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Samenvatting
– Summary in Dutch –

Artificiële intelligentie (AI) heeft een enorme impact op ons dagelijks leven
met toepassingen zoals stemassistenten, gezichtsherkenning, chatbots, au-
tonoom rijdende auto’s, enz. Natural Language Processing (NLP) is een
disciplineoverschrijdende AI en linguïstiek die zich toelegt op het bestu-
deren van het begrip van de tekst. Dit is een zeer uitdagend gebied van-
wege de ongestructureerde aard van de taal met veel dubbelzinnige en
hoekgevallen. Zinnen met meerdere betekenissen, zoals ’De geit is klaar
om te eten’, zijn bijvoorbeeld extreem moeilijk te interpreteren voor com-
puters (en zelfs mensen) zonder aanvullende contextuele kennis. Toch is
er de afgelopen jaren een snelle vooruitgang geboekt op het gebied van
NLP met zeer nuttige toepassingen zoals automatische tekstvertaling, ge-
spreksagenten, nepnieuws en detectie van haatspraak in onder andere so-
ciale media.

In dit proefschrift behandelen we een zeer specifiek gebied van NLP
dat het begrip van entities in tekst aanpakt. Het concept van entity is erg
dubbelzinnig en kan voor verschillende interpretaties vatbaar zijn, afhan-
kelijk van een specifieke toepassing en studiegebied. Het meest klassieke
gebruik in Natural Language Processing is om te verwijzen naar named en-
tity’s om echte of fictieve objecten aan te duiden die worden weergegeven
met eigennamen. Typische voorbeelden zijn organisaties (e.g., “Google”,
“Gent University”), mensen (e.g., “Lionel Messi”, “Joe Biden”), karakters
(e.g., “Batman”, “Superman”), locaties (e.g., “Gent”, “Denemarken”), oa.
Deze entiteitsaanduidingen in tekst worden gebruikt om te worden ver-
bonden met een rijkere Knowledge Base (KB) zoals Wikipedia. Het ge-
bruik van deze KB’s is nuttig om aanvullende informatie te verkrijgen en
de applicaties te voorzien van extra kennis die nodig is om de tekst te be-
grijpen. De lezer kan een meer gedetailleerde inleiding op het onderwerp
van dit proefschrift vinden in Hoofdstuk 1. Daar geven we een overzicht
van de literatuur en introduceren we alle noodzakelijke concepten om het
gepresenteerde werk beter te begrijpen.

We beginnen dit proefschrift (Hoofdstuk 2) met een radicaal andere,
entity-centric kijk op de informatie in tekst. We stellen dat, in plaats van
individuele vermeldingen in tekst te gebruiken om hun betekenis te begrij-
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pen, we applicaties moeten bouwen die zouden werken in termen van en-
titeitsconcepten. Deze entiteitgestuurde benadering houdt in dat alle ver-
meldingen die naar dezelfde entiteit verwijzen (e.g., “Gent”) in coreferen-
tiecluster worden gegroepeerd en de rest van de taken (e.g., . relatieextrac-
tie, entiteitskoppeling, etc.) op clusterniveau worden uitgevoerd. Deze be-
nadering heeft het voordeel dat de informatie van alle entiteitsvermeldin-
gen die naar één enkele entiteit in het document verwijzen, wordt benut.
Als gevolg hiervan vereist de entiteitsgerichte benadering een weergave
op documentniveau van de tekst. Helaas heeft de NLP-gemeenschap geen
evaluatie- en trainingsbronnen (dwz datasets) geproduceerd die deze fo-
cus op documentniveau zouden hebben voor meerdere taken tegelijk. We
pakken deze onderzoekskloof aan door een DWIE-dataset (Deustche Welle
Information Extraction) te introduceren waarin we vier verschillende ta-
ken op entiteitsniveau annoteren: coreferentieresolutie, entiteitskoppeling,
relatie-extractie en benoemde entiteitherkenning. We laten verder zien hoe
deze taken elkaar aanvullen in een gezamenlijk informatie-extractiemodel.

In het volgende hoofdstuk van dit proefschrift (Hoofdstuk 3), presen-
teren we een meer gedetailleerd model over hoe de entiteitsgerichte bena-
dering kan worden gebruikt voor de taak entity linking. De entity linking
bestaat uit het toewijzen van het anker mentions in tekst aan doel entities
die beschrijven ze in een Knowledge Base (KB) (e.g., Wikipedia). In ons
werk laten we zien dat deze taak kan worden verbeterd door te overwegen
entiteitskoppeling uit te voeren op het coreferentieclusterniveau in plaats
van op elk van de vermeldingen afzonderlijk. Door deze aanpak te volgen,
is ons gezamenlijke model in staat om de informatie van alle kernvermel-
dingen tegelijk te gebruiken bij het kiezen van de kandidaat-entiteit. Als
gevolg hiervan leidt dit tot consistentere voorspellingen tussen vermeldin-
gen die naar hetzelfde concept verwijzen, met name een verbetering van
de prestaties op hoekgevallen die bestaan uit impopulaire vermeldingen.

Ons volgende idee wordt beschreven in Hoofdstuk 4 van dit proef-
schrift. Daar hanteren we een iets andere benadering met entiteiten: in
plaats van puur tekstuele informatie te gebruiken om informatie-extractietaken
op te lossen, zoals relatie-extractie, bestuderen we ook hoe de informatie
van entiteiten uit Knowledge Base kan worden geïntegreerd. We bereiken
een aanzienlijke verbetering van alle geëvalueerde taken door informatie
te injecteren van zowel Wikipedia als Wikidata KB’s. Bovendien, terwijl de
taken die we aanpakken zijn geannoteerd en gedefinieerd op named entity-
niveau, is de informatie die we in onze tekst injecteren afkomstig van alle
bestaande entiteiten die zijn gedefinieerd in de geteste KB’s. We vinden
dat deze techniek zonder toezicht nog steeds de entiteiten kan detecteren
die relevanter zijn voor een bepaalde tekst.

Ten slotte wordt de laatste entiteitgerelateerde bijdrage van dit proef-
schrift beschreven in Hoofdstuk 5. Daar gaan we nog een stap verder en
analyseren we de evolutie van de entiteiten vanuit een tijdsperspectief. Om
dit te bereiken, creëren we een nieuwe dataset die bestaat uit 10 jaarlijkse
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snapshots van Wikipedia-entiteiten van 2013 tot 2022. We bestuderen ver-
der hoe de taak entity linking wordt beïnvloed door (i) wijzigingen van
bestaande entiteiten in de tijd, en (ii) creatie van nieuwe opkomende en-
titeiten.. Verder beperken we onze analyse niet tot het domein van named
bodies, maar nemen we alle bestaande entiteiten en concepten op die in
Wikipedia zijn gedefinieerd. Onze analyse toont een voortdurende afname
van de prestaties in de tijd, wat aangeeft dat de entiteiten uit latere versies
van Wikipedia moeilijker te ondubbelzinnig zijn dan entiteiten uit eerdere
versies. Bovendien laten we zien dat de prestatiedaling vooral scherp is
voor entiteiten die aanvullende nieuwe kennis nodig hebben (e.g., nieuwe
entiteiten met betrekking tot de COVID-19-pandemie) waarvoor het model
niet vooraf is getraind.

Daarnaast omvat dit proefschrift ander onderzoekswerk dat is gepu-
bliceerd in vooraanstaande tijdschriften en conferenties die geen verband
houden met het centrale onderwerp van dit proefschrift. Daarom stellen
we in appendix Hoofdstuk A voor om terugkerende neurale netwerken te
gebruiken om de structuur op vergelijkingsbomen na te bootsen om wis-
kundige wereldproblemen op te lossen. Met onze aanpak laten we een
aanzienlijke verbetering zien. Verder beschrijven we in appendix Hoofd-
stuk B onze bijdrage aan de gedeelde taak van CLPsych 2018, waarbij we
competitieve resultaten behalen met behulp van een ensemble bestaande
uit meerdere modellen om depressie en angst te voorspellen in tekstuele
enquêtes.





Summary

Artificial Intelligence (AI) has huge impact on our daily lives with appli-
cations such as voice assistants, facial recognition, chatbots, autonomously
driving cars, etc. Natural Language Processing (NLP) is a cross-discipline
of AI and Linguistics, dedicated to study the understanding of the text.
This is a very challenging area due to unstructured nature of the language,
with many ambiguous and corner cases. For example, sentences with mul-
tiple meanings such as “The goat is ready to eat.” are extremely hard to
interpret for computers (and even for humans) without additional contex-
tual knowledge. Yet, in recent years we have witnessed a rapid progress
in the field of NLP with highly useful applications such as automatic text
translation, conversational agents, fake news and hate speech detection in
social media, among others.

In this thesis, we address a very specific area of NLP which tackles the
understanding of entities in text. The concept of entity is very ambiguous
and can be subject to different interpretations depending on a specific ap-
plication and area of study. The most classical use in Natural Language
Processing is to refer to named entities denoting real-world or fictitious ob-
jects that are represented with proper names. Typical examples include
organizations (e.g., “Google”, “Ghent University”), people (e.g., “Lionel
Messi”, “Joe Biden”), fictional characters (e.g., “Batman”, “Superman”),
locations (e.g., “Ghent”, “Denmark”), among others. These entity deno-
tations in text are used to be connected to a richer Knowledge Bases (KB)
such as Wikipedia. The use of these KBs is beneficial to get additional in-
formation and provide the applications with extra knowledge needed to
understand the text. The reader can find a more detailed introduction to
the topic of this thesis in Chapter 1. There, we give an overview of the lit-
erature and introduce all the necessary concepts to better understand the
presented work.

We start this thesis in Chapter 2 with proposing a radically different,
entity-centric view on the information in text. We argue that, instead of
using individual mentions in text to understand their meaning, we need
to build applications that would operate in terms of entity concepts. This
entity-centric approach involves grouping all the mentions referring to the
same entity (e.g., “Ghent”) in coreference cluster and perform the rest of
the tasks (e.g., relation extraction, entity linking, etc.) on a cluster level.
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This approach has the advantage of leveraging the information across all
the entity mentions referring to a single entity in the document at once. As
a consequence, the entity-centric approach requires a document-level view
on the text. Unfortunately, the NLP community has produced no evalua-
tion nor training resources (i.e., datasets) that would have this document-
level focus for multiple information extraction tasks. We tackle this re-
search gap by introducing DWIE (Deustche Welle Information Extraction)
dataset in which we annotate four different tasks on entity level: corefer-
ence resolution, entity linking, relation extraction, and named entity recog-
nition. We further demonstrate the interdependence of these tasks in a joint
information extraction model.

In the following Chapter 3, we present a more detailed model on how
the entity-centric approach can be used for entity linking task. The entity
linking consists in mapping the anchor mentions in text to target entities that
describe them in a Knowledge Base (KB) (e.g., Wikipedia). In our work,
we showcase that this task can be improved by considering performing en-
tity linking on the coreference cluster level instead of on each of the men-
tions individually. By adopting this approach, our joint model is able to
use the information of all the coreferent mentions at once when choosing
the candidate entity. As a result, this leads to more consistent predictions
among mentions referring to the same concept, especially boosting the per-
formance on corner cases consisting of unpopular mentions.

Our next idea is described in Chapter 4 of this thesis. There, we adopt
a slightly different approach involving entities: instead of using purely
textual information to solve information extraction tasks such as relation
extraction, we also study how the information of entities from a Knowl-
edge Base can be integrated. We achieve significant improvement on all of
the evaluated tasks by injecting information both from Wikipedia, as well
as from Wikidata KBs. Furthermore, while the tasks we are tackling are an-
notated and defined on named entity level, the information we inject in our
text comes from all the existing entities defined in the experimented KBs.
We find that this unsupervised technique is still able to detect the entities
that are more relevant for a particular text.

Finally, the last entity-related contribution of this thesis is described in
Chapter 5. There, we go one step further and analyze the evolution of the
entities from temporal perspective. In order to achieve this, we create a
new dataset which consists of 10 yearly snapshots of Wikipedia entities
from 2013 until 2022. We further study how entity linking task is affected
by (i) changes of existing entities in time, and (ii) creation of new emerg-
ing entities. Furthermore, we do not restrict our analysis to the realm of
named entities, but incorporate all existing entities and concepts defined in
Wikipedia. Our analysis showcases a continual decrease of performance
over time, indicating that the entities from later versions of Wikipedia are
harder to disambiguate than entities from earlier versions. Additionally,
we demonstrate that this decrease of performance is exacerbated on en-
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tities requiring additional new knowledge (e.g., new entities related to
COVID-19 pandemic) for which the model was not pre-trained.

Additionally, this thesis includes other research work published in top-
tier journals and conferences not related to the central topic of this the-
sis. Thus, in Appendix A we propose to use recursive neural networks
to mimic the structure of equation trees to solve mathematical word prob-
lems. We showcase a significant improvement using our approach. Fur-
thermore, in Appendix B we describe our contribution to the CLPsych 2018
shared task where we achieve competitive results using an ensemble con-
sisting of multiple models to predict depression and anxiety in textual sur-
veys.





1
Introduction

Natural Language Processing (NLP) has recently gained a lot of atten-
tion in society. Formally, NLP is a subfield of Linguistics and Artificial
Intelligence (AI) concerned with automatic processing of textual data by
computers. It spans a wide range of research areas with high societal im-
pact. For example, research in information extraction (IE) [1–4] on extracting
the most relevant information from textual documents, supports the con-
struction of robust search engines such as Google that allow millions of
people to find useful information on internet. Research in text classifica-
tion allows to automatically divide incoming e-mail in different categories,
identify fraudulent profiles in e-commerce sites, detect hate speech in so-
cial platforms such as Facebook, etc. The latest advances in conversational
agents [5], allow to assist people in all variety of daily tasks such as getting
medical assistance [6], online shopping [7] and cooking [8, 9]. Develop-
ment in psycholinguistics enables models to accurately predict the chances
a person may suffer from depression [10, 11], anxiety [12] or even the incli-
nation to commit suicide [13, 14]. Recent developments in fake news [15, 16]
and stance [17, 18] detection facilitate users to find trustworthy and unbi-
ased information online. This list of NLP areas with applications is far from
exhaustive, but should give the reader a good idea of the breadth and high
impact of the research in NLP.

In this thesis, we focus on information extraction (IE), the sub-field of
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NLP that studies the extraction of structured information from unstruc-
tured text. Concretely, we study how the information about the entities
described in text can be extracted and used to solve a number of IE tasks.
One can think of entities as concepts that can represent any physical or
abstract object. The description of these entities is usually collected in en-
cyclopedias such as Wikipedia,1 Fandom,2 DBPedia,3 etc. Our works in [3]
(Chapter 2) and [19] (Chapter 3) deal with a specific type of entities de-
nominated named entities that include names of people (e.g., “Joe Biden”,
“Lionel Messi”, “Galileo Galilei”), places (e.g., “Belgium”), organizations
(e.g., “Google”, “Microsoft”, “Ghent University”), etc. As a rule of thumb,
named entities are usually written with the first letter in uppercase (i.e.,
are proper nouns). In the first part of our work we explore the importance
of thinking in terms of entities that transcends the written entity mentions
(i.e., words that refer to a specific entity) in text (Chapters 2 and 3). Fur-
thermore, in [20] (Chapter 4), we focus on exploring how additional entity
information can enrich other IE tasks such as coreference resolution (Sec-
tion 1.1.2), named entity recognition (Section 1.1.1), and relation extraction
(Section 1.1.3). Finally, in [21] (Chapter 5) we propose a fundamentally dif-
ferent, evolutionary view on the entity linking (Section 1.1.4) task. There, we
introduce a new TempEL dataset which consists of entity linking annota-
tions grouped in 10 yearly snapshots. Our experimental results showcase
a continual temporal decrease in performance of the EL task: the biggest
drop is observed for new entities that require additional world knowledge,
non-existing during the pre-training phase of the models.

In this introductory chapter we describe (i) the various information ex-
traction tasks this thesis is about (Section 1.1), (ii) the learning approaches
used to train the models that are relevant to this thesis (Sections 1.2–1.4),
and (iii) a highlight of the main contributions of our work (Section 1.6) with
the list of produced publications (Section 1.7).

1.1 Information extraction tasks

In this thesis, we focus on information extraction (IE), which includes tasks
used to extract structured information from unstructured text. This struc-
tured information is a result of solving multiple diverse tasks on a given
piece of text [1, 22–26], many of which go beyond the scope of the current
work. In this thesis, we focus on the tasks that allow to identify entities de-
scribed in text as well as the semantic relations between these entities (see

1https://www.wikipedia.org/
2https://www.fandom.com/
3https://www.dbpedia.org/

https://www.wikipedia.org/
https://www.fandom.com/
https://www.dbpedia.org/
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Figure 1.1: Example of named entities. Source: [34].

entity-centric approach in Section 1.1.4 for details). The first task consists in
identifying and classifying the named mentions such as “Meghan Markle“
in the example of our DWIE dataset in Fig. 1.7. This task is called named
entity recognition (NER) [27–29], and is further described in Section 1.1.1.
Once the mentions have been identified, we proceed to group them in
clusters, each one referring to one specific entity. For example, the men-
tions “Meghan” and “Meghan Markle” in Fig. 1.7 are clustered together
since they both refer to the same person. This task is known as corefer-
ence resolution [30, 31], and is further described in Section 1.1.2. We fur-
ther identify semantic relations between the clusters, such as the relation
spouse_of between the clusters representing Meghan and Harry. This task
is known as relation extraction [32, 33], described in Section 1.1.3. Finally,
we connect the mention clusters to the respective entities in encyclopedias
(formally known as Knowledge Bases or KB) such as Wikipedia. This task
is known as entity linking and is further detailed in Section 1.1.4. The re-
mainder of this subsection describes the main characteristics as well as the
main datasets used to evaluate the performance of the models for each of
these tasks.

1.1.1 Named entity recognition

The task of named entity recognition (NER) consists in finding and classi-
fying named entity mentions in text. A named entity mention is a proper
name referring to real world objects such as countries, organizations, uni-
versities, etc. Named entities tend to be written with the first letter upper-
cased (see Fig. 1.1). This definition is commonly extended to include men-
tions denoting dates, times and numerical expressions (e.g., prices). The
most widely used dataset to evaluate NER is CoNLL-2003 [35], and con-
sists of 35,089 annotated named entity mentions splitted in four entity
types: person (PER), location (LOC), organization (ORG), and miscella-
neous (MISC). Other extensively used NER datasets are WNUT 2017 [36],
Ontonotes v5 [37] and Few-NERD [38], to mention a few.
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Barack Obama nominated Hillary Rodham Clinton as 
his secretary of state on Monday. He ... 

Figure 1.2: Example of coreference resolution task composed of three coreference
mention clusters, depicted with different colors. Thus, the mentions
“he” and “He” are coreferent with “Barack Obama”. The rest of the
mentions (“Hillary Rodham Clinton” and “Monday”) form singleton
clusters, each composed of a single mention. Adapted from [39].

Figure 1.3: Example of relation extraction from TACRED [43] dataset. Source: [44].

1.1.2 Coreference resolution

The coreference resolution task consists in detecting references to the same
entity in a text. These references are mentions as illustrated in the example
of Fig. 1.2, where the mention “He” is coreferent with “Barack Obama”.
The main dataset to measure the coreference resolution performance is
CoNLL-2012 [40] which is part of the OntoNotes corpus [37]. It consists of a
set of articles coming from newswire, magazines, broadcast news and con-
versations, web data, and conversational speech domains. Other datasets
in coreference resolution include Task-1 of SemEval 2010 [41] and GAP
[42], the latter being a gender-balanced coreference dataset consisting of
ambiguous pronouns that have to be resolved to the correct coreferent
name.

1.1.3 Relation extraction

The task of relation extraction consists in identifying semantically mean-
ingful relations between two mentions in text. Figure 1.3 illustrates an ex-
ample from the TACRED dataset [43] of the relation org:subsidiaries
between the mentions “Aerolineas” and “Austral”. This relation denotes
that “Austral” (object or tail of the relation) is a subsidiary of (relation type)
“Aerolineas” (head or subject of the relation). The relation types are de-
fined upfront and vary from dataset to dataset. For example, the BC5CDR
[45, 46] dataset contains only a single relation type (indicating whether a
disease is caused by a particular chemical), while DocRED [47] contains 96
distinct Wikipedia-derived relation types. Other datasets used in relation
extraction include ACE 2004 [48], ACE 2005 [49], CoNLL04 [50], SemEval
2010 - Task 8 [51], SciERC [52] and TAC-KBP [53–55].
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1.1.4 Entity linking

Entity linking (EL) task consists in mapping a particular mention in text to
an entry in a knowledge base (e.g., Wikipedia) which defines the concept
(entity) denoted by the mention. Some works [19, 56–59] classify entity
linking in two subtasks: mention detection (MD) and entity disambigua-
tion (ED) (see Fig. 1.4), and refer to both of these tasks together as entity
linking. Yet, most mainstream works [60–64], do not make this distinction
and use the concept of entity linking as a synonym of entity disambigua-
tion. We go more in detail on these two different settings in Section 1.4 of
this chapter, where we describe the difference between single-task and joint
models. Most of the datasets in entity linking use Wikipedia (i.e., wikifi-
cation; [65]) as the target Knowledge Base to which all the entity mentions
are disambiguated.

Most current state-of-the-art EL models [59, 66–69] report on datasets
from predominantly the news domain such as AIDA [70], KORE50 [70],
AQUAINT [71], ACE 2004, MSNBC [72], N3 [73], VoxEL [74], and TAC-
KBP 2010-2015 [53, 54]. Other frequently used datasets include the web-
based IITB [75] and OKE 15/16 [76], as well as the tweet-based Derczyn-
ski [77]. Additionally, larger yet automatically annotated datasets such as
WNED-WIKI and WNED-CWEB [78] have been also widely adopted. Fi-
nally, a number of resources such as the domain-specific biomedical Med-
Mentions [79], the zero-shot ZeShEL [62], and the multi-task DWIE [3] (see
Chapter 2) and AIDA+ [19] datasets have been recently introduced. Many
of the mentioned datasets are further covered by entity linking evaluation
frameworks such as GERBIL [80, 81] and KILT [82] that provide a common
interface to evaluate the models.

1.2 Machine learning methodology

In this section we will provide an introductory description of machine
learning methodologies to solve the tasks explained in Section 1.1. Due
to the sheer amount of architectures to solve the described tasks, we limit
our discussion to the ones that are relevant to the main contributions of this
thesis. First, we describe the span-based information extraction (Section 1.2.1)
approach used in the models presented in Chapters 2-4 to detect candi-
date mention spans in the text. Next, we describe the backbone of the
graph propagation algorithm to transfer the local contextual information
between these mention spans (see Section 1.2.2). The use of such graph
algorithm allows to boost the performance of entity linking tasks by ef-
ficiently exchanging information between the mentions spread across the
document in Chapter 2. In Section 1.2.3 we describe a novel technique used
to efficiently retrieve similar documents given a query commonly known
as dense passage retrieval (DPR). We use this method in Chapter 5 of this



INTRODUCTION 7

Figure 1.5: Illustration of span-based approach in Coreference Resolution task.
Source: [84].

thesis to efficiently retrieve candidate entities given the mention context
when tackling temporal entity linking task. Recent work [59, 61, 83], ev-
idences that such fast DPR algorithm is the key backbone component to
achieve state of the art results in entity linking task, reason why we use
it as a baseline in the Chapter 5 of this thesis. Finally, in Section 1.2.4 we
describe two main external knowledge sources, each one containing mil-
lions of entities that we use to link to the mentions in text. The first one
represents textual-based knowledge bases such as Wikipedia, where each
entity is described using plain text. For example, the description of the
entity referring to Meghan Markle is located at the following Wikipedia url:
https://en.wikipedia.org/wiki/Meghan,_Duchess_of_Sussex. The second
knowledge source is a structured knowledge graph (KG). Concretely, in
this thesis we use Wikidata as such structured knowledge repository which
consists of entities, their attributes, and relations between them. The dis-
tinction between these two knowledge sources is particularly crucial in the
context of Chapter 4, where we combine representations of both of them
to obtain major boost in performance as compared to using each of these
sources separately.

1.2.1 Span-based information extraction

The span-based information-extraction approach has been popularized by
the work of [84]. The authors propose, instead of using traditional sequen-
tial models such as the ones based on Conditional Random Fields [85–87],
to work on all possible token spans of up to a specified length.4 Such a
span-driven approach has a number advantages compared to the sequen-
tial models. First, they allow to straightforwardly model the loss function
for the information extraction tasks, backpropagating towards the pruner

4The length of 10 is enough to cover more than 99% of the mentions in most of the current
information extraction datasets.

https://en.wikipedia.org/wiki/Meghan,_Duchess_of_Sussex
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and the internal LSTM weights. This is because the loss is directly calcu-
lated on candidate mention spans and not on intermediate LSTM states
as in sequential models. Furthermore, the textual spans provide a natural
component to perform further graph propagation as will be explained in
Section 1.2.2. Finally, our observations suggest that the span-based models
allow to recover more mentions of texts, specially the longer ones consist-
ing of multiple tokens. Figure 1.5 illustrates how the span representation is
calculated by concatenating left and right BiLSTM-based token representa-
tions. The total number of spans per document of maximum width L can
be calculated as:

|S| =
wmax

∑
k=1
|T| − k + 1 = wmax

(
|T| − wmax − 1

2

)
, (1.1)

where T represents the total number of tokens in the document, and wmax
is the maximum span width. In order to avoid memory overflow, the re-
sulting |S| spans are pruned using a pruner component to a manageable
fraction of all the tokens in the document. Next, a separate model for a
particular IE task is used independently or jointly with the pruner model
to predict. The success of span-based approaches [52, 84, 88–91] has also
been demonstrated in BERT based models. Thus, [92] introduce Span-
BERT, a BERT model pre-trained directly on spans instead of tokens (as
is the case of BERT) in text. This model has been successfully used as the
backbone to achieve state-of-the-art results in numerous information ex-
traction tasks [93–95]. We use span-based models in our work described in
Chapters 2, 3 and 4 of this thesis. Furthermore, we use SpanBERT as the
pre-trained model in the architecture described in Chapter 3.

1.2.2 Graph propagation mechanisms

The span representations obtained from the tokens (see Fig. 1.5) can be
formalized as follows:

g0
i = [el ; er; ψr−l ] (1.2)

Where g0
i is the representation for span si, ranging from token l to token r,

by concatenating their respective BiLSTM states el and er with an embed-
ding ψr−l for the span width wi = r− l.

These representations only depend on the underlying BiLSTM states
which are inefficient in retaining the context information located further
than 50 tokens away [96]. Recent work tackled this problem by using graph
propagation techniques [97, 98] in span-based models. These techniques are
also referred to with the term of higher order inference (HOI) [88, 93], and
consist in iteratively propagating contextual information between spans.
More formally, the propagation operation can be defined as follows:

gt+1
i = ft

x(si)⊙ gt
i +

(
1− ft

x(si)
)
⊙ ut

x(si), (1.3)
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Figure 1.6: Illustration of Dense passage retrieval (DPR) applied on entity linking
task. Source: [61].

where the n-dimentional vector ft
x(si), can be interpreted as a gating vector

that acts as a switch between the current span representations gt
i ∈ Rn,

and the update span vector ut
x(si) ∈ Rn. The various graph propagation

methods differ in how ut
x(si) is calculated. In our work on entity-centric

joint information extraction described in Chapter 2, we introduce our own
task-independent attention-based graph propagation technique (AttProp).

Finally, recently there has been an extensive study evaluating the gains
of using HOI on BERT-based (as opposed to BiLSTM-based as described
above) coreference resolution models [93]. The authors conclude that, while
the coreference resolution models experience additional gains with the in-
corporation of HOI techniques, it is minimal compared to the gains when
using HOI on top of ELMo [99] or LSTM [100] token representation tech-
niques.

1.2.3 Dense passage retrieval

The dense passage retrieval (DPR) concept was introduced by [101] and is
used in our work on temporal entity linking (Chapter 5). Concretely, DPR
consists in using dense representations to match a query text with passages.
The example in Fig. 1.6 showcases the mechanism behind DPR for the en-
tity linking task. Concretely, a set of Wikipedia pages (“Jaguar!”, “Jaguar_-
cars”) are encoded in the same dense space as the mentions (“Jaguar” on
top) linked to them. Next, a dot product operation is used to match a query
(entity mention with the context) to the Wikipedia entity descriptions in a
single dense space. More formally, the similarity operation is defined as
follows:

sim(q, p) = EQ(q)TEP(p) (1.4)
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Where EQ module encodes the text q in a fixed d-dimensional vector. Simi-
larly, EP module encodes the candidate passage p into another d-dimensional
vector. Most commonly, EQ and EP are BERT-based pre-trained encoders,
fine-tuned on a specific task (e.g., entity linking).

1.2.4 External knowledge sources

The entities are defined in multiple types of knowledge bases (KBs). A
well-known knowledge base is Wikipedia. Each of the entities is described
in the corresponding Wikipedia page. For example, the entity Ghent Uni-
versity is described on the Wikipedia page https://en.wikipedia.org/wiki/Ghent_
University. Yet, KBs such as Wikipedia provide only a textual description
of entities. Inherently, computers are not adapted to interpret information
in this unstructured textual format. As a result, the research community
has recently shown a growing interest in representing the information in
a structured manner by means of knowledge graphs (KGs) [102–104]. In a
KG, a particular node representing an entity is connected to other nodes as
well as associated with certain attributes that describe it. One of the most
well-known Knowledge Graphs is Wikidata [105].5 This knowledge graph
interconnects millions of entities6 using edges of different types. For ex-
ample, the entity Ghent University is connected to the entity Belgium by the
edge of type country, and with the node William I of the Netherlands by the
edge of type founded by. In our work described in Chapter 4 we rely on both
the textual Wikipedia KB as well as the structured Wikidata KG to obtain
robust entity representations that are used to inject additional knowledge
in information extraction models.

1.3 Entity-centric approach

The term entity-centric is widely used and is key to understand some of
the main contributions of this thesis. The main goal of entity-centric ap-
proaches is to encourage to develop of models that reason in terms of
entities (concepts) instead of on individual entity mentions in text. One
specific type of entities we work with in Chapters 2–4 are named entities,
which include all entities denoted with proper names (e.g., names of peo-
ple, companies, countries, etc.). Figure 1.7 illustrates an example from the
entity-centric DWIE dataset, which will be introduced formally in Chap-
ter 2. The left part of the figure depicts the text that is annotated. The right
part of the figure illustrates the corresponding structured entity-centric
representation where each of the information extraction (IE) annotations
are done on entity level. Each such entity may have multiple coreferent

5https://www.wikidata.org/
6At the moment of current writing, Wikidata contains more than 97 million entities.

https://en.wikipedia.org/wiki/Ghent_University
https://en.wikipedia.org/wiki/Ghent_University
https://www.wikidata.org/
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1 Prince Harry gets engaged to actress Meghan Markle

2 Britain's Prince Harry is engaged to his US partner Meghan Markle, his 
father Prince Charles has announced. 

3 The wedding is due to take place in the spring of 2018 and the couple are 
to live in Kensington Palace.

4 The Duke and Duchess of Cambridge, Harry's older brother Prince 
William and Kate Middleton, congratulated the couple. 

5 "We are very excited for Harry and Meghan

6 It has been wonderful getting to know Meghan and to see how happy she 
and Harry are together," Clarence House said in a tweet.

7 Harry spent 10 years in the army and has this year, with his elder brother 
William, promoted mental health strategies for armed forces in a joint 
initiative between their Royal Foundation and the Ministry of Defense.  

8 Harry is Queen Elizabeth's grandson and fifth-in-line to the British throne.

Textual Representation

William

Meghan

Britain

Harry

Kensington 
Palace

Ministry of 
Defense

Charles

spouse_of

citizen_of
citizen_of

parent_of

sibling_of

parent_of

Britain

ministry_of
agency_of
based_in0

Entity-Centric Representation

citizen_of

in0

royalty_of

royalty_of

royalty_of

type:actress
type:royalty

Figure 1.7: An example taken from the DWIE dataset (see Chapter 2) to illustrate
the entity-centric approach. Each of the entity mentions in the full docu-
ment text of the left is identified and clustered into entities represented
in the graph in the right part of the figure. The color of the mentions in
text indicates the entity they represent. The remaining annotations such
as entity and relation types as well as entity linking (not shown in the
figure), are performed on entity level (i.e., are entity-centric).

entity mentions in the text. This approach allows to summarize the in-
formation of the whole document (e.g., entity and relation types) in a sin-
gle graph. Furthermore, the document-level perspective of entity-centric
annotations also enables to extract information that is not explicitly men-
tioned in text, but rather can be deduced from the content of the document
(represented by dashed arrows in Fig. 1.7). This contrasts with mention-
driven [48, 49, 53–55, 106–108] annotations that rely on specific and explicit
textual triggers. In this thesis, we are interested in the following entity-
centric annotations:

1. Coreferent entity mentions: the coreferent entity mentions are grouped
in entity mention clusters, each one representing a single entity (right
part of Fig. 1.7). This clustering of mentions is addressed by coref-
erence resolution IE task (see Section 1.1.2), and is tackled by models
introduced in Chapters 2–4 of this thesis.

2. Relation types: indicate semantically meaningful relations between
identified entities. Two entities can be connected by multiple rela-
tion types (i.e., the relation annotations are multilabel), such as based_-
in and ministry_of between entities Ministry of Defense and Britain in
Fig. 1.7. The prediction of these types is addressed by the relation
extraction IE task (see Section 1.1.3), and is tackled by models intro-
duced in Chapters 2 and 4 of this thesis.

3. Entity types: describe the main characteristics of a particular entity.
Similar to relation types, the entity types are multilabel (i.e., a par-
ticular entity can be associated with multiple entity types). For ex-
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ample, in Fig. 1.7 the entity Meghan is described with entity types
type:actress and type:royalty. The predictions of entity types is ad-
dressed by the named entity recognition (NER) IE task (see Section 1.1.1),
and is tackled by models introduced in Chapters 2 and 4.

4. Entity linking (not shown in the Fig. 1.7): each of the entities are con-
nected (linked) to the respective entity in the Wikipedia Knowledge
Base. For example, the entity Meghan of the right part of Fig. 1.7
is linked to the page Meghan,_Duchess_of_Sussex in Wikipedia. The
prediction of these links is addressed by the entity linking IE task (see
Section 1.1.4), and is tackled by models introduced in Chapter 3 us-
ing an entity-centric approach, and in Chapter 5 in a more traditional
mention-driven setting (i.e., predicting entity links for each of the
mentions separately).

1.4 Learning in NLP tasks

In this section we will describe three approaches to solve information ex-
traction (IE) tasks relevant to our thesis. We will use the example in Fig. 1.8,
which depicts two subtasks necessary to fully solve the entity-linking task
(i.e., with unannotated documents given as input) (see also Section 1.1.4).
The first subtask is mention detection (MD), to detect all the mentions in text
to be linked to a Knowledge Base. In most datasets [3, 19, 70, 73, 109], these
mentions are limited to named entity mentions (i.e., proper nouns). The
second subtask is entity disambiguation (ED), whose goal is to link each of
the detected mentions by MD to entities in the Knowledge Base (KB). Both
of these subtasks are needed to solve entity linking (EL) task starting from
an unannotated plain document input (i.e., setups depicted in Fig. 1.8(a)
and Fig. 1.8(c)).

1.4.1 Single task learning

Traditionally, IE architectures tackling multiple (sub-)tasks were solved us-
ing a pipelined approach as depicted in the example in Fig. 1.8(a). For in-
stance, [70, 110–112] propose an entity linking pipeline that first performs
mention detection and then entity disambiguation. While straightforward
to implement, this setup suffers from at least two drawbacks: (i) sequential
error accumulation of models executed in the pipeline, and (ii) inability to
leverage possible inter-relations between tasks (e.g., knowing that a par-
ticular textual span can be linked to a KB can help the mention detection
component).

Figure 1.8(b) depicts another single task learning setting. A set of ground
truth annotations (e.g., a selection of ground truth mentions in text) are
given to the model as input, and it only has to perform a specific task (i.e.,

https://en.wikipedia.org/wiki/Meghan,_Duchess_of_Sussex
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Mention Detection Entity Disambiguation

Entity Disambiguation

KB

KB

Joint MD + ED

KB

(a)

(b)

(c)

Figure 1.8: Figure showcasing an example of entity detection and entity disambigua-
tion information extraction (IE) tasks in order to illustrate three IE learn-
ing setups: (a) pipelined setup where separate models are used sequen-
tially for each of the tasks in order to produce the desired output given a
plain document (i.e., without annotations) as input, (b) single task setup,
where the ground truth annotations (i.e., mention(s) to disambiguate
in the showcased example) are already given as input to the model,
(c) end-to-end joint setup where a single model is trained and evaluated
jointly on multiple tasks necessary to produce the desired output given
a plain document as input.

entity disambiguation in Fig. 1.8(b)). While not solving the entity linking
task completely, this approach has at least two advantages: (i) it alleviates
the study of the performance of a single component responsible for a par-
ticular task, and (ii) it opens the possibility to filter specific ground truth
annotations to be fed to the input model. This latter point is exploited
in recent entity disambiguation works [62, 63, 113, 114] to test the perfor-
mance of state-of-the-art entity linking models on more challenging en-
tity mentions (e.g., entity mentions linked to unpopular entities). Yet, this
may also present the disadvantage of not reflecting the performance in a
real-world scenario, which is dominated by trivial mentions (e.g., mentions
linked to most popular entities) as demonstrated by [78]. In Chapter 5, we
use this setup to create temporally evolving entity disambiguation dataset
where we filter out the trivial mentions (e.g., mentions whose surface form
is the same as that of the title of linked entity) in order to focus on most
challenging cases.
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1.4.2 Joint learning

More recently, there has been a shift towards creating end-to-end models
able to be trained and evaluated on multiple tasks jointly. These mod-
els share a single neural net architecture, and typically a single loss func-
tion is used during their training. The main advantage of such models
is an easier deployment since they do not require coupling of multiple
components in a pipeline (see Fig. 1.8(a)). Consequently, they do not suf-
fer from error propagation from one model to the next one, characteris-
tic of the pipelined approach. For instance, recent entity linking archi-
tectures [19, 58, 59, 68, 83, 115] model both the mention detection (MD)
and entity disambiguation (ED) tasks jointly as illustrated Fig. 1.8(c). This
contrasts with entity linking models focusing exclusively on the ED task
[60–64, 66, 67, 116], taking as input the ground truth mentions as illus-
trated in Fig. 1.8(c). Additionally, related work [3, 19, 87, 117–119] has also
shown an improvement in performance when combining multiple IE tasks
in a joint model. This is explained by the interdependence between tasks,
where the information from one task can benefit other task(s). For exam-
ple, knowing the type of a particular entity mention (NER task) can help
the model to restrict the entities this mention can be potentially linked to
in a KB (EL task) [117].

From a more detailed perspective, we distinguish between multi-task
and joint learning. The multi-task learning is characterized by using one
or more related tasks from single or separate datasets to train the model.
Normally these tasks share some commonalities which act as regularizers
to the shared weights of neural model [120] or label spaces [121]. A typi-
cal example are language models such as BERT [122] that are pre-trained
on predicting tokens, which has a big impact on a huge number of natural
language processing tasks such as coreference resolution [92], question an-
swering [123], relation extraction [124], etc. In this thesis, we use purely
multi-tasking approach in Chapters 2 and 4 by combining the summing
the losses of each of the tasks to obtain the final loss. Empirically, this setup
has positive effect with a boost in performance for relation extraction task
in Chapter 2. Furthermore, we use the term of joint to refer to multi-task
models strictly trained on a single dataset, such as the models in Chap-
ters 2 and 4. We also include in the category of joint architectures that not
necessarily share the neural network weights, but rather connect different
tasks in structured way. This is the example of the joint model introduced
in Chapter 3 where we connect the coreference and entity linking tasks in
a single structured task using a single loss function.

