. This way, all organiza-
tions involved in a data pipeline have an overview of the capabilities
of other nodes, allowing them to evaluate and possibly change their
own contribution. Furthermore, custom requirements related to re-
ward and load may be communicated via two separate rankings. As
shown using an illustrative evaluation, it may become clear that a
deployment, although nodes are technically capable to run a certain
workload, is not allowed by a hosting organization due to its require-
ments. Negotiation between the organizations may however resolve
conflicts after several rounds of interaction. In summary, the pro-
posed scheduling flow in this chapter has two important properties:
organizations are guaranteed deployment preferences, solving poten-
tial trust issues obstructing collaboration, and those preferences can

156 Trust Issue IV: Negotiating the Setup of a Data Pipeline

be coordinated quickly, fitting the ad hoc nature of the collabora-
tions studied. Future work should investigate how finding agreement
between organizations should evolve, from being only a single step
during scheduling, to an ongoing procedure which runs in parallel to
the execution of a workload. This way, it is possible to obtain a sliding
agreement, i.e. an agreement which consists of a series of subsequent
sub-agreements over time. This approach would also allow organiza-
tions to steer their requirements based on the real-time allocation of
resources and their associated costs calculated using their individual
pricing model. In the end, maintaining agreement between different
organizations is crucial to keep the cross-organizational collaboration
alive.

Acknowledgments
The work described in this chapter, was partly funded by the FUSE
research project [3], in which a Flexible federated Unified Service En-
vironment was investigated. The project was realized in collaboration
with imec. Industry project partners were Barco, Axians and e-BO
Enterprises, with project support from VLAIO (Flanders Innovation
& Entrepreneurship).

Chapter 5 157

Bibliography
[1] “Kubernetes.” https://kubernetes.io.

[2] T. Goethals, S. Kerkhove, L. Van Hoye, M. Sebrechts,
F. De Turck, and B. Volckaert, “FUSE: A Microservice Ap-
proach to Cross-domain Federation using Docker Containers,” in
Proceedings - 9th International Conference on Cloud Computing
and Services Science (CLOSER), (Heraklion, Greece), pp. 90–99,
SciTePress, 2019. https://doi.org/10.5220/0007706000900099.

[3] “FUSE: Flexible federated Unified Service Environment.” https:
//www.imec-int.com/en/what-we-offer/research-portfolio/fuse.

[4] L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert, “Trust-
ful ad hoc cross-organizational data exchanges based on the Hy-
perledger Fabric framework,” Int J Network Mgmt, vol. 30, no. 6,
p. e2131, 2020. https://doi.org/10.1002/nem.2131.

[5] L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert, “A se-
cure cross-organizational container deployment approach to en-
able ad hoc collaborations,” Int J Network Mgmt, vol. 32, no. 4,
p. e2194, 2022. https://doi.org/10.1002/nem.2194.

[6] L. Van Hoye, T. Wauters, F. De Turck, and B. Volckaert, “En-
abling the Rescheduling of Containerized Workloads in an Ad
Hoc Cross-Organizational Collaboration,” J Netw Syst Manage,
vol. 31, no. 1, 2023. https://doi.org/10.1007/s10922-022-09699-
9.

[7] S. Mubeen, S. A. Asadollah, A. V. Papadopoulos, M. Ashjaei,
H. Pei-Breivold, and M. Behnam, “Management of Service Level
Agreements for Cloud Services in IoT: A Systematic Mapping
Study,” IEEE Access, vol. 6, pp. 30184–30207, 2018. https://
doi.org/10.1109/ACCESS.2017.2744677.

[8] M. Macías and J. Guitart, “SLA negotiation and enforcement
policies for revenue maximization and client classification in
cloud providers,” Future Generation Computer Systems, vol. 41,
pp. 19–31, 2014. https://doi.org/10.1016/j.future.2014.03.004.

[9] B. Shojaiemehr, A. M. Rahmani, and N. N. Qader, “A three-
phase process for SLA negotiation of composite cloud services,”
Computer Standards & Interfaces, vol. 64, pp. 85–95, 2019.
https://doi.org/10.1016/j.csi.2019.01.001.

https://kubernetes.io
https://doi.org/10.5220/0007706000900099
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://doi.org/10.1002/nem.2131
https://doi.org/10.1002/nem.2194
https://doi.org/10.1007/s10922-022-09699-9
https://doi.org/10.1007/s10922-022-09699-9
https://doi.org/10.1109/ACCESS.2017.2744677
https://doi.org/10.1109/ACCESS.2017.2744677
https://doi.org/10.1016/j.future.2014.03.004
https://doi.org/10.1016/j.csi.2019.01.001

158 Trust Issue IV: Negotiating the Setup of a Data Pipeline

[10] J. Yan, R. Kowalczyk, J. Lin, M. B. Chhetri, S. K. Goh, and
J. Zhang, “Autonomous service level agreement negotiation for
service composition provision,” Future Generation Computer
Systems, vol. 23, no. 6, pp. 748–759, 2007. https://doi.org/10.
1016/j.future.2007.02.004.

[11] A. Omezzine, N. Bellamine Ben Saoud, S. Tazi, and G. Coop-
erman, “Towards a generic multilayer negotiation framework
for efficient application provisioning in the cloud,” Concur-
rency Computat: Pract Exper, vol. 32, no. 1, p. e4182, 2020.
https://doi.org/10.1002/cpe.4182.

[12] P. Samimi, Y. Teimouri, and M. Mukhtar, “A combinatorial
double auction resource allocation model in cloud computing,”
Information Sciences, vol. 357, pp. 201–216, 2016. https://doi.
org/10.1016/j.ins.2014.02.008.

[13] Y. Mao, X. Xu, L. Wang, and P. Ping, “Priority Combinato-
rial Double Auction Based Resource Allocation in the Cloud,”
in Proceedings - IEEE Sixth International Conference on Big
Data Computing Service and Applications (BigDataService),
(Oxford, UK), pp. 224–228, IEEE, 2020. https://doi.org/10.
1109/BigDataService49289.2020.00043.

[14] L. Li, L. Liu, S. Huang, S. Lv, K. Lin, and S. Zhu, “Agent-
based multi-tier SLA negotiation for intercloud,” J Cloud Comp,
vol. 11, no. 16, 2022. https://doi.org/10.1186/s13677-022-00286-
6.

[15] L. Li, C. S. Yeo, C.-Y. Hsu, L.-C. Yu, and K. R. Lai, “Agent-
based fuzzy constraint-directed negotiation for service level
agreements in cloud computing,” Cluster Comput, vol. 21, no. 2,
pp. 1349–1363, 2018. https://doi.org/10.1007/s10586-017-1248-
y.

[16] J. A. Wickboldt, M. Q. Guerreiro, L. Z. Granville, L. P. Gas-
pary, M. F. Schwarz, C. Guok, V. Chaniotakis, A. Lake, and
J. MacAuley, “MEICAN: Simplifying DCN Life-Cycle Manage-
ment from End-User and Operator Perspectives in Inter-Domain
Environments,” IEEE Communications Magazine, vol. 56,
no. 1, pp. 179–187, 2018. https://doi.org/10.1109/MCOM.2017.
1601205.

https://doi.org/10.1016/j.future.2007.02.004
https://doi.org/10.1016/j.future.2007.02.004
https://doi.org/10.1002/cpe.4182
https://doi.org/10.1016/j.ins.2014.02.008
https://doi.org/10.1016/j.ins.2014.02.008
https://doi.org/10.1109/BigDataService49289.2020.00043
https://doi.org/10.1109/BigDataService49289.2020.00043
https://doi.org/10.1186/s13677-022-00286-6
https://doi.org/10.1186/s13677-022-00286-6
https://doi.org/10.1007/s10586-017-1248-y
https://doi.org/10.1007/s10586-017-1248-y
https://doi.org/10.1109/MCOM.2017.1601205
https://doi.org/10.1109/MCOM.2017.1601205

6
Conclusions and Perspectives

This concluding chapter reflects on the proposed solutions in the
broader context of this dissertation and identifies interesting open
challenges.

6.1 Reflecting on the Research Questions
The solutions proposed throughout the dissertation try to give an ap-
propriate answer to the posed research questions. For each of these
parts, it is however possible to present some additional thoughts that
came to mind during the writing process or after publication. The re-
search questions presented in Chapter 1 are revisited for convenience.

Research Question 1: How can potential disputes, related
to the sharing of data between organizations, be prevented
in case of an urgent collaboration?

This research question is answered by proposing a fully automated
data exchange setup, making use of generic clients, extended with
an appropriate logging mechanism. The asynchronous aspect of the
logging mechanism, meaning that a data exchange does not need to
wait for logs to be created fitting the ad hoc nature of the collabo-

160 Conclusions and perspectives

ration, is crucial and different levels of this asynchronous behaviour
are compared. There are a few considerations worth mentioning:

■ The presented contributions in Chapter 2 and Appendix A pro-
vide an in-depth step-by-step description of how the trust issue
is exactly addressed, given the requirements of the case dis-
cussed and the limitations identified in the used technology.
In summary, the proposed result couples a logging mechanism,
asynchronously, to a data exchange process. The connection
between those two conversations is crucial: it allows a partic-
ipating organization to continuously assess whether the inten-
tions of counterparties are right, i.e. whether they are prepared
to audit ongoing exchanges to prevent disputes afterwards. As
stated, the logging mechanism does not claim to prevent dis-
putes by any means, but it allows an organization to quickly
detect potentially malicious behavior. The solution thus en-
ables an organization to perform an ongoing assessment of the
obtained level of traceability, to pause the sharing of data with
specific counterparties when issues are detected, and to resume
collaboration only when remaining logging needs are fulfilled.

■ Taking the viewpoint of an attacker, it is possible to analyze the
attack surface. A side-channel attack is possible, where organi-
zations part of the collaboration are involved in unauthorized
sharing of data with other parties through other (non-approved)
back-channels. As the sharing of data between participants is at
the core of a collaboration, this is difficult to mitigate. Highly
sensitive data should not be shared anyway: for example, in the
case of a video stream, it would be possible to blur or hide sen-
sitive parts of the image, at the start of the data exchange pro-
cess. Furthermore, literature is available discussing how unique
watermarks could be integrated to identify which entity is re-
sponsible for the leakage of data [1]. The possibility for a Sybil
attack to occur is already discussed in Chapter 2. This may
happen in case an attacker is able to obtain multiple ordering
service node (OSN) signing identities of the deterministic or-
dering service. However, when this happens, a participating
organization will detect malicious behavior in case its expected
logs are missing and pause the sharing of data, as discussed
above. Given that detectability of potentially malicious behav-
ior is sufficient for this case, it is not necessarily an issue that,
at the time of writing the chapter, no BFT consensus mech-

Chapter 6 161

anism is provided by Hyperledger Fabric. Obviously, it then
becomes easier for an attacker to violate the integrity of the
system, and thus to thwart fruitful collaboration. Finally, as
discussed in Chapter 2 as well, there is a non-technical risk due
to the relatively low number of participants. The ultimate se-
lection of database (chain) may be point of discussion: when
multiple organizations agree on a tampered fork afterwards, the
untampered version may lose its majority vote.

■ The proposed logging mechanism leaves open how the actual
exchanged data needs to be stored as this will differ per col-
laboration scenario. This can either be fully on-chain, fully off-
chain and a corresponding hash on-chain, or a hybrid scenario
in which only part of the data is stored on-chain. Selecting
one of these options is merely a trade-off between the amount
of storage a distributed database should be allowed to occupy
and the level of reconstructability needed for the collaboration.
This topic is shortly touched in the publication presented in
Appendix A. Each approach has its advantages and disadvan-
tages. The presented publications elaborate on the second op-
tion, using hashing, as the most generic collaboration scenario
does not allow to make any assumptions related to the type of
data, and to guarantee a level of reproducibility for the evalu-
ation section. Clearly, this solution comes with a cost, as the
data corresponding with the hash needs to be kept to know
what was exactly exchanged. To be clear, any storage solution
is compatible with the logging mechanism discussed, there is
no single right solution. Finally, it is interesting to share fol-
lowing ideas. A hashing solution could prove to be sufficient in
case compact metadata describing the exchange is stored on-
chain. For example, in case a video stream is shared, it may
be sufficient to know which objects were detected based on the
analysis of a computer vision algorithm. Also, in case of a hy-
brid scenario, it may be sufficient to store I-frames on-chain,
and P-frames / B-frames off-chain, if the latter is required.

■ As a potential trust issue regarding storage could be identified
in this ad hoc collaboration case, it seemed logical to explore
state of art blockchain solutions. After a while, it became clear
that the set of available concepts, which are all branded under
the same blockchain label, had really diverse use cases. The
topic seems to cause confusion and even controversy. Clearly,

162 Conclusions and perspectives

there is a huge difference between permissioned and permission-
less blockchains. The former could be seen as an evolution of
distributed databases, while the latter brings revolution due to
the newly proposed consensus mechanisms. Strong proponents
of permissionless blockchains do not consider permissioned ones
to be valid blockchains. Although this basically is a discussion
about terminology, it may never hinder innovative concepts to
improve the resilience of distributed database against malicious
entities. Due to the limited number of participants in the case
discussed here, the set of writers will always be known and
does not need to change dynamically over time, and therefore
the complexity of the consensus mechanisms brought by per-
missioned blockchains seems to be sufficient. The conclusion
drawn from all experiences, including a scientific conference on
this topic, is that one should carefully match wished-for prop-
erties against assumptions exhibited by each solution.

■ It is hard to find a comprehensive evaluation case for ad hoc col-
laborations in general, as the number of organizations, the num-
ber of data streams per second, the direction of data streams,
the type of data, the collaboration duration, the number of
clients and proxies per organization, the latencies between the
virtual machines, the setup of the Kafka cluster, etc. all de-
pend on a specific situation at hand. The parameter set that
is currently used and documented, focuses on a short-term col-
laboration between a limited set of at most ten organizations.
This is a typical case, as the proposed application is intended
for small scale urgent cross-organizational collaborations. The
main purpose of the experiments is to show that a proof-of-
concept works and to compare the situation where logging is
turned on to the situation where logging is turned off. Finally,
the Markov chain allows to play with different collaboration
scenarios quickly.

■ Chapter 2 compares the purpose of the chain data structure
in the proof-of-work consensus mechanism as used by Bitcoin
and the purpose of the chain as used here. Although the in-
ternals of Bitcoin are only slightly touched, it is interesting to
share a technical report by Ozisik and Levine [2], which was
read at a later point in time. It discusses the analysis of a suc-
cessful double-spend attack as presented in the original Bitcoin
paper. The detailed derivations of the equations to calculate

Chapter 6 163

this probability of attacker success are shown. Of particular
interest are the conflicting assumptions regarding the budget
of the attacker in this analysis, as pointed out by the authors.
They aptly summarize this as follows: “It’s like saying you have
infinite money for gas for your car, but can’t spend any of those
funds on a faster car, even though faster cars are available.”

■ The data exchange mechanism currently focuses on the typical
request / response interaction scheme. Extending this solution
to support eventing or pushing of data is a possibility for fu-
ture work. In both cases, a slightly adapted pattern consisting
of the identified logging functions will be obtained, which basi-
cally means that new implementations making use of the same
fundamentals need to be foreseen.

Research Question 2: How can the deployment of contain-
ers, proposed by a potentially malicious external entity, be
verified by the hosting organization?

The answer to this research question consists of the integration of
the authorization protocol UMA 2.0, of which an implementation
is brought by Keycloak, into the container orchestrator Kubernetes.
This way, it is possible for one or more local administrators to verify
deployments asynchronously. There are a few considerations worth
mentioning:

■ The verification of external deployments would not be needed
in case interactions between organizations were limited to the
consumption of APIs in another domain and the processing of
tasks by means of containers deployed in own domain. This
could be considered as the default scenario covering most use
cases. However, there may be motivations to deploy software
remotely. From a network point of view, there may be band-
width restrictions between the participants or latency issues
due to the encryption of significant volumes of data in transit
as executed by protocols like TLS. Furthermore, confidentiality
may be an issue, both for data from local sources and for algo-
rithms (e.g. a patented computer vision algorithm). Last but
not least, as inexperienced end-users could be part of an ad hoc
collaboration, it is needed to deploy external software anyway.

■ The aim of the presented solution is to bring together technol-
ogy available in the state of art: (I) Kubernetes, as a widely

164 Conclusions and perspectives

used container orchestrator and (II) binary / image / container
verification techniques targeted at finding exploits and/or vul-
nerabilities like suspicious network patterns, indications of com-
promise, etc. The main question answered in this contribution
is thus how to integrate verification techniques, which are al-
ready out there and new techniques which will be researched
in future work, into Kubernetes in a transparent way. By no
means safety is claimed through the suggested solution. Hav-
ing a way to implement strong access control through UMA
and possibly policy-based authorization is in fact only the be-
ginning of an entire verification pipeline through which exter-
nal deployments need to pass. Having a way to verify external
deployments is considered key here, even to prevent against be-
nign organizations going rogue, regardless of what the exact
verification steps look like.

■ Although a prototype showed that this architecture allows to
realize verified deployments, it is worth mentioning a trade-off.
The presented solution requires three additional components to
be deployed in the domains of each of the participating organi-
zations: a custom Kubelet, a resource server and an authoriza-
tion server. The reason for this is a lack of trust, as the organi-
zations only trust themselves. Clearly, this level of supervision
comes at the cost of a more decentralized setup which is highly
likely to take more time to prepare and manage (e.g. to pre-
vent the authorization component against attacks like denial-
of-service at layer 3 or 7, brute force credentials guessing, etc).
Furthermore, the replication of these components will also have
an impact on the overall cost associated with the collaboration.
Outsourcing authentication and/or authorization is an alter-
native for each hosting organization, but thus means that a
trusted party needs to be found. Chapter 3 considers a generic
collaboration and therefore does not make any assumption re-
garding the availability of a (partially) trusted third party. The
conclusion is that the presented architecture is not the single
correct choice of deployment and that a practical setup depends
on the collaboration at hand. Each of the organizations should
thus be able to express its trust preferences at the start of a
collaboration, for example by selecting a trust category from a
pre-compiled list. This is further discussed later on.