In this thesis, we use joint learning to perform cluster-level predictions
inherent to the entity-centric approach (see Section 1.3) on datasets such as
DWIE (Chapter 2) and AIDA+ (Chapter 3). Concretely, in Chapter 2 we
experiment with a joint loss which consists of a sum of losses for each of
the tasks the model is trained on. We discover that this setup, besides al-
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lowing to make cluster-level predictions using a single end-to-end model,
also leads to a significant improvement in performance on the relation ex-
traction task. This indicates that in the proposed joint model, the relation
extraction task benefits from the information contained in the rest of the
tasks such as NER and coreference resolution (coref). In Chapter 3, we go
one step further and frame entity linking (EL) and coref tasks as a single
structured task. This allows us to have a single loss term for both of the
tasks. We show that this joint approach leads to a general improvement
of both coref and EL tasks of up to +5% F1-score. Furthermore, our joint
model is also able to solve corner cases of EL task with an improvement of
up to +50% in accuracy compared to the standalone EL model.

1.5 Temporal outline of the research

The content of the current PhD thesis with the main focus on entity-centric
information extraction was not evident at the beginning of the PhD (al-
most five years ago). Chronologically, our first work [10] is described in
Appendix B, and tackles the shared task in CLPsych 2018 workshop. The
proposed architecture achieves competitive results in predicting the vari-
ous metrics used to measure depression and anxiety based on the content
of textual surveys. Next, towards the end of 2018, our interest shifted to
investigate the limits and shortcomings of machine learning models to rea-
son on the facts described in Wikipedia entities. Concretely, we focused on
studying the results of then state-of-the-art models used in recently intro-
duced FEVER [15] shared task challenge. This challenge consists in ver-
ification of textual claims using entity descriptions from Wikipedia. Our
analysis of the results showed the difficulty of all the models when rea-
soning with sentences involving numbers. This inspired us to pursue the
work [125] where we propose an innovative structural approach to solve
arithmetic word problems which involve multiple numbers, given a tex-
tual description of a problem (see Appendix A).

In parallel, during 2018 and 2019, we started annotating DWIE (Deutsche
Welle corpus for Information Extraction) dataset as part of CPN project7.
This resulted in our work [3] described in Chapter 2. The main challenge
we faced when working on this project was to design an architecture that
would exploit the complementary information across the mentions refer-
ring to the same entity (entity-centric approach) in the document. In our
baseline model presented in Chapter 2 we succeed in harnessing this inter-
related cross-mention information passing by applying graph propagation
techniques, which resulted in a significant boost in performance. The ideas
for our next two works described in Chapters 3–4 were conceived almost
simultaneously in 2020. The first idea [19] described in Chapter 3 con-

7https://www.projectcpn.eu/

https://www.projectcpn.eu/
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sists in framing entity linking and coreference resolution tasks in a single
structural architecture with a single loss function. Conversely, the idea [20]
presented in Chapter 4 intends to exploit the entity information in exter-
nal Knowledge Bases to use it jointly with the textual mentions entities to
boost the performance of various information extraction tasks.

Finally, the work [21] described in Chapter 5 is a result of a joint ef-
fort between CopeNLU8 and T2K9 research groups and was done during
the research visit to University of Copenhagen under the supervision of
prof. Isabelle Augenstein in spring of 2022. The idea of working with
dynamically evolving entity linking task originated and was shaped dur-
ing numerous online brainstorm meetings in the course of the winter of
2021-2022. Our main goal was to tackle what, based on our experience
when working on Chapters 2–4, we thought was one of the main limita-
tions of the currently available entity linking datasets: they are bound to
entities and mentions created at a specific point in time. As a result, these
datasets are unable to measure the effect of temporal evolution on entity
linking task. Our first plan to tackle this problem was to create a dataset
by splitting the news documents in our DWIE dataset (Chapter 2) accord-
ing to their publication year, linking the mentions to the corresponding
Wikipedia version. Yet, this would have produced a very low number of
annotated mentions in each of the temporal snapshots, with a high pop-
ularity bias (i.e., dominated by most popular entities). As a consequence,
we decided to make use of a much larger human-annotated corpus, namely
Wikipedia, in order to produce a more challenging large-scale temporally
evolving entity-linking dataset: TempEL, described in Chapter 5.

1.6 Research contributions

In this section, we present an overview of the main research contributions
of this thesis. We organize the addressed research problems in chapters,
each one tackling clearly defined research questions. Table 1.1 summarizes
the information extraction tasks and contributions of each of the chapters.
In Chapters 2–4 we explore how an entity-centric approach can further
boost the performance of information extraction tasks compared to base-
line mention-centric architectures, with special focus on multi-task joint
models (Section 1.4.2). Conversely, in Chapter 5 we explore the perfor-
mance of EL solutions for entities as they evolve over larger timeframes
Below, we provide a summary of the contributions of each of the chapters:

• In Chapter 2 we propose a radically different, entity-centric view on
the information in text. We argue that, instead of using individual

8https://www.copenlu.com/
9https://ugentt2k.github.io/

https://www.copenlu.com/
https://ugentt2k.github.io/
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Chapter Task Contribution

2 Multi-task information ex-
traction.

Define multi-tasking IE dataset and
baselines.

3 Joint coreference and entity
linking.

Joint coreference and entity link-
ing architecture that conceives both
tasks in a single structured repre-
sentation.

4 Named entity recognition,
coreference resolution and
relation extraction.

New neural architecture that com-
bines textual spans with entity rep-
resentations from external Knowl-
edge Bases.

5 Entity linking. New dataset that allows to track
the temporal evolution of entities in
Wikipedia and the impact of tempo-
ral shift on entity linking task.

Table 1.1: Overview of the contributions presented in this thesis.

mentions in text to understand their meaning, we need to build ap-
plications that would operate in terms of entity concepts. This entity-
centric approach involves grouping all the mentions referring to the
same entity (e.g., “Ghent”) in a single coreference cluster and per-
form the rest of the tasks (e.g., relation extraction, entity linking, etc.)
on this cluster level. Our approach has the advantage of leverag-
ing the information across all the entity mentions referring to a sin-
gle entity in the document at once. As a consequence, the entity-
centric approach requires a document-level view on the text. Yet, the
NLP community has produced no evaluation and training resources
(i.e., datasets) that would have this document-level focus for multi-
ple tasks at once. We tackle this research gap by introducing DWIE
(Deustche Welle Information Extraction) dataset in which we anno-
tate four different tasks on entity level: coreference resolution, entity
linking, relation extraction, and named entity recognition. We fur-
ther demonstrate how these tasks complement each other in a joint
information extraction model.

• In Chapter 3, we develop an entity-centric architecture to make en-
tity linking predictions directly on the entity cluster level instead of
on each of the entity mentions separately. To do so, we frame the
coreference (coref) and entity linking (EL) tasks as a single struc-
tured task. This contrasts with previous attempts to join coref+EL
tasks [126–128], where both of the models are trained separately and
additional logic is required to merge the predictions of coref and EL
tasks. Concretely, in this chapter we contribute with: (i) 2 architec-
tures for joint entity linking (EL) and corefence resolution, (ii) an ex-
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tended AIDA dataset [70], adding new annotations of linked and NIL
coreference clusters, (iii) experimental analysis on 2 datasets where
our joint coref+EL models achieve up to +5% F1-score on both tasks
compared to standalone models. We also show up to +50% in accu-
racy for hard cases of EL where entity mentions lack the correct entity
in their candidate list.

• In Chapter 4, we explore how the entity knowledge contained in
external Knowledge Bases (KBs) can be injected in text to further
enhance the performance of three information extraction (IE) tasks:
named entity recognition, coreference resolution, and relation extrac-
tion. Furthermore, we analyze what KB representation is more ben-
eficial for these IE tasks: either KB-graph trained on Wikidata, or
KB-text trained directly on Wikipedia. We particularly contribute
with (i) a first span-based end-to-end architecture incorporating KB
knowledge in a joint entity-centric setting, exploiting unsupervised
entity linking (EL) to select KB entity candidates, (ii) exploration of
prior- and attention-based mechanisms to combine the EL candidate
representations into the model, (iii) assessment of the complemen-
tarity of KB-graph and KB-text representations, and (iv) consistent
gains of up to 5% F1-score when incorporating KB knowledge in 3
document-level IE tasks evaluated on 2 different datasets.

• In Chapter 5 we propose a fundamentally different, evolutionary view
on the entity linking (see Section 1.1.4) task. There, we introduce
a new, TempEL dataset which consists of Wikipedia entity linking
annotations grouped in 10 yearly snapshots. We further contribute
with a study of how entity linking task is affected by (i) changes of
existing entities in time, and (ii) creation of new emerging entities.
Our experimental results showcase a continual temporal decrease
in performance of the EL task, with the biggest drop for new enti-
ties that require additional world knowledge non-existing during the
pre-training phase of the models.

Additionally, this thesis appendices’ include other research work published
in top-tier journals and conferences not related to the central contribution
summarized in Table 1.1. Thus, in [125] (see Appendix A) we propose to
use recursive neural networks to mimic the structure of equation trees to
solve mathematical word problems. We showcase a significant improve-
ment using our approach over baselines. Furthermore, in [10] (see Appen-
dix B) we describe our contribution to CLPsych 2018 shared task where
we achieve competitive results using an ensemble consisting of multiple
models to predict depression and anxiety in textual surveys.
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1.7 Publications

The research output obtained during this PhD has been published in sci-
entific journals and presented at a series of international conferences and
workshops. The following list provides an overview of these publications.

1.7.1 Publications in international journals
(listed in the Science Citation Index10)

[3] K. Zaporojets, J. Deleu, T. Demeester, and C. Develder, DWIE: An
entity-centric dataset for multi-task document-level information extrac-
tion. Information Processing & Management. 58: 102563, 2021.
(acceptance rate: 11%)

[125] K. Zaporojets, G. Bekoulis, J. Deleu, T. Demeester, and C. Develder,
Solving Arithmetic Word Problems by Scoring Equations with Recursive
Neural Networks. Expert Systems with Applications. 174: 114704,
2021. (acceptance rate: 12%)

1.7.2 Publications in international conferences

[21] K. Zaporojets, LA. Kaffee, J. Deleu, T. Demeester, C. Develder, I. Au-
genstein, TempEL: A Dataset to Evaluate Temporal Effect on Entity Link-
ing Task. 2022 Conference on Neural Information Processing Systems
Datasets and Benchmarks Track: NeurIPS, 2022.

[129] K. Zaporojets, J. Deleu, Y. Jiang, T. Demeester, and C. Develder, To-
wards Consistent Document-level Entity Linking: Joint Models for Entity
Linking and Coreference Resolution. 2022 Conference on the Association
for Computational Linguistics: ACL, 2022. pp. 778-784. acceptance
rate: 25.2%

[20] S. Verlinden∗, K. Zaporojets∗, J. Deleu, T. Demeester, and C. De-
velder, Injecting Knowledge Base Information into End-to-End Joint En-
tity and Relation Extraction and Coreference Resolution. Findings of the
Association for Computational Linguistics: ACL-IJCNLP, 2021. pp.
1952-1957. acceptance rate: 34.9%

* Equal contribution

[10] K. Zaporojets, L, Sterckx, J. Deleu, T. Demeester, C. Develder, Predict-
ing psychological health from childhood essays: the UGent-IDLab CLPsych

10The publications listed are recognized as ‘A1 publications’, according to the following
definition used by Ghent University: “A1 publications are articles listed in the Science Citation
Index, the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of
Science, restricted to contributions listed as article, review, letter, note or proceedings paper.”
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2018 shared task system. 5th Annual Workshop on Computer Linguis-
tics and Clinical Psychology (CLPsych 2018) at NAACL-HLT 2018.
pp. 119-125.

1.7.3 Publications in international journals and conferences
(not included in this thesis)

[14] S. Bitew, G. Bekoulis, J. Deleu, L. Sterckx, K. Zaporojets, T. De-
meester, and C. Develder, Predicting Suicide Risk from Online Postings
in Reddit – The UGent-IDLab submission to the CLPysch 2019 Shared Task
A. 6th Ann. Workshop on Computational Linguistics and Clinical
Psychology (CLPsych 2019) at NAACL-HLT, 2019. pp. 158-161.

[8] Y. Jiang, K. Zaporojets, J. Deleu, T. Demeester, and C. Develder,
Recipe instruction semantics corpus (RISeC): resolving semantic struc-
ture and zero anaphora in recipes. 2020 Conference of the Asia-Pacific
Chapter of the Association Computational Linguistics and 10th Inter-
national Joint Conference on Natural Language Processing: AACL-
IJCNLP 2020. pp. 821-826.

[9] Y. Jiang, K. Zaporojets, J. Deleu, T. Demeester, and C. Develder, Cook-
Dial: A dataset for task-oriented dialogs grounded in procedural documents.
Applied Intelligence Journal 2022. pp. 1-19.
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2
DWIE: an Entity-Centric Dataset
for Multi-Task Document-Level

Information Extraction

In this chapter we introduce ‘Deutsche Welle corpus for Information Extrac-
tion’, a newly created multi-task dataset that combines four main Information Ex-
traction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coref-
erence Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. Fur-
thermore, we propose a radically different, entity-centric view on the information
in text. We argue that, instead of using individual mentions in text to understand
their meaning, we need to build applications that would operate in terms of entity
concepts. This approach has the advantage of leveraging the information across
all the entity mentions referring to a single entity in the document at once. As a
consequence, all the annotations on DWIE are done on coreference concept level.
Each of the concepts can group one or more mentions that refer to the same entity
in the Knowledge Base. We further demonstrate how these tasks complement each
other in a joint information extraction model.

⋆ ⋆ ⋆

K. Zaporojets, J. Deleu, C. Develder and T. Demeester

Information Processing & Management, 2021.
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Abstract This paper presents DWIE, the ‘Deutsche Welle corpus for In-
formation Extraction’, a newly created multi-task dataset that combines
four main Information Extraction (IE) annotation subtasks: (i) Named En-
tity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extrac-
tion (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric
dataset that describes interactions and properties of conceptual entities on
the level of the complete document. This contrasts with currently domi-
nant mention-driven approaches that start from the detection and classifica-
tion of named entity mentions in individual sentences. Further, DWIE pre-
sented two main challenges when building and evaluating IE models for it.
First, the use of traditional mention-level evaluation metrics for NER and
RE tasks on entity-centric DWIE dataset can result in measurements dom-
inated by predictions on more frequently mentioned entities. We tackle
this issue by proposing a new entity-driven metric that takes into account
the number of mentions that compose each of the predicted and ground
truth entities. Second, the document-level multi-task annotations require
the models to transfer information between entity mentions located in dif-
ferent parts of the document, as well as between different tasks, in a joint
learning setting. To realize this, we propose to use graph-based neural
message passing techniques between document-level mention spans. Our
experiments show an improvement of up to 5.5 F1 percentage points when
incorporating neural graph propagation into our joint model. This demon-
strates DWIE’s potential to stimulate further research in graph neural net-
works for representation learning in multi-task IE. We make DWIE pub-
licly available at https://github.com/klimzaporojets/DWIE.

2.1 Introduction

Information Extraction (IE) plays a fundamental role as a backbone com-
ponent in many downstream applications. For example, an application
such as question answering may be improved by relying on relation ex-
traction (RE) [1, 2], coreference resolution [3, 4], named entity recognition
(NER) [5, 6], and entity linking (EL) [7, 8] components. This also holds
for other applications such as personalized news recommendation [9–11],
fact checking [12, 13], opinion mining [14], semantic search [15], and con-
versational agents [16]. The last decade has shown a growing interest in
IE datasets suitably annotated for developing multi-task models where
each of the tasks (e.g., NER, RE, etc.) would benefit from the interaction
with (an)other task(s) [17–21], to boost their performance. However, the
currently widely used IE datasets to build such multi-task models exhibit
three major limitations. First, the annotation schema adopted in most of
these datasets is mention-driven, focusing on annotating elements (e.g.,
relations, entity types) that involve specific entity mentions explicitly men-
tioned in the text. This produces very localized annotations (e.g., sentence-

https://github.com/klimzaporojets/DWIE


DWIE: AN ENTITY-CENTRIC DATASET 37

Figure 2.1: An example from the DWIE dataset with entity mentions underlined.
We show 8 of the 29 entities in the graph on the right. It illustrates the re-
lations that can be derived from the content of the article. The relations
that are explicitly mentioned in the text (trigger-based) are depicted by
solid arrows. Conversely, the relations that are implicit and/or need
the whole document context (document-based) to be derived are repre-
sented by dashed arrows.

based relations between entity mentions) that do not reflect meaning that
can be inferred on a more general document-level. Second, the number
of annotated extraction tasks in most of the IE datasets is rather limited.
Most of them focus on a single or at most a few different tasks. Further-
more, some other datasets, including the well-known TAC-KBPs [22–26],
use different non-overlapping corpora for each of the tracks that group a
few related tasks. Consequently, current models addressing multiple IE
tasks together often use multi-tasking (with different datasets per task)
rather than really joint modeling approaches. Finally, the annotation of
currently widely used IE datasets is driven by either relying on a priori de-
fined annotation schemas [27–32] or on distantly supervised labeling tech-
niques [33–37]. In consequence, the resulting annotations are not neces-
sarily representative of the actual information contained in the annotated
corpus.

In this work, we tackle the aforementioned limitations of IE datasets by
introducing a new dataset named DWIE. It consists of 802 general news ar-
ticles in English, selected randomly from a corpus collected from Deutsche
Welle1 between 2002 and 2018, as part of the CPN project.2 We focus
on annotating four main IE tasks: (i) Named Entity Recognition (NER),
(ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity
Linking.3 Figure 2.1 shows an example snippet from the DWIE corpus. We
adopt an entity-centric approach where all annotations (i.e., for NER, RE

1https://www.dw.com
2https://www.projectcpn.eu
3The linking is done to Wikipedia version 20181115.

https://www.dw.com
https://www.projectcpn.eu
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and Entity Linking tasks) are made on the entity4 level. Each of the entities
is composed by the coreferenced entity mentions from the entire document
(e.g., the entity Meghan in Fig. 2.1 clusters the entity mentions “Meghan
Markle” and “Meghan” across the whole document). This entity-centric
approach contrasts with mention-driven annotations in widely used IE
datasets [24, 27, 29, 31–33, 38] where the annotation process is biased to-
wards considering only local explicit textual evidence to annotate elements
such as relations and entity types (e.g., the relation spouse_of⟨Meghan, Harry⟩
that can be extracted from the 1st sentence in Fig. 2.1). Consequently, our
DWIE dataset paves the way for research on more complex document-
level reasoning that goes beyond only the local textual context directly
surrounding individual entity mentions. For example, consider the rela-
tion ministry_of⟨Ministry of Defense, Britain⟩ in Fig. 2.1: while the text of the
document does not directly state such a relation, it can be deduced from a
more general document-level entity-centric vision of the article, i.e., com-
bining the information involving the entities Ministry of Defense and Harry
in sentence 7 with the one involving Britain and Harry in sentence 2. Fi-
nally, the entity-centric approach provides entity linking annotations that
are consistent across the document: by clustering mentions of the same
entity, and then providing links to the Wikidata KB (or NIL if the entity
does not appear there) for the whole cluster at once, we limit annotation
errors or accidental inconsistencies (in the linking itself, but also in terms of
NER labels). To our knowledge, DWIE is the first dataset with this level of
conceptual consistency over the considered information extraction tasks.
We therefore expect that the dataset will play a key role in advancing re-
search exploring potential benefits of (i) entity-level information extraction
in terms of reducing potential inconsistent decisions (within EL across mul-
tiple mentions, as well as across multiple tasks), and (ii) using entity-cen-
tric information stored in a KB to complement the otherwise exclusively
text-dependent IE tasks such as NER, RE, and coreference resolution.

Additionally, we use a bottom-up, data-driven annotation approach
where we manually define our annotations (e.g., in terms of the entity and
relation types) to maximally reflect the information of the corpus at hand.
Currently dominant datasets are driven by distant supervision and exe-
cuted top-down, by which we mean that the selection of entity and relation
types is a priori defined and limited in coverage (i.e., the raw data poten-
tially contains other types that thus remain un-annotated). Conversely, we
do not a priori limit the entity and relation types to annotate, but adopt
a bottom-up approach driven by the data itself. Our proposed bottom-
up approach encompasses a three-pass annotation procedure where we
use the first exploratory annotation pass to derive the main annotation
types (annotation schema) from the corpus, and the next two passes to
perform schema-driven annotations and refine them by carrying out an

4Also referred to as entity cluster or just cluster.
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additional parallel annotation of the corpus for fixing errors inferred from
inter-annotator inconsistencies.

Besides the dataset itself, we also contribute empirical modeling results
to address the aforementioned IE tasks. Our goal is to study two impor-
tant properties that are inherent to DWIE. The first key property is the need
for long-range contextual information sharing to make document-level predic-
tions involving entities whose mentions are located in different parts of the
document. The second key property involves the joint interaction between
tasks where the information obtained in one task can help to solve another
task. For example, in Fig. 2.1 knowing the types of entities (which involves
NER and coreference tasks) Britain and Kensington Palace can boost the per-
formance of the relation extraction task by limiting the number of possible
relation types between these two entities (e.g., ministry_of but not citizen_-
of). In order to study the impact of these two phenomena inherent to our
DWIE dataset on the final results, we experiment with neural graph-based
models [39–41]. These models allow message passing between local con-
textual encodings, making it possible to measure the impact of local con-
textual information sharing both on a more general document level and
across the tasks. Furthermore, previous work already has shown the pos-
itive effect of using graph-based information passing techniques on single
tasks [20, 42], and between tasks [18, 21, 43, 44] on mention-driven datasets.
We expand this work even further by extending these models to be used on
the entity-centric, document-level DWIE dataset. More specifically, we ex-
periment with both single-task (Section 2.4.5) as well as joint (Section 2.4.2)
models to study the effect of contextual information propagation in single
task and joint settings. Additionally, for the NER and RE tasks, we propose
a new entity-centric evaluation metric that not only considers the predic-
tions on separate entity mentions (as is done in related IE datasets), but
also accounts for the impact of the predictions on entity cluster level.

In summary, the main objective that we address in the current paper
is to introduce an entity-centric multi-task IE dataset that covers different
related tasks on a document level as well as provides a connection with
external structured knowledge (through the entity linking task). Further-
more, we aim to explore how neural graph-based models can boost the
performance by enabling local contextual information propagation across
the document (single-task models) and between different tasks (joint mod-
els). The results presented in this paper suggest that, while challenging,
DWIE opens up new possibilities of research in the domain of joint entity-
centric information extraction methods. The main contributions of our
work are that:

(1) We construct a self-contained dataset (Section 2.3) with joint annota-
tions for four basic information extraction tasks (NER, entity linking,
coreference resolution, and RE), that provide entity-centric document-
level annotations (as opposed to typical mention-driven sentence-
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level annotations for, e.g., RE) connecting unstructured (text) and
structured (KB) information sources.

(2) We introduce a data-driven, bottom-up three-pass annotation approach
complemented by context-based logical rules to build such dataset
(Section 2.3).

(3) We propose a new evaluation metric for the NER and RE tasks (Sec-
tion 2.5), in line with the entity-centric nature of DWIE.

(4) We extend the competitive graph-based neural IE model DyGIE [21]
for the four IE tasks in DWIE (Section 2.4) and provide source code
for NER, coreference resolution, and RE. Furthermore, we introduce
a new latent attention-driven AttProp graph propagation method
and show its advantages in both single and joint model settings. The
experimental results (Section 2.6) demonstrate the potential of such
neural graph based models.

2.2 Related work

This section summarizes the overview of related datasets (Section 2.2.1),
and explores the differences between our newly created DWIE and other
similar datasets widely used by the scientific community. The main qual-
itative differences are presented in Table 2.1, while the quantitative com-
parison is provided in Table 2.2. Next, we describe the current trends in IE
to solve the tasks included in DWIE, and compare them to our proposed
approach (Section 2.2.2). Finally, we discuss currently used metrics to eval-
uate model performance on IE datasets and introduce some challenges in
applying them to measuring the performance on DWIE (Section 2.2.3).

2.2.1 Related datasets

Most of IE datasets have focused on a single task, making it very chal-
lenging to develop systems that jointly train for different annotation sub-
tasks on a single corpus. Well-known single-task datasets include (i) for
NER: CoNLL-2003 [45] and WNUT 2017 [46], (ii) for relation extraction: Se-
meval-2010 T8 [32], TACRED [31] and FewRel [33], (iii) for entity linking:
IITB [47], CoNLL-YAGO [48], and WikilinksNED [49], and (iv) for coref-
erence resolution: CoNLL-2012 [50] and GAP [51]. Conversely, in this work
we propose a multi-task dataset as a single corpus annotated with different
information extraction layers: named entities, mention clustering in enti-
ties (i.e., coreference), relations between entity clusters of mentions, and
entity linking. We further complement our dataset with additional tasks
such as document classification and keyword extraction. It is worth noting
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DWIE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
TAC-KBP [22, 24, 26] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗
BC5CDR [52, 53] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓
MUC-7 [54] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
SciERC [38] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓
DocRED [34] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓
Rich ERE [29, 55] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗
ACE 2005 [28] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗
OntoNotes 5.0 [56, 57] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓
ScienceIE [30] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓
FewRel [33] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓
GENIA [58] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓
AIDA CoNLL-YAGO [48] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓
SemEval 2010 T8 [32] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓
NYT [35] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
ACEtoWiki [59] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓
WNUT 2017 [46] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓
CoNLL-2003 [45] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓
TACRED [31] ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Table 2.1: Qualitative comparison of the datasets. We divide our comparison in
five groups: (i) Core Tasks represent the main subtasks covered in DWIE,
(ii) Doc-Based indicates whether different subtasks are annotated on the
document-level, (iii) Entity-Centric indicates which annotations are done
with respect to entity clusters (✓) as opposed to individual mentions (✗),
(iv) Unaided specifies whether the annotation process was completely
manual (✓) or with some form of distant supervision (✗), and (v) Open
indicates whether the dataset is freely available.

that our coreference annotations differ from the widely adopted CoNLL-
2012 [50] scheme in two aspects: (i) we retain singleton entities composed
by only one mention as a valid entity cluster, (ii) we only cluster proper
nouns, leaving out nominal and anaphoric expressions.

Furthermore, most prominent efforts to produce jointly annotated datasets
have focused on using a top-down annotation approach. This method in-
volves an a priori defined annotation schema that drives the process of
selection and labeling of the corpus. The de facto datasets used in most of
the joint learning baselines such as ACE 2005 [27, 28], TAC-KBPs [22–26]
and Rich ERE [29] use this annotation approach. More specifically, during
the creation of the ACE 2005 dataset, the annotators initially tagged candi-
date documents as “good” or “bad” depending on the estimated number
and types of entities present in each one. In subsequent annotation stages,
only “good” documents were fully annotated and included in the final
dataset. Similarly, during the creation of the TAC-KBP datasets, the anno-
tators focused on producing annotations evenly distributed among three
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Entities Relations Linking

Dataset # Tokens # Mentions # Entity # Entity # Relation # Relation # Relation # Mention # Cluster
clusters types mentions clusters types KB Links KB Links

NYT 5,765,332 1,388,982 - - 142,823 - 52 1,388,982 -
TACRED 3,866,863 - - - 21,784 - 42 - -
TAC-KBP5 3,053,336 6,495 3,750 - - - - 3,818 2,094
OntoNotes 5.0 2,088,832 161,783 136,037 - - - - - -
FewRel6 1,397,333 114,213 112,000 - 58,267 56,000 80 114,213 112,000
DocRED 1,018,297 132,392 98,610 6 155,535 50,503 96 - -
MUC-4 717,798 14,196 - 13 - - - - -
GENIA 554,346 56,743 10,728 5 2,337 - 2 - -
DWIE 501,095 43,373 23,130 311 317,204 21,749 65 28,482 13,086
BC5CDR 343,175 29,271 10,326 2 47,813 3,116 1 29,562 10,326
CoNLL-2003 301,418 35,089 - 4 - - - - -
CoNLL-YAGO 301,418 34,929 - - - - - 34,929 -
ACE 2005 259,889 54,824 37,622 51 8,419 7,786 18 - -
ACEtoWiki 259,889 - - - - - - 16,310 -
SEval 2010 T8 207,307 21,434 - - 6,674 - 9 - -
ACE 2004 185,696 29,949 12,507 43 5,976 5,525 24 - -
WNUT 2017 101,857 3,890 - 6 - - - - -
ScienceIE 99,580 9,946 9,536 3 638 - 1 - -
SciERC 65,334 8,094 1,015 6 2,687 - 7 - -

Table 2.2: Numerical comparison of DWIE and well-known IE datasets. Note that
some datasets (including DWIE) use an entity-centric approach, organiz-
ing entity mentions in entity clusters, and annotating entities, relations,
and linking on the cluster level. Hence, we provide both mention-level
as well as cluster-level (if a particular dataset supports it) statistics.

entity types (PERs, ORGs, and GPEs) by annotating only the documents
that contained a minimum number of entities related to event types. In the
case of Rich ERE, the documents to tag were prioritized by the event trig-
ger word density calculated per 1,000 tokens, thus focusing only on content
with a high number of previously defined key event-related tokens. Fur-
thermore, other IE-related datasets [30–34] use similar pre-filtering tech-
niques in order to select the text to be annotated. As a consequence, the
corpus and annotations in these datasets tend to be biased and likely not
representative of the language used in the different input domains. Con-
versely, we adopt a radically different bottom-up approach where we de-
rive the annotations (e.g., entity classification types, relation types) from
the data itself. This bottom-up data-driven procedure guarantees that the
annotations in DWIE are representative of the document corpus informa-
tion and reflects the particularities of the language used in its journalistic
domain. Furthermore, it better represents the properties that are inher-
ently present in written corpora, e.g., the long-tail distribution of different
annotation types.

Finally, from the perspective of the necessary evidence to annotate a
particular entity type or relation, we propose to make a distinction for the
currently existing datasets between trigger-based and document-based anno-
tations (see Doc-Based comparison group in Table 2.1). The trigger-based

5The EDL track only of TAC-KBP 2010.
6Numbers based on publicly available train and development sets.
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datasets require that a particular relation or entity type should only be an-
notated if it is supported by an explicit reference in a text. For example, in
Fig. 2.1 there is a concrete reference of the relation between “Meghan” and
“Harry” in form of triggers such as “gets engaged” in sentence 1 and “The
wedding” in sentence 2. Most of the traditionally used jointly annotated
datasets such as ACE 2005 [27, 28], TAC-KBPs [22–26] and Rich ERE [29],
as well as others, including FewRel [33], OntoNotes [56, 57], TACRED [31],
SemEval 2010 Task 8 [32] and SciERC [38], are trigger-based. The disad-
vantage of such an approach is that it only captures the most simple cases
of relations and entity types that are explicitly mentioned in the text. As a
general rule, this also limits the datasets to cover only the relations between
entity mentions (i.e., the annotation process is mention-driven) that appear
within a single or at most few adjacent sentences where the relation trig-
ger occurs (see Fig. 2.2 in Section 2.3 for a more detailed illustration of this
phenomenon). However, as we move to a broader document-based inter-
pretation, it is common to find relations that are not explicitly mentioned
in text. Thus, in our example of Fig. 2.1 the relation between “Ministry
of Defense” and “Britain” is not explicitly indicated in the text. However,
after reading the whole article we can infer relations such as ministry_of,
agency_of and based_in between these two entities. This document-level
reasoning makes it essential to adopt an entity-centric approach (see Entity-
Centric comparison group in Table 2.1) where each entity comprises one or
more entity mentions, and the annotations (i.e., relations, entity tags and en-
tity linking in DWIE) are made on the entity level, thus abstracting from
specific mention-driven triggers.

2.2.2 Recent advances in information extraction

In the last couple of years, the advances in joint modeling have been ac-
companied by an ever increasing interest in the use of graph-based neural
networks [39–41]. Initially, this approach has been applied to improve
the performance of the single coreference resolution task by transferring
document-level contextual information between coreferenced entity men-
tion spans [20, 42]. Most recently, these graph propagation techniques
have been successfully used in a joint setting [18, 21, 43, 44] by performing
graph message passing updates between the shared spans across different
tasks. However, while successful on mention-driven datasets such as ACE
2005 [28] and NYT [35], as far as we are aware, the advantages of these
techniques have not yet been investigated in an entity-centric document-
level setting. We fill this gap by extending the neural graph-based model
initially proposed by [21] to be used on DWIE (see Section 2.4). More
specifically, we explore the effect of performing document-level corefer-
ence (CorefProp) [20, 21] and relation-driven (RelProp) [21] graph mes-
sage passing updates between the spans. Additionally, we introduce a
new latent attention-based graph propagation method (AttProp) and com-
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pare it to previously proposed task-driven graph propagation methods
(CorefProp and RelProp).

2.2.3 Metrics and evaluation

Current dominant IE systems consider mention-level scoring of NER as well
as RE components when reporting on datasets such as CoNLL-2003 [60–
64], OntoNotes [61, 65, 66], ACE 2004 [67–69], ACE 2005 [18, 21, 69], TA-
CRED [31, 70, 71], and SelEval 2010-Task 8 [72–74] among others. In con-
trast, the DWIE dataset is entity-centric where all the annotations are done
on the entity cluster level. Consequently, adopting a purely mention-based
evaluation approach can lead to a dominance of the score by predictions
on entities composed by many mentions as opposed to entities composed
by only few ones. Conversely, a purely cluster-level evaluation would be
overly strict, requiring correct prediction of relation/entity types as well
as an exact match of the predicted entity clusters. To tackle this problem,
we propose a new scoring method that combines entity mention-level and
cluster-level evaluation, while avoiding the pitfalls of either method alone
(see Section 2.5).

2.3 Annotation process

In this work we introduce our bottom-up data-driven annotation approach.
Our main goal is to get an annotation schema that reflects the types of en-
tities and relations that are effectively mentioned throughout the corpus
to maximally capture the information it contains. Therefore, we derive
the annotation schema from the corpus itself, adopting three annotation
passes that are detailed next: (i) exploratory pass, (ii) schema-driven pass, and
(iii) inter-annotator refinement. Each pass encompasses substeps to cover
all IE subtasks: (i) mention annotation (i.e., the entities and their types),
(ii) coreference resolution, (iii) relation extraction on the entity level (i.e.,
clustering all mentions referring to the same entity), and (iv) entity linking
(again, on the entity level, providing the same link for all clustered men-
tions).

2.3.1 Exploratory pass

The first annotation pass aims to discover the annotation structure (i.e., an-
notation schema) to be used on the corpus, in particular the types to use for
named entity recognition (NER) and relation extraction (RE) tasks. Three
annotators are involved in this step to provide annotations on the mention
level: one expert annotator and two paid students. However, no parallel
annotation is done and the role of the expert annotator is to annotate part
of the corpus, as well as instructing and supervising the paid annotators.
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Entity Tag Description Example

ENTITY All nominal named entities. “UK court rules WikiLeaks’
Assange should be extradited
to Sweden”

location Entities referring to a partic-
ular geographical location.

“Libya is one of Germany’s
strongest trading partners in
northern Africa.”

organization Organizations such as com-
panies, governmental orga-
nizations, etc.

“According to the report,
Amazon would pay the
same level of royalty fees as
Apple.”

person Entities referring to people
in general such as politi-
cians, artists, sport players,
etc.

“With Ramires out, Drogba
could start as striker, with
Torres moving to the wing.”

misc Miscellaneous entity types
such as names of work of
arts, treaties, product names,
etc.

“According to the director’s
own words, The Post is a ‘pa-
triotic film’.”

event Events such as sport compe-
titions, summits, etc.

“Last year’s
Champions League final
drew a crowd of just 14,303.”

ethnicity Entity type used to identify
different ethnic groups.

“Attempt to assimilate
Uyghurs into dominant
Han Chinese culture.”

VALUE Values in general such as
time, money, etc.

“It ended the 2014 fiscal year
45 million euros ($51 million)
in the red.”

OTHER Includes the nominal varia-
tions of entity types (e.g., in-
cludes variations of country
names such as “German”,
which is a variation of “Ger-
many”).

“Franco-German ‘war child’
granted German citizenship.”

Table 2.3: Descriptions and Examples (with entity mentions underlined) of each of
the most granular entity classes in DWIE (ENTITY, VALUE and OTHER)
in the type tag hierarchy. Additionally, for the type ENTITY, we describe
and give examples of each of its direct subtypes (location, organization,
person, misc, event and ethnicity).
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No a priori fixed schema is followed, but we ask the annotators to be as
consistent as possible during the process. More specifically, the annotators
are free to define their own entity and relation types for the NER and RE
tasks that reflect the contents of the articles as long as they comply with the
following generic guidelines:

1. Named Entities: any physical or abstract object (e.g., “Washington”,
“Jeff Davis”,“Nobel Prize”, “Lisbon Treaty”, etc.) that can be de-
noted with a proper noun. Entities are usually upper-cased in the
text, although values such as money and time can also be included.
Use short and specific entity types (e.g., person, organization, etc.)
to classify entities, the types can be overlapping (a single entity can
have multiple types).

2. Relations: identify meaningful relations between entities. The type
of a relation should be specific and reflect the type of the connected
entities as well as the semantic meaning of the relation. For example,
instead of using a generic “located in” relation for entities located
in a particular country, we can divide it in “based in country” for
organizations that are based in a country, “city located in country”
for cities located in the country, etc. The types of the relations should
have short names, ideally not exceeding 15 characters.

By not constraining the annotation process to specific entity and relation
types, we ensure that our annotations are representative of the actual in-
formation contained in the annotated corpus.

2.3.2 Schema-driven pass

The main goal of this step is to create a consistent annotation schema for
(i) named entity types and (ii) relation types based on the annotations made
in the exploratory pass. As a first step, we identify the classification tags to
be assigned to entities. We divide these tags in five main categories: type,
topic, iptc, slot, and gender (see Table 2.14). Our type tag is organized in
a hierarchical structure (see Table 2.11 in 2.7), making it easier to extend
our annotations to more granular subtypes. Table 2.3 defines and provides
examples of each of the top type tags in the entity type hierarchy (ENTITY,
VALUE and OTHER) as well as the direct subtypes of ENTITY. The topic tag
allows to assign topics (e.g., politics, culture, education, etc.) to the entities
and it complements the type tag (see Table 2.12). The iptc tag is used for
the universally defined IPTC news categories based on a media taxonomy
(https://iptc.org/standards/subject-codes/). The slot tag is used for additional
categorization that is transversal to different entity types. One example of
this is the slot interviewee that can be assigned to any person (entity of type
person) interviewed in a particular article.7 Finally, the gender tag is used

7Other possible slot values are: keyword, head, death, interviewer and expert.

https://iptc.org/standards/subject-codes/
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Figure 2.2: Comparison of the coverage of the % of relations with increasing inter-
val in tokens (left) and interval in sentences (right). The graph at the top
illustrates the relations coverage measuring the minimum distance be-
tween entities (closest mentions). Conversely, the graph at the bottom
shows the coverage measuring the maximum distance between entity
mentions. In both graphs, we note that the distance between the related
mentions in our dataset is higher than in other widely used datasets.

to indicate the gender of the entities that refer to people. By defining these
multiple overlapping tag types, we realize that the entity classification is
multi-label by nature and thus allows different complementary entity tags
to be assigned to a particular entity.8 This contrasts with prevailing single-
label multi-class datasets such as ACE 2005 [27, 28], TAC-KBPs [23–26],
Rich ERE [29], WNUT 2017 [46] and CoNLL-2003 [45].