Chapter 6 165

Research Question 3: How can the scheduling of containers,
a task for which the cluster operator is responsible, be fitted
to an unknown heterogeneous cluster environment?

The provided answer to this research question consists of the inte-
gration of a probe swarm constituting the so called probe swarm
architecture. There are a few considerations worth mentioning:

■ Usually, papers discussing the scheduling topic present algo-
rithms, in fact heuristics, and compare them with existing ones
based on evaluation scenarios. The focus of Chapter 4 is not
necessarily on the selection of the algorithm, but rather on the
input that needs to be considered in case of an ad hoc cross-
organizational collaboration. As the cluster layout is way more
unknown and dynamic compared to a regular cluster setup, it is
needed to actively gather accurate input data through the usage
of probes. Clearly, the performance of any algorithm depends
on the quality of the input data, thus this is a crucial aspect to
lower the chance of costly scheduling mistakes. The processing
of this input data may be done in different ways. Well-known
heuristics could definitely be applied to this data, but likely in
a supportive role. Due to the ad hoc and dynamic nature of
the collaboration, it seems that a mix of manual and automatic
decisions is inevitably present to steer the scheduling process.
Furthermore, the goal is not to squeeze node performance, as is
the case for scheduling in data centers. The conclusion is that
the presented and motivated probe swarm architecture matches
these criteria.

■ The proposed contribution does not try to replace existing dis-
tributed monitoring frameworks like Prometheus or in-band
telemetry setups. As explained in Chapter 4, the assessment
of metrics or node properties is definitely possible, but may
exhibit a few complications. It may be difficult to quickly com-
pare gathered data, for example diverging hardware character-
istics. Furthermore, these frameworks need to be configured,
which requires a level of preparation amongst the participants.
Measurements need to be collected continuously, which allo-
cates bandwidth and may leak internal data, and they can eas-
ily be forged by participants. Therefore, an additional, likely
complementary, solution is needed allowing rapid evaluation
of nodes and their different potential in light of the collabora-

166 Conclusions and perspectives

tion at hand. By posing a challenge, it is possible to discover
the capabilities and (artificial) restrictions of nodes over time.
Clearly, significant performance differences are mainly targeted
here, for example to identify restricted edge devices.

■ Regarding the possibility to exploit the probing concept, two
risks can be identified. First, an attacker could figure out when
exactly a node is probed and at that time maliciously adapt
the software behavior to consume at least more resources than
actually needed for the purpose of the application. Although
this attack is possible, external containers will likely be made
subject to performance limits by hosting organizations. Bursts
are therefore able to happen, but their effect on competing pro-
cesses will only be limited. Second, an attacker could trigger
continuous reschedulings negatively impacting the scheduling
progress in case no countermeasures are taken. Although this
issue is less prevalent in this context, as the rescheduling proce-
dure would only be triggered in case of a (severe) performance
issue, it is needed to incorporate a possible countermeasure. An
appropriate solution would be to introduce a cooling down pe-
riod, i.e. when a node appeared to underperform, it cannot be
part of the set of candidate nodes evaluated during several con-
secutive scheduling rounds. Multiple performance issues with a
node could then cause this period to increase progressively, thus
preventing the risk of a (re)scheduling denial-of-service attack.

Research Question 4: How can the scheduling of contain-
ers, a task for which the cluster operator is responsible and
which is fitted to an unknown heterogeneous cluster envi-
ronment, be extended to allow for negotiation between the
participating organizations?

The answer to this question is mainly driven by the introduction of
a load and reward ranking which allow to deal with highly dynamic
collaborations. There are a few considerations worth mentioning:

■ The main aspect to consider when answering this question is
how the negotiation between participating organizations should
be organized. The requirements identified in Chapter 5, a set
which could possibly be extended, need to be communicated.
It is possible to define a negotiation protocol detailing the fixed
steps organizations should take to come to agreement. It is
however questionable whether this would match the flexibility

Chapter 6 167

of the case discussed here. Organizations will likely change
requirements frequently, for example to react to requirements
specified by others, or to try different sets of requirements and
wait for the reactions of the partners. Furthermore, organi-
zations could join and leave the collaboration at any point in
time, causing the negotiation protocol to be adapted and possi-
bly organizations to be informed. The presented solution takes
an approach focused on freedom. Organizations have rankings,
presented visually via a monitoring solution, at their disposal
which allow them to specify requirements at any point in the
scheduling process. For sure, this would allow a scheduling
process to continue indefinitely. Due to the urgency of the
collaboration, scheduling is time-critical, meaning that if the
process would take longer than a pre-defined upper limit, it
would be needed for an operator to gradually decrease the level
of freedom, for example by specifying a maximum number of
remaining editing rounds. When the deadline has passed and
no agreement has been produced, it is needed to restart the
scheduling procedure. The conclusion is that the chance for
a collaboration to succeed should be maximized, and that in
case of urgency, top-down rules can be imposed to force a final
decision.

■ As negotiation may remain ongoing after initial scheduling and
deployment, it is required to explore techniques which are capa-
ble to cope with this behavior. As already mentioned in Chap-
ter 5, graceful rescheduling is one such technique. In addition
to do this, it would be interesting to investigate to which extent
it is possible to suspend and resume jobs (e.g. as allowed by
Kubernetes) during this negotiation procedure. Allowing work-
loads to be executed dynamically would also enable organiza-
tions to negotiate priorities and to transform to a scheduling
procedure based on the agreed importance of tasks.

■ An important reason why the concept of the load and reward
ranking is proposed, is that organizations may not be familiar
with the configuration of fully automated negotiating agents
typically used in SLA negotiation. In this case, it should trust
another entity for configuring the agent properly, which may
not be desirable. Ideally, automated negotiation would still be
the main driver behind the negotiation process, but the config-
uration by the local organization should be made more easily

168 Conclusions and perspectives

accessible. Although this suggestion is a moonshot, an interest-
ing concept was recently proposed by Meta AI through the Ci-
cero agent [3], which combines strategic reasoning and natural
language processing to understand and negotiate the intentions
of human players and to find shared objectives. Although tar-
geted at a specific board game, there clearly is a similar trend,
in this case in the domain of AI, to achieve more natural inter-
action between humans and agents. It would be interesting to
see how this idea could be transferred to the ad hoc collabo-
ration case as discussed here. This could definitely be a major
step forward in the negotiation of SLAs.

6.2 Future Perspectives
To conclude this dissertation, it is possible to identify interesting
directions for future work. In general, the cross-organizational aspect
of the setup, introducing the discussed potential trust issues, allows
many aspects of a collaboration environment to be checked against
these new circumstances. The challenges these bring on the level
of networking are just one of the many not yet discussed elements.
To keep things focused, only directions are discussed below which
elaborate on the earlier discussed work.

Supporting a multi-cluster environment
Each of the discussed solutions assumes the existence of a single feder-
ated orchestration cluster being operated by a cluster operator. The
idea is that organizations can join the collaboration at any time by
contributing worker nodes. It is however possible that an organi-
zation is willing to contribute a significant amount of nodes. As
connecting a node to the federated cluster requires quite some con-
figuration [4], for example to enable networking and to guarantee no
changes are left on the host, it seems illogical to replicate this over-
head when nodes are already part of an orchestration environment.
Future work should therefore investigate how organizations could con-
tribute an entire cluster of nodes under its supervision, either located
on-premise or in a cloud. Projects like Open Cluster Management [5]
and Cluster API [6] should definitely be examined in this regard. Al-
though this setup simplifies orchestrator deployment, it complicates
the management of containers. For example, a multitude of sched-
ulers becomes present, a situation which may significantly change the

Chapter 6 169

roles of the operator and the local administrators. As the potential
trust issues can still be identified in this new environment, it appears
that all proposed methodologies are still relevant.

Researching the edge
As assumed until now, and as is also clear from previous paragraph,
organizations contribute worker nodes and only these are further ana-
lyzed. Implicitly, this means that those nodes are capable of running
components needed to participate in the orchestrator environment.
Clearly, an organization should have at least one node in a preferably
stable environment, to ensure a gateway is permanently available to
communicate with the cluster. The actual data sources however, that
are of real interest, may be much deeper down in the network on edge
computing nodes. Such nodes are typically placed in sub-optimal
network environments, for example in a production plant offering
a diverse set of network connection technologies (e.g. WiFi, LoRa,
3G/4G). Consuming their data may bring additional challenges in
terms of reliability and availability. Furthermore, the microservices
connecting them to the top-level nodes should be resilient against
this heterogeneous and resource constrained environment. Fault tol-
erance of these services should thus be examined. Finally, it should
be evaluated in which cases it is interesting to enable edge nodes to
join the collaboration straight away, for example through the usage
of lightweight Kubernetes solutions [7].