For our relation annotations, we focus on annotating relations between
entities themselves (cf. document-based entity-centric approach). Our adopted
approach allows us to think concept-wise and come up not only with re-
lations that are explicitly stated, but also those that can be implicitly in-
ferred from the text. As a result, our dataset includes relations whose
connected mentions are located further apart in the document. This can
be seen in Fig. 2.2, where we compare the minimum (Min.) and maximum
(Max.) distances between the mentions of the two entities connected by
a relation for various mention-driven (Rich ERE9, TAC-KBP10, and ACE
2005) and entity-centric (DocRED, BC5CDR, and the final version of our
DWIE dataset) RE datasets. We note how other datasets that define the
relation in terms of entities (BC5CDR and DocRED) require a higher num-
ber of token and sentence spans to cover all the relations in the respective

8The average number of labels per entity is 4.0 in our DWIE dataset.
9We use the Rich ERE dataset from the LDC2015E29 and LDC2015E68 catalogs.

10We use the TAK-KBP 2017 dataset from the LDC2017E54 and LDC2017E55 catalogs.
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Relation
Type Description Example

based_in0 Relations between organi-
zations and the countries
they are based in, ex:
based_in0⟨Uni of Cologne,
Germany⟩

“Now he’s back in Germany
carrying on with his
cancer research at the
University of Cologne.”

in0 Relations between geo-
graphic locations and the
countries they are located in,
ex: in0⟨Athens, Greece⟩

“The murder of a left-wing ac-
tivist in Athens has shaken up
Greece and inspired a back-
lash.”

citizen_of Relations between peo-
ple and the country
they are citizens of, ex:
citizen_of⟨Guerrero, Peru⟩

“Even as a teenager, Guerrero
played for the national side in
his native Peru.”

based_in0-x Relations between organi-
zations and the nominal
variations of the coun-
tries they are based in, ex:
based_in0-x⟨SPD, German⟩

“SPD denies ‘green light’ for
new German government, but
keeps options open”

citizen_of-x Relations between peo-
ple and the nominal
variations of the coun-
tries they are citizens of,
ex: citizen_of-x⟨Assange,
Australian⟩

“Australian national Assange
said the accusations were po-
litically motivated.”

Table 2.4: Descriptions and Examples of the top 5 most occurring relation types in
DWIE. The entity mentions involved in the relations are underlined.

dataset: entity-centric relations very often involve mentions located in dif-
ferent sentences in the document that refer to those entities. This is not the
case for mention-driven trigger-based relations as in the TAC-KBP, Rich
ERE and ACE 2005 datasets, where the annotation bias is towards finding
explicitly mentioned relations, often involving entity mentions in a single
sentence.

Similarly as with entity tags, we organize our relation annotations us-
ing multi-label types (see Table 2.15 for details). Table 2.4 gives some ex-
amples from the DWIE corpus for the top 5 most occurring relation types
(a detailed list can be consulted in Table 2.16). For reasons of space, the
examples only involve relations between entities whose mentions occur in
a single sentence; for an example involving document-level relations we
refer to Fig. 2.1.
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Task Before Refinement After Refinement

Named Entity 0.8497 0.8703
Named Entity Detection 0.9665 0.9673
Named Entity Classification 0.8812 0.9026

Coreference 0.9302 0.9324
Entity Linking 0.9280 0.9320
Relation 0.6594 0.8729

Relation Detection 0.7686 0.8727
Relation Classification 0.8118 0.9666

Table 2.5: The inter-annotation agreement Cohen’s kappa scores for all the different
annotation tasks before and after the dataset refinement used to analyze
and correct the discrepancies between the parallel annotations.

Additionally, we define logical rules to automatically guarantee the
consistency of the relations and their types. The following is an example,

based_in2⟨X, Z⟩ ∧ in0⟨Z, Y⟩ =⇒ based_in0⟨X, Y⟩ (2.1)

reflecting the knowledge that if an organization X is based in a city Z (rela-
tion based_in2), and that this city Z is located in the country Y (relation in0),
the fact that company X is also located in that country (relation based_in0)
is valid as well. The goal of this step is mainly consistency of the anno-
tations, but it implies that an effective predictor would need to perform
some form of reasoning to correctly predict all relations in the dataset. A
complete list of logical rules is provided in 2.7.

2.3.3 Inter-annotator refinement

In order to assess and further improve the quality of our dataset we re-
annotate a 100 randomly selected news articles (12.5% of the articles used
in the previous annotation rounds) from scratch. This work is done by a
second independent expert annotator. The annotations in this pass are per-
formed by following the already defined annotation schema based on the
annotation process in the exploratory and schema-driven passes. We use this
second annotated subset to measure the inter-annotator agreement and
subsequently determine the parts of the dataset that still need to be im-
proved. Table 2.5 compares the kappa scores before and after this refine-
ment pass for each of the tasks (see 2.7 for details on how the kappa score
is calculated). We observe that, after the refinement, all of the kappa scores
are above 0.85, which is considered a ‘strong’ [75] to ‘almost perfect’ [76]
agreement.

Note that the revisions were seeded by and evaluated on the subset of
100 re-annotated articles. However, we argue that the inter-annotator re-



50 CHAPTER 2

finement improved the annotation consistency of the entire dataset, given
that the reviewed entity and relation types are used in more than 99.4% of
all annotations in DWIE.

2.4 Model architecture

In this section we introduce the end-to-end architecture used to compare
the performance of models trained on the separate tasks with the models
that are trained jointly for multiple tasks on the DWIE dataset. The main
component of our approach is the use of Graph Neural Networks [39–41,
77], relying on propagation techniques in both single-task and joint setups.
More specifically, we implement span-based graph message passing on
coreference (CorefProp) [20, 21] and relation levels (RelProp) [21]. Ad-
ditionally, we introduce a latent attentive propagation method (AttProp)
which is not driven by annotations of any task in particular and, as a re-
sult, can be freely applied to any task or joint combination of tasks. The in-
terconnection between the different components of our model architecture
is depicted in Fig. 2.3. It is based on the span-based architecture introduced
in [19], which supports training on the space of all entity spans simulta-
neously, dynamically updating span representations by using the graph
propagation approach (further detailed in Section 2.4.4). Recent works
have shown that this idea has the potential for improved effectiveness (al-
beit at a higher computational cost) [18, 20, 21, 78], compared to more tra-
ditional sequence-labeling approaches [60, 79–81]. More concretely, the use
of a span-based approach where all the spans are shared between the indi-
vidual task modules avoids the cascading of errors from the entity mention
identification module (entity scorer in Fig. 2.3) to the rest of the tasks.

The most similar architecture to ours in using joint span-based neural
graph IE is DyGIE [21] and its successor DyGIE++ [43]. Our model is
described in detail below, but here we already list the aspects in which it
differs from these models:

1. We introduce the graph propagation technique AttProp (see
Section 2.4.4), which is not directly conditioned on a particular task
and can be used in single-task (for each of the tasks) as well as joint
settings.

2. We define a coreference architecture that, unlike previous work in
span-based coreference resolution [19, 20], allows to also account for
singleton entities in the DWIE dataset (see Sections 2.4.2.2 and 2.4.5.2)
by using an additional pruner loss, which turns out essential for the
single model focusing on end-to-end coreference resolution.

3. Due to the document-level nature of DWIE, we run graph propaga-
tions on the whole document. This contrasts with a sentence-based
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approach adopted initially in the DyGIE/DyGIE++ architectures. It
also drives some changes such as the use of a single pruner (see Sec-
tion 2.4.1) to extract spans used in coreference and RE modules. Sim-
ilarly, instead of applying the shared BiLSTM sentence by sentence
as in [21] and [43], we do it on the entire document, in order to allow
capturing cross-sentence dependencies for document-level relations
and entity clusters in DWIE.

4. We add an additional decoding step (see Section 2.4.3) needed to
transform mention-based predictions for RE and NER tasks into entity-
based ones, as required by the entity-centric nature of DWIE, and
propose corresponding evaluation metrics (see Section 2.5).

5. Finally, we make changes in the loss and prediction components to
support multi-label classification (in NER and RE) as required in DWIE.

2.4.1 Span-based representation

The input to our model consists of document-level annotation instances.
Each document D from the considered document collection D is repre-
sented by its sequence T of tokens. These tokens are represented internally
as a concatenation of GloVe [82] and character embeddings [79]. We also
experiment with additionally concatenating BERT [83] contextualized em-
beddings. Since BERT is run on a sub-token level, to the representation
of each token we only concatenate the BERT-based representation of the
first sub-token, as originally proposed by [83]. This input is fed into a
BiLSTM layer in order to obtain the output token representations by con-
catenating the forward and backward LSTM hidden states. The BiLSTM
outputs for the considered document D are written on the token level as
ei ∈ Rm (i = 1, . . . , |T|). These are converted into span representations. The
set of all possible spans for D, up to maximum span width wmax (which is a
hyperparameter of the model), is written as S = {s1, . . . , s|S|}. The number
of spans can be calculated as follows,

|S| =
wmax

∑
k=1
|T| − k + 1 = wmax

(
|T| − wmax − 1

2

)
(2.2)

We obtain the representation g0
i for span si, ranging from token l to token

r, by concatenating their respective BiLSTM states el and er with an em-
bedding ψr−l for the span width wi = r− l

g0
i = [el ; er; ψr−l ] (2.3)

As seen from Eq. (2.2), the number of possible spans scales approxi-
mately linearly with the maximum span width wmax, as well as the doc-
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Figure 2.3: Architecture of our model; the span-oriented approach makes it possi-
ble to execute coreference (Section 2.4.2.2) and relation (Section 2.4.2.3)
scorers independently from entity scorer (Section 2.4.2.1). However,
a pruning step (described in Section 2.4.1) is needed in order to
limit the memory required to perform matrix operations on span
representations involved in graph propagation (AttProp, CorefProp,
RelProp)(Section 2.4.4) as well as in the attention, coreference and re-
lation scorer modules. The pruned spans share the same representation
with the rest of the spans (shared representation). This way, the update
in span representations caused by the graph propagation modules also
affects the entity scorer. Our AttProp graph propagation method runs
independently from coreference, relation, and entity scorers, enabling
its use in combination with any task. Finally, the entity-centric decoder
(Section 2.4.3) uses the entity clusters predicted by the coreference scorer
to convert the span-based predictions from the relation and entity scorers
to entity-centric ones.

ument length |T| (assuming wmax ≪ |T|). This leads to a strongly in-
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creased set of spans, as compared to previous works where |S| scales with
the length of individual sentences rather than entire documents [21, 43].
In order to mitigate the required memory of our model, we use a shared
pruner to reduce S to a smaller set P of candidate spans to be used by
the coreference and RE scorers and in the graph propagation modules (see
further). The choice of using a single pruner contrasts with similar work
in [21] and [43] where two separate pruners are used, one for the relation
task, and another for coreference. Our design choice is based on the fact
that both of these tasks use the same document-level entity mentions. This
contrasts with datasets used in [21] and [43] where, while the coreference
is defined on the document-level, the relations are sentence-based.

Finally, we use graph propagation to iteratively refine the pruned spans
representations. Three graph propagation mechanisms are compared in
the experiments. Our own contribution is the attention-based graph prop-
agation method AttProp, where the span representations are updated in
τA iterations. Alternatively, τC iterations of CorefProp [20, 21] can be per-
formed, or τR iterations of RelProp [21].

The span representation of a particular span si after iteration t is de-
noted as gt

i in our notation. The details of graph propagation are explained
in Section 2.4.4. Note that in theory several of these graph propagation
techniques could be accumulated, but in our setting the benefits thereof
in terms of model effectiveness were minor, at a significantly higher com-
putational cost. Therefore, in our experiments, we only compare models
without graph propagation with models applying a single form of graph
propagation. To keep the sections introducing the models clear, we will
write τ to denote the number of propagations in general (which could be
0, or any of τA, τC or τR, depending on the chosen experiments and consid-
ered model components).

2.4.2 Joint model for entity recognition, coreference resolu-
tion, and relation extraction

In this section, we present the joint model including recognition of entity
mentions as belonging to LT types (introduced as NER), the clustering of
the entity mentions into entities (coreference resolution), and identifying
relations between entities, all on the document level. The building blocks
responsible for the three subtasks are discussed next, as well as the total
loss of the joint model. The details of the graph propagation mechanisms
are then provided further on (Section 2.4.4).



54 CHAPTER 2

2.4.2.1 Entity mention module

All spans si (up to width wmax) of the considered document11 are scored
by feeding their representation (starting from Eq. (2.3) and potentially up-
dated after τ graph propagation iterations) into the feed-forward neural
network (FFNN) written as Fmention, with as many outputs as there are
entity types:

Φτ
mention(si) = Fmention(gτ

i ). (2.4)

Throughout this section, we will maintain the same notation of F(x) to
denote a FFNN that takes as input a vector x and produces a vector of
scores, and F (x) to refer to a FFNN with a scalar output.

The probability of each label being valid for the considered span is
modeled by component-wise application of a sigmoid (σ(x) = 1/(1 +
e−x)) to these scores Φτ

mention(si) ∈ RLT (with LT the number of entity
tags). The log probability of the ground truth mention labels for all spans
of document D is given by

log Pmention (E∗|Gτ) =
|S|

∑
i=1

LT

∑
l=1

Ii,l log σ(Φτ
mention(si)l) + (1− Ii,l)

log
(
1− σ (Φτ

mention(si)l)
)
,

(2.5)

in which E∗ represents the set of ground truth mention labels for all spans
in the document, and Ii,l ∈ {0, 1} is the ground truth indicator label for
mention tag l of span si. Gτ denotes the set of all considered span repre-
sentations for the current document. The superscript τ reflects the fact that,
in case graph propagation is applied, the subset of |P| representations (for
the spans retained after pruning) have been updated over τ iterations. By
summing over all entity types (l = 1, . . . , LT), we account for the fact that
a particular span can have multiple associated entity tags (i.e., the consid-
ered NER task is multi-label). At inference time, spans get assigned those
entity types for which the corresponding score Φτ

mention(si) > 0. Note that
not all valid entity mentions necessarily get an entity type assigned: if the
relation extractor determines that a span is part of a relation, it effectively
becomes an entity mention, even if none of the pre-defined types is consid-
ered applicable by the entity scorer.

2.4.2.2 Coreference module

While the entity scoring is performed on all span representations S, this is
not possible for the coreference and relation scorers, due to memory limita-
tions. The latter scorers predict on pruned spans, as shown in Fig. 2.3. How

11For convenience, the subscript D indicating the current document is left out in the equa-
tions of this section.
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the pruner is trained jointly with the model, is described in Section 2.4.2.4.
In order to avoid confusion by introducing additional notations, we list the
spans in the pruned set P as s1, . . . , s|P|, according to their original order in
the text.

The module for coreference resolution is based on pairwise scoring of
the pruned spans from P. Following ideas from [19–21, 38], for any span
sj, scores with respect to each of the preceding (also referred to as ‘an-
tecedent’) spans si (i ≤ j) in the document are calculated with a neural
network Fcoref:

Φτ
coref(si, sj) = Fcoref

(
[gτ

i ; gτ
j ; gτ

i ⊙ gτ
j ;φi,j]

)
. (2.6)

This expression scores the compatibility between spans si and sj, taking
as input the concatenation of their respective span representations (after τ
propagation iterations), their component-wise product, and an embedding
φi,j representing their distance in terms of the number of ordered candidate
spans from si to sj.

In order to deal with non-coreferent or incorrect spans, previous work
in span-based coreference [19, 20] defines a dummy antecedent ϵ to which
all non-coreferent or invalid spans point. While this approach is effective
in datasets that do not contain singleton entity clusters, such as OntoNotes-
based CoNLL-2012 [50], it does not allow to distinguish between valid sin-
gleton entity mentions and invalid mention spans. This makes it unsuit-
able to use on DWIE, since it contains singleton entity clusters, consisting
of a single mention. In fact, 66.4% of the entity clusters in DWIE are sin-
gletons. Furthermore, the current official CoNLL-2012 evaluation script12

based on [84] accounts for scenarios where either the dataset or the pre-
dicted mentions are singletons, which has a direct impact on the estab-
lished B-CUBED [85] and CEAFe [86] coreference scores. In order to tackle
the singleton entity cluster detection in our coreference model, we propose
to start from Φτ

coref(sj, sj)
13 as a self-coreference span score. By applying

the correct target in the coreference loss, it allows indicating that either
the span sj is not a valid mention, or that it is a valid mention that is not
co-referenced with any antecedent span.

The log probability of the ground truth coreference labels of document
D is given by

log Pcoref (C∗|Gτ) =
|P|

∑
j=1

log

∑
s∗∈S∗j

exp
(
Φτ

coref(s
∗, sj)

)
j

∑
i=1

exp
(
Φτ

coref(si, sj)
) . (2.7)

12https://github.com/conll/reference-coreference-scorers
13This would be replaced with Φτ

coref(ϵ, sj) in the dummy-based formulation defined in [19].

https://github.com/conll/reference-coreference-scorers
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The set of ground truth coreference labels is indicated as C∗. The summa-
tion over j represents the contribution to the log likelihood of the correct
antecedent labels for each span sj in the pruned set P. The individual terms
in the right-hand side correspond to the log probability of the correct an-
tecedent labels for a particular span sj. In the denominator, the summation
ranges from the first span, up to span sj itself (i.e., for the self-coreference
score), but not beyond it (given that only antecedents in the sorted sequence
of pruned spans are considered). The numerator contains the contribu-
tions from the potentially multiple ground truth antecedents for span sj.
This stems from the fact that multiple antecedent mentions may belong to
the same cluster as sj, which all contribute to the probability of the correct
antecedent labels. The set of ground truth antecedents corresponding to
span sj is written S∗j .

At inference time, the highest scoring antecedent for span sj (including
sj itself) is picked. Due to the idea of only predicting antecedents, picking
any of the ground truth antecedents leads to the correct mention clusters
[19, 20, 87, 88].

2.4.2.3 Relation module

Similar to the coreference module (Eq. (2.6)), we score span pairs using an
FFNN

Φτ
relation(si, sj) = Frelation

(
[gτ

i ; gτ
j ; gτ

i ⊙ gτ
j ;φi,j]

)
, (2.8)

where φi,j is again the distance embedding as introduced in Section 2.4.2.2.
Φτ

relation(i, j) ∈ RLR is a vector representing relation span pair scores for
each of the LR possible relation types between spans si and sj.

The log probability of the ground truth relation labels of document D
is given by

log Prelation (R∗|Gτ) =
|P|

∑
i,j=1

LR

∑
l=1

Ii,j,l log σ(Φτ
relation(si, sj)l)+

(1− Ii,j,l) log
(
1− σ(Φτ

relation(si, sj)l)
)

,

(2.9)

in which R∗ represents the set of ground truth relation labels for all com-
bination of pruned span pairs in the document, and Ii,j,l ∈ {0, 1} is the
ground truth indicator label for relation type l of the span pair (si, sj). Note
that all |P|2 pruned span pairs are considered, since the order of the spans
in the relation matters (unlike the coreference case). By summing over all
possible relation types LR, we account for the fact that a particular relation
between two spans can be multi-label (which is the case for more than 30%
of relations, as shown in Table 2.15).
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Since this model is run in parallel with the coreference module, it is
used to predict relations only between entity mentions and not entity clus-
ters. During inference, candidate relations are accepted when
Φτ

relation(si, sj)l > 0.

2.4.2.4 Span pruner

The span pruner is an FFNN, denotedFpruner, that scores all spans si based
on their initial representation g0

i , after which only the highest scoring spans
are retained in the pruned span set P. In our experiments P contains the
top 0.2 |T| highest scoring spans, which covers more than 98% of all the
ground truth mention spans in the DWIE dataset. We represent the pruner
score for span si as

Φpruner (si) = Fpruner

(
g0

i

)
. (2.10)

Several strategies can be used to train the pruner. One option is to directly
optimize the probability of the pruner to detect the spans of correct entity
mentions. With S∗ the set of spans with at least one ground truth entity
type, and Ii ∈ {0, 1} an indicator for whether si ∈ S∗, the corresponding
log likelihood can be written as

log Ppruner

(
S∗|G0

)
=
|S|

∑
i=1

Ii log σ
(
Φpruner(si)

)
+

(1− Ii) log
(
1− σ

(
Φpruner(si)

))
,

(2.11)

leading to a separate pruner loss term. Alternatively, the pruner can be
trained indirectly by adapting the mention score from Eq. (2.4), the coref-
erence score from Eq. (2.6) or the relation score from Eq. (2.8) as follows:

Φ̃τ
mention (si) = Φτ

mention (si) + Φpruner (si) (2.12)

Φ̃τ
coref

(
si, sj

)
= Φτ

coref
(
si, sj

)
+ Φpruner (si) (2.13)

Φ̃τ
relation

(
si, sj

)
= Φτ

relation
(
si, sj

)
+ Φpruner (si) (2.14)

for use in the expressions Eq. (2.5), Eq. (2.7) and Eq. (2.9), respectively. As
such, higher pruner scores would directly correspond to higher mention
or coreference scores, and lead to a meaningful ranking of spans accord-
ing to pruner scores. All three strategies seem to work on a similar level,
but for the presented joint model experiments, we use the indirect train-
ing through the coreference module, as in Eq. (2.13). Note that we did not
experiment with training the pruner through the relation module, because
it would be trained only on those spans involved in relations, which is a
mere subset of all valid mentions.
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2.4.2.5 Joint model

We perform joint training in order to explore the degree to which the graph
propagation techniques (see Section 2.4.4) affect related tasks in DWIE. For
instance, we expect that performing a coreference propagation can have
a positive impact on the NER task. We hypothesize that enriching the en-
tity spans with broader contextual information coming from other mention
spans in the cluster, can improve the effectiveness of the entity module.
Furthermore, given the entity-centric nature of DWIE, the mention-based
predictions for NER and RE have to be grouped in coreference clusters (see
section 2.4.3 for details), which makes it necessary to execute these tasks
jointly with the coreference task.

The joint loss for each document D is a weighted sum of the individual
loss functions of the subtasks:

Ljoint
D = ∑

(E∗ ,C∗ ,R∗)
λE log Pmention (E∗|Gτ) + λC log Pcoref (C∗|Gτ) +

λR log Prelation (R∗|Gτ) ,
(2.15)

in which λE, λC, and λR are hyperparameters of the joint model.

2.4.3 Decoding and prediction

Unlike previous datasets used in span-based predictions [27, 28, 38, 89]
where the relation and entity extraction are done on the mention-level,
DWIE is an entity-centric dataset. During inference, this requires an addi-
tional decoding step to cluster the mention-based span-dependent predic-
tions into entity-centric ones. The component responsible for this decoding
in the proposed architecture is the entity-centric decoder (see Fig. 2.3). The
pseudo-code in Algorithm 1 summarizes the steps performed by this com-
ponent. First, the decoder receives as input the predicted span clusters
(p_cl), entity mentions (p_men) and relations between spans (p_rel) ob-
tained from the scores calculated in Eq. (2.13), Eq. (2.4) and Eq. (2.8), respec-
tively. Next, the predicted entity mentions are connected with the respec-
tive clusters by using the dictionary C that maps mention spans to cluster
ids (lines 3–12 in Algorithm 1). Specifically, each of the entity clusters is as-
signed the union of the entity types predicted for any of the mention spans
inside the cluster (line 11 in Algorithm 1). If the predicted entity mention
can not be located inside the predicted clusters, a new singleton cluster is
added (lines 5–6 in Algorithm 1). Finally, all the pairwise predicted rela-
tions on the mention level (p_rel) between members of two different clus-
ters are assigned as predicted relations between the (cluster-level) entities
(lines 13–20 in Algorithm 1). Similarly as with entity mentions, the dictio-
nary C is used to map the mention spans (span_h and span_t) of a partic-
ular relation type rel_type to the corresponding cluster ids. Furthermore,
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the relations added between two clusters are the union of all the relations
predicted between any pair of mentions inside these clusters (line 18 in
Algorithm 1).

2.4.4 Graph propagation mechanisms

In order to evaluate the impact of graph-based propagation of contextual
information between the spans, we propose AttProp, and reimplement the
CorefProp and RelProp graph propagation algorithms. [20] proposed the
gated graph propagation update function for use on coreference resolution,
which was then successfully applied in a joint multi-task setting by [21, 43].
The graph propagation equations are written as:

ft
x(si) = σ

(
Fx([gt

i ; ut
x(si)])

)
, (2.16)

gt+1
i = ft

x(si)⊙ gt
i +

(
1− ft

x(si)
)
⊙ ut

x(si), (2.17)

where in our case x ∈ {A, C, R} denotes AttProp, CorefProp, and RelProp,
respectively. The n-dimentional vector ft

x(si), produced by the single-layer
FFNN Fx can be interpreted as a gating vector that acts as a switch be-
tween the current span representations gt

i ∈ Rn, and the update span vec-
tor ut

x(si) ∈ Rn. The various graph propagation methods differ in how
ut

x(si) is calculated.
CorefProp — The coreference confidence score between span si and sj for
propagation iteration t is denoted as Pt

C(si, sj) and calculated as follows,

Pt
C(si, sj) =

exp
(
Φ̃t

coref(si, sj)
)

j
∑

i′=1
exp

(
Φ̃t

coref(si′ , sj)
) , (2.18)

in which i′ ∈ {1, . . . , j} refers to all antecedent spans si′ to span sj in the
pruned span set. Note that the coreference scores according to Eq. (2.13)
are used. This means the confidence scores not only reflect whether the
considered spans are compatible, but also whether the individual spans are
likely to be retained by the pruner as potential entity mentions. In order to
perform a CorefProp graph iteration, the span update vector ut

C(i) ∈ Rn is
first calculated as a weighted average of the current representation of span
sj and all of its antecedents

ut
C(sj) =

j

∑
i=1

Pt
C(si, sj) gt

i , (2.19)

in which the weighting coefficients quantify the coreference compatibil-
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Input: predicted clusters (p_cl), entity mentions (p_men) and relations
between mentions (p_rel):

1. p_cl is a dictionary (map) that maps cluster ids to mention spans
2. p_men is list of tuples ⟨predicted span, predicted tag⟩
3. p_rel is list of tuples ⟨predicted head span, predicted relation, pre-

dicted tail span⟩

Output: clusters (p_cl), decoded entities (d_ent) and relations between
entities (d_rel)

1: Initialize d_ent, d_rel ← empty dictionary (map)
2: C ← transformed p_cl that maps spans to cluster ids

▷ Decode entity mentions (p_men) to entities (d_ent) (lines 3–12)
3: for span, tag in p_men do
4: if span not in C.keys() then
5: C[span]← new concept id
6: p_cl[C[span]]← list([span])
7: end if
8: if C[span] not in d_ent.keys() then
9: d_ent[C[span]]← empty set

10: end if
11: d_ent[C[span]].add(tag)
12: end for

▷ Decode relations between mentions (p_rel) to relations between enti-
ties (d_rel) (lines 13–20)

13: for span_h, rel_type, span_t in p_rel do
14: if (span_h in C.keys()) and (span_t in C.keys()) then
15: if ⟨C[span_h], C[span_t]⟩ not in d_rel.keys() then
16: d_rel[⟨C[span_h], C[span_t]⟩]← empty set
17: end if
18: d_rel[⟨C[span_h], C[span_t]⟩].add(rel_type)
19: end if
20: end for

Algorithm 1: Entity-centric decoder for the Joint model.
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ity of the corresponding span with sj. After that, the update equations
Eq. (2.16) and Eq. (2.17) are applied.
RelProp — Similarly as with CorefProp, a relation span update vector is
calculated as formalized next,

ut
R(sj) =

|P|

∑
i=1

(
AR f

(
Φt

relation(si, sj)
))
⊙ gt

i , (2.20)

where AR ∈ Rn×LR is a trainable projection tensor, and f is a non-linear
activation function (ReLU). Similarly as in Eq. (2.19), the update vector
can be interpreted as a weighted sum of all span representations, with the
additional expressiveness stemming from the projection matrix AR in ac-
counting for the relation scores.
AttProp — In order to measure the impact of the ‘supervised’ CorefProp
and RelProp propagation techniques described by equations (2.18)-(2.20)
above, we introduce a latent attentive propagation. Unlike CorefProp and
RelProp that are driven by the task-specific confidence propagation scores
Φt

coref(si, sj) and Φt
relation(si, sj), AttProp is influenced only by latent atten-

tion weights between all the pruned spans P calculated as follows,

Φt
att(si, sj) = Fatt

(
[gt

i ; gt
j; gt

i ⊙ gt
j;φi,j]

)
, (2.21)

where φi,j is the distance feature embedding function between spans si and
sj, and Φt

att(si, sj) is the attention score between these spans. This score is
normalized with a softmax to get the Pt

A(si, sj) confidence score

Pt
A(si, sj) =

exp
(
Φt

att(si, sj)
)

|P|
∑

j′=1
exp

(
Φt

att(si, sj′)
) . (2.22)

The span update vector ut
A(si) ∈ Rn is calculated as a weighted sum of all

the P span representations as opposed to only antecedents in CorefProp

ut
A(si) =

|P|

∑
j=1

Pt
A(si, sj) gt

j. (2.23)

2.4.5 Single task models

In this section we shortly describe independent baseline models for the
three individual core tasks under study in this paper, as training these
models not entirely corresponds to merely minimizing the corresponding
loss term from the total loss Eq. (2.15).
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2.4.5.1 Single entity recognition model

The single-task NER model is designed for detecting and correctly labeling
the individual entity spans, and is based on Eq. (2.5). However, even for the
single models, the graph propagation mechanism AttProp may be useful,
but for that the pruner needs to be jointly trained with the model. This is
obtained by augmenting the mention loss − log Pmention(E∗|Gτ) with the
pruner loss − log Ppruner

(
S∗|G0) according to Eq. (2.11).

2.4.5.2 Single coreference resolution model

The single-task end-to-end coreference model needs to detect mentions
and correctly cluster them. Here again, the standard coreference loss
− log Pcoref (C∗|Gτ) according to Eq. (2.13) and Eq. (2.7) is extended with
the pruner loss− log Ppruner(S∗|G0). This turned out essential for correctly
predicting the singleton clusters.

2.4.5.3 Single relation extraction model

The single relation extraction model is trained to detect mentions as well as
the correct pairwise relations between mentions (i.e., without the corefer-
ence step). In order to train the pruner as well, the standard relation score is
extended as described in Eq. (2.14) before calculating the loss
− log Prelation (R∗|Gτ) based on Eq. (2.9).

2.5 Entity-centric metrics

Unlike the currently widespread datasets that use a mention-driven ap-
proach to annotate named entities [45, 46, 90, 91], relations [26, 27, 29, 30,
38, 58, 91] and entity linking [35, 48, 59], DWIE is entirely entity-centric.
As explained before, we group entity mentions si referring to the same
entity into clusters Ck. While we can, and will, adopt the traditional coref-
erence measures as defined by [84] to judge this cluster formation, the NER
and relation extraction (RE) evaluation (using precision, recall and F1) can
be done either on (i) mention level, or (ii) entity (cluster) level. The first
option however would have the metrics being dominated by the more fre-
quently occurring entities, while the second would penalize mistakes in
the clustering (since partially correctly identified clusters would be seen as
completely incorrect). This is illustrated in Fig. 2.4 and the corresponding
performance metrics in Table 2.6, where scenarios 1 and 2 highlight the
effect of making labeling mistakes on the cluster level for different sizes,
and scenario 3 highlights the pessimistic view of hard entity-level metrics
in case of clustering mistakes. Note that we indicate the mention-level
metrics with subscript m, while the (hard) entity-level metrics will have
subscript with e.
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Mention-Level Hard Ent-Level Soft Ent-Level

Prm Rem F1,m Prs Res F1,s Pre Ree F1,e

(a) NER

Gr. Truth 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Scenario 1 0.143 0.100 0.118 0.600 0.500 0.545 0.600 0.500 0.545
Scenario 2 0.931 0.900 0.915 0.600 0.500 0.545 0.600 0.500 0.545
Scenario 3 1.000 0.900 0.947 0.333 0.500 0.400 1.000 0.944 0.971

(b) RE

Gr. Truth 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Scenario 1 1.000 0.027 0.053 1.000 0.500 0.667 1.000 0.500 0.667
Scenario 2 1.000 0.973 0.986 1.000 0.500 0.667 1.000 0.500 0.667
Scenario 3 0.983 0.783 0.872 0.000 0.000 0.000 0.889 0.889 0.889

Table 2.6: Comparison of different metrics for the example scenarios depicted in
Fig. 2.4, for (a) NER and (b) relation extraction.

Because the (hard) entity-level metrics in our opinion overly penalize
clustering mistakes (cf. scenario 3), we propose a variant of entity-level
evaluation which we term soft entity-level metrics (denoted by subscript s).
Basically, instead of adopting a binary count of 1 (all mentions correct) or 0
(as soon as a single mention is missed) on an entity cluster level, we rather
count the fraction of its mentions that are correctly labeled. This is illus-
trated in the formula part of Fig. 2.4(a) for NER, and below we present
the adopted formulas in detail. Note that in case clusters are completely
predicted correctly, the soft entity-level metrics are the same as hard entity-
level metrics (and thus avoid the metric being dominated by frequent men-
tions, as in the mention-level case).

The formal definition of the metrics depends on counting true positives
tpp(l) and tpg(l), false positives fp(l), and false negatives fn(l) for a partic-
ular NER tag/relation type l, which are specified in Eq. (2.24)–(2.25). These
and other notation definitions are summarized in Table 2.8. Further, note
that we define two true positives for a particular label l, because of the
potential difference between predicted and ground truth clusters: tpp(l)
sums fractions of predicted clusters and is used to calculate the precision
Prs in Eq. (2.26), while tpg(l) considers ground truth clusters and is used
for the recall Res in Eq. (2.26). This allows us to preserve the cluster-based
relationships between true positives, false positives and false negatives as
described for expressions tpp(l) + fp(l) and tpg(l) + fn(l) in Table 2.7. Thus
our soft entity-level metrics are still cluster-based, while accounting for the
mention-level predictions.

tpp(l) = ∑
Cp∈PC(l)

|Cp ∩ GM(l)|
|Cp|

, tpg(l) = ∑
Cg∈GC(l)

|Cg ∩ PM(l)|
|Cg|

(2.24)

fp(l) = |PC(l)| − tpp(l), fn(l) = |GC(l)| − tpg(l) (2.25)

Our soft entity-level precision, recall and F1 metrics are formally de-
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Figure 2.4: Illustration of entity prediction scenarios for (a) NER and (b) relation
extraction, with large clusters (C1, C3) and smaller ones (C2, C4). Sce-
nario 1 erroneously labels the large one, scenario 2 incorrectly labels the
small one, scenario 3 incorrectly splits up the large one and makes a mis-
take for one of its mentions, s9. The formulas in the grey box illustrate
the calculation of mention-level (Prm, Rem), hard entity-level (Pre, Ree)
and soft entity-level (Prs, Res) precision and recall for NER in scenario
3. Note that in (b), the mention dots are colored for correct (green) and
incorrect (red) relation heads only.
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Expression (a) Meaning for NER (b) Meaning for RE

tpp(l) + fp(l) Number of predicted entity
clusters with tag l.

Number of predicted relations
of type l between entity clus-
ters.

tpg(l) + fn(l) Number of ground truth entity
clusters with tag l.

Number of ground truth rela-
tions of type l between entity
clusters.

Table 2.7: The relations between the weighted true positives by the size of predicted
(tpp(l)) and ground truth (tpg(l)) entity clusters allows us to achieve the
constraints needed for the denominators of precision (tpp(l) + fp(l)) and
recall (tpp(l) + fn(l)) functions (Eq. (2.26)) in terms of the number of en-
tity clusters.

fined as follows, where L refers to either the number of all possible tags for
NER or the number of all possible relation types for RE:

Prs =

L
∑

l=1
tpp(l)

L
∑

l=1
tpp(l) + fp(l)

, Res =

L
∑

l=1
tpg(l)

L
∑

l=1
tpg(l) + fn(l)

, F1,s =
2 · Prs · Res

Prs + Res

(2.26)

2.6 Experimental results

2.6.1 Experimental setup

We train and evaluate our model as described in Section 2.4 on three tasks:
NER, coreference, and relation extraction (RE) independently and jointly.
We experiment with three main model variations:

1. Single: Experiments on individual tasks by training with the respec-
tive loss functions as described in Section 2.4.5.

2. Joint: Experiments jointly on all three tasks using pre-trained GloVe
representations14 concatenated to character embeddings in the shared
input layer (see Fig. 2.3). For training we use the joint loss defined in
Section 2.4.2.

3. Joint+BERT: as in the Joint setting, experiments jointly on all three
tasks, but using pre-trained BERTBASE embeddings15 concatenated
to the GloVe and character embeddings. We use an input window

14http://nlp.stanford.edu/data/glove.840B.300d.zip
15https://storage.googleapis.com/bert models/2018 10 18/cased L-12 H-768 A-12.zip

http://nlp.stanford.edu/data/glove.840B.300d.zip
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
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Symbol (a) Meaning for NER (b) Meaning for RE

PC(l)
Set of predicted entity clusters
with tag l.

Set of predicted relations of type
l between the predicted entity
clusters.

Cp ∈ PC(l)
Set of predicted entity men-
tions for a particular entity
cluster in PC(l).

Set of relations between the pre-
dicted entity mentions for a par-
ticular pair of related entity clus-
ters in PC(l).

GC(l)
Set of ground truth entity clus-
ters annotated with tag l.

Set of ground truth relations of
type l between the ground truth
entity clusters.

Cg ∈ GC(l)
Set of ground truth entity men-
tions for a particular entity
cluster in GC(l).

Set of relations between the
ground truth entity mentions for
a particular pair of related entity
clusters in GC(l)

PM(l) Set of predicted entity men-
tions with tag l.

Set of predicted relations of type
l between the predicted entity
mentions.

GM(l) Set of ground truth entity men-
tions annotated with tag l.

Set of ground truth relations of
type l between the ground truth
entity mentions.

tpp(l)

Number of true positive pre-
dictions of tag l on mentions
re-weighted by predicted clus-
ter sizes.

Number of true positive pre-
dictions of relation type l be-
tween mentions re-weighted by
the number of mention level re-
lations between the connected
pairs of predicted clusters.

tpg(l)

Number of true positive men-
tion level predictions of tag l
re-weighted by ground truth
cluster sizes.

Number of true positive pre-
dictions of relation type l be-
tween mentions re-weighted by
the number of mention level re-
lations between the connected
pairs of ground truth clusters.

fp(l)

Number of false positive men-
tion level predictions of tag l
re-weighted by predicted clus-
ter sizes.

Number of false positive pre-
dictions of relation type l be-
tween mentions re-weighted by
the number of mention level re-
lations between the connected
pairs of predicted clusters.

fn(l)

Number of false negative men-
tions with ground truth tag l
re-weighted by ground truth
cluster sizes.

Number of false negative rela-
tions of type l between mentions
re-weighted by the number of
mention level relations between
the connected pairs of ground
truth clusters.

Table 2.8: Short definition of the symbols and expressions involved in our soft-entity
level metric formulation in Eq. (2.24)–(2.26) for both NER and RE tasks.
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Coreference F1 NER F1 RE F1

Model Setup MUC CEAFe B3 Avg. F1,m F1,e F1,s F1,m F1,e F1,s

Single 92.8 90.9 88.2 90.6 85.7 - - 68.2 - -
+AttProp 93.2 91.5 88.7 91.1 87.1 - - 71.3 - -
+CorefProp 92.8 90.9 88.3 90.7 - - - - - -
+RelProp - - - - - - - 68.2 - -

Joint 92.5 90.5 87.3 90.1 85.4 71.7 84.4 68.1 46.8 66.5
+AttProp 92.3 90.4 87.3 90.0 87.1 72.9 86.1 72.1 50.4 72.1
+CorefProp 92.3 90.3 87.2 89.9 87.2 73.2 86.0 71.6 50.2 71.0
+RelProp 92.6 90.2 86.8 89.9 86.7 72.4 85.2 69.5 48.2 68.8

Joint+BERT 93.8 92.1 89.0 91.6 87.6 74.2 86.4 70.6 48.7 68.9
+AttProp 93.2 91.4 88.6 91.1 88.8 74.2 87.7 72.3 50.4 73.0
+CorefProp 93.5 91.8 88.7 91.3 88.7 74.4 87.4 72.7 50.0 71.9
+RelProp 93.7 91.8 88.7 91.4 88.4 74.8 87.0 72.0 49.9 71.4

Table 2.9: Main results of the experiments grouped in three model setups: (i) Sin-
gle models trained individually, (ii) Joint model trained using as input
GloVe and character embeddings, and (iii) Joint+BERT model trained on
BERTBASE embeddings. To report the results, we use MUC, CEAFe, B3 as
well as the average (Avg.) of these three metrics for coreference resolution.
For NER and RE we use mention-level (F1,m), hard entity-level (F1,e), and
soft entity-level (F1,s) metrics described in Section 2.5. In bold we mark
the best results for each model setup, the best overall results are under-
lined. Note that the metrics are expressed in percentage points.

size of 250 tokens and concatenate the last 2 hidden layers of BERT
to get token representations.

Additionally, for each of the three model setups we experiment with the
graph propagation techniques defined in Section 2.4.4. To maximize result
consistency, we train each model 5 times and report the average of these 5
results for each of the experiments.

We use a single-layer BiLSTM with forward and backward hidden states
of 200 dimensions each. All our FFNNs used to obtain confidence scores
(Fpruner, Fcoref, Fmention, Frelation, and Fatt) have two 150-dimensional hid-
den layers trained with a dropout of 0.4. We set the maximum span width
wmax to 5 and the pruner ratio to 0.2 of the total number of tokens in a doc-
ument. For training, we use Adam with a learning rate of 1e− 3 for 100
epochs with a linear decay of 0.1 starting at epoch 15.

2.6.2 Results and analyses

Table 2.9 gives an overview of the results achieved in Single as well as Joint
and Joint + BERT setups. Additionally, Fig. 2.5 illustrates the impact of the



68 CHAPTER 2

number of graph propagation iterations for each of the span graph propa-
gation methods on the final results.

First, we observe a general improvement in all our Single tasks when us-
ing graph propagation techniques. More specifically, our proposed latent
AttProp achieves superior results compared to the relation (RelProp) and
coreference (CorefProp) propagations when added to the Single setup. The
biggest improvement across iterations (see Fig. 2.5) is for the single RE task
mention-level F1,m score with a boost of ∼3 percentage points when incor-
porating AttProp. We also observe an improvement of ∼1.5 percentage
points in F1,m for the NER task and a consistent but smaller improvement
of 0.5 F1 percentage points for the coreference task. These results illustrate
the effectiveness of AttProp when applied to single task models.

A further improvement in results is achieved by training our model
jointly (see the Joint setup in Table 2.9 and graphs in Fig. 2.5) for NER and
RE tasks. This illustrates that, besides the positive effect of neural graph
propagation on single task models, training our model jointly has an addi-
tional benefit by exploiting the interaction between tasks. In particular, this
effect can be seen for RE, where our Joint model achieves a boost in perfor-
mance of 0.8 percentage points for the mention-level F1,m metric compared
to the best result for the Single setup. Furthermore, our AttProp graph
propagation method achieves the best performance on all the metrics for
the RE task in the Joint setting with up to∼ 5.5 percentage points improve-
ment in our newly proposed F1,s metric. Additionally, we observe a ben-
eficial effect of graph propagation for the NER task in the Joint setup with
slightly better results for the F1,m metric compared to the Single setting.
Our AttProp technique performs on par with CorefProp, outperforming
the latter by a small margin in terms of F1,s metric.

Similarly to the Joint model variation, we observe benefits when us-
ing graph propagation techniques in the Joint+BERT models. Table 2.10
illustrates the deltas in performance for the NER and relation extraction
tasks. This way, we can see more clearly the difference in impact of our
neural message passing methods grouped by the model setup and met-
ric type. First, we observe that the general performance boost from us-
ing graph propagation techniques is lower in Joint+BERT than in the Joint
setup. We hypothesize that this effect is due to the fact that BERT itself
has a better long-range context extraction due to the attention-based mech-
anism, which spans the input window as opposed to purely local (non-
contextualized) GloVe embeddings used in the Joint setting. This is in line
with the findings in [92], [43], and [93] that show the advantage of using
large BERT input window sizes to produce better IE results. Second, we
observe that our AttProp method achieves consistently superior perfor-
mance on our proposed soft entity-level metric F1,s, capturing thus better
the mention-based predictions as weighted by their cluster sizes. Finally,
from Table 2.10(b) we notice that adding BERT to our joint model does not
affect the boost in performance caused by the RelProp method for relation



DWIE: AN ENTITY-CENTRIC DATASET 69

Joint Joint+BERT

F1,m F1,e F1,s F1,m F1,e F1,s

(a) NER
∆ AttProp 1.69 1.18 1.67 1.16 −0.02 1.31
∆ CorefProp 1.78 1.50 1.54 1.05 0.20 1.02
∆ RelProp 1.33 0.70 0.75 0.78 0.56 0.60

(b) RE
∆ AttProp 3.97 3.62 5.56 1.66 1.69 4.05
∆ CorefProp 3.48 3.45 4.47 2.02 1.29 2.95
∆ RelProp 1.35 1.47 2.32 1.37 1.20 2.48

Table 2.10: Deltas of improvement in performance for each of the graph propaga-
tion methods (AttProp, CorefProp, RelProp) in F1 scores for (a) NER
and (b) relation extraction tasks.

extraction. We hypothesize that this is due to the fact that RelProp prop-
agation can capture relational semantics that goes beyond BERT’s contex-
tual span representation similarity (which mainly drives the positive im-
pact of Joint+BERT).

Unlike for the NER and RE tasks, where we observe a consistent posi-
tive impact of span graph propagation and joint modeling across all our ex-
periments, the impact on the coreference task is not clear. Our experiments
on Single setup show small, but constant improvement of the Avg.-F1 score
with the number of AttProp propagation iterations (see Fig. 2.5). However,
in our Joint and Joint+BERT setups the graph propagation appears to not
have any positive impact on Avg.-F1 coreference scores. We hypothesize
that the main reason for this phenomenon lies in the coreference annota-
tions in DWIE: since we only annotate clusters of proper nouns, leaving out
the nominal (e.g., “the prime minister”) and anaphoric expressions (e.g.,
“he”, “she”, “they”, etc), there might be little to no additional benefit in
propagating information between co-referenced entity mentions, since the
representation of proper nouns likely is not much influenced by textual
context (e.g., the span “Merkel” can have very similar span representation
to “Angela Merkel”, gaining nothing in adding contextual graph propaga-
tion).

Additionally, we explore in more detail the effect of the number of
AttProp, CorefProp, RelProp graph propagation iterations on the final F1
score of all the tasks in Fig. 2.5. We observe that the number of iterations
have a decreasing effect on the improvement of performance for the NER
and RE tasks. Furthermore, the positive effect of CorefProp and RelProp
tends to saturate or even become negative after 1 or 2 iterations. This is in
line with findings of [21] on other datasets, where the performance peak is
usually achieved at 2 graph propagation iterations. For our AttProp how-
ever, we observe that the positive effect of additional iterations tends to
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Figure 2.5: Impact of AttProp, CorefProp and RelProp graph propagations on per-
formance metrics for each of the Single, Joint and Joint+BERT model se-
tups. Note the different Y-axis scales.

persist longer, particularly on the Joint setup where the positive effect of
AttProp seems to be still growing after the last iteration (3) in our experi-
ments.

2.7 Conclusion and future work

In this work we introduced DWIE, a manually annotated multi-task dataset
that comprises Named Entity Recognition, Coreference, Relation Extrac-
tion and Entity Linking as main tasks. We highlight how DWIE is dif-
ferent from the mainstream datasets by focusing on document-level and
entity-centric annotations. This also makes the predictions on this dataset
more challenging by having not only to consider explicit, but also implicit
document-level interactions between entities. Furthermore, we showed
how Graph Neural Networks can help to tackle this issue by propagating
local contextual mention span information on a document level for a single
task as well as across the tasks on the DWIE dataset. We experiment with
known graph propagation techniques driven by the scores of the corefer-
ence resolution (CorefProp) and relation extraction (RelProp) components,
as well as introduced a new latent task-independent attention-based graph
propagation method (AttProp). We demonstrated that, without relying on
the task-specific scorers, AttProp can boost the performance of single-task
as well as joint models, performing on par and even outperforming signif-
icantly in some scenarios the RelProp and CorefProp graph propagations.

In future work we will aim to integrate an entity linking component
into our joint architecture. As a consequence, we expect to obtain a fur-
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ther boost in performance of different tasks included in DWIE by taking
advantage of the information coming from Wikipedia 2018, the reference
knowledge base for the entity linking annotations. Conversely, we con-
jecture that the results of the entity linking component can be improved
when training it jointly with other tasks, such as NER and coreference res-
olution. Finally, we plan extending the coreference annotations to include
nominal and anaphoric expressions. We expect that including these di-
verse mention types, whose initial span embedding representation can be
different from coreferenced named entities, will make our coreference res-
olution task more challenging, allowing to investigate further the potential
benefits of using graph-based neural networks.

Acknowledgements

Part of the research leading to these results has received funding from
(i) the European Union’s Horizon 2020 research and innovation programme
under grant agreement no. 761488 for the CPN project,16 and (ii) the Flem-
ish Government under the “Onderzoeksprogramma Artificiële Intelligen-
tie (AI) Vlaanderen” programme.

16https://www.projectcpn.eu/

https://www.projectcpn.eu/


72 CHAPTER 2

Appendix

Dataset insights

Entity Type # Entities % Entities # Mentions % Mentions

ENTITY 13,151 56.9% 30,719 70.8%
location 4,957 21.4% 11,548 26.6%

gpe 3,965 17.1% 9,830 22.7%
gpe0 2,225 9.6% 6,559 15.1%
gpe2 1,497 6.5% 2,873 6.6%
gpe1 244 1.1% 406 0.9%

regio 479 2.1% 916 2.1%
facility 259 1.1% 385 0.9%

organization 3,434 14.8% 8,165 18.8%
media 659 2.8% 984 2.3%
igo 547 2.4% 1,992 4.6%

so 171 0.7% 912 2.1%
party 381 1.6% 949 2.2%
company 368 1.6% 932 2.1%
sport_team 367 1.6% 1,106 2.5%
governmental_organization 342 1.5% 636 1.5%

agency 228 1.0% 444 1.0%
armed_movement 108 0.5% 374 0.9%

person 3,390 14.7% 8,259 19.0%
politician 1,184 5.1% 3,326 7.7%

head_of_state 380 1.6% 1,271 2.9%
head_of_gov 247 1.1% 673 1.6%
minister 217 0.9% 458 1.1%

sport_player 405 1.8% 844 1.9%
artist 260 1.1% 586 1.4%
politics_per 209 0.9% 457 1.1%
manager 104 0.4% 297 0.7%
offender 75 0.3% 347 0.8%

misc 823 3.6% 1,646 3.8%
work_of_art 174 0.8% 247 0.6%

event 354 1.5% 701 1.6%
sport_competition 183 0.8% 410 0.9%

ethnicity 84 0.4% 242 0.6%
VALUE 5,903 25.5% 7,104 16.4%

time 2,907 12.6% 3,608 8.3%
role 2,390 10.3% 2,865 6.6%
money 606 2.6% 631 1.5%

OTHER 2,724 11.8% 5,482 12.6%
gpe0-x 1,596 6.9% 3,827 8.8%
footer 413 1.8% 413 1.0%
loc-x 353 1.5% 585 1.3%
religion-x 235 1.0% 486 1.1%

TOTAL 23,130 100.0% 43,373 100.0%

Table 2.11: Statistics depicting the hierarchical structure of entity types described in
Section 2.3.2. Only the most frequent entity types/subtypes are shown
(% Mentions > 0.5%)
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Table 2.13 describes the statistics of linked entities with respect to the total num-
ber of entities in each of the Entity subtypes. The columns % Linked Entities and %
Linked Mentions indicate the percentage of annotated linked entities and mentions
with respect to the total number of annotated entities/mentions in a particular En-
tity type category. Furthermore, we calculate two accuracies on test split when
linking the entity mention with the most frequent entity link used either in DWIE:
(i) training set of DWIE dataset (“Acc. Prior Train”), or (ii) Wikipedia corpus (“Acc.
Prior Wiki”). Overall, using prior linking annotations from Wikipedia gives 9 per-
centage points better performance (79.0%) than when using train set (70.0%). This
difference is explained by the fact that Wikipedia has much larger corpus to calcu-
late the prior linking information from. Nevertheless, we still observe that for some
entity types such as sport_team and media the accuracy based on DWIE training set
prior is higher. This suggests the use of domain-specific language to refer to some
entities in DWIE not used in a more general Wikipedia domain.

Entity Type
# Linked
Entities

% Linked
Entities

# Linked
Mentions

% Linked
Mentions

Acc. Prior
Train

Acc. Prior
Wiki

LOCATION 4,863 98.1% 11,496 99.5% 85.7% 92.9%
gpe 3,938 99.3% 9,810 99.8% 89.8% 95.6%
regio 456 95.2% 889 97.1% 83.3% 76.3%
facility 229 88.4% 381 99.0% 19.7% 73.8%
waterbody 90 98.9% 145 100.0% 83.3% 91.7%
district 37 94.9% 45 100.0% 33.3% 33.3%

ORGANIZATION 3,145 91.6% 8,029 98.3% 69.8% 70.8%
media 622 94.4% 979 99.5% 81.8% 59.5%
igo 525 96.0% 1,952 98.0% 76.4% 78.8%
party 358 94.0% 897 94.5% 77.5% 66.7%
company 320 87.0% 923 99.0% 67.6% 89.7%
sport_team 366 99.7% 1,105 99.9% 71.0% 47.5%

PERSON 2,627 77.5% 8,217 99.5% 45.7% 69.4%
politician 1,162 98.1% 3,324 99.9% 66.0% 78.1%
sport_player 404 99.8% 843 99.9% 34.4% 71.3%
artist 246 94.6% 567 96.8% 0.0% 29.4%
politics_per 126 60.3% 456 99.8% 23.7% 42.1%
manager 58 55.8% 296 99.7% 22.2% 33.3%

MISC 607 73.8% 1,532 93.1% 58.4% 73.4%
work_of_art 142 81.6% 246 99.6% 0.0% 100.0%
award 72 80.0% 186 94.9% 63.6% 81.8%
treaty 60 74.1% 149 99.3% 66.7% 50.0%
product 50 76.9% 146 98.6% 52.0% 92.0%
species 10 25.0% 14 18.4% 0.0% 100.0%

EVENT 320 90.4% 683 97.4% 49.4% 67.1%
sport_competition 163 89.1% 397 96.8% 64.6% 87.5%
summit_meeting 15 68.2% 37 92.5% 100.0% 100.0%
holiday 21 95.5% 39 97.5% 100.0% 100.0%
history 17 89.5% 30 100.0% 100.0% 100.0%
protest 14 100.0% 22 100.0% 80.0% 100.0%

TOTAL 13,086 56.6% 28,482 65.7% 70.0% 79.0%

Table 2.13: Entity linking statistics, only the top 5 types and subtypes with largest
number of linked entities are showed. The total is calculated on all the
entity types. The accuracy (both for most likely prior links on train and
Wiki corpora) is computed on test set.
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Entity Tag
Category # Entities % Entities # Mentions % Mentions # Classes Labels per

Entity

type 21,745 94.0% 43,122 99.4% 174 2.9
topic 7,843 33.9% 18,359 42.3% 14 1.0
iptc 7,059 30.5% 17,195 39.6% 114 1.3
gender 3,352 14.5% 8,200 18.9% 2 1.0
slot 3,232 14.0% 14,983 34.5% 7 1.2

TOTAL 23,130 100.0% 43,373 100.0% 311 4.0

Table 2.14: Main named entity tag categories with statistics of the number and % of
covered entities and mentions as well as the number of classes in each
and average number of labels per entity cluster.

Table 2.14 illustrates the number of annotated entities and mentions per each
tag category (type, topic, iptc, gender and slot). It also showcases the multi-label
nature of entity classification task in DWIE, with the average number of labels per
entity of 4.0.

Table 2.15 illustrates the number and percentage of related entities and men-
tions of our dataset grouped by the number of relation labels. It also compares
with other entity-centric RE datasets, namely BC5CDR [52, 53] and DocRED [34]
datasets.

DWIE BC5CDR DocRED

# Relation # Related % Related # Related % Related % Related % Related
labels ent. pairs ent. pairs mention pairs mention pairs ent. pairs ent. pairs

1 12,856 76.32% 112,708 69.40% 100% 92.89%
2 3,101 18.41% 34,948 21.52% 0% 6.82%
3 884 5.25% 14,650 9.02% 0% 0.26%
4 3 0.02% 100 0.06% 0% 0.03%

TOTAL 16,844 100.0% 162,406 100.0% 100.0% 100.0%

Table 2.15: This table groups the number of related pairs in DWIE by the number
of assigned relation labels to each of these pairs. We compare with other
two entity-centric datasets: BC5CDR and DocRED.
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Relation
Type

# Related
Ent. Pairs

% Related
Ent. Pairs

# Related
Men. Pairs

% Related
Men. Pairs

based_in0 2,361 14.0% 18,771 11.6%
in0 2,120 12.6% 15,810 9.7%
citizen_of 1,969 11.7% 25,752 15.9%
based_in0-x 1,882 11.2% 12,211 7.5%
citizen_of-x 1,844 10.9% 17,049 10.5%
member_of 1,616 9.6% 19,953 12.3%
gpe0 1,569 9.3% 18,110 11.2%
in0-x 1,474 8.8% 8,784 5.4%
agent_of 954 5.7% 15,776 9.7%
head_of 564 3.3% 7,710 4.7%
agency_of 435 2.6% 4,775 2.9%
player_of 401 2.4% 5,692 3.5%
agency_of-x 382 2.3% 2,108 1.3%
head_of_state 380 2.3% 7,986 4.9%
head_of_state-x 343 2.0% 3,853 2.4%
appears_in 294 1.7% 4,555 2.8%
vs 281 1.7% 7,187 4.4%
head_of_gov 273 1.6% 4,015 2.5%
head_of_gov-x 247 1.5% 2,383 1.5%
minister_of 234 1.4% 2,280 1.4%
minister_of-x 213 1.3% 1,629 1.0%
based_in2 185 1.1% 971 0.6%
event_in0 181 1.1% 843 0.5%
part_of 164 1.0% 2,858 1.8%
in2 157 0.9% 1,055 0.6%
created_by 134 0.8% 945 0.6%
agent_of-x 125 0.7% 897 0.6%
award_received 111 0.7% 969 0.6%
institution_of 105 0.6% 2,113 1.3%
ministry_of 81 0.5% 666 0.4%
coach_of 65 0.4% 1,211 0.7%
won_vs 61 0.4% 1,531 0.9%
spouse_of 55 0.3% 599 0.4%
directed_by 44 0.3% 318 0.2%
is_meeting 41 0.2% 968 0.6%
event_in2 40 0.2% 259 0.2%
spokesperson_of 39 0.2% 177 0.1%
plays_in 38 0.2% 330 0.2%
gpe1 35 0.2% 135 0.1%
product_of 31 0.2% 334 0.2%
parent_of 22 0.1% 281 0.2%
child_of 22 0.1% 281 0.2%
based_in1 22 0.1% 376 0.2%
signed_by 20 0.1% 521 0.3%
law_of 16 0.1% 286 0.2%

TOTAL 16,844 100.0% 162,406 100.0%

Table 2.16: Relation type statistics. We compare the number of related entity and
mention pairs per relation type. Only the most frequent relation types
are shown (% Related Mention Pairs > 0.1%)
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Inter-annotator agreement calculations
In order to measure the agreement we use Cohen’s kappa coefficient [94], defined
as

κ =
po − pe

1− pe
(2.27)

where po represents the observed agreement between the two annotators and pe is
the expected agreement between the annotators (i.e., agreement by chance). More
specifically, in our case we calculate the observed probability po as in Eq. (2.28)
where N is the number of annotated items, Ai,j is the annotation made by annotator
i for item j, and 1{A1,j = A2,j} returns 1 if A1,j is equal to A2,j and 0 otherwise.
Thus, po can be interpreted as the fraction of the labels two annotators agree, also
called percent agreement [75, 95].

po =

N
∑

j=1
1{A1,j = A2,j}

N
(2.28)

To calculate the expected agreement probability we use the formulation in Eq. (2.29).
It can be interpreted as the probability that both annotators, when randomly dis-
tributing all of their label annotations among the items to be annotated, assign the
same label to a given item.

pe =
L

∑
l=1

n1,l
N

n2,l
N

(2.29)

In this context, ni,l is the number of items the annotator i annotated with label l
and L is the total number of labels. For multi-label annotations where it is possible
to assign multiple classes for a particular annotation item (i.e., named entity and
relation types), we report a weighted kappa score.
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Relation consistency rules

This appendix enumerates the logical predicates used as a consistency check in our
dataset.

spouse_of⟨Y, X⟩ =⇒ spouse_of⟨X, Y⟩ (2.1)

vs⟨Y, X⟩ =⇒ vs⟨X, Y⟩ (2.2)

won_vs⟨X, Y⟩ =⇒ vs⟨X, Y⟩ (2.3)

won_vs⟨X, Y⟩ =⇒ vs⟨Y, X⟩ (2.4)

child_of⟨Y, X⟩ =⇒ parent_of⟨X, Y⟩ (2.5)

parent_of⟨Y, X⟩ =⇒ child_of⟨X, Y⟩ (2.6)

ministry_of⟨X, Y⟩ =⇒ agency_of⟨X, Y⟩ (2.7)

agency_of-x⟨X, Z⟩ ∧ gpe0⟨Z, Y⟩ =⇒ agency_of⟨X, Y⟩ (2.8)

agency_of⟨X, Y⟩ ∧ gpe0⟨Z, Y⟩ =⇒ agency_of-x⟨X, Z⟩ (2.9)

agent_of-x⟨X, Z⟩ ∧ gpe0⟨Z, Y⟩ =⇒ agent_of⟨X, Y⟩ (2.10)

agent_of⟨X, Y⟩ ∧ gpe0⟨Z, Y⟩ =⇒ agent_of-x⟨X, Z⟩ (2.11)

minister_of⟨X, Y⟩ =⇒ agent_of⟨X, Y⟩ (2.12)

head_of_gov⟨X, Y⟩ =⇒ agent_of⟨X, Y⟩ (2.13)

head_of_state⟨X, Y⟩ =⇒ agent_of⟨X, Y⟩ (2.14)

citizen_of-x⟨X, Z⟩ ∧ gpe0⟨Z, Y⟩ =⇒ citizen_of⟨X, Y⟩ (2.15)

citizen_of⟨X, Y⟩ ∧ gpe0⟨Z, Y⟩ =⇒ citizen_of-x⟨X, Z⟩ (2.16)

minister_of-x⟨X, Z⟩ ∧ gpe0⟨Z, Y⟩ =⇒ minister_of⟨X, Y⟩ (2.17)

minister_of⟨X, Y⟩ ∧ gpe0⟨Z, Y⟩ =⇒ minister_of-x⟨X, Z⟩ (2.18)

head_of_state-x⟨X, Z⟩ ∧ gpe0⟨Z, Y⟩ =⇒ head_of_state⟨X, Y⟩ (2.19)

head_of_state⟨X, Y⟩ ∧ gpe0⟨Z, Y⟩ =⇒ head_of_state-x⟨X, Z⟩ (2.20)

head_of_gov-x⟨X, Z⟩ ∧ gpe0⟨Z, Y⟩ =⇒ head_of_gov⟨X, Y⟩ (2.21)

head_of_gov⟨X, Y⟩ ∧ gpe0⟨Z, Y⟩ =⇒ head_of_gov-x⟨X, Z⟩ (2.22)

in0-x⟨X, Z⟩ ∧ gpe0⟨Z, Y⟩ =⇒ in0⟨X, Y⟩ (2.23)

in0⟨X, Y⟩ ∧ gpe0⟨Z, Y⟩ =⇒ in0-x⟨X, Z⟩ (2.24)

in2⟨X, Z⟩ ∧ in0⟨Z, Y⟩ =⇒ in0⟨X, Y⟩ (2.25)

in1⟨X, Z⟩ ∧ in0⟨Z, Y⟩ =⇒ in0⟨X, Y⟩ (2.26)

based_in2⟨X, Z⟩ ∧ in0⟨Z, Y⟩ =⇒ based_in0⟨X, Y⟩ (2.27)

based_in1⟨X, Z⟩ ∧ in0⟨Z, Y⟩ =⇒ based_in0⟨X, Y⟩ (2.28)

agency_of⟨X, Y⟩ ∧ gpe0⟨Y⟩ =⇒ based_in0⟨X, Y⟩ (2.29)

event_in2⟨X, Z⟩ ∧ in0⟨Z, Y⟩ =⇒ event_in0⟨X, Y⟩ (2.30)

event_in1⟨X, Z⟩ ∧ in0⟨Z, Y⟩ =⇒ event_in0⟨X, Y⟩ (2.31)

head_of⟨X, Y⟩ =⇒ member_of⟨X, Y⟩ (2.32)

coach_of⟨X, Y⟩ =⇒ member_of⟨X, Y⟩ (2.33)

spokesperson_of⟨X, Y⟩ =⇒ member_of⟨X, Y⟩ (2.34)

member_of⟨X, Y⟩ ∧ sport_player⟨X⟩ =⇒ player_of⟨X, Y⟩ (2.35)
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mayor_of⟨X, Y⟩ =⇒ head_of_gov⟨X, Y⟩ (2.36)

directed_by⟨X, Y⟩ =⇒ created_by⟨X, Y⟩ (2.37)

character_in⟨X, Y⟩ ∧ played_by⟨X, Z⟩ =⇒ plays_in⟨Z, Y⟩ (2.38)

institution_of⟨X, Y⟩ =⇒ part_of⟨X, Y⟩ (2.39)

based_in0-x⟨X, Z⟩ ∧ gpe0⟨Z, Y⟩ =⇒ based_in0⟨X, Y⟩ (2.40)

based_in0⟨X, Y⟩ ∧ gpe0⟨Z, Y⟩ =⇒ based_in0-x⟨X, Z⟩ (2.41)
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3
Towards Consistent

Document-level Entity Linking:
Joint Models for Entity Linking and

Coreference Resolution

In this chapter, we present a more detailed model on how the entity-centric approach can be
used for entity linking task. The entity linking consists in mapping the anchor mentions in
text to target entities that describe them in a Knowledge Base (KB) (e.g., Wikipedia). In our
work, we showcase that this task can be improved by considering performing entity linking
on the coreference cluster level instead of on each of the mentions individually. By adopting
this approach, our joint model is able to use the information of all the coreferent mentions
at once when choosing the candidate entity. As a result, this leads to more consistent pre-
dictions among mentions referring to the same concept, especially boosting the performance
on corner cases consisting of unpopular mentions.

⋆ ⋆ ⋆

K. Zaporojets, J. Deleu, Y. Yiang, T. Demeester and C. De-
velder
In Proceedings of the ACL 2022

Abstract We consider the task of document-level entity linking (EL), where it is
important to make consistent decisions for entity mentions over the full document



88 CHAPTER 3
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Figure 3.1: Illustration of our 2 explored graph models: (a) Local where edges
are only allowed from spans to antecedents or candidate entities, and
(b) Global where the prediction involves a spanning tree over all nodes.

jointly. We aim to leverage explicit “connections” among mentions within the doc-
ument itself: we propose to join EL and coreference resolution (coref) in a single
structured prediction task over directed trees and use a globally normalized model
to solve it. This contrasts with related works where two separate models are trained
for each of the tasks and additional logic is required to merge the outputs. Exper-
imental results on two datasets show a boost of up to +5% F1-score on both coref
and EL tasks, compared to their standalone counterparts. For a subset of hard
cases, with individual mentions lacking the correct EL in their candidate entity list,
we obtain a +50% increase in accuracy.1

3.1 Introduction
In this paper we explore a principled approach to solve entity linking (EL) jointly
with coreference resolution (coref). Concretely, we formulate coref+EL as a single
structured task over directed trees that conceives EL and coref as two complemen-
tary components: a coreferenced cluster can only be linked to a single entity or NIL
(i.e., a non-linkable entity), and all mentions linking to the same entity are coref-
erent. This contrasts with previous attempts to join coref+EL [1–3] where coref
and EL models are trained separately and additional logic is required to merge the
predictions of both tasks.

Our first approach (Local in Fig. 3.1(a)) is motivated by current state-of-the-art
coreference resolution models [4, 5] that predict a single antecedent for each span
to resolve. We extend this architecture by also considering entity links as poten-
tial antecendents: in the example of Fig. 3.1, the mention “Alliance” can be either
connected to its antecedent mention “NATO” or to any of its candidate links (Al-
liance or Alliance,_Ohio). While straightforward, this approach cannot solve cases

1Our code, models and AIDA+ dataset will be released on https://github.com/
klimzaporojets/consistent-EL

https://github.com/klimzaporojets/consistent-EL
https://github.com/klimzaporojets/consistent-EL
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where the first coreferenced mention does not include the correct entity in its can-
didate list (e.g., if the order of “NATO” and “Alliance” mentions in Fig. 3.1 would
be reversed). We therefor propose a second approach, Global, which by construc-
tion overcomes this inherent limitation by using bidirectional connections between
mentions. Because that implies cycles could be formed, we resort to solving a max-
imum spanning tree problem. Mentions that refer to the same entity form a cluster,
represented as a subtree rooted by the single entity they link to. To encode the over-
all document’s clusters in a single spanning tree, we introduce a virtual root node
(see Fig. 3.1(b)).2

This paper contributes: (i) 2 architectures (Local and Global) for joint entity link-
ing (EL) and corefence resolution, (ii) an extended AIDA dataset [6], adding new
annotations of linked and NIL coreference clusters, (iii) experimental analysis on 2
datasets where our joint coref+EL models achieve up to +5% F1-score on both tasks
compared to standalone models. We also show up to +50% in accuracy for hard
cases of EL where entity mentions lack the correct entity in their candidate list.

3.2 Architecture

Our model takes as input (i) the full document text, and (ii) an alias table with en-
tity candidates for each of the possible spans. Our end-to-end approach allows to
jointly predict the mentions, entity links and coreference relations between them.

3.2.1 Span and entity representations

We use SpanBERT (base) from [7] to obtain span representations gi for a particular
span si. Similarly to [8, 9], we apply an additional pruning step to keep only the top-
N spans based on the pruning score Φp from a feed-forward neural net (FFNN):

Φp(si) = FFNNP(gi). (3.1)

For a candidate entity ej of span si we will obtain representation as ej (which is
further detailed in Section 3.3).

3.2.2 Joint approaches

We propose two methods for joint coreference and EL. The first, Local, is motivated
by end-to-end span-based coreference resolution models [10, 11] that optimize the
marginalized probability of the correct antecedents for each given span. We extend
this local marginalization to include the span’s candidate entity links. Formally,
the modeled probability of y (text span or candidate entity) being the antecedent of
span si is:

Pcl(y|si) =
exp

(
Φcl(si, y)

)
∑y′∈Y(si) exp

(
Φcl(si, y′)

) , (3.2)

2Coreference clusters without a linked entity, i.e., a NIL cluster, have a link of a mention
directly to the root.
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where Y(si) is the set of antecedent spans unified with the candidate entities for si.
For antecedent spans {sj : j < i} the score Φcl is defined as:

Φcl(si , sj) = Φp(si) + Φp(sj) + Φc(si , sj), (3.3)
Φc(si , sj) = FFNNC([gi ; gj ; gi ⊙ gj ;φi,j ]), (3.4)

where φi,j is an embedding encoding the distance3 between spans si and sj. Simi-
larly, for a particular candidate entity ej, the score Φcl is:

Φcl(si, ej) = Φp(si) + Φℓ(si, ej), (3.5)

Φℓ(si, ej) = FFNNL([gi; ej]). (3.6)

An example graph of mentions and entities with edges for which aforementioned
scores Φcl would be calculated is sketched in Fig. 3.1(a). While simple, this ap-
proach fails to correctly solve EL when the correct entity is only present in the
candidate lists of mention spans occurring later in the text (since earlier mentions
have no access to it).

To solve EL in the general case, even when the first mention does not have
the correct entity, we propose bidirectional connections between mentions, thus
leading to a maximum spanning tree problem in our Global approach. Here we
define a score for a (sub)tree t, noted as Φtr(t):

Φtr(t) = ∑
(i,j)∈t

Φcl(ui, uj), (3.7)

where ui and uj are two connected nodes (i.e., root, candidate entities or spans) in
t. For a ground truth cluster c ∈ C (with C being the set of all such clusters), with
its set4 of correct subtree representations Tc, we model the cluster’s likelihood with
its subtree scores. We minimize the negative log-likelihood L of all clusters:

L = − log
∏c∈C ∑t∈Tc

exp
(
Φtr(t)

)
∑t∈Tall

exp
(
Φtr(t)

) . (3.8)

Naively enumerating all possible spanning trees (Tall or Tc) implied by this equa-
tion is infeasible, since their number is exponentially large. We use the adapted
Kirchhoff’s Matrix Tree Theorem (MTT; [12, 13]) to solve this: the sum of the weights
of the spanning trees in a directed graph rooted in r is equal to the determinant of
the Laplacian matrix of the graph with the row and column corresponding to r re-
moved (i.e., the minor of the Laplacian with respect to r). This way, Eq. (3.8) can be
rewritten as

L = − log
∏c∈C det

(
L̂c

(
Φcl

))
det

(
Lr

(
Φcl

)) , (3.9)

where Φcl is the weighted adjacency matrix of the graph, and Lr is the minor of

3Measured in number of spans, after pruning.
4For a single cluster annotation, indeed it is possible that multiple correct trees can be

drawn.
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Dataset # Linked # NIL Linked # NIL
clusters clusters mentions mentions

DWIE 11,967 9,935 28,482 14,891
AIDA 16,673 - 27,817 7,112
AIDA+ 16,775 4,284 28,813 6,116

Table 3.1: Datasets statistics.

the Laplacian with respect to the root node r. An entry in the Laplacian matrix is
calculated as

Li,j =

∑
k

exp(Φcl(uk , uj)) if i = j

− exp(Φcl(ui , uj)) otherwise
, (3.10)

Similarly, L̂c is a modified Laplacian matrix where the first row is replaced with the
root r selection scores Φcl(r, uj). For clarity, Appendix 3.6 presents a toy example
with detailed steps to calculate the loss in Eq. (3.9).

To calculate the scores of each of the entries Φcl(ui, uj) to Φcl matrix in eqs. (3.7)
and (3.9) for Global, we use the same approach as in Local for edges between two
mention spans, or between a mention and entity. For the directed edges between
the root r and a candidate entity ej we choose Φcl(r, ej) = 0. Since we represent NIL
clusters by edges from the mention spans directly to the root, we also need scores
for them: we use Eq. (3.3) with Φp(r) = 0. We use Edmonds’ algorithm [14] for
decoding the maximum spanning tree.

3.3 Experimental setup

We considered two datasets to evaluate our proposed models: DWIE [15] and
AIDA [6]. Since AIDA essentially does not contain coreference information, we
had to extend it by (i) adding missing mention links in order to make annotations
consistent on the coreference cluster level, and (ii) annotating NIL coreference clus-
ters. We note this extended dataset as AIDA+. See Table 3.1 for the details.

As input to our models, for DWIE we generate spans of up to 5 tokens. For
each mention span si, we find candidates from a dictionary of entity surface forms
used for hyperlinks in Wikipedia. We then keep the top-16 candidates based on the
prior for that surface form, as per [16, §3]. Each of those candidates ej is represented
using a Wikipedia2Vec embedding ej [16].5 For AIDA+, we use the spans, entity
candidates, and entity representations from [17].6

To assess the performance of our joint coref+EL models Local and Global, we
also provide Standalone implementations for coref and EL tasks. The Standalone coref
model is trained using only the coreference component of our joint architecture
(Eq. (3.2)–(3.4)), while the EL model is based only on the linking component (Eq. (3.6)).

5We use Wikipedia version 20200701.
6https://github.com/dalab/end2end neural el

https://github.com/dalab/end2end_neural_el


92 CHAPTER 3

DWIE AIDA+
a AIDA+

b

Setup ELm ELh Coref ELm ELh Coref ELm ELh Coref

Standalone 88.7±0.1 78.4±0.2 94.5±0.1 86.2±0.4 80.7±0.5 93.8±0.1 79.1±0.3 74.0±0.3 91.5±0.3

Local 90.5±0.4 83.4±0.4 94.4±0.2 87.5±0.2 83.1±0.2 94.7±0.1 79.9±0.4 75.8±0.3 92.3±0.1

Global 90.7±0.3 83.9±0.5 94.7±0.2 87.6±0.2 83.7±0.3 95.1±0.1 79.6±0.4 76.0±0.4 92.2±0.2

Table 3.2: Experimental results (F1 scores defined in Section 3.3) using the Stand-
alone coreference and EL models compared to our joint architectures
(Local and Global), on DWIE and AIDA+ datasets.

As performance metrics, for coreference resolution we calculate the average-F1
score of commonly used MUC [18], B3 [19] and CEAFe [20] metrics as implemented
by [21]. For EL, we use (i) mention-level F1 score (ELm), and (ii) cluster-level hard
F1 score (ELh) that counts a true positive only if both the coreference cluster (in
terms of all its mention spans) and the entity link are correctly predicted. These
EL metrics are executed in a strong matching setting that requires predicted spans
to exactly match the boundaries of gold mentions. Furthermore, for EL we only
report the performance on non-NIL mentions, leaving the study of NIL links for
future work.

Our experiments will answer the following research questions: (Q1) How does
performance of our joint coref+EL models compare to Standalone models? (Q2)
Does jointly solving coreference resolution and EL enable more coherent EL predic-
tions? (Q3) How do our joint models perform on hard cases where some individual
entity mentions do not have the correct candidate?