Expressing trust relationships
A key characteristic of the collaborations discussed throughout this
dissertation is a lack of full trust between the participating organi-
zations. As discussed earlier, this lack of trust needs to be remedi-
ated by introducing additional mechanisms, and configuring associ-
ated software components costs time and money. Until now, a binary
approach was followed, either there is full trust or no full trust. It is
however possible to take a more granular approach regarding trust.
Organizations should be able to express trust relationships. A sub-
set of the collaborating entities may for example have a common
trusted third party (preferred partner), or an organization may have
a trusted third party responsible for authentication, or business units
of the same organization may fully trust each other. These are all
semi-trust examples in which trust conditions can be loosened and
deployment be simplified. Clarifying these exceptions should happen

170 Conclusions and perspectives

Figure 6.1: A more fine-grained evaluation of trust relationships.

at the start of a collaboration, but changing them should also be al-
lowed when the collaboration is ongoing. This way, it is possible to
define a cross-organizational collaboration taking into account trust
tailored to a specific case. Future work should investigate adequate
solutions to enable this.

Shifting trust and negotiation mechanisms downwards
The presented contributions focus on trust at the level of organiza-
tions. However, it would be possible to consider more fine-grained
trust assessments by shifting the proposed solutions towards lower
levels in the hierarchy if they are present. For example, as illustrated
by Figure 6.1, it is possible to evaluate trust relationships between
different sites or business units of organizations. Equally, it would be
possible to do this at the level of edge devices. The advantage this
would bring is that (temporary) trust violations, which can poten-
tially be caused by relatively small issues, do not cause organizations
to suspend their entire collaboration. A trade-off to be made is that
management complexity will increase, as multiple trust enabling soft-
ware components need to be duplicated. Furthermore, future work
should investigate research consumption of these components, as this
will become important once devices with constrained resources are
going to play a role in the proposed mechanisms.

Chapter 6 171

Bibliography
[1] H. Mareen, Pirates of the film industry : the curse of the forensic

watermark. PhD thesis, Ghent University, 2021. https://bit.ly/
PhDThesisHannes.

[2] A. P. Ozisik and B. N. Levine, “An Explanation of Nakamoto’s
Analysis of Double-spend Attacks,” tech. rep., 2017. https://doi.
org/10.48550/arXiv.1701.03977.

[3] “Meta AI presents Cicero,” 2022. https://ai.facebook.com/
research/cicero.

[4] T. Goethals, S. Kerkhove, L. Van Hoye, M. Sebrechts,
F. De Turck, and B. Volckaert, “FUSE: A Microservice Ap-
proach to Cross-domain Federation using Docker Containers,” in
Proceedings - 9th International Conference on Cloud Computing
and Services Science (CLOSER), (Heraklion, Greece), pp. 90–99,
SciTePress, 2019. https://doi.org/10.5220/0007706000900099.

[5] “Open Cluster Management.” https://open-cluster-management.
io.

[6] “Cluster API.” https://github.com/kubernetes-sigs/cluster-api.

[7] “K3s: Lightweight Kubernetes.” https://k3s.io.

https://bit.ly/PhDThesisHannes
https://bit.ly/PhDThesisHannes
https://doi.org/10.48550/arXiv.1701.03977
https://doi.org/10.48550/arXiv.1701.03977
https://ai.facebook.com/research/cicero
https://ai.facebook.com/research/cicero
https://doi.org/10.5220/0007706000900099
https://open-cluster-management.io
https://open-cluster-management.io
https://github.com/kubernetes-sigs/cluster-api
https://k3s.io

172 Prelude Trust Issue I: Logging Mechanism Concepts

A
Logging mechanism for

cross-organizational collaborations
using Hyperledger Fabric

⋆ ⋆ ⋆

L. Van Hoye, P-J. Maenhaut, T. Wauters, B. Volckaert
and F. De Turck

Published in IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), March 2019.

Abstract Organizations nowadays are largely computerized, with
a mixture of internal and external services providing them with on-
demand functionality. In some situations (e.g. emergency situations),
cross-organizational collaboration is needed, providing external users
access to internal services. Trust between partners in such a collabo-
ration can however be an issue. Although (federated) access control
policies may be in place, it is unclear which data was requested and
delivered after a collaboration has finished. This may lead to dis-

174 Prelude Trust Issue I: Logging Mechanism Concepts

putes between participating organizations. The open-source permis-
sioned blockchain Hyperledger Fabric is utilized to create a logging
mechanism for the actions performed by the participants in such a
collaboration. This appendix presents the architecture needed for
such a logging mechanism and provides details on its operation. A
prototype was designed in order to evaluate the performance of an
asynchronous logging approach. Measurements show that the pro-
posed logging mechanism enables organizations to create a log of
service interactions with limited delay imposed on the data exchange
process.

A.1 Introduction
A.1.1 Context
Cross-organizational collaborations should allow participants to share
in-house services across administrative domains in a secure way, i.e.
without making them publicly accessible. The added value of this is
that it allows to share knowledge among the partners and as such to
derive more intelligence. Figure A.1 shows an example of a possible
use case. Manufacturers need machines for product creation, e.g. a
robotic arm, and order them from equipment builders. These equip-
ment builders could fix the operation of their machines using the data
they produce, but they have no direct access to these machines once
installed. The investigated scenario is always the same, i.e. there is
a data exchange between Org X and Org Y and the latter requests
the data. As plenty of such cross-organizational collaborations are
possible, there is both a scientific interest and market potential for
research focusing on interconnecting cross-organizational systems in
a secure way.

A.1.2 Goal of logging mechanism
In most cross-organizational collaboration scenarios, participants will
have access control policies in place which define what data can be
accessed. After a collaboration has ended, it is however not clear
what specific data has been requested and what data has been de-
livered if no logging mechanism is used, which may lead to disputes
between organizations. The proposed logging mechanism has two
characteristics:

■ Make it impossible for an organization to deny (the integrity of)

Appendix A 175

Figure A.1: Sample collaboration scenario showcasing an equipment builder
gaining access to internal APIs of machines it installed at different manu-
facturers.

a request/response which it received during the collaboration,
leaving no option for a dispute afterwards.

■ Allow an honest organization to detect a lack of logging infor-
mation either due to dishonest organizations, due to malfunc-
tioning caused by e.g. a network failure or due to an attack on
the operation of the mechanism.

The goal of the logging mechanism is that, when it is executed cor-
rectly, no disputes are possible afterwards. As will become clear in
Section A.3.1, the mechanism itself cannot enforce correct execution,
meaning disputes are still possible. However, an honest organization
can detect incorrect behavior and decide to immediately stop collab-
orating with the participants in the collaboration. An honest orga-
nization thus continuously assesses whether the logging procedure is
correctly executed and takes action when this is not the case.

In order to realize this goal, it is necessary to produce cryptographi-
cally signed logs which describe the exchange in an unforgeable way.
An appropriate solution could be to communicate, for each data ex-
change, four signed messages between Org Y and Org X: signed re-
quest and response messages and also signed request and response
confirmation messages. This approach is used in this appendix. The
only remaining problem is that, in case of data loss, an honest or-
ganization loses all its logging data. The solution therefore needs to
enforce a more fail-safe data storage. The first option is to store the
logs in a crash fault-tolerant storage solution, managed by a third
party, which can be read and written by all organizations. However,

176 Prelude Trust Issue I: Logging Mechanism Concepts

in the case under investigation, it might be difficult to find a third
party which is trusted by all involved organizations. This party has
the power to manipulate logging state, even when organizations ex-
ecute periodic checks on it, as it can still be manipulated after the
collaboration has finished. The second option is to replicate state
over different nodes which is investigated in the next section.

A.2 Related work
The main advantage of replicating state over using a third party is
that each organization has its own replica of the state stored in its
trusted domain. This means that it can execute checks on this copy
without having to rely on an external entity. An honest organization
can execute two checks in order to detect a lack of logging informa-
tion:

1. For each data exchange, it will check whether its state contains
all the signed logs it expects there to be.

2. It can compare its state with those of other organizations to
verify whether data is correctly replicated.

For this approach to work, it is important that each organization has
an append-only log of state transitions, as otherwise check one could
evaluate to true at inspection time but to false after state rewrites.
A technology providing this finality is Hyperledger Fabric, a promi-
nent permissioned blockchain architecture, in which each peer has
a ledger consisting of a world state database with key-value pairs
(KVPs) and an append-only chain of transactions (TXs) capturing
the corresponding state transitions [1]. Storing TXs in a blockchain
data structure is also interesting for check two, as the latest hash
provides a summary of all TXs that happened before. Two organi-
zations comparing state then only need to compare their hash value
at a certain block height, which is an efficient operation. It is im-
portant to stress that, in this use case, chaining blocks of TXs is not
used to enforce immutability, like this is done in e.g. Bitcoin where
mining blocks is a costly operation due to the Proof-of-Work consen-
sus mechanism, but rather to have an efficient way to compare state.
The choice for a private permissioned blockchain is supported by the
flow chart in Figure A.2 which is commonly used in literature:

1. Data needs to be stored in a structured way, introducing the
need for a database.

Appendix A 177

Figure A.2: Which architectural blockchain model is most appropriate for
an application? [2]

2. There are multiple writers as each organization will be allowed
to store its logs.

3. As already mentioned, delegating logs to an always online trust-
ed third party (TTP) is not possible because all organizations
would need to trust it for processing the logs correctly, an as-
sumption which may not be true for all collaborations. Instead,
an offline TTP can be used as a certificate authority for a per-
missioned blockchain.