3.4 Results
Table 3.2 shows the results of our compared models for EL and coreference reso-
lution tasks. Answering (Q1), we observe a general improvement in performance
of our coref+EL joint models (Local and Global) compared to Standalone on the EL
task. Furthermore, this difference is bigger when using our cluster-level hard met-
rics. This also answers (Q2) by indicating that the joint models tend to produce
more coherent cluster-based predictions. To make this more explicit, Table 3.3 com-
pares the accuracy for singleton clusters (i.e., clusters composed by a single entity
mention), denoted as S, to that of clusters composed by multiple mentions, denoted
as M. We observe that the difference in performance between our joint models and
Standalone is bigger on M clusters (with a consistent superiority of Global), indi-
cating that our approach indeed produces more coherent predictions for mentions
that refer to the same concept. Further analysis reveals that this difference in per-
formance is even higher for a more complex scenario where the clusters contain
mentions with different surface forms (not shown in the table).

In order to tackle research question (Q3), we study the accuracy of our models
on the important corner case that involves mentions without correct entity in their
candidate lists. This is illustrated in Table 3.4, which focuses on such mentions in
clusters where at least one mention contains the correct entity in its candidate list.
As expected, the Standalone model cannot link such mentions, as it is limited to
the local candidate list. In contrast, both our joint approaches can solve some of
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DWIE AIDA+
a AIDA+

b

Setup S M S M S M

Standalone 80.4 69.5 82.9 70.7 77.0 57.0
Local 82.6 78.6 84.9 74.8 79.8 61.4
Global 82.6 80.0 85.1 76.8 79.3 63.0

Table 3.3: Cluster-based accuracy of link prediction on singletons (S) and clusters
of multiple mentions (M).

Setup DWIE AIDA+
a AIDA+

b

Standalone 0.0 0.0 0.0
Local 41.7 27.4 26.9
Global 57.6 50.2 29.7

Table 3.4: EL accuracy for corner case mentions where the correct entity is not in
the mention’s candidate list.

these cases by using the correct candidates from other mentions in the cluster, with
a superior performance of our Global model compared to the Local one.

3.5 Related work
Entity Linking: Related work in entity linking (EL) tackles the document-level
linking coherence by exploring relations between entities [17, 22, 23], or entities and
mentions [24]. More recently, contextual BERT-driven [25] language models have
been used for the EL task [26–29] by jointly embedding mentions and entities. In
contrast, we explore a cluster-based EL approach where the coherence is achieved
on coreferent entity mentions level.
Coreference Resolution: Span-based antecedent-ranking coreference resolution
[10, 11] has seen a recent boost by using SpanBERT representations [5, 7, 9]. We
extend this approach in our Local joint coref+EL architecture. Furthermore, we rely
on Kirchhoff’s Matrix Tree Theorem [12, 13] to efficiently train a more expressive
spanning tree-based Global method.
Joint EL+Coref: [30] introduce a more expensive rule-based Integer Linear Pro-
gramming component to jointly predict coref and EL. [31] jointly train coreference
and entity linking without enforcing single-entity per cluster consistency. More re-
cently, [3, 32] use additional logic to achieve consistent cluster-level entity linking.
In contrast, our proposed approach constrains the space of the predicted spanning
trees on a structural level (see Fig. 3.1).

3.6 Conclusion
We propose two end-to-end models to solve entity linking and coreference resolu-
tion tasks in a joint setting. Our joint architectures achieve superior performance
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compared to the standalone counterparts. Further analysis reveals that this boost
in performance is driven by more coherent predictions on the level of mention clus-
ters (linking to the same entity) and extended candidate entity coverage.
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Figure 3.2: Illustrative graph example of Global model. The weights of the edges
correspond to exp(Φcl) (see Eq. (3.11)).

Appendix

In this appendix we will provide a clarifying artificial example in order to walk the
reader step by step through MTT (Eq. (3.9)–(3.10)) applied in our Global approach.
The graph of the example is illustrated in Fig. 3.2 and is composed by nodes repre-
senting root (r), entities e1 and e2, and spans s1, s2 and s3. The span s2 is associated
with candidate entity set {e1, e2} (i.e., represented by edges from s2 to e1 and e2),
and s3 with {e2} (i.e., represented by the edge from s3 to e2). The candidate entity
set of s1 is empty. The nodes are grouped in two ground truth clusters: NIL cluster
c1 = {s1, s2}, and linked cluster c2 = {e2, s2}.

The exponential of weighted adjacency matrix7 Φcl of the presented example
is:

exp(Φcl) =



r e1 e2 s1 s2 s3

r 0 1 1 5 3 7
e1 0 0 0 0 1 0
e2 0 0 0 0 4 2
s1 0 0 0 0 5 9
s2 0 0 0 3 0 2
s3 0 0 0 8 4 0

, (3.11)

where the weights of incorrect edges are represented in red (i.e., red dashed edges
in Fig. 3.2), the weights of the correct edges in green (i.e., green edges in Fig. 3.2),
and the weights between disconnected nodes are set to 0.

In order to compute the denominator of the loss function in Eq. (3.9), the Lapla-
cian of the matrix in Eq. (3.11) is calculated as described in Eq. (3.10), and the row
and column corresponding to root r removed (i.e., the minor Lr with respect to the

7For simplicity, the weights are small integers.
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root):

Lr =



e1 e2 s1 s2 s3

e1 1 0 0 −1 0
e2 0 1 0 −4 −2
s1 0 0 16 −5 −9
s2 0 0 −3 17 −2
s3 0 0 −8 −4 20

. (3.12)

Following Kirchhoff’s Matrix Tree Theorem [12, 13], the determinant of Lr equals
to the sum of the weights of all possible spanning trees of the graph represented in
Fig. 3.2:

det(Lr) = 3600 = ∑
t∈Tall

exp
(
Φtr(t)

)
. (3.13)

In order to compute the numerator of the loss function in Eq. (3.9) (i.e., the sum
of the weights of the spanning trees of ground truth clusters), we first mask out (set
to zero) all the weights assigned to incorrect edges:

exp(Φcl)
′ =



r e1 e2 s1 s2 s3

r 0 1 1 5 0 7
e1 0 0 0 0 0 0
e2 0 0 0 0 4 0
s1 0 0 0 0 0 9
s2 0 0 0 0 0 0
s3 0 0 0 8 0 0

 (3.14)

Next, the modified Laplacian (i.e., Laplacian with the first row replaced by root r
selection weights) L̂ is calculated for both clusters c1 and c2:

L̂c1 =

[ s1 s3

r 5 7
s3 −8 9

]
(3.15)

L̂c2 =

[ e2 s2

r 1 0
s2 0 4

]
(3.16)

The determinants of L̂c1 and L̂c2 equal to the sum of the weights of all spanning
trees connecting the nodes in clusters c1 and c2 respectively:

det(L̂c1 ) = 101 = ∑
t∈Tc1

exp
(
Φtr(t)

)
(3.17)

det(L̂c2 ) = 4 = ∑
t∈Tc2

exp
(
Φtr(t)

)
(3.18)

Finally, in order to calculate the final loss, we replace the obtained results in eqs. (3.13),
(3.17), and (3.18) in the loss function of Eq. (3.9):

L = − log
101 ∗ 4
3600

. (3.19)

Note: strictly speaking, there are three clusters rooted in root in the graph of Fig. 3.2,
the third one being c3 = {e1}, whose exponential weight is 1 by definition of
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Φcl(r, ej) = 0 (see Section 3.2.2), and has no impact in calculation of the loss func-
tion in Eq. (3.19).
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4
Injecting Knowledge Base

Information into End-to-End Joint
Entity and Relation Extraction and

Coreference Resolution

In this chapter we adopt a slightly different approach involving entities: instead of using
purely textual information to solve information extraction tasks such as relation extraction,
we also study how the information of entities from Knowledge Base can be integrated. We
achieve significant improvement on all the evaluated tasks by injecting information both
from Wikipedia, as well as from Wikidata KBs. Furthermore, while the tasks we are tack-
ling are annotated and defined on named entity level, the information we inject in our text
comes from all the existing entities defined in the experimented KBs. We find that this un-
supervised technique is still able to detect the entities that are more relevant for a particular
text.

⋆ ⋆ ⋆
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Abstract We consider a joint information extraction (IE) model, solving named
entity recognition, coreference resolution and relation extraction jointly over the
whole document. In particular, we study how to inject information from a knowl-
edge base (KB) in such IE model, based on unsupervised entity linking. The used
KB entity representations are learned from either (i) hyperlinked text documents
(Wikipedia), or (ii) a knowledge graph (Wikidata), and appear complementary in
raising IE performance. Representations of corresponding entity linking (EL) can-
didates are added to text span representations of the input document, and we ex-
periment with (i) taking a weighted average of the EL candidate representations
based on their prior (in Wikipedia), and (ii) using an attention scheme over the EL
candidate list. Results demonstrate an increase of up to 5% F1-score for the eval-
uated IE tasks on two datasets. Despite a strong performance of the prior-based
model, our quantitative and qualitative analysis reveals the advantage of using the
attention-based approach.

4.1 Introduction

Information extraction (IE) comprises several subtasks, e.g., named entity recogni-
tion (NER), coreference resolution (coref), relation extraction (RE). State-of-the-art
results mainly report performance on single tasks, usually solving them on a sen-
tence level (especially NER, RE). However, in practice, IE system decisions should
be consistent on the document level, e.g., when processing news articles to auto-
matically link entities (aside from potentially learning, e.g., new relations). Yet, the
challenge of solving the tasks jointly on a document level has not received as much
attention and remains hard [1–3].

On the other hand, it is well established that IE models benefit from incorpo-
rating background information of knowledge bases (KBs). Still, so far this has been
shown from the perspective of solving individual tasks such as relation classifica-
tion or entity typing (e.g., [4, 5]). Integrating KBs in joint models, realizing and
analyzing the more complex end-to-end setting, has been left unexplored.

In terms of the nature of KBs adopted in IE, current approaches use either
(i) structured knowledge graphs comprising (subj,rel,obj) triples, e.g., Wikidata
[6–8], or (ii) textual descriptions, usually in hyperlinked documents, e.g., Wikipedia
[9, 10]. It has not been established to what extent KB-text and KB-graph entity rep-
resentations complement each other in boosting IE performance.

We address both research gaps of (a) integrating KB information into a joint
end-to-end IE model for solving named entity recognition, coreference resolution
and relation extraction, and (b) analyzing what KB representation is more bene-
ficial for IE, either KB-graph trained on Wikidata, or KB-text trained directly on
Wikipedia. We particularly contribute: (i) a first span-based end-to-end architec-
ture incorporating KB knowledge in a joint entity-centric setting, exploiting unsu-
pervised entity linking (EL) to select KB entity candidates, (ii) exploration of prior-
and attention-based mechanisms to combine the EL candidate representations into
the model, (iii) assessment of the complementarity of KB-graph and KB-text repre-
sentations, and (iv) consistent gains of up to 5% F1-score when incorporating KB
knowledge in 3 document-level IE tasks evaluated on 2 different datasets.
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4.2 Model
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Figure 4.1: Joint information extraction (IE) model with addition of a knowledge
base (KB) module.

Figure 4.1 illustrates our model architecture. Input document tokens are repre-
sented using concatenated GloVe [11] and character embeddings [12] and pushed
through a BiLSTM to obtain contextualized token representations, which are com-
bined into spans. Similar to [3, 13], a span pruner limits the number of spans for
downstream modules. The KB module (Section 4.2.2) combines span representations
with KB entity representations (Section 4.2.1), trained either on Wikidata (KB-graph)
or Wikipedia (KB-text). The KB-enriched span representations then serve as input
for joint predictions on downstream IE tasks (Section 4.2.3).

4.2.1 Entity representations

We experiment with 3 possible entity representations: KB-text, KB-graph, and con-
catenating both.
KB-text: We follow [14] to obtain the entity representations using a skip-gram ar-
chitecture [15, 16], training to jointly predict (i) the linked entities (through Wikipedia
hyperlinks) given the target entity, and (ii) the neighboring words for a given entity
hyperlink.
KB-graph: We adopt [17] to train the entity embeddings directly on Wikidata triples
(subj,rel,obj) by optimizing a linear classifier to predict the obj entity from the
subj entity and the relation type rel.

4.2.2 KB module

For a span si from token l to r, we obtain the representation gi as input to the
KB module by concatenating the respective hidden LSTM states hl and hr, and an
embedding ψr−l for the corresponding span width r− l:

gi = [hl ; hr; ψr−l ]. (4.1)
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We look up a given span si in a dictionary built from Wikipedia, to determine its
candidate entities set1 Ci, as well as the prior probability pij for each cij ∈ Ci, as
per [14, §3].

To combine the KB candidates cij, we either use (i) a uniform average (Uniform),
(ii) the prior weights pij (Prior), (iii) an attention scheme (Attention), or (iv) attention
with prior information (AttPrior). The unnormalized attention scores for Attention
and AttPrior are:

ΦAttention(si, cij, K) = FA

(
[gi; ξK(cij)]

)
(4.2)

ΦAttPrior(si, cij, K) = FAP
(
[gi; ξK(cij); pij]

)
(4.3)

where K ∈ {KB-text, KB-graph, both} refers to the entity representations from Sec-
tion 4.2.1, ξK returns such representation for cij, and F∗ is a feed-forward neural
network (FFNN). The KB representation for span si is a weighted average of its
candidates Ci:

eK
i = ∑

cij∈Ci

⊘ij · ξK(cij) (4.4)

where weights⊘ij either are uniform (1/ |Ci|), the prior pij, or softmax-normalized
attention scores (softmax over Φ from Eq. (4.2) or Eq. (4.3)). The concatenation
[gi; eK

i ] forms the KB-enriched representation for span si, as input for IE modules
(Section 4.2.3).

4.2.3 Joint IE model

The joint IE model comprises 3 modules (Fig. 4.1) using the same KB-enriched rep-
resentations [gi; eK

i ], and using a weighted combination of the 3 module losses to
minimize during training. Note that NER and RE are framed as multi-label classi-
fication.

NER module: We use a FFNN on each span si to produce scores ΦNER(si) ∈ R|LE |,
with LE the set of possible entity types. At inference, we accept type l ∈ LE for
span si if ΦNER(si)l > 0.

Coref module: We use the coreference scheme proposed by [18], using a FFNN
to produce scores Φcoref(si, sj): at inference time, the highest scoring antecedent
of span sj is then chosen (potentially sj itself). Indeed, to allow for singletons we
accept self-references (sj, sj) if NER predicts the span sj to be an entity.

RE module: Similar to [13, 19], we use a FFNN to produce scores ΦRE(si, sj) ∈ R|LR |

for each pair of spans (si, sj), with LR the set of relation types. We accept relation
l ∈ LR for pair (si, sj) if ΦRE(si, sj)l > 0.

IE unification: Above modules make span level predictions. We obtain entity-
centric predictions using the coref clusters, by assigning the union of predicted
entity/relation types within a coref cluster to all its members, as do [3].
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Dataset # Entity # Entity # Relations # Relation
clusters types types

DWIE 23,130 311 21,749 65
DocRED 98,610 6 50,503 96

Table 4.1: Dataset statistics.

4.3 Experimental setup

We evaluate our proposed models2 on entity-centric multi-task datasets, summa-
rized in Table 4.1: DWIE [3] and DocRED [2]. We report on coreference resolution
(coref), NER and relation extraction (RE). For coref, we report the average of 3 com-
mon F1 scores, as implemented by [20]: MUC [21], B3 [22] and CEAFe [23]. Since we
focus on entity-centric, document-level IE, for NER and RE we use hard metrics [3]
on the level of entity clusters (i.e., aforementioned coref clusters): predictions are
counted as correct only if (i) all mentions (with exact boundary match) are present
in the entity cluster, and (ii) the predicted entity type (for NER) or relation type
between two clusters (for RE) is correct.

Our experiments address 2 main questions (see Fig. 4.1): (Q1) Which type of KB
representation is most helpful for IE (KB-text, KB-graph, or both; see Section 4.2.1)?
(Q2) Which weighting scheme to use for α (Uniform, Prior, Attention, AttPrior; see
Section 4.2.2)?

4.4 Results
We summarize the comparison of various model choices for both DWIE and Do-
cRED datasets in Table 4.2. First, looking into (Q1), we note that including back-
ground information from KB-graph and KB-text significantly boosts performance
compared to the Baseline without any KB. Additionally, our model outperforms the
results from [3] (not listed in the table) by about 2 percentage points F1, using the
same input (GloVe) representations. Furthermore, we observe a general improve-
ment in results when combining both representations, suggesting that a (hyper)text
corpus (Wikipedia) and a knowledge graph (Wikidata) embed complementary in-
formation for raising IE performance.

Deeper analysis reveals that adding KB representations mainly benefits perfor-
mance for “rare” entity types: e.g., limiting the test set to entity types that occur
≤50 times in the training set for DWIE, compared to Baseline, F1 for NER goes up
by +13.9 for KB-both with AttPrior, while the benefit gradually decreases for more
frequently occurring entity types. For RE, we note that overall we also see a clear
performance gain from adding KB information (e.g., +5.1% F1 for both KB sources
with AttProp compared to Baseline for DWIE), yet the boost is not as clear for re-
lations with fewer training instances. (The latter makes sense, since we inject KB
representations of entities rather than explicitly also for relations; we leave study-
ing adding relation embedding information for future work.)

1We limit this to the 16 most frequent ones.
2Code and models available at https://github.com/klimzaporojets/e2e-kb-ie.

https://github.com/klimzaporojets/e2e-kb-ie
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DWIE DocRED

KB Source Setup Coref NER RE Coref NER RE

– Baseline 90.0±0.2 71.7±0.5 47.0±1.4 81.9±0.3 68.5±0.3 23.5±0.6

Uniform 90.7±0.2 73.5±0.5 48.5±1.1 82.9±0.1 70.7±0.2 24.5±0.3

KB-text Attention 90.7±0.3 73.4±0.8 49.0±0.4 83.4±0.1 71.2±0.1 24.5±0.3

AttPrior 90.7±0.3 73.7±0.6 49.6±0.8 83.2±0.2 71.3±0.2 24.8±0.4

Prior 90.7±0.2 73.8±0.5 49.4±0.4 82.9±0.2 70.9±0.3 25.3±0.4

Uniform 91.0±0.3 73.6±0.4 48.0±1.2 83.3±0.2 71.1±0.2 24.9±0.2

KB-graph Attention 91.2±0.3 73.9±0.5 50.1±1.1 83.7±0.1 71.6±0.1 25.0±0.4

AttPrior 91.3±0.2 74.6±0.3 50.5±1.0 83.5±0.3 71.5±0.2 25.1±0.2

Prior 90.8±0.3 73.6±0.6 49.6±1.1 83.4±0.1 71.1±0.1 25.2±0.2

both Uniform 91.1±0.1 74.1±0.5 49.3±0.5 83.5±0.1 71.3±0.2 24.8±0.1

(KB-graph + Attention 91.2±0.3 74.3±0.6 51.3±1.3 83.5±0.2 71.5±0.1 24.8±0.3

KB-text) AttPrior 91.5±0.2 75.0±0.4 52.1±1.2 83.6±0.2 71.8±0.3 25.7±0.7

Prior 90.8±0.1 73.8±0.2 49.8±1.2 83.2±0.1 71.2±0.1 25.1±0.3

Table 4.2: Main results of the experiments in F1 scores grouped by the background
KB source. We report Avg. F1 scores of MUC, B3 and CEAFe for Coref,
and hard F1 metrics for NER and RE. Bold font indicates the best results
for each of the different KB source types. Additionally, the best overall
results are underlined.

Second, for (Q2), we note that the AttPrior scheme is the overall winner among
the different EL candidate weigthing schemes. We observed that in terms of rank-
ing EL candidates, Prior performs quite well on DWIE — for 86.5% of entity men-
tions it assigns the highest score to the correct EL candidate, while Attention and
AttPrior achieve it for 46.2%, resp. 77.2% of the mentions — which basically con-
firms that DWIE has a similar entity distribution as Wikipedia.3 Yet, it seems nec-
essary to include alternative candidates, and the attention-based schemes thus can
correct EL mistakes of Prior, as illustrated in Fig. 4.2. This correction leads to a re-
sulting boost for the IE tasks as reported in Table 4.2. E.g., we found that for DWIE,
looking at clusters with entity mentions for which Prior makes wrong EL predic-
tions, the AttPrior weighting scheme retrieves +3.7% more of the gold standard
annotated named entities (as opposed to just +0.6% in the clusters with correct
Prior EL candidates). Perfecting the EL prediction would potentially boost IE per-
formance even more.

4.5 Related work
As stated earlier, we studied how to integrate (i) knowledge base information into
IE, and particularly (ii) end-to-end IE combining multiple tasks (NER, relation ex-
traction, coreference resolution), while (iii) taking an entity-centric perspective, i.e.,
focus on making consistent decisions on the document level. For (i), integrating KB
into IE has been applied for individual tasks: relation classification [6, 8, 24], entity

3DWIE is a news article corpus.
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NASA's Mars rover, "Curiosity" will [...] continue 
exploring the surface of the Red Planet.

Figure 4.2: Illustration of EL candidate weighting: the α weights for top candi-
dates for “Red Planet” from the example sentence at the top. Attention-
based weighting (Attention, AttPrior) correctly identify the “Mars” en-
tity, while the Wikipedia-based Prior fails, as most of Wikipedia’s “Red
Planet” links refer to the film.

typing [4] and NER [10]. For (ii), recently span-based architectures [13, 18, 25, 26]
have been proposed. Our work unifies the KB integration concept into such span-
based IE system, in particular an entity-centric one (as per (iii)), building on [3, 27].
For the KB integration approach, we exploit entity representations trained on a
hypertext corpus, as in [10, 14, 28] or learnt from a knowledge graph [6–8]. Our re-
sults show that both offer complementary value for IE. Similarly to our work, [29]
also explore using an attention-weighted combination of entity representations, but
they use it to build a full document representation (with mentions having the en-
tities as candidates) for a text classification task. In contrast, our span-based at-
tention model is able to “inject” knowledge in each of the mentions separately, for
more fine-grained downstream IE tasks that are mention-dependent, e.g., corefer-
ence resolution, relation extraction and NER.

4.6 Conclusion

We propose an end-to-end model for joint IE (NER + relation extraction + coref-
erence resolution) incorporating entity representations from a background knowl-
edge base (KB), using a span-based system. We find that representations built from
a knowledge graph and a hypertext corpus are complementary in boosting IE per-
formance. To combine candidate entity representations for text spans, we explore
various weighting schemes: an attention-based combination is successful in com-
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bining prior frequency information from a hypertext corpus with contextual infor-
mation to identify the relevant entity, and achieves highest IE performance.
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5
TempEL: Linking Dynamically
Evolving and Newly Emerging

Entities

In this chapter, we go one step further and analyze the evolution of the entities from temporal
perspective. In order to achieve this, we create a new dataset which consists of 10 yearly
snapshots of Wikipedia entities from 2013 until 2022. We further study how entity linking
task is affected by (i) changes of existing entities in time, and (ii) creation of new emerging
entities.. Furthermore, we do not restrict our analysis to the realm of named entities, but
incorporate all existing entities and concepts defined in Wikipedia. Our analysis showcases
a continual decrease of performance in time, indicating that the entities from later versions
of Wikipedia are harder to disambiguate than entities from earlier versions. Additionally,
we demonstrate that the decrease in performance is specially sharp for entities requiring
additional new knowledge (e.g., new entities related to COVID-19 pandemic) for which the
model was not pre-trained.

⋆ ⋆ ⋆

K. Zaporojets, L.A. Kaffee, J. Deleu, T. Demeester, C. De-
velder and I. Augenstein
Thirty-sixth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track: NeurIPS, 2022.

Abstract In our continuously evolving world, entities change over time and new,
previously non-existing or unknown, entities appear. We study how this evolu-
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tionary scenario impacts the performance on a well established entity linking (EL)
task. For that study, we introduce TempEL, an entity linking dataset that consists
of time-stratified English Wikipedia snapshots from 2013 to 2022, from which we
collect both anchor mentions of entities, and these target entities’ descriptions. By
capturing such temporal aspects, our newly introduced TempEL resource contrasts
with currently existing entity linking datasets, which are composed of fixed men-
tions linked to a single static version of a target Knowledge Base (e.g., Wikipedia
2010 for CoNLL-AIDA). Indeed, for each of our collected temporal snapshots, Tem-
pEL contains links to entities that are continual, i.e., occur in all of the years, as well
as completely new entities that appear for the first time at some point. Thus, we
enable to quantify the performance of current state-of-the-art EL models for: (i) en-
tities that are subject to changes over time in their Knowledge Base descriptions
as well as their mentions’ contexts, and (ii) newly created entities that were previ-
ously non-existing (e.g., at the time the EL model was trained). Our experimental
results show that in terms of temporal performance degradation, (i) continual en-
tities suffer a decrease of up to 3.1% EL accuracy, while (ii) for new entities this
accuracy drop is up to 17.9%. This highlights the challenge of the introduced Tem-
pEL dataset and opens new research prospects in the area of time-evolving entity
disambiguation.1

5.1 Introduction
Entity linking (EL) is a well-established task that is concerned with mapping an-
chor mentions in text to target entities that describe them in a Knowledge Base (KB)
(e.g., Wikipedia).2 Existing benchmark datasets for EL [3, 11–13] are composed of
a fixed set of annotated mentions linked to a single version of a target KB. This sta-
tic setup is oblivious to the inherently non-stationary nature of the entity linking
task where both target entities as well as anchor mentions change over time. The
example in Fig. 5.1 illustrates this time-evolving essence of entity linking with a
simple evolutionary comparison between Wikipedia 2013 and 2022. It showcases
two scenarios studied in the current paper: (i) temporal evolution of existing (con-
tinual) entities across temporal snapshots, and (ii) appearance of new, previously
non-existent entities. For instance, the description of the continual entity The Assem-
bly differs between Wikipedia 2013 and 2022. Furthermore, the context of a mention
“Mejlis” referring to The Assembly also changes over time. Conversely, the new en-
tity Janssen COVID-19 vaccine is newly introduced in 2021 with the corresponding
mentions (e.g., “Johnson & Johnson” in Fig. 5.1) that are linked to it.

In this paper we introduce TempEL, a novel dataset to study this time-evolving
aspect of the entity linking task. We therefore extract 10 equally spread yearly snap-
shots from English Wikipedia entities starting from January 1, 2013 until January
1, 2022. We use each of these temporal snapshots of Wikipedia to also extract an-
chor mentions with the surrounding text. Thus, TempEL captures the temporal

1TempEL dataset, code and models are made public at https://github.com/klimzaporojets/
TempEL.

2Some of the related work [1–5] distinguishes between entity disambiguation and entity link-
ing tasks. This latter including mention detection and disambiguation in an end-to-end setting.
In the current work, we follow a more conservative naming convention [6–10], and use the
term entity linking and entity disambiguation interchangeably.

https://github.com/klimzaporojets/TempEL
https://github.com/klimzaporojets/TempEL
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Entity mentions Knowledge Base KB entity description

time

The state power is vested with 
the President, the Mejlis 
(Parliament or Assembly), the 
Cabinet of Ministers . . . 

 . . . the 125-seat Mejlis, as the 
lower chamber, the Parliament 
is now called the National 
Council . . .

The company has played a key 
role in distributing the 
Moderna and Johnson & 
Johnson vaccines . . .

2013

2022

. . .

The Assembly (Mejlis) is the legislative 
branch of Turkmenistan. It has 125 
members, elected for a �ve-year term 
single-seat constituencies. [ . . . ]

The Assembly (Turkmen: Mejlis) is 
since March 2021 the lower house of 
the National Council of Turkmenistan. It 
has 125 members, elected for [ . . . ]

The Janssen COVID-19 vaccine, or 
Johnson & Johnson COVID-19 vaccine, 
is a COVID-19 vaccine that was 
developed by Janssen Vaccines in [ . . . ]

Figure 5.1: Illustration of KB entities changing over time: the “Mejlis” entity
changes over time (both in its KB description and the contexts in which
it is referenced to), while the Johnson & Johnson vaccine is an entirely
new one that did not exist before.

evolution not only in the target entities as they are defined in the Wikipedia KB,
but also in the contexts of anchor mentions linked to these entities. Each of the 10
temporal snapshots of our dataset is composed of training, test and validation sets
with equal numbers of mentions and entities across the snapshots. Furthermore,
TempEL is designed to comprise mentions pointing to continual entities across all
the temporal snapshots, and to new entities inside a given temporal snapshot.

Finally, as a baseline, we finetune and evaluate the bi-encoder component of
the BLINK model [7] on the various temporal snapshots of our newly introduced
TempEL dataset. The bi-encoder is widely used in state-of-the-art entity linking
models [4, 7] to retrieve the top K (in this work we experiment with K = 64) can-
didate target entities for a given anchor mention context. Furthermore, its straight-
forward finetuning and fast retrieval performance on millions of candidate enti-
ties [14], make it an ideal choice to test on TempEL. Our experiments demonstrate
a consistent temporal model deterioration for mentions linked to both continual
(3.1% accuracy@64 points) as well as new (17.9% accuracy@64 points) entities. A
more detailed analysis reveals that the maximum drop in performance is observed
for new entities that require fundamentally different world knowledge that was not
present in the corpus originally used to pre-train BERT. This is e.g. the case for
new entities related to COVID-19 for which the bi-encoder model suffers additional
deterioration of 14% accuracy@64 points compared to the rest of the new entities.

5.2 Related work

Our work is related to multiple different, yet interconnected research areas de-
scribed below. First, we explain how TempEL compares to the currently widely
used entity linking datasets. Next, we relate our work to already existing temporal
datasets covering different aspects of the temporal evolution of the data. Finally, we
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describe the existing entity-centric research efforts, comparing the TempEL entity
linking dataset to other datasets that heavily depend on the use of entities.

Entity linking datasets Most current state-of-the-art EL models [4, 15–18] re-
port on datasets from predominantly the news domain such as AIDA [19], KORE50 [19],
AQUAINT [20], ACE 2004, MSNBC [21], N3 [22], DWIE [23], VoxEL [24], and
TAC-KBP 2010-2015 [25, 26]. Other frequently used datasets include the web-based
IITB [27] and OKE 15/16 [28], as well as the tweet-based Derczynski [29]. Addition-
ally, larger yet automatically annotated datasets such as WNED-WIKI and WNED-
CWEB [30] have been also widely adopted. Finally, a number of resources such
as the domain-specific biomedical MedMentions [31], the zero-shot ZeShEL [8],
and the multi tasking DWIE [23] and AIDA+ [5] datasets have been recently in-
troduced. Many of the mentioned datasets are further covered by entity linking
evaluation frameworks such as GERBIL [11, 12] and KILT [13] that provide a com-
mon interface to evaluate the models. Yet, the mentioned resources are limited to
static mention annotations linked to entities from a single version of a Knowledge
Base. This contrasts with our newly introduced TempEL dataset, where the anchor
mentions as well as the target entity descriptions are taken from different time pe-
riods. The datasets most closely related to our work are the recently introduced
WikilinksNED [9, 32] and ShadowLink [33]. WikilinksNED contains only unseen
mention-entity pairs in its test subset, thus encouraging the design of models in-
variant to overfitting and memorization biases. Furthermore, ShadowLink con-
tains overshadowed entities: entities referred to by ambiguous mentions whose most
likely target entity is different, e.g., the anchor mention “Michael Jordan” linked to
the scientist instead of to the more widely referred to target entity describing the
former basketball player. We incorporate the challenges presented in both of these
datasets in TempEL (see Section 5.3.1 for further details).

Temporal datasets Research on temporal drift in data has gained a lot of inter-
est in recent years. The focus has mostly been on creating datasets to train language
models on different temporal snapshots of corpora derived from scientific [34],
newswire [34, 35], Wikipedia [36], and Twitter [37] domains. More recently, tempo-
ral datasets have appeared to address tasks such as sentiment analysis [38–40], text
classification [41, 42], named entity recognition [43, 44], question answering [34],
and entity typing [45], among others. However, the creation of datasets tackling
the temporal aspect of entity linking has largely been left unexplored. To the best of
our knowledge, the dataset most closely related to TempEL is diaNED, introduced
by [46]. There, the authors annotate mentions that require additional temporal in-
formation from the context to be correctly disambiguated. Conversely, in TempEL
both mentions and entities are extracted from evolving temporal snapshots.

Entity-driven datasets Recent research has demonstrated the benefits of incor-
porating entity knowledge in various downstream tasks [47–53]. This progress
has been accompanied by the creation of entity-driven datasets for tasks such as
language modeling [54–56], question answering [57–61], fact checking [62–64] and
information extraction [23, 65], to name a few. Yet, recent findings [66–71] sug-
gest that entity representation and identification (i.e., identifying the correct entity
that match a given text) are among the main challenges that should be solved
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Figure 5.2: The pipeline to create our TempEL dataset. All the components are ex-
plained in Section 5.3.1.

to further increase performance on such datasets. We believe that TempEL can
contribute to addressing these challenges by: (i) encouraging research on devising
more robust methods to creating entity representations that are invariant to temporal
changes; and (ii) improving entity identification for non-trivial scenarios involv-
ing ambiguous and uncommon mentions (e.g., linked to overshadowed entities as
defined above).

5.3 The TempEL dataset
In this section we will provide details on how TempEL was constructed (Section 5.3.1),
describing the main components of the creation pipeline as sketched in Fig. 5.2.
Furthermore, we discuss the aspects taken into account to guarantee the overall
quality of our dataset (Section 5.3.2). Finally, we present statistics of TempEL (Sec-
tion 5.3.3), illustrating its dynamically evolving nature.

5.3.1 Dataset construction
Snapshot data extraction As Fig. 5.2 indicates, we start from the history log
dumps from February 1, 2022 of Wikipedia itself. We first filter these (see Entity Fil-
ter in Fig. 5.2) to: (i) exclude pages that are irrelevant for TempEL (i.e., categories,
disambiguation pages, redirects and lists); and (ii) select the most temporally sta-
ble version of a Wikipedia page from the last month of the year in order to avoid
introducing more volatile and potentially corrupted content edits (see Section 5.3.2
for further details). Next, the Wikipedia pages are cleaned (see Entity Cleaner in
Fig. 5.2) by stripping from the Wikitext markup content.3 We use both regular ex-
pressions as well as the MediaWiki API for more difficult cases, such as the parsing
of some of the Wikitext templates. Finally, we detect the mentions (see Mention De-
tector in Fig. 5.2) in each of the Wikipedia entity pages, filtering out the ones that
point to anchors (i.e., subsections in Wikipedia pages), pages in languages other
than English, files, red links (i.e., links pointing to not yet existing Wikipedia pages)
and redirects.

The output of the Snapshot Data Extraction step first of all includes a set of Entity
and Mention Attributes (e.g., the last modification date of the target entity), which
are detailed in the supplementary material (see Section 5.A.6). These attributes
form part of the final dataset, making it possible to perform additional analyses

3https://en.wikipedia.org/wiki/Help:Wikitext

https://en.wikipedia.org/wiki/Help:Wikitext
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of the results. Furthermore, the Inverted Index is generated to quickly access the
Wikipedia pages that include a mention for a given target entity. Finally, the Entity
Text files are extracted containing the (potentially yearly varying) textual content
from the Wikipedia entity definition, as well as anchor mentions therein. These
mentions of Wikipedia anchors that link to an entity will be extracted in the Snap-
shot Dataset Building step described further.

Snapshot dataset building Starting from the Snapshot Elements produced by
the Snapshot Data Extraction process described above, the actual TempEL dataset is
now generated. The first step is to apply an additional Filter to both entities and
mentions with the goal of creating a more challenging dataset. This is done by ex-
cluding mentions for which the correct entity it refers to has the highest prior [72].
More formally, the mention prior is calculated as follows,

P(e|m) = |Ae,m|/|A∗,m|, (5.1)

where A∗,m is the set of all anchors that have the same mention m, and Ae,m is
the subset thereof that links to entity e. Additionally, we exclude the mentions
whose normalized edit distance from the target entity title is below an established
threshold.4 By ignoring the mentions with the highest prior and exact match with
the title, we ensure that TempEL contains non-trivial disambiguation cases where
the naive approaches (e.g., defaulting to the most frequently linked entity for a
given mention) would fail [7, 8, 30, 33].

Furthermore, the entities are organized (see Organizer in Fig. 5.2) into two cate-
gories: (i) new, emerging and previously non-existent entities that are introduced in
a particular snapshot; and (ii) continual entities across all the temporal snapshots.
Next, the mentions are divided in separate subsets (i.e., train, validation and test),
with the constraint of normalized edit distance between the mentions in different
subsets referring to the same target entity be higher than 0.2. This way, we expect
to discourage potential models from memorizing the mapping between mentions
and entities [9].

Finally, the data is distributed equally (see Data Distributor in Fig. 5.2) across
all of the temporal snapshots. This way, the difference in performance can only be
attributed to temporal evolution and not to inconsistencies related to dataset vari-
ability (e.g., different number of training instances in each of the temporal snap-
shots). Concretely, we enforce that the number of continual and new entities as
well as the number of mentions stays the same across the temporal snapshots (see
Table 5.1). We achieve this by performing a random mention subsampling in snap-
shots with higher number of mentions, weighted by the difference in the number
of mentions-per-entity. This produces a very similar mention-entity distribution
across the temporal snapshots. Finally, the filtered anchor mentions are located in
the cleaned Wikipedia pages (i.e., the Entity Text in Fig. 5.2) using the Inverted Index
created in the previous Snapshot Data Extraction step. The context of each of the
mentions is further paired with the respective content of target pages, outputting
this way the final TempEL dataset.

4During the generation of TempEL, we use a threshold of 0.2.
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Statistic Train Validation Test

Temporal Snapshots 10 10 10
Continual Entities 10,000 10,000 10,000

# Anchor Mentions 136,227 42,096 46,765
New Entities 373 373 373

# Anchor Mentions 1,764 1,231 1,450

Table 5.1: Summary statistics of TempEL. The number of entities and mentions is
the same across all of the temporal snapshots.

5.3.2 Quality control

Corrupted content Wikipedia is an open resource that relies on efforts of mil-
lions of Wikipedians to update and extend its contents.5 As such, that content is
not always reliable, with errors due to human mistakes or intentional vandalism.
Despite efforts to prevent the introduction of such erroneous edits [73–75], we have
detected numerous cases of corrupted entity descriptions during our preliminary
tests. As a result, we adopted a simple, yet very effective heuristic: for each of the
entities of a particular yearly snapshot, we select the most stable (i.e., the version of
the entity that lasted the longest before being changed) content of the last month
of the year (December). Due to the fact that most of the corrupted content is rolled
back very quickly, and even automatically by specialized bots [76, 77], this heuris-
tic is very robust. We double checked the correctness of the extracted content by
manually inspecting the evolution of hundred entities with lowest Jaccard vocabu-
lary similarity between temporal snapshots and observed no obviously erroneous
entries.

Entity relevance We filter out entities that have less than 10 in-links (i.e., num-
ber of mentions linking to the entity) or contain less than 10 tokens in its Wikipedia
page in order to avoid including noisy content [32]. Additionally, in order to avoid
evaluation bias towards mentions pointing to more popular entities [16, 78], we
limit the number of mentions per entity to 10 for our test and validation sets. This
way, we expect the accuracy scores to not be dominated by links to popular target
entities (i.e., entities with a big number of incoming links).

Content filtering We only consider mentions linked to the main Wikipedia arti-
cles describing entities. The mentions pointing to anchors (subsections in a Wikipedia
document), images, files, and wiki pages in other languages are filtered out in Snap-
shot Data Extraction step (see Fig. 5.2). In this step we also ignore pages that are not
Wikipedia articles (e.g., files, information on Wikipedia users, etc.) as well as redi-
rect pages. This way, the target entities as well as anchor mentions in our dataset
are obtained from a cleaned list of candidate pages referring to entities that contain
a meaningful textual description in Wikipedia.

5https://en.wikipedia.org/wiki/Wikipedia:Wikipedians

https://en.wikipedia.org/wiki/Wikipedia:Wikipedians
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Figure 5.3: Change of textual content of entities and context around mentions
across temporal yearly snapshots (x-axis).

Dataset distribution During the construction of TempEL, we constrain the sub-
sets to be of equal size and contain similar mention-per-entity distributions across
all the temporal snapshots. This is implemented in Data Distributor sub-component
of the dataset creation pipeline (see Section 5.3.1). For example, the number of men-
tions linked to continual entities in our training subset is 136,227 across all of the
snapshots (see Table 5.1 for further details). We argue that this setting will produce
uniform, structurally unbiased snapshots. This will allow to study exclusively the
temporal effect on the performance of the models for each of the different time pe-
riods. Our reasoning is supported by previous work demonstrating that the size
alone of the training set [37] as well as a different distribution of the number of
mentions per entity [16] can significantly affect the performance of the final model.
Furthermore, we do not constrain the total number of entities from the Wikipedia
KB to be equal across the temporal snapshots (see Fig. 5.4c), since we consider it a
part of the evolutionary nature of the entity linking task (i.e., the temporal evolu-
tion of the target KB) we intend to study.

Flexibility and extensibility Finally, we provide a framework that can be used
to re-generate the dataset with different parameters as well as to extend it with
newer temporal snapshots. This includes the option to generate a new dataset
with a customized number of temporal snapshots (e.g., quarterly instead of yearly
spaced), different mention attributes (e.g., filtering by mention prior values), en-
tity popularity (e.g., filtering out entities that have more than a certain number of
in-links), among others (see Section 5.A.4 of the supplementary material for a com-
plete list).

5.3.3 Dataset statistics
Table 5.1 summarizes the dataset statistics. We divide each of the temporal snap-
shots into train, validation and test subsets containing an equal number of contin-
ual and new entities. The number of mentions differs between the subsets since we
limit the number of mentions per entity to 10 in both validation and test sets (see
entity relevance in Section 5.3.2 for further details).
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Additionally, we collect statistics related to temporal drift in content for both
the target entities (Figs. 5.3a and 5.3b) as well as the context around the anchor
mentions (Fig. 5.3c). Concretely, Fig. 5.3a visualizes Jaccard vocabulary similarity
between the textual description of continual entities in 2013 and that of posterior
yearly snapshots in TempEL. We observe a continual decrease, indicating that on
average, the content of the entity description in Wikipedia is constantly evolving
in terms of the used vocabulary. This is also supported by the graph in Fig. 5.3b,
which showcases a continuous temporal increase of the average value of normal-
ized edit distance across continual entities. Finally, Fig. 5.3c illustrates the temporal
drift in the vocabulary (i.e., Jaccard vocabulary similarity) of the context around
the mentions pointing to the same entity. We find it experiences a more significant
change compared to the Jaccard similarity of entity content illustrated in Fig. 5.3a.
This suggests that the context around the anchor mentions is subject to a higher
degree of temporal transformation compared to that of target entities, making it an
interesting item of future work.

5.4 Experiments

Our final TempEL comprises 10 different yearly snapshots and we evaluate entity
linking (EL) performance on each of them individually. This evaluation setup al-
lows us to study the effect of temporal corpus changes and assess the impact of
increasing time lapses between the data used for model training and that on which
the EL model is deployed [40, 42, 45]. We train a bi-encoder baseline EL model (de-
tailed in Section 5.4.1) on the temporal snapshots from 2014 to 2022 separately and
then evaluate EL performance using the test sets of both past and future snapshots.

More specifically, our experiments aim to answer the following research ques-
tions: (Q1) Does a fixed entity linking (EL) model’s performance degrade when
applied to newer content? (Q2) How does finetuning an EL model on more recent
training data affect its performance on both old and newer content? (Q3) How
does EL performance differ for resolving new versus continual entities?

5.4.1 Baseline

We experiment with the bi-encoder [79, 80] baseline introduced in the BLINK model
[7]. This method independently encodes the mention contexts from the entity de-
scriptions, and then performs the retrieval in a dense space [81] by matching the
context of each mention with the closest candidate entities. For the entity descrip-
tion, we concatenate the title to the content of the page describing a particular en-
tity. Both mention context as well as entity descriptions are truncated to 128 BERT
tokens as per BLINK model [7]. Similarly to [37, 40], we start from a pre-trained
BERT model,6 which we finetune using our TempEL snapshots’ training data —
rather than fully re-training the BERT language model on the respective year’s full
Wikipedia corpus. We leave the latter full-fledged BERT (re-)training approach for
future work.

6We use BERT-large, which is trained on a Wikipedia snapshot from 2018 [82].
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Figure 5.4: Statistics related to the analysis of the results (Section 5.4.2) across the
temporal snapshots (x-axis).

5.4.2 Results and analysis
The results for continual and new entities are shown in Table 5.2. The rows thereof
represent the snapshots whose train set we used to finetune the bi-encoder model,
while the columns indicate the snapshots test data each of the finetuned models
was tested on. The used metric is accuracy@64, which amounts to the fraction of
anchor mentions in the test set for which the top-64 candidate entity list from the
EL model includes the correct target. We observe a consistent temporal decrease
in performance for continual entities (Q1). This is also reflected in Fig. 5.4b, which
illustrates the average temporal degradation across all the finetuned models. We
hypothesize that this degradation over time is because, as time evolves, the rel-
ative “semantic distance” between the ever growing number of entities shrinks:
entities become harder to distinguish from one another. In order to demonstrate
this, we calculate the Jaccard Similarity between consecutive descriptions of the top
64 candidate entities returned by the bi-encoder. We observe a consistent increase
in this similarity metric illustrated in Fig. 5.4a. This growth in more similar entities
is accompanied with a general increase in the number of entities in the Wikipedia
KB (see Fig. 5.4c). Consequently, the model is given an ever-increasing number of
candidate target entities, which can potentially impact its performance.

Furthermore, we analyze the impact finetuning on different snapshots has on
the performance of the model (Q2). To this end, we distinguish between in-snapshot
and out-of-snapshot finetuning setups. In in-snapshot setup, the bi-encoder model
is finetuned and evaluated on the same snapshot. Conversely, in out-of-snapshot
setting, the model is evaluated on a different snapshot than the one used for its
finetuning. Figure 5.5a illustrates the difference in performance between the in-
snapshot and out-of-snapshot predictions for new and continual entities. We ob-
serve a general increase in performance for in-snapshot finetuning with a marginal
gain for continual entities compared to the new ones.7 This general lower impact
of in-snapshot finetuning on continual entities, leads us to hypothesize that the ac-
tual knowledge needed to disambiguate most of these entities in TempEL changes

7We analyze more in detail the difference in performance between new and continual enti-
ties in next paragraphs when addressing (Q3).



TEMPORAL ENTITY LINKING 123

Continual Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.785 0.782 0.778 0.772 0.769 0.762 0.758 0.758 0.754 0.750
2014 0.792 0.790 0.785 0.781 0.777 0.771 0.767 0.767 0.763 0.760
2015 0.786 0.784 0.782 0.777 0.773 0.769 0.765 0.764 0.760 0.757
2016 0.789 0.784 0.781 0.777 0.773 0.768 0.763 0.763 0.758 0.755
2017 0.794 0.791 0.788 0.785 0.781 0.775 0.771 0.772 0.768 0.763
2018 0.791 0.788 0.786 0.782 0.778 0.773 0.769 0.769 0.764 0.760
2019 0.795 0.792 0.789 0.784 0.781 0.776 0.772 0.773 0.767 0.765
2020 0.787 0.783 0.782 0.777 0.774 0.768 0.765 0.765 0.761 0.756
2021 0.788 0.785 0.782 0.777 0.773 0.769 0.764 0.764 0.761 0.757
2022 0.790 0.787 0.783 0.779 0.776 0.771 0.768 0.768 0.764 0.760

New Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.910 0.819 0.853 0.826 0.841 0.812 0.819 0.791 0.688 0.774
2014 0.908 0.848 0.862 0.827 0.843 0.832 0.842 0.814 0.704 0.791
2015 0.898 0.823 0.849 0.822 0.808 0.813 0.832 0.788 0.706 0.781
2016 0.897 0.832 0.862 0.832 0.839 0.823 0.823 0.802 0.718 0.791
2017 0.906 0.832 0.857 0.817 0.840 0.824 0.835 0.791 0.714 0.808
2018 0.908 0.835 0.858 0.830 0.846 0.853 0.835 0.806 0.728 0.803
2019 0.910 0.842 0.853 0.821 0.842 0.843 0.841 0.810 0.734 0.799
2020 0.903 0.828 0.844 0.835 0.843 0.819 0.833 0.817 0.728 0.811
2021 0.910 0.825 0.852 0.825 0.837 0.817 0.830 0.814 0.761 0.812
2022 0.905 0.846 0.852 0.820 0.830 0.830 0.832 0.808 0.732 0.823

Table 5.2: Accuracy@64 for continual (top) and new (bottom) entities. The intensity
of colors is set on a row-by-row basis and indicates whether performance
is better or worse compared to the year the model was finetuned on (i.e.,
the values that form the white diagonal).

very little with time. In order to verify this hypothesis, we randomly selected 100
continual entity-mention pairs, and compared the difference in both mention con-
texts and entity descriptions between the years 2013 and 2022. We found that in
most cases (>95%), while the textual description of the continual entity is changed
(supported by Figs. 5.3a–5.3b), its meaning remains the same.

Moreover, we address the second part of Q2 targeting the effect of timespan be-
tween the snapshot used for finetuning and the one used for evaluation. To accom-
plish this, in Fig. 5.5b we showcase the impact of in-snapshot finetuning relative
to the temporal offset between the snapshot the model was tested and the snapshot
the model was finetuned on. For negative temporal offset,8 we observe a decrease
in the performance difference between in-snapshot and out-of-snapshot setups as
the offset approaches to zero. This indicates that the model can benefit more from

8Evaluation snapshot comes from later time period than the snapshot the model was fine-
tuned on.
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Figure 5.5: Impact of finetuning and evaluating on the same snapshot (in-snapshot)
compared to finetuning and evaluating on different snapshots (out-of-
snapshot). We observe: (a) a superior impact of in-snapshot finetuning
on new entities compared to continual ones, (b) a decrease in perfor-
mance when finetuning on increasingly older spanshots, and (c) domi-
nant effect of in-snapshot finetuning on entities that require fundamen-
tally new knowledge (e.g., COVID-19 related entities).

recent snapshots than from snapshots further in the past. Curiously, we observe
a slight increase in performance for out-of-snapshot continual entities trained on
future snapshots (positive temporal offsets in Fig. 5.5b). This suggests that the
changes in continual entities are accumulative in Wikipedia, with later versions of
entity descriptions also including the information from the past. For instance, we
have observed that for entities describing people, the newly added information
on the occupation (e.g., soccer coach) is appended to the occupation description a
person had in the past (e.g., soccer player).

Next, we analyze the EL performance on new entities and whether they are
differently affected than the continual ones (Q3). We plot the in-snapshot and out-
of-snapshot average temporal change in accuracy@64 scores across all finetuned
models for both types of entities in Fig. 5.4b. We observe that, in general, the per-
formance on new entities is superior to that on continual ones. Furthermore, as
observed above, the performance gain from in-snapshot finetuning on new enti-
ties is superior compared to that on continual ones (supported by Fig. 5.4b and
Figs. 5.5a–5.5b). This difference suggests that new entities require a higher degree
of additional snapshot-specific knowledge to be correctly disambiguated. Addi-
tionally, the graph in Fig. 5.4b reveals that this delta in performance is larger for
more recent years (starting from 2018). We hypothesize that this behaviour is due
to the fact that the used original BERT model [83] has not been exposed to more
recent new entities during pre-training. It also suggests a complementary effect be-
tween task-specific finetuning on TempEL dataset and language model pre-training
on larger corpora.

Furthermore, to better understand the superior performance on new entities,
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we manually analyze 100 randomly selected new entities from our dataset. We
found that a large majority (∼90%) of entities were either events that are recurrent
in nature (e.g., “2018 BNP Paribas Open”) (∼68%) or extracts of already existing
pages (∼22%). We conjecture9 that these entities require little additional knowl-
edge to be disambiguated, since either they already exist (as part of the content
of other entities) or are very similar to already existing entities in Wikipedia. This
contrasts sharply with the performance drop observed for new entities in the tem-
poral snapshot 2021, as exhibited in both Fig. 5.4b and Table 5.2. This decrease
is mostly driven by COVID-19 related entities, which constitute 24% of the new
entities, which are linked to by 30% of the mentions in this spanshot. The disam-
biguation of these cases requires completely new and fundamentally different, pre-
viously non-existent knowledge. Since this knowledge is not present in the original
corpus used to pre-train the BERT encoder nor in any of the previous snapshots, our
EL model based on it struggles.

Finally, we analyze the impact of new entities finetuning (Q2) on the tempo-
ral snapshot 2021, for which our model exhibits the lowest temporal performance
driven by COVID-19 disambiguation instances (see above). Figure 5.5c showcases
the impact of in- and out-of-snapshot finetuning on the performance on COVID-
19 related entities compared to other new entities for different thresholds K of the
accuracy@K metric. We observe a large difference in performance (up to 14%
accuracy@64 points) between COVID-19 related and the rest of the instances for
out-of-snapshot finetuning. This difference is significantly decreased when fine-
tuning on the 2021 snapshot (in-snapshot finetuning), achieving superior accuracy
on COVID-19 related entities for lower values of K compared to other entities. In
contrast, the difference between out- and in-snapshot performance on these non-
COVID-19 related entities (other entities in Fig. 5.5c) is marginal. This suggests that
in-snapshot finetuning has dominant impact on new entities that require funda-
mentally new, previously non-existent knowledge in Wikipedia.

5.5 Limitations and future work
A number of dataset and model-related aspects were left unexplored in the current
work. Our clarifications thereof below may help the community to understand the
limitations and potential future research directions to extend our efforts.

Effect of pre-training on new corpora Recent work has demonstrated the
benefits of pre-training language models on more recent corpora (e.g., the latest
Wikipedia versions) when applied on downstream tasks [37, 40]. We hypothesize
that this pre-training may also improve EL performance for our TempEL, especially
for new entities that require new world knowledge.

Changes in mention context Our work focused mostly on changes in target
entities, leaving the effect of changes in mention context on EL performance unex-
plored. For example, Fig. 5.3c shows a notable temporal drop in Jaccard vocabulary
similarity of the context surrounding mentions. This suggests that mentions, as

9See Section 5.A.11 of the supplementary material for further details on the performance
on these different new entity types.
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well as the text surrounding them, are quite volatile and evolve over time, making
them an interesting subject for future research.

Cross-lingual time evolution Our dataset is limited to English Wikipedia.
Yet, since recent work [84, 85] has shown the benefits of training EL models in a
cross-lingual setting, studying cross-lingual temporal evolution of entity linking
task may also be an interesting future research direction. Furthermore, it will com-
plement the recent growing interest in creating entity linking datasets for a number
of low-resourced languages [86–89].

5.6 Conclusion
This paper introduced TempEL, a new large-scale temporal entity linking dataset
composed of 10 yearly snapshots of Wikipedia target entities linked to by anchor
mentions. In our dataset creation pipeline, we put special focus on the quality
assurance and future extensibility of TempEL. Furthermore, we established base-
line entity linking results across different years, which revealed a noticeable per-
formance deterioration on test data more recent than the training data. We further
examined the most challenging cases, suggesting the need for updating the pre-
trained language model of our EL model, at least to perform well on newly appear-
ing entities that require new world knowledge (e.g., in case of COVID-19). Finally,
we described limitations of our work and discussed potential future research direc-
tions.
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Checklist
The checklist follows the references. Please read the checklist guidelines carefully
for information on how to answer these questions. For each question, change the
default TODO to Yes, No, or N/A. You are strongly encouraged to include a justifi-
cation to your answer, either by referencing the appropriate section of your paper
or providing a brief inline description. For example:

• Did you include the license to the code and datasets? Yes. See the supple-
mentary materials.

Please do not modify the questions and only use the provided macros for your
answers. Note that the Checklist section does not count towards the page limit. In
your paper, please delete this instructions block and only keep the Checklist section
heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope? Yes

(b) Did you describe the limitations of your work? Yes

(c) Did you discuss any potential negative societal impacts of your work?
N/A

(d) Have you read the ethics review guidelines and ensured that your pa-
per conforms to them? Yes

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? N/A

(b) Did you include complete proofs of all theoretical results? N/A

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce
the main experimental results (either in the supplemental material or
as a URL)? Yes. The link to the dataset will be shared as part of the
supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparame-
ters, how they were chosen)? Yes. See the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after
running experiments multiple times)? No. No additional computa-
tional resources for this, yet the results across multiple temporal snap-
shots used to finetune are consistent.

(d) Did you include the total amount of compute and the type of resources
used (e.g., type of GPUs, internal cluster, or cloud provider)? Yes. See
the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releas-
ing new assets...

(a) If your work uses existing assets, did you cite the creators? Yes
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(b) Did you mention the license of the assets? Yes. See supplementary
material.

(c) Did you include any new assets either in the supplemental material or
as a URL? No

(d) Did you discuss whether and how consent was obtained from people
whose data you’re using/curating? N/A

(e) Did you discuss whether the data you are using/curating contains per-
sonally identifiable information or offensive content? N/A

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and
screenshots, if applicable? N/A

(b) Did you describe any potential participant risks, with links to Institu-
tional Review Board (IRB) approvals, if applicable? N/A

(c) Did you include the estimated hourly wage paid to participants and
the total amount spent on participant compensation? N/A
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5.A Supplementary material

5.A.1 Dataset and code distribution

Link to the dataset The reviewers can access the dataset using the following
link: https://cloud.ilabt.imec.be/index.php/s/RinXy8NgqdW58RW. The dataset and
the baseline code will be made publicly available in a dedicated GitHub repository
upon acceptance.

License TempEL is distributed under Creative Commons Attribution-ShareAlike
4.0 International license (CC BY-SA 4.0).11

Maintenance The maintenance and extension to further temporal snapshots of
TempEL will be carried out by the authors of the paper. Additionally, we will make
the code public to create potential new variations and extensions of TempEL using
a number of hyperparameters (see Sections 5.A.4 and 5.A.5 for further details).

5.A.2 Datasheet for TempEL

In this section we provide a more detailed documentation of the dataset with the
intended uses. We base ourselves on the datasheet proposed by [90].

5.A.2.1 Motivation

For what purpose was the dataset created? The TempEL dataset was created
to evaluate how the temporal change of anchor mentions and that of target Knowl-
edge Base (KB; i.e., modification or creation of new entities) affects the entity linking
(EL) task. This contrasts with the currently existing datasets [3, 11–13], which are
associated with a single version of the target KB such as the Wikipedia 2010 for the
widely adopted CoNLL-AIDA [19] dataset. We expect that TempEL will encour-
age research in devising new models and architectures that are robust to temporal
changes both in mentions as well as in the target KBs.

Who created the dataset and on behalf of which entity? The dataset is the
result of joint effort involving researchers from the University of Copenhagen and
Ghent University.

Who funded the creation of the dataset? The creation of TempEL was funded
by the following grants:

1. FWO (Fonds voor Wetenschappelijk Onderzoek) long-stay abroad grant V412922N.

2. The Flemish Government fund under the programme “Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen”.

11https://creativecommons.org/licenses/by-sa/4.0/

https://cloud.ilabt.imec.be/index.php/s/RinXy8NgqdW58RW
https://creativecommons.org/licenses/by-sa/4.0/
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Figure 5.6: Figure showcasing the fraction of filtered Wikipedia mentions by each
of the filters executed during TempEL generation.

5.A.2.2 Composition

What do the instances that comprise the dataset represent? Each of the in-
stances consists of a mention in Wikipedia linked to target entity, i.e., a Wikipedia
page, with a set of attributes. The dataset is organized in 10 yearly temporal snap-
shots starting from January 1, 2013 until January 1, 2022. See Section 5.A.6 for
further details on the attributes associated with each of the instances of our Tem-
pEL dataset.

How many instances are there in total? Table 5.1 of the main manuscript
summarizes the number of instances (# Anchor Mentions) of each of the entity
categories (continual and new) in TempEL. See Section 5.A.3 for additional statistics
on mention per entity distribution.

Does the dataset contain all possible instances or is it a sample (not nec-
essarily random) of instances from a larger set? TempEL contains a sample
of all the possible anchor mentions linked to target entities from Wikipedia. The
following are the filters applied to obtain the instances in the final TempEL dataset
whose effect is also summarized in Fig. 5.6:

1. Prior-based filtering: we exclude all the mentions for which the correct en-
tity it refers to has the highest prior [72] as calculated in Eq. (5.1) of the man-
uscript. This filtering is done with the goal of creating a more challenging
dataset.

Value to create TempEL: mentions with mention prior rank > 1 among other
mentions referring to the same entity.

Percentage of filtered out instances: between 74.20% and 76.28%, depending on
the temporal snapshot.

Hyperparameter name: min_men_prior_rank (see Table 5.3 in Section 5.A.4).

2. Entity relevance filtering: we impose the restriction for target entity of hav-
ing at least 10 incoming links (i.e., at least 10 mentions linking to it) in order
to be included in TempEL. Additionally, we filter out target entities whose
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description contains less than 10 tokens. This is done in order to avoid in-
troducing potentially noisy and irrelevant entities that have not been suffi-
ciently established by the Wikipedia community.
Value to create TempEL: 10 for minimum number of incoming links and 10 for
minimum content length (in number of tokens) of target entity.
Percentage of filtered out instances:

• Minimum number of incoming links: between 42.66% and 48.32%, de-
pending on the temporal snapshot.

• Minimum content length: between 0.06% and 0.95% depending on the
temporal snapshot.

Hyperparameter names: min_nr_inlinks for minimum number of incoming
links and min_len_target_ent for minimum number of content length to-
kens (see Table 5.3 in Section 5.A.4).

3. Min prior subsampling: the mentions with very low mention prior are fil-
tered out from TempEL. This way, we avoid introducing too infrequent and
potentially erroneous mentions to refer to a particular entity.
Value to create TempEL: 0.0001
Percentage of filtered out instances: between 0.37% and 0.61%, depending on
the snapshot.
Hyperparameter name: min_men_prior (see Table 5.3 in Section 5.A.4).

4. Minimum mentions per entity: has similar effect as previously explained
min prior subsampling (see above) filter. We do not use it in the creation of
TempEL, relying completely on the min prior subsampling filter.
Value to create TempEL: 1
Percentage of filtered out instances: 0%
Hyperparameter name: min_mens_per_ent (see Table 5.3 in Section 5.A.4).

5. Edit distance mention title: filters out the anchor mentions that are very
similar to target entity page. This way, we expect to reduce the trivial cases
where the entity linking can be simply predicted by mapping the mention to
the title of the target entity.
Value to create TempEL: 0.2 (normalized edit distance).
Percentage of filtered out instances: between 44.85% and 48.99%, depending on
the snapshot.
Hyperparameter name: ed_men_title (see Table 5.3 in Section 5.A.4).

6. Redirect filtering: we filter out anchor mentions that point to redirect pages
(pages without content redirecting to other pages in Wikipedia).
Percentage of filtered out instances: between 1.02% and 1.47%, depending on
the snapshot.

7. Inter-subset filtering: we enforce normalized edit distance between the men-
tions in different subsets referring to the same target entity to be higher than
0.2. This entails that the entities in TempEL are linked to at least by 3 men-
tions with different surface form. The main goal of this filter is to avoid
mention-entity tuple memorization by the models [9].
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Value to create TempEL: 0.2 normalized edit distance between mentions in dif-
ferent subsets.
Percentage of filtered out instances: 10%.
Hyperparameter name: ed_men_subsets (see Table 5.3 in Section 5.A.4).

8. Maximum number of entities: we restrict the number of target entities to
10,000 for continual instances. The reason behind this is to build a dataset of
manageable size with a reasonable number of target entities to experiment
with.
Value to create TempEL: 10,000 for continual entities.
Percentage of filtered out instances: 82%.
Hyperparameter name: nr_ct_ents_per_cut (see Table 5.3 in Section 5.A.4)

9. Maximum number of mentions per entity: this filtering limits the number
of mentions per entity in order for the dataset to not be dominated by most
popular entities. Particularly, for test and evaluation subsets we limit the
number of mentions per entity to 10. This way, we expect the accuracy scores
to not be dominated by links to popular target entities (i.e., entities with a big
number of incoming links). The limit for training set is higher (500), since
we want it to be representative of the real mention per entity distribution
in Wikipedia. The effect of imposing this limits can be observed in Fig. 5.7
for both continual as well as new entities represented by a significant leap in
the mentions-per-entity curve, particularly noticeable for validation and test
subsets.
Value to create TempEL: 10 for validation and test subsets, 500 for the train
subset.
Percentage of filtered out instances: for continual instances, 84% for validation
and test subsets and 28% for the train subset. For new instances, 45% for
validation and test subsets and 0.3% for the train subset.
Hyperparameter name: max_mens_per_ent (see Table 5.3 in Section 5.A.4).

10. Inter-snapshot subsampling: finally, we enforce that the number of contin-
ual and new entities as well as the number of mentions stays the same across
the temporal snapshots (see Table 5.1). We achieve this by performing a ran-
dom mention subsampling in snapshots with higher number of mentions,
weighted by the difference in the number of mentions-per-entity. This pro-
duces a very similar mention-entity distribution across the temporal snap-
shots (see Section 5.A.3 for further details).
Percentage of filtered out instances: between 5% and 35%, it increases for more
recent temporal snapshots as they have more instances in Wikipedia.

We do not filter on any attribute that could potentially produce evident biases
in TempEL (e.g., gender, geographic location of the entities, etc.).

What data does each instance consist of? Each instance of a snapshot con-
sists of:

1. Cleaned contextual text surrounding the anchor mention from the Wikipedia
snapshot. Furthermore, we include the bert-tokenized version of the text
used in our baseline.
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2. Cleaned textual description of the target entity taken from the Wikipedia
snapshot. Furthermore, we include the bert-tokenized version of the text
used in our baseline.

3. A set of additional attributes defining the anchor mention and target entity.

For more details about the attributes, see Section 5.A.6. Furthermore, concrete ex-
amples of TempEL’s instances are showcased in Section 5.A.10.

Is there a label or target associated with each instance? Yes, the target
entity is represented by the Wikipedia page id. Furthermore, we also pair it with
Wikidata QID of the corresponding Wikidata entity. These targets correspond to the
attributes target_page_id and target_qid described in Table 5.4 (see Section 5.A.6
for further details).

Is any information missing from individual instances? No, all the in-
stances should have a complete information corresponding to the content as well
as to the attributes.

Are relationships between individual instances made explicit? Yes, the
relations between each of the instances and the target entity are made explicit by
means of target_page_id and target_qid attributes (see Section 5.A.6 for further
details), which uniquely identify the id of the Wikipedia page describing a partic-
ular entity and the Wikidata entity respectively.

Are there recommended data splits (e.g., training, development/valida-
tion, testing)? Yes, the dataset is divided in train, validation and test subsets
(see Table 5.1 for the distribution).

Are there any errors, sources of noise, or redundancies in the dataset?
We have taken multiple measures to build a high quality dataset, minimizing the
number of noise or other errors (see Section 5.3.2 of the main manuscript). Yet,
TempEL is not 100% error free, and contains a few errors mostly due to erroneous
Wikitext edits by the Wikipedia users.

Is the dataset self-contained, or does it link to or otherwise rely on exter-
nal resources? Yes, the dataset is self contained and consists of:

1. Instances divided in train, validation and test subsets (see Table 5.1).

2. A description of all the entities of each of the Wikipedia snapshots. These
entities form the complete candidate pool used by the models to predict the
correct target entity. Figure 5.4c of the main manuscript illustrates the tem-
poral evolution in size of the number of candidate entities.

Does the dataset contain data that might be considered confidential?
No, Wikipedia is a public resource.
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Does the dataset contain data that, if viewed directly, might be offensive,
insulting, threatening, or might otherwise cause anxiety? No, we haven’t
detected instances of such characteristics in TempEL.

Does the dataset identify any subpopulations (e.g., by age, gender)? While
there are articles on different subpopulations on Wikipedia, there is no emphasis of
the dataset on identifying or annotating those.

Is it possible to identify individuals (i.e., one or more natural persons),
either directly or indirectly (i.e., in combination with other data) from
the dataset? Only based on their Wikipedia article, no editor information is
retained.

Does the dataset contain data that might be considered sensitive in any
way? Wikipedia is overall a resource aiming to be factual, therefore we can
exclude this concern for most instances of TempEL.

5.A.2.3 Collection process

How was the data associated with each instance acquired? The textual
data of the context of anchor mention and that of the description of the target entity
is directly taken from the Wikipedia snapshots. Conversely, the attributes associ-
ated with each of the instances are calculated (see Section 5.A.6 for further details).

What mechanisms or procedures were used to collect the data (e.g., hard-
ware apparatuses or sensors, manual human curation, software programs,
software APIs)? The dataset was collected using the Wikipedia dumps from
February of 2022. We detail further on the aspects related to the preprocessing,
cleaning and labeling of TempEL instances in Section 5.A.2.4 of the datasheet.

Who was involved in the data collection process (e.g., students, crowd-
workers, contractors) and how were they compensated (e.g., how much
were crowdworkers paid)? The dataset was automatically generated based on
existing Wikipedia articles. Therefore, no human intervention was needed for the
dataset generation.

Over what timeframe was the data collected? The TempEL dataset was
collected from 10 yearly snapshots of Wikipedia starting from January 1, 2013 until
January 1, 2022.

Were any ethical review processes conducted (e.g., by an institutional
review board)? N/A
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5.A.2.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretiza-
tion or bucketing, tokenization, part-of-speech tagging, SIFT feature ex-
traction, removal of instances, processing of missing values)? The Wikipedia
history logs content is available exclusively in Wikitext markup format.12 In order
to obtain cleaned text we proceed as follows:

1. We use MediaWiki API to process the templates which can not be parsed
using regular expressions. For example, this is the case of the Wikitext tem-
plate Convert, where the markup like “{{convert|37|mm|in|abbr=on}}” is
converted to “1.5 in”.

2. We use regular expressions to extract mentions and links. While this can
also be done using online Wikitext parsing tools, we found that these did not
account for all the corner cases of mention parsing such as the ones involving
the pipe trick.13

3. Finally, we use mwparserfromhell14 tool for parsing the rest of the Wikitext
content.

Furthermore, our dataset files also contain BERT tokenization of the context around
the mentions as well as the textual content of entities.

Was the “raw” data saved in addition to the preprocessed/cleaned/la-
beled data (e.g., to support unanticipated future uses)? Yes, the raw
data containing the Wikipedia history logs was saved on our cloud server in the
following link: https://cloud.ilabt.imec.be/index.php/s/BF9SkmQG2Tdjw8o.

Is the software that was used to preprocess/clean/label the data avail-
able? Yes, the software will be made public upon acceptance.

5.A.2.5 Uses

Has the dataset been used for any tasks already? Yes, in our submitted
manuscript we describe a retriever bi-encoder baseline [7] (see Section 5.4.2).

Is there a repository that links to any or all papers or systems that use
the dataset? N/A

What (other) tasks could the dataset be used for? The covered task is tem-
porally evolving entity linking.

Is there anything about the composition of the dataset or the way it
was collected and preprocessed/cleaned/labeled that might impact fu-
ture uses? N/A

12https://en.wikipedia.org/wiki/Help:Wikitext
13https://en.wikipedia.org/wiki/Help:Pipe trick
14https://github.com/earwig/mwparserfromhell

https://cloud.ilabt.imec.be/index.php/s/BF9SkmQG2Tdjw8o
https://en.wikipedia.org/wiki/Help:Wikitext
https://en.wikipedia.org/wiki/Help:Pipe_trick
https://github.com/earwig/mwparserfromhell
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Are there tasks for which the dataset should not be used? N/A

Will the dataset be distributed to third parties outside of the entity (e.g.,
company, institution, organization) on behalf of which the dataset was
created? Yes, the dataset is of public access.

How will the dataset be distributed (e.g., tarball on website, API, GitHub)?
The TempEL dataset will be made public on a GitHub repository together with

the code to generate it. The baseline code and models will also be made public on
the same repository. Due to the size, the dataset files will be hosted on the cloud
server that belongs to Internet Technology and Data Science Lab (IDLab) at Ghent
University (https://cloud.ilabt.imec.be/index.php/s/RinXy8NgqdW58RW).

When will the dataset be distributed? The dataset will be publicly distrib-
uted upon the submission of the camera ready version of our manuscript.

Will the dataset be distributed under a copyright or other intellectual
property (IP) license, and/or under applicable terms of use (ToU)? The
TempEL dataset will be distributed under Creative Commons Attribution-ShareAlike
4.0 International license (CC BY-SA 4.0).

Have any third parties imposed IP-based or other restrictions on the data
associated with the instances? N/A

Do any export controls or other regulatory restrictions apply to the dataset
or to individual instances? N/A

5.A.2.6 Maintenance

Who will be supporting/hosting/maintaining the dataset? The mainte-
nance and extension of TempEL will be carried out by the authors of the paper.
Additionally, we will make the code publicly available to create potential new vari-
ations of TempEL using a number of hyperparameters (see Section 5.A.4 and Sec-
tion 5.A.5 for further details).

The dataset files will be hosted on the cloud server that belongs to Internet
Technology and Data Science Lab (IDLab) at Ghent University (https://cloud.ilabt.
imec.be/index.php/s/RinXy8NgqdW58RW).

How can the owner/curator/manager of the dataset be contacted (e.g.,
email address)? The owners of the dataset can be contacted at the following
e-mail address: klim.zaporojets@ugent.be.

Is there an erratum? No, there is no erratum yet.

https://cloud.ilabt.imec.be/index.php/s/RinXy8NgqdW58RW
https://cloud.ilabt.imec.be/index.php/s/RinXy8NgqdW58RW
https://cloud.ilabt.imec.be/index.php/s/RinXy8NgqdW58RW
klim.zaporojets@ugent.be
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Will the dataset be updated (e.g., to correct labeling errors, add new in-
stances, delete instances)? The TempEL will be regularly updated with newer
snapshots (see Section 5.A.5). In circumstances such as labeling errors, we will
release the fixed version of the dataset with the respective version number. The
introduction of the new version will be communicated using the TempEL GitHub
repository.

If the dataset relates to people, are there applicable limits on the reten-
tion of the data associated with the instances (e.g., were the individuals
in question told that their data would be retained for a fixed period of
time and then deleted)? N/A

Will older versions of the dataset continue to be supported/hosted/main-
tained? Yes, the older version of the dataset will continue to be supported and
hosted. All the versions will be numbered and we will provide the link to access
each of these versions on our cloud storage server.

If others want to extend/augment/build on/contribute to the dataset, is
there a mechanism for them to do so? Yes, we provide the code and func-
tionality to re-generate and extend the dataset with new temporal snapshots (see
Sections 5.A.4 and 5.A.5). Yet, it is the responsibility of the users to provide hosting
and maintenance to the newly generated dataset variations.

5.A.3 Mentions per entity distribution
Figure 5.7 illustrates the similarity of mention per entity distribution across the tem-
poral snapshots. This is achieved using weighted random subsampling so all the
snapshots have equal number of instances (see Data Distributor component descrip-
tion in Section 5.3.1). By enforcing this similarity between temporal snapshots, we
ensure that the potential difference in the results is independent of cross-snapshot
dataset distributional variations and only influenced by the dynamic temporal evo-
lution of the content in TempEL.

5.A.4 Dataset creation hyperparameters
Table 5.3 summarizes the hyperparameters that can be tuned in order to automati-
cally create the TempEL dataset. This way, it is possible for the user to create differ-
ent variation of the TempEL. The most relevant hyperparameter is snapshots that
is used to specify the temporal intervals to create the snapshots. Below we detail
two possible options we provide to specify such intervals.

Option 1 - explicit snapshot specification The user is expected to provide
a list of timestamps in the format of YYYY-MM-DDTHH:MM:SSZ, each one defining a
different snapshot.

5For train, validation and test sets respectively.
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Figure 5.7: Similar distribution of the data across the temporal snapshots (num-
ber of mentions per entity). This structurally unbiased setting enable to
study exclusively the temporal effect on the performance of the models
for each of the different time periods.

Option 2 - time span and interval This option enables the user to define start
and end dates of the time span from which the snapshots should be extracted. Fur-
thermore, the interval value (i.e., by using keywords such as “weekly” or specifying
the interval in seconds) has to also be specified.

5.A.5 Dataset extension
Additionally, we provide the option to extend the already existing dataset with new
snapshots. Similarly as in the creation of new dataset (see Section 5.A.4 above), the
snapshots hyperparameter is used to specify new snapshots which are then added
to already existing TempEL dataset.

5.A.6 Mention and entity attributes
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Hyperparamter Description TempEL

snapshots Details (e.g., timestamps) of the temporal
snapshots to be generated.

10 years

nr_ct_ents_-
per_cut

Number of continual entities per snap-
shot.

10,000

min_mens_per_-
ent

Minimum number of links a particular
mention needs to have to target entity
in order to be considered to be added in
TempEL.

1

min_men_prior Minimum mention prior (see Eq. (5.1) in
the main manuscript).

0.0001

max_men_prior Maximum mention prior. 0.5
min_men_-
prior_rank

Minimum rank of mention prior among
all the mentions pointing to a specific en-
tity.

2

min_ent_prior Minimum entity prior as defined in [72]:
the ratio of links to the entity with respect
to all of the links in the Wikipedia snap-
shot.

0.0

max_ent_prior Maximum entity prior. 1.0
min_nr_inlinks Minimum number of incoming links per

entity.
10

min_len_-
target_ent

Minimum length of target entity page (in
tokens).

10

max_mens_per_-
ent

Maximum number of mentions per en-
tity.

500/10/1015

ed_men_title Minimum normalized edit distance be-
tween the mentions and the title of the
target page they are linked to.

0.2

ed_men_subsets Minimum normalized edit distance be-
tween the mentions in different subsets
linked to the same target entity.

0.2

stable_-
interval

In seconds, the interval of time before
the end of each snapshot from which the
most stable version of Wikipedia has to
be taken (see Section 5.3.2 for further de-
tails).

2,592,000
(30

days)

equal_-
snapshots

Whether the number of instances and the
number of mentions per entity distribu-
tion is the same across the snapshots (see
Section 5.3.2 for further details). Equal
cross-snapshot mention per entity distri-
bution in Fig. 5.7 is the result of setting
this hyperparameter in True.