4. All writers are known, namely the participants in the collabo-
ration.

5. If all writers would mutually trust each other, each organiza-
tion could simply maintain its own log file. If organizations
have a history of trustful collaboration, this could be the case,
but it cannot be assumed for an ad hoc collaboration between
unknown participants.

6. Public verifiability is not required as the participants involved in
the collaboration are the only stakeholders in the data exchange
process.

The paper written by E. Androulaki et al. [3] describes the funda-
mentals of Hyperledger Fabric. Although this subsection does not

178 Prelude Trust Issue I: Logging Mechanism Concepts

reproduce its entire internal operation, it is important to address
some fundamental concepts. The main innovation of Fabric is that
it uses a three-phase model as consensus mechanism. For each TX,
there are three separate phases, more specifically TX execution, or-
dering and validation. As explained in the paper, this model solves
a number of limitations which are commonly found in permissioned
blockchains which use an order-execute model. One of the advantages
it brings is that the ordering step is decoupled, meaning pluggable
consensus can be used for this phase, i.e. for agreeing upon a total
order of TXs. Currently, Fabric provides only one out of the box
production-ready ordering service which is based on a Kafka cluster.
This distributed messaging platform can withstand crash faults, but
can not cope with malicious brokers introducing Byzantine faults.
The paper written by J. Sousa et al. [4] proposes the first Byzantine
Fault Tolerant (BFT) ordering service for Fabric. The Kafka cluster
is replaced with a set of frontend nodes, which the peers can connect
to, and a set of ordering nodes, which the frontend nodes connect
to. A Practical Byzantine Fault Tolerant (PBFT) scheme, based on
the BFT-SMaRT library [5], is used between the ordering nodes as
consensus mechanism. This way, it is possible to withstand f mali-
cious ordering nodes from a set of size n as long as f < n

3 . Assuming
an organization is only allowed to deploy at most one ordering node
in its own domain to prevent a Sybil attack, 4-6 organizations can
cope with 1 malicious organization, 7-9 with 2 malicious organiza-
tions, 10-12 with 3 malicious organizations, etc. This also means
that, when the Byzantine ordering service is used, a collaboration
between three organizations does not seem to be possible in a fully
distributed setting.

The integrity of Fabric thus lies in the operation of the ordering ser-
vice. For the cross-organizational collaborations researched in this
appendix, the Kafka ordering service is used. It cannot cope with
Byzantine faults, but as organizations execute the checks mentioned
above, they can detect any malicious behavior. The conclusion is that
an improved trust model for the ordering service could be used, as it
makes malicious behavior of this part of the architecture harder, but
it is not necessary for this application due to the proposed checks.
It is important to note that deploying a Kafka cluster at one or-
ganization is not the same scenario as using a TTP, because each
organization has its own ledger for which it can execute checks. A
malicious ordering service could never invent TXs as it is not capa-
ble of creating a valid signature. Furthermore, it could never remove

Appendix A 179

TXs as organizations would find out by executing the checks. The
only thing it could do is reorder TXs, but it is only important that
there is a strict order of TXs in order to obtain the same chain of TXs
for each organization, not what that specific order is [6]. Finally, the
TXs only contain hash values as will become clear in Section A.3.1,
meaning it is impossible to leak information.

There are already multiple research papers examining the Hyper-
ledger Fabric technology. On the one hand, there are papers which
present use cases different than the one described in this appendix,
e.g. banking [7], voting [8], managing access to an electronic health
record [9], managing configuration of IoT devices [10], managing
inter-organizational user authentication in a distributed manner [11],
decentralizing service ecosystems [12] and executing know-your-cust-
omer validation [13]. The use case presented in the paper written by
S. Kiyomoto et al. [14] comes close to the use case examined in this
appendix. Encrypted anonymized data is sent between a data broker
and data receiver and fingerprints of this exchange are stored in the
ledger by the data broker. Only when the data broker has received a
confirmation message of the TX coming from the blockchain, it sends
the key to the data receiver to decrypt the data. This approach is a
synchronous one, i.e. the data can only be used when the blockchain
operation is completed. An asynchronous approach will be proposed
and evaluated in this appendix. On the other hand, there are also
papers which focus more on Fabric itself, e.g. on how the deployment
life cycle should be managed [15] and on how the blockchain could
be queried in an efficient way [16]. There are also papers available
which address the issue of privacy, e.g. when only a subset of the
peers is allowed to see the exchanged data, e.g. using secure multi-
party computation whereby data is encrypted using a shared secret
key or using the public key of each allowed organization [17], or for
executing smart contracts with secrets, e.g. in trusted execution en-
vironments like Intel SGX enclaves [18].

A.3 Logging mechanism
A.3.1 Design decision
The baseline architecture to start from consists of multiple client-
server relationships. This situation is shown in Figure A.3, whereby
three organizations want to share APIs among them. Two concep-
tual channels are defined, i.e. putting content in the common ledger

180 Prelude Trust Issue I: Logging Mechanism Concepts

Figure A.3: Components needed for the proposed logging mechanism.

is called channel 1 and direct communication between a pair of orga-
nizations is called channel 2. There are two possible design strategies:

1. Only channel 1 is used, i.e. both request and response are com-
municated via this channel and are thus stored in the common
ledger. In the case of e.g. video data, TXs become large and
storage could become a problem as the ledger grows quickly:
when a 1080p 24fps video stream is encoded with an H.264/-
MPEG4-AVC encoder, a stream with a bit rate of approxi-
mately 1000 kbps is obtained with a Y-PSNR of around 35
[19]. When only 10 minutes of video data is shared, this leads
to 75 MB of data per camera that needs to be stored at each
peer, which does not scale very well. Another example is trans-
ferring files of a few MB or more between organizations. An
advantage of this approach is that it is secure, i.e. no disputes
are possible about the actual request/response that was sent,
as all participants can query the ledger.

2. Only a fingerprint of the request and response is stored in the
ledger, i.e. the data of each request and response is hashed. The
actual data is then exchanged via a communication channel dif-
ferent than the ledger. Each organization is responsible to store
the data corresponding with the hashes it puts in the ledger,
as it should be able to reveal its data in case of a dispute. The
drawback of this approach is that organizations other than the

Appendix A 181

two involved in the data exchange cannot determine whether
the request/response sent via channel 2 matched with the one
logged via channel 1. This means that e.g. dishonest Org Y
could falsely deny to have received a response from honest Org
X. In general, it is impossible to verify whether an organization
did not confirm a request/response on purpose, i.e. allowing a
possibility for a dispute, or whether it did not receive an ac-
tual request/response at all. This means that disputes are still
possible until a signed confirmation message is stored.

Due to the possible scalability issue of strategy one, the second strat-
egy is further examined in this appendix. Although it is less secure
as strategy one, it achieves the goals mentioned in Section A.1.2.

A.3.2 Architecture of logging mechanism
Figure A.3 shows the components that are used for the proposed log-
ging mechanism. Each organization has an EP, client, and a proxy.
EP stands for endorsing peer as used in the Hyperledger Fabric archi-
tecture. The set of endorsing peers is typically a subset of the entire
peer set. Their role is to simulate TX proposals originating from the
proxies, i.e. they execute the chaincode (CC), also called smart con-
tracts, with the given input parameters and send back their simulated
response and read/write sets of the ledger’s key-value pairs [20]. As
each organization should be able to sign its own TX proposals, they
all need at least one such endorsing peer. Each EP runs the CC in
a separate Docker container. As Docker prevents a container from
accessing data and processes running in the host system and also pre-
vents it from exhausting resources [21], the host system cannot suffer
from malicious code. The client components each expose a web API
within the collaboration to share internal services. Requests for data
and corresponding responses are exchanged between these clients.
When the exchange is ongoing, the proxies are asynchronously called
by the clients to execute steps of the logging mechanism. These prox-
ies then communicate with the EPs of the organization to sign TX
proposals before they are sent to the ordering service.

As mentioned in Section A.1.2, four signed messages are needed per
data exchange. The core of the logging mechanism therefore consists
of four functions defined in the CC. Every organization executes the
same CC, i.e. they update the ledger in the same predefined way,
and only one channel is needed as each organization is allowed to see

182 Prelude Trust Issue I: Logging Mechanism Concepts

all TXs. There are two logging functions and two inspect functions.
The logging functions are needed to log the request coming from Org
Y and the response coming from Org X:

■ LogRequest: Org Y creates a TX proposal for putting the data
of RQ1, as shown in Figure A.3, into the ledger. It signs the
proposal and sends the TX to the ordering service.