True

Table 5.3: Hyperparameters that can be tuned during TempEL dataset creation.
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Attribute Description

subset The name of current subset (i.e., train, validation
or test).

target_page_id The unique Wikipedia page id of the target entity.
target_qid The unique Wikidata QID of the target entity.
snapshot The timestamp of the temporal snapshot from

which the anchor mention and target entity attrib-
utes were extracted.

target The textual content of the target entity Wikipedia
page.

target_len The length in tokens of target Wikipedia page.
target_title The title of target entity Wikipedia page.
category Category of the target entity (new or continual).
mention The text of the mention.
context_left The textual context to the left of the mention.
context_right The textual context to the right of the mention.
anchor_len The length in tokens of the Wikipedia page where

the anchor mention is located.
ed_men_title Normalized edit distance between the anchor

mention and the title of the target Wikipedia page.
overlap_type Overlap type between the anchor mention and the

target title as defined by [8].
men_prior The mention prior (see Eq. (5.1) of the main manu-

script).
men_prior_rank The rank of the current anchor mention compared

to other mentions in Wikipedia pointing to target
entity.

avg_men_prior The average value of prior of the mentions linked
to the target entity in Wikipedia for snapshot.

ent_prior Entity prior as defined in [72]: the ratio of links
to the entity with respect to all of the links in the
Wikipedia snapshot.

nr_inlinks Total number of incoming links to target entity.
nr_dist_mens Number of distinct (i.e., with different surface

form) mentions linked to target entity.
nr_mens_per_ent Number of times the current mention appears in

Wikipedia linked to target entity.
nr_mens_-
extracted

Number of anchor mentions per current target en-
tity in the subset.

anchor_-
creation_date

The creation date (timestamp) of Wikipedia page
where the anchor mention is located.

anchor_-
revision_date

The timestamp of when the anchor Wikipedia page
was last revised.

target_-
creation_date

The timestamp of when the target Wikipedia entity
page was created.

target_-
revision_date

The timestamp of when the target Wikipedia entity
page was last modified.

Table 5.4: Attributes associated to each of the mention-entity pairs for each of the
temporal snapshots in TempEL.
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Table 5.4 describes the anchor mention and target entity related attributes present
in TempEL. These attributes can be used to perform more in-depth analysis of the
results.

5.A.7 Baseline implementation details

We base our bi-encoder baseline model on the publicly available BLINK code.16 We
train all the models for 10 epochs with the learning rate of 1e-04 and the batch size
of 64. We use AdamW optimizer with 10% of warmup steps. Finally, we rely on
transformers library [91] to get the pre-trained BERT-large representations. All the
experiments were run on NVIDIA V100 GPU with the following execution times:

1. Training: 36 hours to train for 10 epochs per single snapshot.

2. All Wikipedia entity encoding: 7 days per finetuned model (on all the 10 Wikipedia
snapshots) running on a single V100 GPU.

3. Evaluation: 30 seconds per finetuned model per snapshot using FAISS [14]
library on GPU.

5.A.8 Total amount of compute and the type of resources
used to create TempEL

In this section we provide the details on the computational resources used in each
of the processing steps (see Section 5.3.1 and Fig. 5.2 for further details) to create
the TempEL dataset:

1. Snapshot Data Extraction: this processing step is responsible for creating the
snapshots from the Wikipedia log files from February 1, 2022. This is a multi-
processing step that is executed on a cluster with 80 CPUs and 110 GB of
RAM and takes 5 days and 8 hours to complete.

2. Snapshot Dataset Building: this is a multi-processing step that is executed on
a cluster with 30 CPUs and 250 GB of RAM and takes 5 hours to complete.

5.A.9 License of the assets
We base the implementation of our baseline bi-encoder model on the publicly avail-
able BLINK [7] code. This asset is made available under MIT License (https://
opensource.org/licenses/MIT).

5.A.10 Examples
This section presents two illustrative examples of instances in TempEL. The first
example contains the anchor mention linked to continual entity, while the second
one is the example of a link to new entity. Both of the examples were taken from the
snapshot of January 1, 2021. Furthermore, we trim the content length (e.g., target
attribute value) to only a few tokens for space reasons.

16https://github.com/facebookresearch/BLINK

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://github.com/facebookresearch/BLINK
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5.A.10.1 Example 1: continual target entity

Table 5.5 illustrates an example of the link to continual target entity Sacramental_-
bread. It is worth noting that the creation date of this entity in Wikipedia (target_-
creation_date attribute) is of January 3, 2005. Yet, the version saved in the snap-
shot (target_revision_date attribute) is from December 30, 2020.
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Attribute Value

subset train
target_page_id 1359030
target_qid Q207104
snapshot 2021-01-01T00:00:00Z
target “Sacramental bread, sometimes called altar bread,

Communion ...”
target_len 7,568
target_title “Sacramental_bread”.
category continual
mention “host”
context_left “... devotional image, portrait or other religious

symbol (such as the”
context_right “). Garland paintings were typically collaborations

between a ...”
anchor_len 6,519
ed_men_title 0.9411
overlap_type LOW_OVERLAP
men_prior 0.0750
men_prior_rank 7
avg_men_prior 0.6864
ent_prior 1.7790e-6
nr_inlinks 225
nr_dist_mens 13
nr_mens_per_ent 79
nr_mens_-
extracted

58

anchor_-
creation_date

2009-09-25T21:09:07Z

anchor_-
revision_date

2020-10-04T16:15:13Z

target_-
creation_date

2005-01-03T17:41:14Z

target_-
revision_date

2020-12-30T12:38:50Z

Table 5.5: Example of the instance corresponding to mention link to continual entity
(Sacramental_bread created in 2005-01-03) in TempEL.
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Figure 5.8: Accuraccy@K for different values of K ∈ {1, 2, 4, 8, 16, 32, 64}. The re-
sults are grouped in four main categories: (i) mentions linked to contin-
ual entities that exist in all of the TempEL snapshots, (ii) mentions linked
to COVID-related new entities (i.e., with keywords such as “COVID” in
target entity title), (iii) mentions linked to recurrent new entities (i.e.,
entities representing events occurring periodically such as “2018 BNP
Paribas Open”), and (iv) mentions linked to other new entities.

5.A.10.2 Example 2: new target entity

Table 5.6 illustrates an example of the link to new target entity COVID-19_pan-
demic_in_Portland,_Oregon. It is worth noting that the creation date of this entity
in Wikipedia (target_creation_date attribute) is of March 23, 2020, which be-
longs to the interval of the considered snapshot: from January 1, 2020 until January
1, 2021.

5.A.11 Additional results
Tables 5.7-5.13 present the results for different accuracy@K for K ∈ {1, 2, 4, 8, 16, 32, 64}.
Furthermore, Fig. 5.8 illustrates the mean in- and out-of-snapshot (see Section 5.4.2
of the main manuscript) accuracy@K performance across temporal snapshots on
the following four target entity categories:

1. Continual: all the target continual entities (i.e., the entities that exist across all
the temporal snapshots in TempEL dataset).

2. COVID-19: target new entities that have COVID-related (e.g., “COVID”, “coro-
navirus”, etc.) terms in the target entity title.

3. Recurrent: target new entities whose titles contain the year and some of the
keywords (e.g., “league”, “election”, “cup”, etc.) that indicate that an entity
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is a repetitive event (e.g., “2018 BNP Paribas Open” which is part of yearly
BNB Paribas Open competitions).

4. Other: all the other target new entities.

The following are the main conclusions that can be drawn from the graph in Fig. 5.8
that support or complement the findings described in Section 5.4.2 of the main
manuscript:

1. New entities that require fundamentally new, previously non-existent knowl-
edge to be disambiguated tend to have the lowest out-of-snapshot perfor-
mance. This is the case of COVID-19 related disambiguation instances. These
instances also experience the highest boost in performance when evaluated
on in-snapshot setting (i.e., the model is evaluated and finetuned on the same
temporal snapshot).

2. The difference between in- and out-of-snapshot performances on continual
entities is the lowest. This is also supported by Fig. 5.4b and Figs. 5.5a–5.5b
in the main manuscript. This suggests that the actual knowledge needed
to disambiguate most of the continual entities in TempEL changes very little
with time.

3. The model has the highest accuracy@64 performance on recurrent new enti-
ties. Yet, the performance on these entities drops sharply for lower values
of K. We hypothesize that predicting the correct recurrent event gets more
challenging as K decreases because of the large number of very similar can-
didates to pick from (e.g., many “BNP Paribas Open” championships that
only differ in very few details such as the date).

4. The difference between in- and out-of-snapshot performance for other new
entities is lower than for recurrent and COVID-19 related ones. This is driven
by new entities that are derived from existing entities in Wikipedia (i.e., their
content is a copy of already established entities). We hypothesize that the
model requires little additional knowledge to disambiguate these entities.
Still, it is part of future work to study other new entities more in detail in
order to find cases that represent intrinsically new knowledge similar to the
identified COVID-19 entity cluster.
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Attribute Value

subset train
target_page_id 63449958
target_qid Q88484856
snapshot 2021-01-01T00:00:00Z
target “The COVID-19 pandemic was confirmed to have

reached ...”
target_len 26,432
target_title “COVID-19_pandemic_in_Portland,_Oregon”
category new
mention “COVID-19 pandemic”
context_left “Xico Xico and Xica both offered pickup service

during the”
context_right “, as of May 2020. ”
anchor_len 2,437
ed_men_title 0.5405
overlap_type AMBIGUOUS_SUBSTRING
men_prior 0.0009
men_prior_rank 4
avg_men_prior 0.2548
ent_prior 2.9255e-7
nr_inlinks 37
nr_dist_mens 3
nr_mens_per_ent 23
nr_mens_-
extracted

18

anchor_-
creation_date

2020-12-08T00:23:50Z

anchor_-
revision_date

2020-12-09T15:41:18Z

target_-
creation_date

2020-03-23T04:22:55Z

target_-
revision_date

2020-11-16T03:59:06Z

Table 5.6: Example of the instance corresponding to mention link to new en-
tity (COVID-19_pandemic_in_Portland,_Oregon created in 2020-03-23)
in TempEL.
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Continual Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.225 0.219 0.215 0.217 0.212 0.206 0.203 0.203 0.197 0.192
2014 0.229 0.226 0.220 0.221 0.217 0.212 0.211 0.207 0.203 0.197
2015 0.228 0.223 0.219 0.219 0.216 0.211 0.208 0.206 0.204 0.196
2016 0.230 0.227 0.222 0.221 0.218 0.214 0.211 0.208 0.205 0.199
2017 0.240 0.237 0.229 0.229 0.226 0.221 0.219 0.216 0.211 0.207
2018 0.238 0.236 0.228 0.229 0.226 0.222 0.219 0.217 0.211 0.206
2019 0.237 0.235 0.228 0.228 0.226 0.220 0.217 0.216 0.212 0.208
2020 0.232 0.227 0.223 0.221 0.219 0.214 0.210 0.209 0.205 0.199
2021 0.239 0.235 0.231 0.230 0.228 0.222 0.219 0.217 0.213 0.210
2022 0.238 0.235 0.229 0.229 0.226 0.222 0.218 0.218 0.214 0.206

New Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.280 0.226 0.253 0.203 0.230 0.198 0.226 0.144 0.168 0.212
2014 0.291 0.268 0.258 0.201 0.234 0.217 0.245 0.150 0.159 0.214
2015 0.252 0.206 0.206 0.181 0.194 0.179 0.210 0.139 0.174 0.193
2016 0.277 0.248 0.242 0.214 0.221 0.206 0.226 0.144 0.181 0.206
2017 0.271 0.226 0.223 0.176 0.230 0.201 0.219 0.144 0.173 0.204
2018 0.284 0.255 0.240 0.190 0.228 0.268 0.246 0.157 0.178 0.222
2019 0.278 0.243 0.237 0.177 0.223 0.230 0.230 0.130 0.174 0.203
2020 0.284 0.236 0.225 0.206 0.214 0.201 0.212 0.183 0.177 0.221
2021 0.291 0.236 0.232 0.195 0.219 0.229 0.230 0.183 0.214 0.217
2022 0.294 0.260 0.251 0.188 0.206 0.241 0.240 0.170 0.170 0.219

Table 5.7: Accuracy@1 for continual (top) and new (bottom) entities. The intensity
of colors is set on a row-by-row basis and indicates whether performance
is better or worse compared to the year the model was finetuned on (i.e.,
the values that form the white diagonal).
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Continual Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.337 0.330 0.324 0.322 0.317 0.311 0.306 0.302 0.301 0.293
2014 0.339 0.335 0.329 0.328 0.322 0.317 0.314 0.310 0.306 0.299
2015 0.339 0.333 0.327 0.325 0.323 0.317 0.312 0.309 0.305 0.299
2016 0.341 0.334 0.328 0.326 0.322 0.316 0.314 0.310 0.306 0.301
2017 0.351 0.346 0.338 0.338 0.332 0.328 0.324 0.320 0.316 0.309
2018 0.348 0.342 0.336 0.334 0.331 0.327 0.323 0.322 0.315 0.309
2019 0.348 0.345 0.337 0.335 0.332 0.325 0.322 0.320 0.317 0.310
2020 0.341 0.336 0.330 0.327 0.322 0.316 0.312 0.310 0.307 0.300
2021 0.349 0.344 0.338 0.335 0.331 0.325 0.321 0.319 0.315 0.310
2022 0.348 0.343 0.336 0.336 0.331 0.325 0.321 0.320 0.317 0.309

New Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.401 0.322 0.359 0.310 0.327 0.309 0.340 0.266 0.236 0.291
2014 0.397 0.366 0.357 0.318 0.328 0.347 0.357 0.278 0.234 0.306
2015 0.358 0.305 0.319 0.277 0.276 0.294 0.304 0.265 0.249 0.272
2016 0.379 0.351 0.345 0.344 0.308 0.320 0.315 0.270 0.244 0.311
2017 0.372 0.328 0.340 0.290 0.317 0.313 0.339 0.266 0.250 0.294
2018 0.395 0.369 0.346 0.305 0.326 0.380 0.344 0.270 0.250 0.306
2019 0.397 0.363 0.346 0.296 0.303 0.344 0.341 0.250 0.249 0.294
2020 0.385 0.343 0.337 0.321 0.294 0.323 0.319 0.301 0.250 0.315
2021 0.392 0.338 0.346 0.303 0.308 0.334 0.333 0.301 0.286 0.307
2022 0.408 0.372 0.355 0.301 0.294 0.352 0.336 0.289 0.250 0.322

Table 5.8: Accuracy@2 for continual (top) and new (bottom) entities. The intensity
of colors is set on a row-by-row basis and indicates whether performance
is better or worse compared to the year the model was finetuned on (i.e.,
the values that form the white diagonal).
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Continual Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.449 0.442 0.439 0.433 0.428 0.422 0.417 0.417 0.411 0.405
2014 0.455 0.448 0.443 0.439 0.433 0.428 0.424 0.423 0.416 0.410
2015 0.455 0.446 0.444 0.438 0.434 0.427 0.422 0.422 0.415 0.409
2016 0.453 0.446 0.442 0.437 0.432 0.426 0.422 0.422 0.415 0.408
2017 0.464 0.458 0.454 0.448 0.443 0.438 0.434 0.433 0.428 0.423
2018 0.461 0.453 0.449 0.445 0.440 0.437 0.430 0.431 0.425 0.417
2019 0.462 0.455 0.452 0.446 0.443 0.437 0.433 0.434 0.427 0.421
2020 0.455 0.446 0.442 0.438 0.433 0.427 0.422 0.423 0.417 0.411
2021 0.461 0.454 0.450 0.445 0.440 0.434 0.429 0.428 0.423 0.416
2022 0.460 0.453 0.450 0.444 0.440 0.433 0.429 0.430 0.424 0.417

New Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.512 0.442 0.479 0.429 0.426 0.421 0.455 0.392 0.328 0.397
2014 0.526 0.486 0.475 0.434 0.446 0.463 0.489 0.410 0.317 0.406
2015 0.479 0.414 0.452 0.401 0.372 0.403 0.430 0.389 0.337 0.377
2016 0.500 0.464 0.466 0.463 0.418 0.434 0.430 0.408 0.330 0.414
2017 0.507 0.448 0.452 0.401 0.428 0.445 0.474 0.394 0.328 0.408
2018 0.520 0.487 0.477 0.428 0.435 0.496 0.469 0.388 0.340 0.417
2019 0.517 0.486 0.482 0.419 0.415 0.475 0.472 0.398 0.339 0.403
2020 0.506 0.449 0.457 0.418 0.414 0.443 0.443 0.414 0.331 0.428
2021 0.509 0.453 0.457 0.422 0.421 0.446 0.439 0.417 0.383 0.427
2022 0.527 0.491 0.472 0.439 0.397 0.471 0.474 0.422 0.341 0.434

Table 5.9: Accuracy@4 for continual (top) and new (bottom) entities. The intensity
of colors is set on a row-by-row basis and indicates whether performance
is better or worse compared to the year the model was finetuned on (i.e.,
the values that form the white diagonal).
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Continual Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.556 0.551 0.546 0.539 0.532 0.526 0.520 0.520 0.513 0.507
2014 0.563 0.559 0.553 0.546 0.540 0.532 0.527 0.526 0.520 0.514
2015 0.561 0.555 0.552 0.543 0.540 0.533 0.526 0.526 0.520 0.514
2016 0.559 0.554 0.550 0.542 0.537 0.531 0.524 0.524 0.518 0.511
2017 0.569 0.565 0.562 0.555 0.549 0.542 0.537 0.537 0.530 0.525
2018 0.567 0.561 0.558 0.550 0.544 0.537 0.532 0.531 0.523 0.519
2019 0.571 0.565 0.562 0.554 0.550 0.541 0.537 0.537 0.529 0.524
2020 0.561 0.555 0.553 0.545 0.539 0.532 0.527 0.528 0.522 0.515
2021 0.565 0.559 0.557 0.548 0.544 0.535 0.530 0.530 0.524 0.519
2022 0.566 0.560 0.556 0.549 0.545 0.537 0.532 0.533 0.527 0.521

New Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.632 0.572 0.585 0.563 0.541 0.539 0.574 0.517 0.425 0.504
2014 0.633 0.624 0.586 0.565 0.569 0.561 0.599 0.538 0.421 0.531
2015 0.603 0.541 0.559 0.524 0.495 0.534 0.562 0.510 0.425 0.497
2016 0.626 0.608 0.600 0.586 0.532 0.572 0.567 0.526 0.428 0.526
2017 0.617 0.570 0.567 0.532 0.534 0.567 0.587 0.528 0.435 0.517
2018 0.634 0.606 0.585 0.566 0.559 0.611 0.594 0.527 0.449 0.526
2019 0.651 0.621 0.601 0.536 0.536 0.590 0.605 0.523 0.459 0.526
2020 0.633 0.582 0.574 0.553 0.533 0.548 0.563 0.540 0.434 0.543
2021 0.637 0.584 0.577 0.555 0.531 0.565 0.571 0.549 0.492 0.546
2022 0.646 0.632 0.593 0.554 0.504 0.581 0.591 0.541 0.433 0.556

Table 5.10: Accuracy@8 for continual (top) and new (bottom) entities. The inten-
sity of colors is set on a row-by-row basis and indicates whether perfor-
mance is better or worse compared to the year the model was finetuned
on (i.e., the values that form the white diagonal).



TEMPORAL ENTITY LINKING 161

Continual Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.648 0.643 0.639 0.632 0.626 0.617 0.613 0.613 0.605 0.600
2014 0.657 0.650 0.647 0.639 0.635 0.627 0.622 0.620 0.613 0.608
2015 0.651 0.645 0.642 0.636 0.633 0.624 0.619 0.619 0.612 0.608
2016 0.652 0.646 0.643 0.637 0.631 0.621 0.616 0.615 0.610 0.605
2017 0.660 0.655 0.652 0.646 0.640 0.633 0.628 0.628 0.621 0.618
2018 0.656 0.651 0.647 0.642 0.636 0.627 0.624 0.622 0.614 0.611
2019 0.662 0.658 0.653 0.646 0.642 0.633 0.630 0.630 0.622 0.618
2020 0.652 0.647 0.644 0.636 0.632 0.622 0.619 0.619 0.612 0.608
2021 0.655 0.650 0.648 0.641 0.635 0.627 0.624 0.622 0.615 0.611
2022 0.657 0.651 0.647 0.641 0.637 0.630 0.625 0.625 0.619 0.614

New Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.748 0.690 0.686 0.690 0.648 0.647 0.676 0.627 0.526 0.612
2014 0.761 0.730 0.691 0.681 0.661 0.670 0.706 0.641 0.522 0.625
2015 0.727 0.661 0.677 0.660 0.606 0.629 0.664 0.610 0.530 0.589
2016 0.746 0.701 0.712 0.701 0.647 0.662 0.670 0.621 0.514 0.629
2017 0.733 0.681 0.686 0.659 0.666 0.662 0.691 0.637 0.539 0.614
2018 0.759 0.701 0.697 0.670 0.665 0.705 0.694 0.643 0.539 0.624
2019 0.761 0.714 0.702 0.673 0.656 0.690 0.696 0.633 0.559 0.634
2020 0.746 0.683 0.678 0.677 0.632 0.654 0.661 0.650 0.538 0.640
2021 0.750 0.689 0.687 0.670 0.636 0.667 0.667 0.650 0.582 0.648
2022 0.760 0.726 0.692 0.676 0.630 0.672 0.690 0.637 0.536 0.649

Table 5.11: Accuracy@16 for continual (top) and new (bottom) entities. The inten-
sity of colors is set on a row-by-row basis and indicates whether perfor-
mance is better or worse compared to the year the model was finetuned
on (i.e., the values that form the white diagonal).
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Continual Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.723 0.719 0.716 0.710 0.705 0.697 0.693 0.692 0.687 0.682
2014 0.731 0.727 0.723 0.717 0.714 0.706 0.702 0.702 0.695 0.690
2015 0.727 0.723 0.721 0.714 0.710 0.703 0.700 0.699 0.693 0.688
2016 0.726 0.721 0.719 0.713 0.709 0.700 0.696 0.696 0.692 0.687
2017 0.734 0.730 0.726 0.722 0.718 0.710 0.706 0.706 0.701 0.696
2018 0.732 0.727 0.724 0.719 0.714 0.707 0.702 0.701 0.697 0.693
2019 0.736 0.731 0.727 0.723 0.718 0.711 0.708 0.707 0.703 0.698
2020 0.727 0.722 0.719 0.714 0.711 0.703 0.699 0.699 0.693 0.689
2021 0.728 0.724 0.721 0.715 0.712 0.705 0.702 0.701 0.696 0.691
2022 0.730 0.726 0.723 0.717 0.714 0.707 0.704 0.703 0.698 0.695

New Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.839 0.763 0.778 0.763 0.752 0.736 0.763 0.718 0.626 0.686
2014 0.852 0.794 0.791 0.767 0.756 0.765 0.788 0.736 0.635 0.701
2015 0.835 0.756 0.774 0.763 0.711 0.727 0.760 0.706 0.632 0.701
2016 0.848 0.771 0.801 0.779 0.756 0.759 0.765 0.722 0.633 0.709
2017 0.845 0.760 0.788 0.754 0.763 0.747 0.779 0.716 0.638 0.710
2018 0.847 0.776 0.785 0.766 0.760 0.788 0.778 0.735 0.645 0.726
2019 0.856 0.786 0.786 0.764 0.765 0.769 0.785 0.740 0.669 0.713
2020 0.850 0.771 0.775 0.771 0.747 0.751 0.763 0.746 0.642 0.734
2021 0.852 0.771 0.774 0.757 0.734 0.749 0.768 0.743 0.676 0.741
2022 0.852 0.797 0.784 0.759 0.752 0.752 0.780 0.739 0.643 0.733

Table 5.12: Accuracy@32 for continual (top) and new (bottom) entities. The inten-
sity of colors is set on a row-by-row basis and indicates whether perfor-
mance is better or worse compared to the year the model was finetuned
on (i.e., the values that form the white diagonal).
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Continual Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.785 0.782 0.778 0.772 0.769 0.762 0.758 0.758 0.754 0.750
2014 0.792 0.790 0.785 0.781 0.777 0.771 0.767 0.767 0.763 0.760
2015 0.786 0.784 0.782 0.777 0.773 0.769 0.765 0.764 0.760 0.757
2016 0.789 0.784 0.781 0.777 0.773 0.768 0.763 0.763 0.758 0.755
2017 0.794 0.791 0.788 0.785 0.781 0.775 0.771 0.772 0.768 0.763
2018 0.791 0.788 0.786 0.782 0.778 0.773 0.769 0.769 0.764 0.760
2019 0.795 0.792 0.789 0.784 0.781 0.776 0.772 0.773 0.767 0.765
2020 0.787 0.783 0.782 0.777 0.774 0.768 0.765 0.765 0.761 0.756
2021 0.788 0.785 0.782 0.777 0.773 0.769 0.764 0.764 0.761 0.757
2022 0.790 0.787 0.783 0.779 0.776 0.771 0.768 0.768 0.764 0.760

New Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.910 0.819 0.853 0.826 0.841 0.812 0.819 0.791 0.688 0.774
2014 0.908 0.848 0.862 0.827 0.843 0.832 0.842 0.814 0.704 0.791
2015 0.898 0.823 0.849 0.822 0.808 0.813 0.832 0.788 0.706 0.781
2016 0.897 0.832 0.862 0.832 0.839 0.823 0.823 0.802 0.718 0.791
2017 0.906 0.832 0.857 0.817 0.840 0.824 0.835 0.791 0.714 0.808
2018 0.908 0.835 0.858 0.830 0.846 0.853 0.835 0.806 0.728 0.803
2019 0.910 0.842 0.853 0.821 0.842 0.843 0.841 0.810 0.734 0.799
2020 0.903 0.828 0.844 0.835 0.843 0.819 0.833 0.817 0.728 0.811
2021 0.910 0.825 0.852 0.825 0.837 0.817 0.830 0.814 0.761 0.812
2022 0.905 0.846 0.852 0.820 0.830 0.830 0.832 0.808 0.732 0.823

Table 5.13: Accuracy@64 for continual (top) and new (bottom) entities. The inten-
sity of colors is set on a row-by-row basis and indicates whether perfor-
mance is better or worse compared to the year the model was finetuned
on (i.e., the values that form the white diagonal).





6
Conclusions and Future Research

We outline the main conclusions for each of the presented chapters in the current thesis.
Additionally, we discuss possible future research directions that can address some of the
limitations of the current work.

⋆ ⋆ ⋆

6.1 Conclusions

6.1.1 DWIE: an entity-centric dataset for multi-task document-
level information extraction

In Chapter 2 we introduce DWIE, a manually annotated multi-task dataset that
comprises named entity recognition, coreference resolution, relation extraction and
entity linking as the main tasks. We highlight how DWIE differs from the main-
stream datasets by focusing on document-level and entity-centric annotations. This
also makes the predictions on this dataset more challenging by having not only
to consider explicit, but also implicit document-level interactions between enti-
ties. Furthermore, we show how Graph Neural Networks can help to tackle this
issue by propagating local contextual mention span information on a document
level for a single task as well as across the tasks on the DWIE dataset. We ex-
periment with known graph propagation techniques driven by the scores of the
coreference resolution (CorefProp) and relation extraction (RelProp) components,
as well as introduce a new latent task-independent attention-based graph propaga-
tion method (AttProp). We demonstrate that, without relying on the task-specific
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scorers, AttProp can boost the performance of single-task as well as joint mod-
els, performing on par and even outperforming significantly in some scenarios
the RelProp and CorefProp graph propagations. Furthermore, our experimental
results show complementarity between some of the evaluated IE tasks, with supe-
rior performance when using joint model compared to independently trained single
models.

6.1.2 Towards consistent document-level entity linking: joint
models for entity linking and coreference resolution

In Chapter 3, we propose two end-to-end models to solve entity linking and coref-
erence resolution tasks in a joint setting. Both of our joint architectures are charac-
terized by formulating EL+coref as a single, structurally constrained task. This con-
trasts with previous attempts to join coref+EL tasks [1–3], where both of the models
are trained separately and additional logic is required to merge the predictions of
coref and EL tasks. It further contrasts with the joint architecture proposed in Chap-
ter 2, where the loss function is composed of a weighted linear combination of mul-
tiple losses, each one corresponding to a particular task. This multi-task approach
presents additional challenges when defining the weights in order to normalize
and avoid interference between each of the task’s gradients [4–9]. Conversely, both
of our proposed models allow to efficiently compute the exact log-likelihood loss of
the joint EL+coref target by marginalization over all possible configurations (e.g.,
all possible spanning trees of our global model). Our joint architectures achieve su-
perior performance compared to the standalone counterparts on both coreference
and entity linking tasks. Further analysis reveals that this boost in performance is
driven by more coherent predictions on the level of mention clusters (linking to the
same entity) and extended candidate entity coverage.

6.1.3 Injecting knowledge base information into end-to-end
joint entity and relation extraction and coreference res-
olution

In Chapter 4, we propose an end-to-end model for joint IE (NER + relation ex-
traction + coreference resolution) incorporating entity representations from a back-
ground knowledge base (KB) in a span-based model. We find that representations
built from a knowledge graph and a hypertext corpus are complementary in boost-
ing IE performance. Concretely, when using both entity embeddings from the tex-
tual Wikipedia [10] and entity representations derived from the Wikidata Knowl-
edge Graph [11], we observe an improvement of performance compared to when
incorporating each of these representations separately. To combine these candidate
entity representations for text spans, we explore various weighting schemes: (i) a
uniform average of candidate entities (Uniform), (ii) the prior weights of each of
the candidate entities (Prior), (iii) an attention scheme (Attention), or (iv) attention
with prior information (AttPrior). Our experimental results show a superior perfor-
mance when applying the AttPrior scheme, showcasing the complementary effect
of combining prior frequency information from a hypertext corpus with contextual
information to identify the relevant entities.



CONCLUSIONS AND FUTURE RESEARCH 167

6.1.4 Temporal entity linking
In Chapter 5 we introduced TempEL, a first large-scale temporal entity linking
dataset composed of 10 yearly snapshots of Wikipedia target entities linked to by
anchor mentions. We divided this dataset into mentions linked to continual (exist-
ing in all the temporal snapshots) and new (new to a particular snapshot) target
entities. We described the dataset creation pipeline, putting special focus on the
quality assurance and future extensibility of TempEL. Our preliminary analysis of
the TempEL showcases a decrease in Jaccard similarity of entity definition as well
as the context of mentions linked to a specific entity. This demonstrates the dy-
namic and evolving nature of TempEL, affected by changes in (i) target entity def-
initions, and (ii) the anchor mentions linked to those target entities. Furthermore,
we experiment with the bi-encoder baseline model and showcase a consistent tem-
poral deterioration in performance of entity linking task. We conclude that such a
decrease in performance is particularly affected by the temporally increasing num-
ber of (ever more granular) candidate entities in Wikipedia. We further examined
the most challenging cases for this model, concluding the critical aspect of new
knowledge acquisition during the pre-training phase in order to successfully dis-
ambiguate new entities.

6.2 Future directions

Even though the presented work has extended the knowledge in multiple areas of
information extraction, we have only scratched the surface of potential research av-
enues to be explored. In this section we aim to provide a brief description of such
future research directions that could complement or extend the methodologies in-
troduced in this thesis.
On extending coreference annotations: One future direction consists in extending
the coreference annotations to include nominal and anaphoric expressions. This
will challenge and open new perspective into studying the complementary rela-
tion between entity linking and coreference component described in Chapter 3.
Furthermore, we expect that including these diverse mention types (whose initial
span embedding representation can be different from coreferenced named entities),
will allow to investigate further the potential benefits of using joint entity-centric
models such as the ones explored in Chapter 2 and Chapter 3.
Effect of pre-training on new corpora: Recent work has demonstrated the benefits
of pre-training language models on more recent corpora (e.g., the latest Wikipedia
versions) when applied on the downstream tasks [12, 13]. Yet, in our work de-
scribed in Chapter 5, we fine-tune existing pre-trained BERT based models on
downstream task of entity linking. We hypothesize that pre-training BERT from
scratch on newer versions of Wikipedia can boost the performance on TempEL in-
troduced in Chapter 5, specially on new entities that often require additional knowl-
edge to be correctly disambiguated.
Temporal changes in mention context: the work in Chapter 5 focused mostly on
changes in target entities, leaving unexplored a study on how changes in mention
context affect EL task. However, Fig. 5.3c in Chapter 5 showcases a big drop in Jac-
card vocabulary similarity of context around mentions, specially compared to the
immediately preceding year. This suggests that the mentions, as well as the text
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surrounding them, are highly volatile and evolving with time, making the tempo-
ral mention evolution an interesting subject for future research. Concretely, our
hypothesis is that the temporal performance drift in entity linking task is not only
affected by changes in the target entities, but also by changes in the mentions linked
to these entities.
Cross-lingual entity information: the work described in this thesis is limited to
entity definitions in English Wikipedia. Yet, recent research [14, 15] has shown
the benefits of training entity linking models in a cross-lingual setting. We hy-
pothesize that this setting can also be applied to study the evolution of entity link-
ing task introduced in Chapter 5 of this thesis. This can be achieved by adapting
the TempEL creation framework introduced in Chapter 5 to process the history of
Wikipedias in other languages than English and extract the respective anchor men-
tions and target entities.
KB-driven entity linking: in the current thesis we have covered entity linking con-
strained to anchor mentions with specific characteristics. For example, in Chap-
ters 2–4, we focused on linking proper nouns (i.e., named entities). Yet, we envision
a complete entity linking approach driven exclusively by the entities in a particular
Knowledge Base and not by some characteristics of anchor mentions. We argue
this setup would enrich the connection between the text and KB, allowing to study
in greater detail the effects of entity-centric reasoning and transfer of knowledge
in models such as the ones developed in Chapters 2–4 of this thesis. Recent work
in this direction has been limited to domain-specific entity linking datasets such as
MedMentions [16] in the biomedical domain. Each of the possible textual mention
spans in MedMentions was carefully examined by professionals with experience
in biomedical content to find the corresponding match in UMLS [17] biomedical
knowledge base. As a result, MedMentions presents densely annotated documents
with entity links driven by the content of the target UMLS KB. More recently, the
authors of [18] propose a fine-grained entity linking annotation scheme, including
mentions in grammatical categories such as adjectives, verbs and adverbs. The au-
thors further extend three entity linking datasets (VoxEL [19], KORE50 [20], and
ACE2004 [21]) using the proposed annotation scheme. Experimental results on
these datasets show very low recall of state-of-the-art models, indicating their lim-
itation in identifying the set of all mentions to be linked. Yet, despite these inter-
esting findings, the annotated datasets are small (ranging between 1 and 20 doc-
uments each), which makes them impractical to train models. This research gap
is exacerbated by a lack of KB-driven entity linking annotations on multi-task IE
datasets such as DWIE.
Cross-document IE: in Chapters 2 – 4 we focused in document-level entity-centric
annotations. We think that the next natural step is to extend entity-centric infor-
mation extraction (IE) approach to cross-document setting. This setting is char-
acterized by IE annotations, such as coreferent mentions for coreference resolu-
tion task, created on a set of multiple related documents (i.e., cross-document).
This contrasts with DWIE introduced in Chapter 2, where all the structured anno-
tations are made on a single document, which represents a specific news article.
Most of the related work on cross-document IE has focused on coreference resolution
task [22–33]. This task consists in identifying coreferent mentions on a set of doc-
uments given as input. More recently, there has been an ever-growing interest in
other cross-document tasks such as entity linking [34] and relation extraction [35].
Yet, to the best of our knowledge, there is still a research gap in integrating the dif-
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ferent cross-document IE annotations in a single multi-task dataset. Such a dataset
would encourage the research in creating joint IE models to efficiently process the
information in multiple documents. This setting involving multiple documents
as input can be challenging to tackle with current state-of-the-art BERT-driven IE
models that can only process a very limited context. Fortunately, recent work in
efficient transformers such as Longformer [36] and BigBird [37], among others [38],
is promising to be applied to tackle this problem. This is the case of the recently
introduced Longformer-based cross-document language model (CDLM) [39] that
achieves state-of-the-art results in the cross-document coreference resolution IE
task.

Harnessing and editing knowledge in language models, recent work using BERT-
based language models (LMs) [40–42] has advanced the state-of-the-art in informa-
tion extraction (IE). For instance, span-based IE models [43–47] use contextualized
BERT embeddings as input to generate span representations. Furthermore, recent
dense passage retrieval models [48] have successfully used BERT encoders as re-
triever components in Information Extraction tasks such as entity linking [49–51]
and slot filling [52]. More recently, autoregressive and generative models [41, 52–
56] have advanced the state-of-the-art by generating directly the information stored
in LMs for IE tasks such as entity linking [15, 53, 57–59], relation extraction [60–62],
event prediction [63], argument extraction [64] and slot filling [65, 66]. Finally, re-
cent advances in prompt engineering [67] go one step further by explicitly prob-
ing the language models for answers. Such prompt-driven models have been ap-
plied in a few-shot setting for a number of IE tasks such as named entity recogni-
tion [68, 69], relation extraction [70–74] and event argument extraction [75, 76]. Yet,
the performance of these language models is highly dependent on the knowledge
stored in their internal structure [77–79]. This is also suggested by the drop in per-
formance in Chapter 5 for our BERT-based bi-encoder on new entities that require
additional knowledge related to COVID-19 pandemic. In order to tackle this issue,
future work should focus on exploring efficient mechanisms, ideally working with
one-shot exposure to new knowledge in KBs in order to inject new facts in the pre-
trained language models. Recent work [13, 80–86] demonstrates that knowledge
injection methods such as continual pre-training and hypernetworks can indeed
improve the performance on various IE tasks. Yet, such mechanisms can be further
improved, particularly in the number of training examples the model has to be ex-
posed to in order to be able to effectively incorporate (or learn to incorporate) new
knowledge.

Entity-centric semantic frames, we use the concept semantic frames to refer to pre-
liminarly defined structure interconnecting multiple entities such as lexically dri-
ven FrameNet [87] as well as more general n-ary relations [88–94] and events [95–97].
For example, we can envision a semantic frame marriage interconnecting entities re-
lated to both partners, date, place, etc. Unlike relations, the number of linked entities
in semantic frames is not restricted to 2 (head and tail). The current structure of
most of these frames is mention-driven. We believe the design and annotation of
entity-centric semantic frames (i.e., frames where each slot is connected to concep-
tual entities, instead of entity mentions), would allow to abstract from individual
mentions and focus on entities, some of which might even not be explicitly men-
tioned in a document. Following this direction, one of the possible future works
could consist in annotating such semantic frames as an additional task in the intro-
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duced multi-task DWIE dataset (see Chapter 2).
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A
Solving Arithmetic Word Problems

by Scoring Equations with
Recursive Neural Networks

In this chapter we propose to use recursive neural networks to mimic the structure on equa-
tion trees to solve mathematical world problems. We showcase a significant improvement
using our approach.

⋆ ⋆ ⋆

K. Zaporojets, G. Bekoulis, J. Deleu, C. Develder and T. De-
meester
Expert Systems with Applications, 2021.

Abstract Solving arithmetic word problems is a cornerstone task in assessing lan-
guage understanding and reasoning capabilities in NLP systems. Recent works use
automatic extraction and ranking of candidate solution equations providing the an-
swer to arithmetic word problems. In this work, we explore novel approaches to
score such candidate solution equations using tree-structured recursive neural net-
work (Tree-RNN) configurations. The advantage of this Tree-RNN approach over
using more established sequential representations, is that it can naturally capture
the structure of the equations. Our proposed method consists of transforming the
mathematical expression of the equation into an expression tree. Further, we en-
code this tree into a Tree-RNN by using different Tree-LSTM architectures. Exper-
imental results show that our proposed method (i) improves overall performance
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with more than 3% accuracy points compared to previous state-of-the-art, and with
over 15% points on a subset of problems that require more complex reasoning, and
(ii) outperforms sequential LSTMs by 4% accuracy points on such more complex
problems.