■ LogResponse: Org X creates a TX proposal for putting the data
of RS1, as shown in Figure A.3, into the ledger. It signs the
proposal and sends the TX to the ordering service.

A hash is calculated in the implementation of these functions. For
RQ1, the hash is calculated over the HTTP method, URL and body.
For RS1, the hash is calculated over the response body. Currently,
the SHA-256 hashing function is used, meaning data of any length
is compressed to 32 bytes. Afterwards, the data is stored in the
ledger using Fabric’s function PutState, i.e. they update the ledger’s
KVPs and cause state transitions. These transitions are then logged
as different TXs in the chain of blocks. It is important to note that
Hyperledger Fabric throws an error when two TXs in the same block
try to update the same KVP [22]. To prevent this, a unique key in
the ledger is constructed by appending _request or _response to the
exchange ID value.

As the content set in these KVPs can be anything, i.e. an organi-
zation can log whatever it wants, it needs to be examined whether
the logged requests/responses correspond with the actual requests/re-
sponses sent via channel 2. Only when this is true, the log can be seen
as a correct reflection of what has happened during a collaboration.
Two more functions are thus required:

■ InspectRequest: Org X needs to confirm whether the received
request RQ2 matches with the one logged RQ1 by Org Y.

■ InspectResponse: Org Y needs to confirm whether the received
response RS2 matches with the one logged RS1 by Org X.

Both functions use Fabric’s function GetState, i.e. they read data from
the ledger. A read operation does not cause state transitions, mean-
ing no evidence of this check is stored in the ledger. However, the goal
is to obtain a log file showing the exchanges that have happened, im-
plying that when an organization agrees with a log, it should confirm
this. The organization inspecting a request/response should therefore

Appendix A 183

do the same as with LogRequest and LogResponse, i.e. put its confirma-
tion in the ledger by creating a TX proposal, signing it and sending
it to the ordering service.

As already mentioned in Section A.2, an asynchronous flow is pro-
posed in this appendix. This means that the speed of the data ex-
change process does not heavily depend on the speed of the logging
mechanism, i.e. channel 2 is almost not delayed by channel 1. The
more synchronous the approach is, i.e. the more blocking behavior is
present, the slower the data exchange process becomes. If this logging
mechanism would then be used to log calls received by an API being
faced with a high load, it could become the bottleneck of the system.
The goal is therefore to minimize the overhead caused by the log-
ging mechanism and to evaluate the performance of an asynchronous
approach. To show the complete cycle of a secure data exchange,
a sequence diagram is presented in Figure A.4. It shows the asyn-
chronous approach with its two interaction schemes each operating
at their own pace. The first scheme enables a fast exchange of data,
the second scheme enables a slower logging of all the actions. The
exact order of execution can differ a bit, depending on how long an
asynchronous operation takes to execute.

Figure A.3 shows the HTTP headers of RQ2 and RS2. As Org Y logs
the request for data, it needs to send the TX ID Log Request along
with RQ2. This enables Org X to wait for the TX to be committed to
its local ledger and to execute its inspect function (arrow 12 and 13).
This works the same for the response, i.e. Org X sends the TX ID
Log Response along with RS2, allowing Org Y to execute its inspect
function at the appropriate moment (arrow 14 and 15). Finally, each
organization also wants to verify whether its partner executed the
inspect function. Each organization therefore sends along the TX ID
which it will use to register its inspection. Sending the TX ID Inspect
Response in RQ2 allows Org X to check whether Org Y inspected its
response, while sending the TX ID Inspect Request in RS2 allows Org
Y to check whether Org X inspected its request. It is important to
note that when waiting for a TX to be committed to the local ledger,
a period of two seconds is used between two consecutive inspects of
the ledger and a timeout value is used to determine when a TX should
be committed at the latest. This timeout is needed to enable check
one mentioned in Section A.2.

The ‘Fabric’ lifeline is further detailed in Figure A.5, showing the

184 Prelude Trust Issue I: Logging Mechanism Concepts

Figure A.4: Sequence diagram showing the asynchronous execution flow of
one data exchange between two organizations.

integration of Fabric’s TX flow into the logging mechanism. This
interaction is executed for each CC function, e.g. LogRequest as shown
in the figure. For this use case, an organization only needs to send TX
proposals to its own endorsing peer (arrow 1-3). As each organization
is responsible for its own actions, no other organizations need to
endorse the proposal, which benefits the scalability of this mechanism.
This does however imply that each organization can update any KVP
it wants. However, as each update is signed, backtracking dishonest
behavior is simple. The rest of the diagram shows the normal TX
flow as used in Hyperledger Fabric.

Finally, it is important to focus on Fabric’s finality aspect as already
mentioned in Section A.2. Fabric can provide finality due to the
use of a deterministic ordering service. This service is responsible
for ordering incoming TXs from the organizations’ proxies, creating
blocks, signing them for data integrity and authentication, and finally
delivering them to all the peers in the network. Once delivered, blocks
can never be changed, as a Fabric’s peer always checks whether an
incoming block’s sequence number succeeds the height of its chain.
This means that, even when an ordering service is malicious, it can

Appendix A 185

Figure A.5: Sequence diagram showing the integration of Hyperledger Fab-
ric.

never rewrite history of an honest organization.

A.4 Performance evaluation
A.4.1 Setup
A prototype is designed in order to evaluate the performance of the
proposed logging mechanism. Hyperledger Fabric v1.3 is used to-
gether with the Go programming language to write CCs. On top
of Fabric’s components, which are setup using containers and com-
mand line instructions, a Node.js client and proxy process are written
incorporating Fabric’s Node SDK [23]. The result is a fully container-
ized application which is deployed in a Kubernetes cluster. Within
this cluster, all pods belonging to one organization are deployed on
the same machine. It is important to note that a Kubernetes clus-
ter is only used to ease the evaluation process, i.e. to rapidly scale
replicas, but that this setup could not be used for real collaboration
scenarios as the Kubernetes master nodes could remove crucial con-
tainer instances, e.g. the EP of an organization. Figure A.6 shows
an overview of the containers that are required to run experiments
for a collaboration consisting of three organizations. The blue con-
tainers are required for setting up Fabric while the red containers
are required to share an organization’s internal services. Transport
Layer Security (TLS) is not enabled for these experiments as there
is no research challenge in setting this up. Fabric’s default key-value
store LevelDB [24] is used as database in the peers’ memory.

186 Prelude Trust Issue I: Logging Mechanism Concepts

Figure A.6: An overview of the evaluation setup when the Kafka ordering
service is used.

The minimum number of organizations required is three based on
the following reasoning. Multiple organizations can collude to tam-
per one or more blocks in their local copy of the chain and recalculate
all the hash values of the subsequent blocks. This hack only works
when at least 50% of the organizations do this, because the chain
contained by the majority of the organizations will be seen as the
correct one. This is under the assumption that the Kafka cluster
does not exist anymore, as otherwise the original chain could be re-
generated. Although theoretically possible, this scenario is assumed
to be unlikely, because it requires different organizations to agree on
corruption. A scenario with two organizations is thus not allowed,
because one organization then has a 50% share of the network, mean-
ing it can easily recalculate its local chain. A possible solution for this
could be that a third party is added to supervise the collaboration,
i.e. a non-endorsing peer in Fabric’s terminology. Such a peer would
only keep a copy of the ledger and store the TXs without interacting
with the network. There is no maximum number of organizations,
but a collaboration between ten organizations already seems to be a
lot from a practical point of view.

According to the documentation, at least four Kafka brokers and
three, five or seven ZooKeeper nodes need to be available [25]. For
this use case however, a minimum of three Kafka brokers is sufficient,
based on following reasoning. The minimum number of in-sync repli-
cas needs to be two in order to avoid a single point of failure. The
number of replicas needs to be three in order to retain the mini-
mum number of in-sync replicas, i.e. keep the channel readable and

Appendix A 187

writable, when one Kafka broker fails. However, when there is such
a failure, no channel can be created as Kafka topic creation requires
all replicas to be alive. For this use case, channel creation is not nec-
essary anymore once there is a channel available. Requiring at least
four Kafka brokers is therefore not strictly necessary here.

Each organization’s EP needs to have a signing identity, i.e. private
key, to sign TX proposals. To allow the network to verify its dig-
ital signature, the EP also needs a certificate. A certificate chain
consisting of an organization’s intermediate certificate authority and
a root certificate authority is used in this setup, both deployed us-
ing Fabric’s CA server implementation. As signature creation and
verification takes time, they will certainly have an impact on time
measurements. It is important to note that in a real collaboration
scenario, the root certificate authority shown in Figure A.6 will not
be there as the world’s largest certificate authorities will be used as
root of trust. After all, organizations could simply use the certificate
coupled to their domain to issue certificates to their peers, while the
certificates for the ordering service could be granted to a third party
hosting the ordering service.

A.4.2 Measurements
The same example collaboration shown in Figure A.1 is used to per-
form measurements, i.e. Org Y wants to pull data from Org X and
Org Z. Each organization runs an Ubuntu 18.04 VM on a 2.4GHz
machine with four VMware vCPUs, 4GiB of RAM and a hard disk
partition of at least 16GiB. The VM for the third party is given 8GiB
of RAM. Network delay is furthermore emulated using the tc com-
mand. As the average ping round-trip time to Amazon servers in
Western Europe varies around 30 ms [26], the artificial delay of the
egress packet scheduler is set to 15ms.

In fact, a lot of parameters can be tweaked for these experiments,
not only latency L, but also block size BS, block creation timeout
BT , number of organizations O, number of data requests from the
equipment builder to the manufacturers per second E and size of the
data S. The following parameter setting is determined for the use
case examined in this appendix:

■ L is set to 15ms as explained above.

■ BS is limited to 512 KiB. The maximum size of an individ-

188 Prelude Trust Issue I: Logging Mechanism Concepts

ual TX is a few kilobytes at most as the TXs’ payload does
not contain raw request/response data, resulting in blocks with
around 100 TXs. The allowed maximum number of TXs per
block is set to a larger value in order for it to be no separate
block-cutting trigger.

■ BT is set to 2 seconds, i.e. a partially filled block will be cut 2
seconds after the first TX of the interval arrived.

■ O is set to 3 for the example collaboration.

■ E is set to 20. This parameter limits the number of requests to
the different manufacturers on channel 2. The goal is to send
10 calls per second to each manufacturer.

■ S is set to 1500 bytes, i.e. the internal service returns 1500
random hexadecimal characters in each JSON response.

During the experiments, data requests are sent to manufacturer A
and manufacturer B in an alternated way. The duration of each data
exchange cycle is measured at the client of the equipment builder,
while the duration of each logging cycle is measured at its proxy.
It is important to note that the alternation between the different
manufacturers is non-blocking, i.e. data requests are sent periodically
with rate E using Node.js its setInterval function. Five runs are
executed for the experiments, each time with a clean deployment,
and the average of these measurements is stored. The creation of
the different CC containers is not included in the measurements as
they are started beforehand. Finally, it is important to mention that
I/O operations are kept to a minimum, i.e. no console messages in
the Node.js processes appear and measurements are written to disk
when the experiment finishes. However, Fabric’s logging information
for the peer and orderer container is set to DEBUG. This is needed for
our implementation as debug information is required for coordinating
the start of Fabric’s network.

Figure A.7 shows the results of the asynchronous approach. The av-
erage values are drawn together with error bars at each 5-th data
point showing the standard deviation. The advantage of this ap-
proach is immediately clear: 100 data exchanges occur in about 5.68
seconds, resulting in an average throughput of 17.6 exchanges per
second approximately. The performance is further evaluated by scal-
ing the number of organizations O. The same experiment is executed
here, i.e. there is one equipment builder which sends data requests

Appendix A 189

Figure A.7: The asynchronous approach has an average throughput of 17.6
data exchanges per second. The logging mechanism is able to keep up with
the speed of the data exchange process.

Table A.1: Throughput values for an increasing number of organizations

Organizations
3 4 5 6 7 8 9 10

To

(Exch./s) 17.9 25.8 34.1 41.1 47.9 53.7 61.0 64.4

Tr

(%) 89.6 86.1 85.3 82.2 79.8 76.8 76.2 71.6

to the different manufacturers in an alternated way. Based on the
reasoning in the previous section, O is scaled from three to ten, i.e.
the number of manufacturers ranges from two to nine. The num-
ber of data exchanges and the rate with which they are sent E are
adapted in order to obtain equivalent scenarios where each manufac-
turer needs to send 200 responses. This means that E ranges from
20 to 90 calls per second and the number of exchanges from 400 to
1800. Other parameters are kept constant and the same number of
Kafka, ZooKeeper and orderer nodes are used, i.e. 3 replicas of each
type are deployed.

Figure A.8 presents the obtained results. The experiment is repeated
five times for each value of O and the corresponding average values

190 Prelude Trust Issue I: Logging Mechanism Concepts

Figure A.8: The decoupling of the data exchange and logging mechanism
processes emerges when the number of organizations is scaled.

and standard deviations are drawn. It shows that the data exchange
process only takes a little bit more time to complete for larger collab-
orations, while the time needed for the logging mechanism increases
significantly. The advantage of the asynchronous approach is clear as
the data exchange process scales very well. The equipment builder,
processing the data, observes almost no additional delay. Table A.1
shows the average throughput To observed at the equipment builder
and the throughput rate Tr. The latter is the rate between To and E,
whereby E can be seen as the theoretical maximum throughput value
as data requests are periodically sent with this rate. The results show
that To increases significantly because more and more manufacturers
will send their responses in the same time interval. The obtained val-
ues show that tens of data exchanges per second can be completed.
Table A.1 also shows that Tr decreases. This can be expected as the
equipment builder has to execute an increasing number of operations
for the logging mechanism, which means that the data exchange pro-
cess gets delayed. Finally, the size of the chain is around 34 MiB
when O = 10, meaning the average size of a TX in the system is

34
1800·4 = 4.8 KiB.

Appendix A 191

A.5 Conclusions and future work
In this appendix, a logging mechanism for cross-organizational col-
laborations is proposed, which enables organizations to create an ir-
refutable log file. When the logging mechanism is correctly executed,
no disputes are possible about which data was exchanged. When an
honest organization detects that something is wrong with the logging
procedure, either due to the presence of a dishonest organization,
due to malfunctioning or due to an attack, it can assess whether it
is still useful to be part of an unreliable collaboration setup. The
logging mechanism does not heavily interrupt the data exchange pro-
cess as all logging operations are executed asynchronously, allowing
to reach tens of data exchanges per second, even when the number
of organizations is increased.

The proposed architecture will be further investigated in future work.
The deployment, i.e. setup and tear down, of this logging mechanism
in a rapid, ad hoc way will be researched as well as the associated
cost in terms of time and money. Finally, a dynamic scenario, where
organizations can join and leave the collaboration when needed, must
be investigated.

Acknowledgments
This appendix is written in the context of the FUSE project [27],
in which a Flexible federated Unified Service Environment is inves-
tigated. The project is realized in collaboration with imec. Project
partners are Barco, Axians and e-BO Enterprises, with project sup-
port from VLAIO (Flanders Innovation & Entrepreneurship).

192 Prelude Trust Issue I: Logging Mechanism Concepts

Bibliography
[1] “Hyperledger Fabric.” https://www.hyperledger.org/projects/

fabric.

[2] K. Wüst and A. Gervais, “Do you need a blockchain?,” in Pro-
ceedings - 2018 Crypto Valley Conference on Blockchain Tech-
nology, CVCBT 2018, pp. 45–54, IEEE, 2018. https://doi.org/
10.1109/CVCBT.2018.00011.

[3] E. Androulaki, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolić, A. Barger, S. W. Cocco, J. Yel-
lick, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, and G. Laventman, “Hyperledger Fabric:
A Distributed Operating System for Permissioned Blockchains,”
in Proceedings of the Thirteenth EuroSys Conference on - Eu-
roSys ’18, pp. 1–15, Association for Computing Machinery, 2018.
https://doi.org/10.1145/3190508.3190538.

[4] J. Sousa, A. Bessani, and M. Vukolic, “A Byzantine Fault-
Tolerant Ordering Service for the Hyperledger Fabric Blockchain
Platform,” in Proceedings - 48th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN
2018, pp. 51–58, IEEE, 2018. https://doi.org/10.1109/DSN.
2018.00018.

[5] A. Bessani, J. Sousa, and E. E. Alchieri, “State Machine Repli-
cation for the Masses with BFT-SMaRT,” in Proceedings - 44th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2014, pp. 355–362, IEEE, 2014.
https://doi.org/10.1109/DSN.2014.43.

[6] “Peers.” https://hyperledger-fabric.readthedocs.io/en/release-1.
3/peers/peers.html.

[7] X. Wang, X. Xu, L. Feagan, S. Huang, L. Jiao, and W. Zhao,
“Inter-Bank Payment System on Enterprise Blockchain Plat-
form,” in 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pp. 614–621, IEEE, 2018. https://doi.
org/10.1109/CLOUD.2018.00085.

[8] W. Zhang, Y. Yuan, Y. Hu, S. Huang, S. Cao, A. Chopra,
and S. Huang, “A Privacy-Preserving Voting Protocol on
Blockchain,” in 2018 IEEE 11th International Conference on

https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/DSN.2018.00018
https://doi.org/10.1109/DSN.2018.00018
https://doi.org/10.1109/DSN.2014.43
https://hyperledger-fabric.readthedocs.io/en/release-1.3/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/peers/peers.html
https://doi.org/10.1109/CLOUD.2018.00085
https://doi.org/10.1109/CLOUD.2018.00085

Appendix A 193

Cloud Computing (CLOUD), pp. 401–408, IEEE, 2018. https:
//doi.org/10.1109/CLOUD.2018.00057.

[9] T. Mikula and R. H. Jacobsen, “Identity and Access Manage-
ment with Blockchain in Electronic Healthcare Records,” in Pro-
ceedings - 21st Euromicro Conference on Digital System Design,
DSD 2018, pp. 699–706, IEEE, 2018. https://doi.org/10.1109/
DSD.2018.00008.

[10] H. Kinkelin, V. Hauner, H. Niedermayer, and G. Carle, “Trust-
worthy Configuration Management for Networked Devices using
Distributed Ledgers,” in IEEE/IFIP Network Operations and
Management Symposium: Cognitive Management in a Cyber
World, NOMS 2018, pp. 1–5, IEEE, 2018. https://doi.org/10.
1109/NOMS.2018.8406324.

[11] M. Grabatin and W. Hommel, “Reliability and Scalability Im-
provements to Identity Federations by managing SAML Meta-
data with Distributed Ledger Technology,” in IEEE/IFIP Net-
work Operations and Management Symposium: Cognitive Man-
agement in a Cyber World, NOMS 2018, pp. 1–6, IEEE, 2018.
https://doi.org/10.1109/NOMS.2018.8406310.

[12] Z. Gao, Y. Fan, C. Wu, J. Zhang, and C. Chen, “DSES:
A Blockchain-Powered Decentralized Service Eco-System,” in
2018 IEEE 11th International Conference on Cloud Comput-
ing (CLOUD), pp. 25–32, IEEE, 2018. https://doi.org/10.1109/
CLOUD.2018.00011.

[13] K. Bhaskaran, P. Ilfrich, D. Liffman, C. Vecchiola, P. Jayachan-
dran, A. Kumar, F. Lim, K. Nandakumar, Z. Qin, V. Ramakr-
ishna, E. G. Teo, and C. H. Suen, “Double-Blind Consent-Driven
Data Sharing on Blockchain,” in Proceedings - 2018 IEEE Inter-
national Conference on Cloud Engineering, IC2E 2018, pp. 385–
391, IEEE, 2018. https://doi.org/10.1109/IC2E.2018.00073.

[14] S. Kiyomoto, M. S. Rahman, and A. Basu, “On Blockchain-
Based Anonymized Dataset Distribution Platform,” in Pro-
ceedings - 2017 15th IEEE/ACIS International Conference on
Software Engineering Research, Management and Applications,
SERA 2017, pp. 85–92, IEEE, 2017. https://doi.org/10.1109/
SERA.2017.7965711.

https://doi.org/10.1109/CLOUD.2018.00057
https://doi.org/10.1109/CLOUD.2018.00057
https://doi.org/10.1109/DSD.2018.00008
https://doi.org/10.1109/DSD.2018.00008
https://doi.org/10.1109/NOMS.2018.8406324
https://doi.org/10.1109/NOMS.2018.8406324
https://doi.org/10.1109/NOMS.2018.8406310
https://doi.org/10.1109/CLOUD.2018.00011
https://doi.org/10.1109/CLOUD.2018.00011
https://doi.org/10.1109/IC2E.2018.00073
https://doi.org/10.1109/SERA.2017.7965711
https://doi.org/10.1109/SERA.2017.7965711

194 Prelude Trust Issue I: Logging Mechanism Concepts

[15] J. Duan, A. Karve, V. Sreedhar, and S. Zeng, “Service Manage-
ment of Blockchain Networks,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), pp. 310–317, IEEE,
2018. https://doi.org/10.1109/CLOUD.2018.00046.

[16] H. Gupta, S. Hans, K. Aggarwal, S. Mehta, B. Chatterjee, and
P. Jayachandran, “Efficiently Processing Temporal Queries on
Hyperledger Fabric,” in 2018 IEEE 34th International Confer-
ence on Data Engineering (ICDE), pp. 1489–1494, IEEE, 2018.
https://doi.org/10.1109/ICDE.2018.00167.

[17] F. Benhamouda, S. Halevi, and T. Halevi, “Supporting Private
Data on Hyperledger Fabric with Secure Multiparty Compu-
tation,” in Proceedings - 2018 IEEE International Conference
on Cloud Engineering, IC2E 2018, pp. 357–363, IEEE, 2018.
https://doi.org/10.1109/IC2E.2018.00069.

[18] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti,
“Blockchain and Trusted Computing: Problems, Pitfalls, and
a Solution for Hyperledger Fabric,” tech. rep., IBM Research,
2018. http://arxiv.org/abs/1805.08541.

[19] D. Marpe, T. Wiegand, and G. J. Sullivan, “The H.264/MPEG4
advanced video coding standard and its applications,” IEEE
Communications Magazine, vol. 44, no. 8, pp. 134–142, 2006.
https://doi.org/10.1109/MCOM.2006.1678121.

[20] “Transaction Flow.” https://hyperledger-fabric.readthedocs.io/
en/release-1.3/txflow.html.

[21] “Docker security.” https://docs.docker.com/engine/security/
security.

[22] “Ledger.” https://hyperledger-fabric.readthedocs.io/en/release-
1.3/ledger.html.

[23] “Hyperledger Fabric SDK for Node.js.” https://fabric-sdk-node.
github.io/release-1.3.

[24] “LevelDB.” https://github.com/google/leveldb.

[25] “Bringing up a Kafka-based Ordering Service.” https://
hyperledger-fabric.readthedocs.io/en/release-1.3/kafka.html.

[26] “CloudPing.info.” https://www.cloudping.info/.

https://doi.org/10.1109/CLOUD.2018.00046
https://doi.org/10.1109/ICDE.2018.00167
https://doi.org/10.1109/IC2E.2018.00069
http://arxiv.org/abs/1805.08541
https://doi.org/10.1109/MCOM.2006.1678121
https://hyperledger-fabric.readthedocs.io/en/release-1.3/txflow.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/txflow.html
https://docs.docker.com/engine/security/security
https://docs.docker.com/engine/security/security
https://hyperledger-fabric.readthedocs.io/en/release-1.3/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/ledger.html
https://fabric-sdk-node.github.io/release-1.3
https://fabric-sdk-node.github.io/release-1.3
https://github.com/google/leveldb
https://hyperledger-fabric.readthedocs.io/en/release-1.3/kafka.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/kafka.html
https://www.cloudping.info/

Appendix A 195

[27] “FUSE: Flexible federated Unified Service Environment.” https:
//www.imec-int.com/en/what-we-offer/research-portfolio/fuse.

https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse
https://www.imec-int.com/en/what-we-offer/research-portfolio/fuse

	Title pages
	PhD_Thesis_Laurens_Van_Hoye.pdf
	Preface
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	Urgent Collaborations
	Types of Federations
	Envisioned Emergency Situation
	Centralized Operator Setup

	Problem Statement
	Research Contributions
	Logging mechanism to generate irrefutable proofs
	Framework to authorize container deployments
	Probe swarm to explore unknown clusters
	Rankings to express and negotiate preferences
	Analysis of the presented contributions

	Publications
	Publications in International Journals
	Publications in International Conferences
	Code Repositories

	Bibliography

	Trustful ad hoc cross-organizational data exchanges based on the Hyperledger Fabric framework
	Ad hoc cross-organizational collaborations
	Related work
	Data and service sharing through exposed Web API features
	Storing logs of data exchanges
	Trusted third party
	Blockchain applicability
	Hyperledger Fabric
	Validation mechanisms

	Extension of the logging mechanism
	Evaluation proof of concept
	Data exchange model
	Measurement setup
	Evaluation results

	Conclusions
	Bibliography

	A secure cross-organizational container deployment approach to enable ad hoc collaborations
	Ad hoc cross-organizational collaborations
	Related Work
	Breaking down the Kubelet
	The Kubelet loop
	Interaction with the container runtime
	Opportunities to enhance control

	Integrating the UMA 2.0 protocol into the Kubelet
	Evaluation
	Setup
	Overhead in time

	Conclusion
	Bibliography

	Enabling the rescheduling of containerized workloads in an ad hoc cross-organizational collaboration
	Ad hoc pod rescheduling in a cross-organizational cluster
	Related Work
	Necessity of probes in a cross-organizational context
	Probe swarms enabling pod rescheduling
	Probes as performance indicators
	Probe swarm architecture

	Evaluation
	Conclusion
	Bibliography

	Enabling organizations to participate in the ad hoc scheduling of a cross-organizational data pipeline
	Introduction
	Related Work
	Enabling organizations to agree on a reward scheme
	Extending the probe rescheduling mechanism
	Components required to negotiate contribution

	Evaluation
	Conclusion
	Bibliography

	Conclusions and Perspectives
	Reflecting on the Research Questions
	Future Perspectives
	Bibliography

	Logging mechanism for cross-organizational collaborations using Hyperledger Fabric
	Introduction
	Context
	Goal of logging mechanism

	Related work
	Logging mechanism
	Design decision
	Architecture of logging mechanism

	Performance evaluation
	Setup
	Measurements

	Conclusions and future work
	Bibliography

	Lege pagina
	Lege pagina
	Lege pagina
	Lege pagina
	Lege pagina