A.1 Introduction
Natural language understanding often requires the ability to comprehend and rea-
son with expressions involving numbers. This has produced a recent rise in interest
to build applications to automatically solve math word problems [1–5]. These math
problems consist of a textual description comprising numbers with a question that
will guide the reasoning process to get the numerical solution (see Fig. A.1 for an
example). This is a complex task because of (i) the large output space of the pos-
sible equations representing a given math problem, and (ii) reasoning required to
understand the problem.

The research community has focused in solving mainly two types of mathe-
matical word problems: arithmetic word problems [3, 6–9] and algebraic word prob-
lems [1, 10–12]. Arithmetic word problems can be solved using basic mathematical
operations (+,−,×,÷) and involve a single unknown variable. Algebraic word
problems, on the other hand, involve more complex operators such as square root,
exponential and logarithm with multiple unknown variables. In this work, we
focus on solving arithmetic word problems such as the one illustrated in Fig. A.1.
This figure illustrates (a) arithmetic word problem statement, (b) the arithmetical for-
mula of the solution to the problem, and (c) the expression tree representation of the
solution formula where the leaves are connected to quantities and internal nodes
represent operations.

The main idea of this paper is to explore the use of tree-based Recursive Neural
Networks (Tree-RNNs) to encode and score the expression tree (illustrated in Fig. A.1(c)
that represents a candidate arithmetic expression of a specific arithmetic word prob-
lem). This contrasts with predominantly sequential neural representations [7, 9, 13]
that encode the problem statement from left to right or vice versa. By using Tree-
RNN architectures, we can naturally embed the equation inside a tree structure
such that the link structure directly reflects the various mathematical operations

(a) Problem:
Mark’s father gave him $85. 
Mark bought 10 books, each 
of which cost $5. How much 
money does Mark have left?

(b) Solution:
85 10 5

–

+

(c) Tree representation:

85 –10 x 5

Figure A.1: An example of arithmetic word problem from the SingleEQ dataset. It
illustrates the (a) an arithmetic word problem statement, (b) the respec-
tive solution formula, and (c) the expression tree representing the solu-
tion.
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between operands selected from the sequential textual input. We hypothesize that
this structured approach can efficiently capture the semantic representations of the
candidate equations to solve more complex arithmetic problems involving multi-
ple and/or non-commutative operators. To test our results, we use the recently
introduced SingleEQ dataset [2]. It contains a collection of 508 arithmetic word
problems with varying degrees of complexity. This allows us to track the perfor-
mance of the evaluated systems on subsets that require different reasoning capa-
bilities. More concretely, we subdivide the initial dataset into different subsets of
varying reasoning complexity (i.e., based on the number of operators, commutative
(symmetric) or non-commutative (asymmetric) operations), to investigate whether
the performance of the proposed architecture remains consistent across problems
of increasing complexity.

Integer Linear 
Programming (ILP)

Arithmetic Word Problem
Mark's father gave him $85. Mark bought 10 books, each of which cost $5. How much money does Mark 
have left?

(1) Candidate Generator

Parsing and Number 
Extraction

x = (85 + (10 * 5))
x = (85 - (10 / 5))
x = (85 - (10 * 5))
x = ((85 + 5) / 10)
....

(2) Candidate Ranker 

x = (85 - (10 * 5))

Recursive NNs (Tree-RNN)

Tree-LSTM

Sequential

LSTM

B-LSTMNT-LSTM T-LSTM

Bidirectional LSTM (BiLSTM) over text

Figure A.2: High-level conceptual view of the arithmetic word problem architec-
ture used throughout the paper. It consists of two main components:
(1) candidate generator responsible for generating candidate equations
to solve a particular arithmetic word problem, and (2) candidate ranker, for
selecting the best candidate from the list provided by candidate genera-
tor, using the models NT-LSTM, T-LSTM, or B-LSTM.

Figure A.2 provides a high-level conceptual view of the interconnection be-
tween the main components of our proposed system. The processing flow consists
of two main steps. In the first step, we use the candidate generator to generate a
list of potential candidate equations for solving a particular arithmetic word prob-
lem. To achieve this, we employ the Integer Linear Programming (ILP) constraint
optimization component proposed by [2] (see Section A.3.1). In the second step,
the candidate equations are ranked by the candidate ranker, and the equation with
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the highest score is chosen as the solution to the processed arithmetic word problem
(see Section A.3.2). In this paper, we focus on this second step by exploring the
impact of structural Tree-RNN-based and sequential Long Short Term Memory-
based (LSTM; [14]) candidate equation encoding methods. More specifically, we
define two Tree-RNN models inspired by the work of [15] on Tree-LSTM mod-
els: (i) T-LSTM (Child-Sum Tree-LSTM), and (ii) NT-LSTM (N-ary Tree-LSTM). In
the rest of the manuscript we refer to the general tree-structured architecture of
these models as Tree-LSTM. The main difference between the two is that, while
in T-LSTM the child node representations are summed up, in NT-LSTM they are
concatenated. Unlike the representation used in [15], where the input is given by
the word embeddings, our Tree-LSTM models also take as input the operation em-
beddings (in inner nodes) that represent each of the arithmetic operators (−, +,
÷, ×). This allows our architecture to distinguish between different operators that
are contained in a particular expression tree. We show that NT-LSTM is more suit-
able to deal with equations that involve non-commutative operators because this
architecture is able to capture the order of the operands. We also compare our
Tree-LSTM models with a sequential LSTM model which we call B-LSTM. All the
models (T-LSTM, NT-LSTM, and B-LSTM) take as input the contextualized repre-
sentation of the numbers in text produced by a bidirectional LSTM layer (BiLSTM)
(see Section A.3.2 for details). After conducting a thorough multi-fold experimen-
tation phase involving multiple random weight re-initializations in order to ensure
the validity of our results, we will show that the main added value of our Tree-
LSTM-based models compared to state-of-the-art methods lays in an increased per-
formance for more complex arithmetic word problems.

More concretely, our contribution is three-fold: (i) we propose using Tree-LSTMs
for solving arithmetic word problems, to embed structural information of the equa-
tion, (ii) we compare it against a strong neural baseline model (B-LSTM) that relies
on sequential LSTMs, and (iii) we perform an extensive experimental study on the
SingleEQ dataset, showing that our Tree-LSTM model achieves an overall accu-
racy improvement of 3%, including an increase >15% for more complex problems
(i.e., requiring multiple and non-commutative operations), compared to previous
state-of-the-art results.

A.2 Related work
Over the last few years, there has been an increasing interest in building systems
to solve arithmetic word problems. The adopted approaches can be grouped in three
main categories: (i) Rule-based systems, (ii) Statistical systems, and (iii) Neural
network systems.
Rule-based systems: The first attempts to solve arithmetic problems date back to
the 1960s with the work by [16], who proposed and implemented STUDENT, a
rule-based parsing system to extract numbers and operations between them by us-
ing pattern matching techniques. [17, 18] extended STUDENT by including basic
coreference resolution and capability to work with rate expressions (e.g., “kms per
hour"). On the other hand, [19] designed and implemented a system that given
a propositional representation of a math problem1, applies a set of rules to calcu-

1With propositions such as GIVE Y X P9, where entity Y gives to entity X the object defined
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late the final solution. The disadvantage of this system is that it needs a parsed
propositional representation of a problem as input and cannot operate directly on
raw text. This issue was tackled by [20], who developed a schema-based system
that consisted of six main reasoning schemas, each one with slots to fill in. After
instantiating the schemas for a particular math problem using lexical verb-based
rules, the system could derive the corresponding mathematical equation to solve
the problem.

The main disadvantages of such rule-based approaches are that they (i) rely on
hard-coded lexico-grammar rules, and (ii) lack an integrated view of the problem to
be solved, extracting operations one by one. We address these issues by proposing
a model that integrates the mathematical representation of a problem in a single
structured expression tree. This way, we are able to capture the operator-operator
and number-operator relations involved in a particular mathematical expression in
a unified manner. Furthermore, we avoid the use of lexico-grammar hard-coded
rules (e.g., the use of pattern-based matching) when connecting numbers with the
operators, replacing them by composition-semantic representations that link the
arithmetic operations with parameters (numbers or other operations) in a recursive
tree. Consequently, our solution is more generalizable by not depending on explicit
hand-crafted logic.
Statistical systems: Recently, there has been a shift towards statistical feature-
driven systems that automatically produce models by capturing patterns present
in arithmetic word problem datasets. For example, [6] presented an inductive
model that links specific lexicon-based features (e.g., verb categories) to equation
operators. The mathematical solution to the problem is built sequentially using
state transitions related to operators that are triggered by different verb categories
found in the problem statement. On the other hand, [3] connected carefully de-
signed features to equation templates in order to solve specific problem types.
While these techniques produced competitive results, they were limited to addi-
tion (+) and subtraction (−) operations on a very narrow problem set domain.
In order to solve more diverse types of problems that also involve multiplica-
tion and division operators, the community shifted towards more integrated ap-
proaches involving tree structure representations. [2] proposed to rank candidate
expression trees by training jointly a local model to link spans of text with opera-
tor tree nodes, and a global model that is used to score the consistency of an en-
tire tree. The list of candidates to these two models is generated by an ILP con-
straint optimization component that, given a set of extracted numbers from a arith-
metic word problem text as input, produces a set of candidate solution equations.
Conversely, [21, 22] introduced the concept of monotonic expression tree to gener-
ate candidates. It defines a set of conditions (e.g., two division and subtraction
nodes cannot be connected to each other) that considerably restricts the expression
tree search space. The authors propose to score the resulting monotonic expres-
sion trees jointly by summing up the scores of different classifiers related to a spe-
cific expression tree (e.g., the mathematical operator between two numbers in the
tree, whether a particular number is related to a rate such as “kms per hour", etc).
Recently, the same authors [23] included additional latent declarative rules (e.g.,

in P9. This proposition in particular can be linked to the first sentence of example in Fig. A.1:
“Mark’s father gave him $85", where Y represents “Mark’s father", X represents “him" which
is coreferenced to “Mark", and P9 represents “$85" that are being given.
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[Verb1 ∈ HAVE] ∧ [Verb2 ∈ GIVE] ∧ [Coref(Subj1, Subj2)] =⇒ Subtraction) to
link textual expression patterns (derived from preliminary dependency parsing)
to specific operations. While these statistical approaches rely on tree structures to
evaluate the mathematical expressions, on one hand, they require high manual ef-
fort to engineer the features and, on the other hand, it is hard to scale the features to
capture operations between more than two numbers. This makes it challenging to
apply such models to more complex equations that involve multiple operators. We
tackle this problem by defining a single Tree-RNN structure that evaluates an entire
mathematical expression at once. This is done by recursively combining the infor-
mation from the child nodes in the expression tree and then using a backpropaga-
tion mechanism to correspondingly adjust the weights of our model. Furthermore,
our equation ranking architecture does not depend on hand-crafted features and
parsing-dependent rules, making it more effective in generalizing across different
domains.
Neural network systems: Recently, as in all sub-domains of natural language pro-
cessing, neural network architectures have been applied to tackle math word prob-
lems. The first contribution was made by [7], who introduced a model trained to
map problem statements to equation templates. Their model was expanded upon
by [24], who introduced an attention-based copy mechanism for tokens represent-
ing numbers. They used a reinforcement learning setting, where positive rewards
were assigned when the predicted mathematical expression resulted in a correct
answer. Recently, [9] used stack structures inside a sequential encoder-decoder
setting where the encoder captures the semantics of a math word problem in a
vector that is used by decoder to generate the equation to solve the problem. More-
over, [4] proposed the use of Q-Networks in order to generate expression trees,
by giving positive reward whenever the operator between two numbers is correct.
The aforementioned studies, while showing promising results, were not designed
to naturally capture the structural form of mathematical expressions when multi-
ple operators are involved (e.g., 1 + (2/3) vs. (1 + 2)/3). We propose encoding
equations with Tree-LSTMs [15], which are recursive neural sequence models, thus
allowing to naturally reflect the execution order of operations in an expression tree
by recursively combining the children nodes’ semantic representations.

Table A.1 compares our approach (the use of Tree-LSTM-based T-LSTM and
NT-LSTM models) with the rest of the methods described in this Section. The
main difference of our architecture is that we explore the impact of using tree-based
neural encoding (i.e., by means of Tree-LSTM models). We hypothesize that this ap-
proach allows to better capture the arithmetic equation structure than the currently
predominant neural sequential models [7, 9, 13]. Furthermore, the independence
from feature-based and rule-based methods makes our solution more generaliz-
able. This is because our model does not depend on hand-crafted rules or features
to capture the patterns of a particular dataset. This aspect will be explored fur-
ther when comparing the performance of our model to the current feature-based
state-of-the-art system [2] in Section A.5.

Tree-RNN models [25] have been shown to perform better for modeling data
on tasks that have an inherently hierarchical structure. For example, [25] proposed
to use recursive models in order to model the compositional structure of scene im-
ages (e.g., a scene image of a house can be split in composing regions such as doors,
windows, walls, etc.). The authors show that a Tree-RNN-based architecture out-
performs previous methods in prediction of hierarchical structure of scene images
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Method Rules Features N-Nets Tree-Based Tree-Based
Representation Encoding

[16] ✓ − − − −
[17, 18] ✓ − − − −
[19] ✓ − − − −
[20] ✓ − − − −
[6] − ✓ − − −
[2] ✓ ✓ − ✓ −
[3] − ✓ − − −
[21, 22] − ✓ − ✓ −
[7] − − ✓ − −
[23] ✓ ✓ − ✓ −
[24] − ✓ ✓ − −
[4] − ✓ ✓ ✓ −
[9] − − ✓ − −
[8] − − ✓ − −

Our Approach (T-LSTM & NT-LSTM) − − ✓ ✓ ✓

Table A.1: Comparison of the various architectures explored in related work. We
focus on the following five characteristics: (i) Rules indicates whether a
rule-based approach is used or not, (ii) Features specifies whether the
architecture relies on manually engineered features, (iii) N-Nets indi-
cates whether artificial neural networks are used or not, (iv) Tree-Based
Representation groups the models that incorporate information coming
from tree structures (e.g., by using trees for feature engineering), and
(v) Tree-Based Encoding indicates whether the tree structures are used as
encoders in a neural network model. The ✓ indicates the presence of a
particular characteristic.

and in scene image classification. Later, [26] also showed how recursive structures
can be used to encode the inherently hierarchical phrase structural grammar (e.g.,
the sentence “riding a bike" can be decomposed in the verb “riding" and the noun
phrase “a bike", which itself can be decomposed into determiner “a" and the noun
“bike"). This way, the authors achieved state-of-the-art performance in grammat-
ical parsing of the sentences. More recently, [15] and [27] showed how encoding
the syntactic parsing trees of the sentence with Tree-LSTM models can improve
the performance in tasks such as sentiment classification and semantic relatedness
(e.g., natural language inference). Similarly, we propose to take advantage of the in-
herently hierarchical representation of mathematical expression trees by encoding
them using Tree-LSTM architectures. Our experiments demonstrate that this rep-
resentation can be helpful in capturing the semantic relations between operators
needed in order to solve more complex arithmetic problems consisting of multiple
and/or non-commutative operations.

A.3 Proposed architecture
Shortly stated, our task at hand is to identify the correct arithmetic equation, corre-
sponding to an arithmetic problem expressed in natural language text. We follow
a two-step approach similar to the work of [2], which formalizes solving multi-
sentence arithmetic word problems as (i) the generation and (ii) ranking of ex-
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pression trees. The first step consists of generating candidate equations using the
ILP optimization solver proposed in [2] (candidate generator component in Fig. A.2).
The second step ranks these candidates and selects the top ranked one as the final
answer to the arithmetic word problem (candidate ranker component in Fig. A.2).
We use the rest of this section to provide more insights into the candidate generator
component in Section A.3.1, and to describe in detail our proposed candidate ranker
model in Section A.3.2.

A.3.1 Candidate generator
This component is responsible for generating possible candidate equations to solve
a given arithmetic word problem. A straightforward solution would be to per-
form an exhaustive search on all the possible arithmetic expression trees given n
extracted numbers from a particular problem. However, the resulting search space
would grow exponentially with n, which makes this approach not scalable. In or-
der to deal with this exponential growth in the number of candidates, we re-use
the Integer Linear Programming (ILP) solver proposed by [2]. This solver takes as
input the extracted numeric quantities with extra attributes derived from syntactic
parsing2, and generates the most promising candidate equations using two types
of constraints:

1. Hard Constraints: such as the maximum equation length and syntactic valid-
ity of equations (e.g., only one unknown allowed, no division by 0, etc.). As a
post-processing step, the ILP solver also removes the arithmetic expressions
that produce negative or fractional results.

2. Soft Constraints: these constraints assign additional weight to candidate equa-
tions whose related entity types (extracted from dependency parse tree) are
consistent. For example, in the problem of Fig. A.1, the sum (85 + 5) will be
prioritized over the sum (5 + 10), because both 85 and 5 refer to the same
entity type (“$”), while 10 refers to entity type “books”.

To provide a fair comparison between the candidate ranker model of ALGES pro-
posed by [2] and our approach (see Section A.3.2), we use both the same constraint
configuration, and also consider only the top 100 equations produced by the candi-
date generator. As in ALGES, we report the coverage as ILP Coverage in our results
section (see Section A.5). Additionally, we include in our result tables the perfor-
mance of the ILP Naive approach, which consists of selecting the highest scored
candidate by the ILP solver. This score allows us to estimate the impact of the
candidate ranker component.

A.3.2 Candidate ranker
Our proposed candidate ranker model architecture is sketched in Fig. A.3 and com-
prises: (i) a word embedding layer, (ii) a bidirectional LSTM layer (BiLSTM) over
the text, and (iii) an additional layer that encodes the equation, using either BiLSTM
(B-LSTM model) or Tree-LSTM (T-LSTM and NT-LSTM models) based approaches,
detailed below.

2Stanford Dependency Parser in CoreNLP 3.4 is used.
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Figure A.3: Models for scoring equations, taking the text and the equation from
Fig. A.1 to score (e.g., 85− (10× 5)) as input: (i) a word embedding
layer at the bottom, (ii) a BiLSTM layer over the text, and (iii) a top layer
that encodes the equation. For the latter we consider either (a) a se-
quential BiLSTM (B-LSTM architecture), or (b) a structured Tree-LSTM
(T-LSTM and NT-LSTM architectures).

The input to our model is a sequence of tokens of length N, W = {w1, ..., wN}
of the arithmetic word problem, which we pass through an embedding layer to
obtain embedded representations X = {x1, ..., xN} where xt ∈ Rd1 . We adopt a
BiLSTM to obtain contextual representations of the tokens. The following is the
formal representation of the first LSTM [14] layer used to produce the representa-
tion referred to as “BiLSTM over text” in Fig. A.3:

it = σ (Wixt + Uiht−1 + bi) (A.1)

ot = σ (Woxt + Uoht−1 + bo) (A.2)

ft = σ
(

W f xt + U f ht−1 + b f

)
(A.3)

ut = tanh (Wuxt + Uuht−1 + bu) (A.4)

ct = ft ⊙ ct−1 + it ⊙ ut (A.5)

ht = ot ⊙ tanh(ct) (A.6)

where t ∈ {1, ..., N} represents a particular recursive execution time step and ht ∈
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Rd2 is the LSTM hidden state. The advantage of using the LSTM-based structure
instead of a simpler recursive formulation, such as ht = tanh(Wxt + Uht−1 + b), is
that an LSTM model avoids the problems of exploding or vanishing gradients dur-
ing the training process discussed in [14, 28]. This is achieved by using additional
weight matrices and gates σ in

(A.7)

A.1–A.3 in order to regulate the amount of information from previous execution
steps ht−1 and current input xt that affect the current state ht.3 More concretely,
Wi, W f , Wo, Wc ∈ Rd2×d1 and Ui, U f , Uo, Uc ∈ Rd2×d2 are the weight matrices
related to different LSTM gates, and bi, b f , bo, bc ∈ Rd2 are the respective biases. In
our experiments we initialize xt with GloVe word embeddings [29] and keep them
static during training. These GloVe embeddings are depicted at the bottom of graphs
(a) and (b) in Fig. A.3. In order to obtain the BiLSTM representation (“BiLSTM
over text” in Fig. A.3), we run two LSTMs in different directions and concatenate
the respective hidden states. This results in N hidden state representations H =

{h(b)1 , ..., h(b)N } where h(b)i ∈ Rd3 and d3 = 2 · d2. Using the input in H, we propose
two different models to encode the candidate equations referred to as (a) and (b) in
Fig. A.3, and explained below:
(a) Sequential B-LSTM: We perform an in-order traversal of the expression tree
to obtain a sequential representation of the equation (e.g., (85− (10× 5))) that is
encoded using a second BiLSTM (see “BiLSTM over equation” in Fig. A.3(a)). We use
as input the hidden state representations H calculated above for the numbers and
(trainable) embeddings O = {o−, o+, o÷, o×, o(, o)} for the operators (−,+,÷,×)
and opening/closing parentheses. More formally, the input to BiLSTM is repre-
sented by XE = {xe

1, ..., xe
K} where xe

t ∈ {H ∪O} , xe
t ∈ Rd3 and K is the number

of tokens in the equation, including parentheses and operations. E.g., the equation
(85− (10× 5)) contains 9 tokens. In terms of the formal notation of LSTM in

(A.8)

A.1–A.6, each xe
t corresponds to input vector xt. In order to obtain a score for

ranking the equation, we concatenate the last (left and right) hidden states of the
BiLSTM producing a vector of dimensionality d4, and then apply a linear transfor-
mation followed by a sigmoid function.
(b) Tree-LSTM: We base our implementation on the Tree-LSTM architecture pro-
posed by [15]. This architecture is based on the LSTM formulation described in

(A.9)

A.1–A.6, but instead of being linearly linked, the input to a particular LSTM cell can
come from different child step LSTM executions. More formally, we can describe
the T-LSTM structure as follows:

h̃t = ∑
k∈{L,R}

hk
t−1 (A.10)

it = σ
(
Wixt + Ui h̃t + bi

)
(A.11)

3For a more detailed description of the LSTM architecture please refer to [14].
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ot = σ
(
Woxt + Uo h̃t + bo

)
(A.12)

f k
t = σ

(
W f xt + U f hk

t−1 + b f

)
(A.13)

ut = tanh
(
Wuxt + Uu h̃t + bu

)
(A.14)

ct = it ⊙ ut + ∑
k∈{L,R}

f k
t ⊙ ck

t−1 (A.15)

ht = ot ⊙ tanh (ct) (A.16)

where {L, R} is the set that consists of left (L) and right (R) child nodes for the cur-
rent execution node at step t. More specifically, a particular execution step t corre-
sponds to the respective arithmetic operation in the expression tree (see Fig. A.1(c)).
This step takes as input the cell (c) and hidden (h) states of previous execution
step (t − 1) for each of the child nodes ({L, R}) that correspond to left and right
operands in the expression tree. This execution process is recursive: each of the
execution steps produces as output a hidden state ht (Eq. (A.16)) which is used
by the parent execution step recursively in Eq. (A.10) either as left (hL

t−1) or right
(hR

t−1) child. Additionally, a cell state ct is passed across the execution steps, and
contains a summarized historic information of the tree traversal4 operations per-
formed so far. Similarly as with LSTM, a forget gate f k

t , input (it) and update (ut)
gates are used to determine which historic information is kept (forget gate) and
which new information is added (input/update gates) to the cell state. Wi, Wo,
W f , Wu ∈ Rd4×d3 together with Ui, Uo, U f , Uu ∈ Rd4×d4 are the weight matri-
ces that transform the inputs xt ∈ Rd3 , the current hidden state h̃t ∈ Rd4 and the
children’s hidden states hk

t−1 ∈ Rd4 , by means of the Tree-LSTM gate representa-
tions. As depicted in Fig. A.3(b), the inputs xt to the leaf nodes are the hidden state
representations in H (coming from “BiLSTM over text” in Fig. A.3(b)) on the posi-
tions where the numbers occur in the problem statement. The input xt to the inner
nodes, on the other hand, are one of the randomly initialized operation embed-
dings O = {o−, o+, o÷, o×} depending on the operation represented by the node.
This contrasts with the original setup proposed in [15] where the input xt always
comes from the word representation in the sentence. By using a separate operation
embeddings set O as input, we expect our model to be able to capture a semantic
representation for each of the different operations o ∈ O. The Tree-LSTM model
finally outputs the hidden state for the root of the expression tree (i.e., the last exe-
cuted operation), which is then passed through a sigmoid to deliver the score for a
particular candidate arithmetic expression.

While T-LSTM allows to encode the equation information in a tree structure, it
is symmetric in its child nodes. This is because the hidden states of the children are
first summed up in Eq. (A.10) before applying the linear transformation and the
gate activation functions. This could be problematic for non-commutative opera-
tions (− and ÷) where the result depends on the order of the operands. The reason
for this is that Eq. (A.10) is commutative with respect to child nodes. Thus, given
two child nodes k ∈ {L, R} we have that h̃t = hL

t−1 + hR
t−1 = hR

t−1 + hL
t−1. As a

4Post-order traversal is used, since it reflects the order of operator execution in an arith-
metic equation to obtain the final result.
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consequence, the affine transformations Ui, Uo, and Uu in

(A.17)

A.11, A.12 and A.14 cannot capture the order of the states of the input nodes.
Furthermore, since there is only one weight matrix U f for both hL

t−1 and hR
t−1 in

Eq. (A.13), it can not apply a different affine transformation for left and right child
nodes. This makes the T-LSTM model indifferent to the order of the arguments of
the operations in a particular expression tree. Therefore, we introduce a second
model, called NT-LSTM, that uses distinct weight matrices to transform each of
the children’s hidden states. More formally, the gate definition in NT-LSTM is as
follows:

it = σ

Wixt + ∑
k∈{L,R}

Uk
i hk

t−1 + bi

 (A.18)

ot = σ

Woxt + ∑
k∈{L,R}

Uk
o hk

t−1 + bo

 (A.19)

f k
t = σ

W f xt + ∑
l∈{L,R}

Ukl
f hl

t−1 + b f

 (A.20)

ut = tanh

Wuxt + ∑
k∈{L,R}

Uk
uhk

t−1 + bu

 (A.21)

ct = it ⊙ ut + ∑
k∈{L,R}

f k
t ⊙ ck

t−1 (A.22)

ht = ot ⊙ tanh (ct) (A.23)

where, similarly as for T-LSTM, {L, R} is the set of child nodes. By introducing
different weights U for each of the child node states hk

t−1, we make sure that the
model can differentiate between the order of the operands. This is because now

each of the affine transformations U(l)
i , U(l)

o and U(l)
t is different for each input

child hidden state hl
t−1 in

(A.24)

A.18, A.19 and A.21. Similarly, each of the children’s (k ∈ {L, R}) forget gates f k
t

contains now two affine transformations Ukl
f (l ∈ {L, R}), one for each child. This

way, the model can prioritize (components of f k
t close to 1) or inhibit (components

of f k
t close to 0) separately the input of a particular child k based on the state of an-

other child l (k ̸= l). This can be useful when the state of one of the operands (e.g.,
influenced by the words that surround a particular number in text) has a strong in-
dication of some operation, while the state of the other has very little evidence. As
we will show in Section A.5, the use of NT-LSTM makes a big difference compared
to the performance of T-LSTM for equations involving non-commutative opera-
tions.
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A.4 Experimental setup

We evaluate the proposed models (code publicly available5) on the SingleEQ dataset
introduced by [2]. SingleEQ consists of 1,117 sentences and 15,292 words, and in-
cludes 508 arithmetic problems of varying complexity (i.e., equations with single
or multiple operators). Each of the word problems is mapped to a single cor-
rect equation with one unknown. These equations include one or more of the
following operators: multiplication (×), division (÷), subtraction (−), and addi-
tion (+). The data was gathered from the following grade-school websites: http:
//math-aids.com, http://k5learning.com, and http://ixl.com as well as from a subset
of problems from [1]. To obtain results comparable to previous work, we perform
5-fold cross-validation using the original splits defined in [2]. Similar to the work
of [2] and [4], we report performance using the overall accuracy metric. The train-
ing/testing process is run for 5 different splits, in each one a separate fold is left
as test set. This way, our results are reported on the whole SingleEQ dataset by
concatenating the predictions of test folds across the splits. In total, we train 25
models with different seeds (5 for each split) and report average and standard de-
viation in Tables A.4–A.5 and A.7 in Section A.5. Furthermore, we tune the neural
net hyperparameters independently for each of the splits on the validation set that
consists of 20% randomly selected arithmetic problems in each of the train folds.
Due to limited resources that prevented us to perform a complete grid search, we
conduct the hyperparameter tuning in steps. More specifically, in each step we per-
form a grid search on two hyperparameters that we identified as most correlated
with each other. Table A.2 summarizes our hyperparameter search space for each
of the sequential tuning steps. Besides the usual hyperparameters (i.e., learning
rate, batch size and dropout) tuning, we also adjust the dimensionalities d3 (Dim
LSTM) of the first BiLSTM layer (indicated as “BiLSTM over text” in Fig. A.3), and d4
(Dim Encoder) of either the sequential BiLSTM (“BiLSTM over equation” in Fig. A.3)
or the tree-based NT-LSTM models’ encoder layers (“Tree-LSTM” in Fig. A.3). The
best hyperparameters are chosen after training for 75 epochs for each of the cross-
validation splits independently.

Step Hyperparameters
Learning Rate Batch Size Dim LSTM Dim Encoder Dropout

1 {3e− 4, 1e− 4} {64, 128} - - -
2 - - {256, 512} - {0.3, 0.4}
3 - - - {256, 512} {0.3, 0.4}

Table A.2: The range of the hyperparameter search space for each of the hyperpa-
rameter tuning steps for each of the cross-validation splits of SingleEQ
dataset.

Furthermore, we partition the dataset into several subsets to investigate the ef-
fect of varying problem complexity on the models’ performances. These different
subsets are characterized in Table A.3. We form three main categories: (i) Full: the
whole dataset is included in this setting, (ii) Complexity: two subsets (i.e., Single,

5https://github.com/klimzaporojets/arithmetic-word-problems

http://math-aids.com
http://math-aids.com
http://k5learning.com
http://ixl.com
https://github.com/klimzaporojets/arithmetic-word-problems
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Subset Equation types # Problems

Full All operators 508

Single Single operator 390
Multi Multiple operators 118

Singlesym Single symmetric operators 208
Multisym Multiple symmetric operators 68
Singleasym Single asymmetric operators 182
Multiasym Multiple asymmetric operators 50

Table A.3: The defined subsets of the SingleEQ dataset with varying degrees of
complexity.

Multi) are formed based on the number of operators in the solution’s equation, and
(iii) Symmetry: four main subsets, namely Singlesym, Singleasym, Multisym, and
Multiasym are formed to indicate whether the solution’s equation contains single/-
multiple symmetric (× and +) or asymmetric (÷ and −) operations.

We hypothesize that our Tree-LSTM models will exhibit stronger performance
on subsets involving multiple and/or non-commutative operations (Multi, Multisym,
Multiasym), since they should be able to better capture the semantic relationships
between operator nodes encoded in a tree structure. We also expect a significant
difference between T-LSTM and NT-LSTM architectures on subsets involving non-
commutative operations (Singleasym and Multiasym). By using different weight ma-
trices to transform each of the children’s states (see Eqs. A.18–A.21 of the NT-LSTM
in Section A.3.2 for more details), the NT-LSTM model should be able to capture
the order of the operands and link the resulting structural information of a partic-
ular non-commutative mathematical expression to the semantic representation of
the problem statement.

We obtain the top-100 equation-trees using the ILP solver of [2], which we rank
using scores provided by our proposed model (see Section A.3.2). Training of our
model is performed using the Adam optimizer [30]. As a bottom token representa-
tion layer, we use pre-trained 100-dimensional (d1 = 100) GloVe embeddings [29]6

which we keep static during the training process.

A.5 Results
In this section, we evaluate the performance of our proposed models on the Sin-
gleEQ dataset. Besides the performance on the full dataset, we are particularly
interested in evaluating how each architecture behaves when evaluated on arith-
metic problems of varying complexity. We assume that the problems become more
complex (i) as the number of needed mathematical operators grows, and (ii) when
the used operators are non-commutative (asymmetric). We hypothesize that our
structured Tree-LSTM-based approach is better suited to solve the aforementioned
complex problems. In order to demonstrate this, we perform an extensive eval-
uation (Tables A.4–A.5 and A.7) of our models on subsets of different degree of

6https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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Model Features Trees Accuracy (%)

[6] ✓ ✗ 48.00
[4] ✓ ✓ 52.96
[21] ✓ ✓ 66.38
[22] ✓ ✓ 72.25

ALGES ✓ ✓ 72.39

ILP Coverage - - 91.34
ILP Naive - - 52.56

B-LSTM ✗ ✗ 74.88±0.64
T-LSTM ✗ ✓ 74.88±1.06

NT-LSTM ✗ ✓ 75.47±0.62

Table A.4: Accuracy attained by the proposed and state-of-the-art methods on the
Full SingleEQ dataset. The ✓ and ✗ symbols indicate whether or not
a model adopts hand-crafted features (‘Features’) or tree-structured en-
coding of the equations (‘Trees’). The best result is typeset in bold.

complexity as defined in Table A.3. Furthermore, in all of the result tables we in-
clude the potential maximum accuracy that can be achieved when using the can-
didates from the ILP candidate generator (ILP Coverage). This allows us to estimate
how much improvement can still be achieved by candidate ranker. Conversely, in
order to evaluate the impact of candidate ranker models, we also report the accuracy
achieved when picking the top-weighted candidate by ILP solver (ILP Naive).

Comparison on the Full dataset: Table A.4 shows the results of the evaluated
systems on the Full SingleEQ dataset. The proposed models are the (i) B-LSTM,
(ii) T-LSTM, and (iii) NT-LSTM as presented in Section A.3.2. Clearly, all newly
proposed architectures outperform previous methods. Concretely, our methods
are able to outperform strong baselines on the task, reporting an accuracy improve-
ment of more than 3% without relying on hand-crafted features [2, 6, 21, 22]. As
detailed later on in this section (see analysis of Table A.5 and Table A.7), most of
this improvement with respect to the current state-of-the-art [2] comes from an in-
creased performance on the more complex arithmetic word problems that involve
non-commutative and multiple operations. This supports our original hypothesis
that tree-based architectures are superior in representing mathematical operations
between operands, specially when the mathematical expressions involve multiple
operations. The hand-crafted features, used in previous works, are usually related
to terms indicating specific operations and thus if they are not detected in the data,
the system cannot generalize well on out-of-domain mathematical descriptions.
This also applies to recent neural-based methods (see, e.g., [4]) where explicitly de-
fined features are encoded in the neural structure. Furthermore, in order to ensure
the validity of the differences between our proposed approaches, we carry out a
bootstrap significance analysis [31] by sampling with replacement the results of B-
LSTM, T-LSTM, and NT-LSTM models 10,000 times. We compare the performance
with respect to the NT-LSTM model in Table A.4. We observe that, while our NT-
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Model Complexity Symmetric Asymmetric
Single Multi Singlesym Multisym Singleasym Multiasym

ILP Coverage 93.33 84.75 94.71 83.82 91.76 86.00
ILP Naive 56.41 39.83 53.85 69.12 59.34 0.00

ALGES 77.69‡ 54.70‡ 89.90 72.06 63.74‡ 30.64‡

B-LSTM 79.59±0.72 59.32±2.34 80.87±0.64‡ 69.12±2.08‡ 78.13±1.36 46.00±4.38
T-LSTM 79.59±1.24 59.32±1.61 81.35±0.98‡ 72.35±1.44 77.58±2.72 41.60±2.33⋆

NT-LSTM 80.21±0.95 59.83±1.75 81.35±1.44‡ 71.17±2.20 78.90±2.13 44.40±4.96

Table A.5: Comparison of the proposed methods with the state-of-the-art on the
SingleEQ dataset in terms of accuracy. Bold font indicates the best re-
sults for each subset of SingleEQ (see Table A.3). The markers ⋆, †, ‡
respectively indicate the achieved bootstrap significance levels α <0.1,
<0.05 and <0.01 with respect to the best performing model in each of the
subsets.

LSTM model seems to outperform T-LSTM and B-LSTM models, this difference in
performance is not significant.
Comparison for different problem complexity: Table A.5 compares our models
with ALGES [2] (i.e., the best performing state-of-the-art model of Table A.4), for
subsets of different complexity levels (defined in Table A.3). We use bootstrap sig-
nificance testing to estimate the degree of certainty between the lower performing
models and the best performing one in each of the subsets. We indicate significant
differences with p-values below the 1%, 5%, and 10% level (respectively denoted
with ‡, †, and ⋆) in order to identify models performing significantly different from
the best performing model in each of the subsets.

We observe that our newly proposed models do not significantly differ among
each other for solving problems involving single (Single, Singlesym, and Singleasym
subsets) operations. Conversely, on the problem subset requiring multiple com-
mutative operations in their solution (Multisym), our tree-based T-LSTM signifi-
cantly outperforms the sequential B-LSTM model, suggesting a potential benefit
in using tree-based models to solve the problems involving multiple operations.
For the subset involving multiple non-commutative operations (Multiasym) the B-
LSTM and NT-LSTM models outperform the T-LSTM model, indicating a potential
limitation of the latter in dealing with non-commutative operations, due to its sym-
metrical structure in its child nodes (a single weight matrix is used on the sum of
children’s states h̃t as described in Section A.3.2). We were surprised by an overall
good performance of our sequential B-LSTM model, specially on Multiasym subset,
where it performs on par with the potentially more expressive NT-LSTM model.
This fact also motivated us to explore the robustness of our models against addi-
tional asymmetric noise (see further analysis in the next paragraphs corresponding
to the results in Table A.7).

The results in Table A.5 further show that the feature-based ALGES model has
competitive performance on problems requiring single and/or non-commutative
operators in the solution equations. In fact, it significantly outperforms all our
models on the Singlesym dataset and is only marginally outperformed by our tree-
based T-LSTM model on Multisym. This suggests that the feature-based ALGES
is able to explicitly capture symmetric operations by focusing on carefully engi-
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Candidates Metric Subsets
Full Single Multi Singlesym Multisym Singleasym Multiasym

ILP Correct 2.53 1.44 6.13 1.89 7.72 0.92 3.96
Incorrect 12 2.9 42.08 2.48 28.43 3.38 60.64

ILP + Asym Correct 2.41 1.44 5.62 1.89 7.66 0.92 2.84
Incorrect 15.08 4.06 51.5 3.57 35.43 4.62 73.36

∆ Correct −4.74% 0.00% −8.32% 0.00% −0.78% 0.00% −28.28%
∆ Incorrect 25.67% 40.00% 22.39% 43.95% 24.62% 36.69% 20.98%

Table A.6: This table illustrates the difference in average number of Correct and In-
correct candidate equations per problem between the original ILP candi-
date generation process and the one obtained by adding noisy equations
with asymmetric operators (ILP + Asym).

neered features. However, we observe a large drop in performance of ALGES on
problems that require non-commutative (asymmetric) operations to be solved. This
is showcased by a difference of more than 15% accuracy points on Singleasym and
Multiasym subsets in Table A.5. This validates our initial intuition that feature-based
models fall short to capture the reasoning necessary to address problems that re-
quire more complex (non-commutative and multiple) operators.
Robustness against asymmetric noise: The results analyzed so far are based on
scoring the candidates generated by the ILP component introduced in [2]. How-
ever, this component already significantly reduces the number of incorrect candi-
dates, particularly those involving asymmetric operators (e.g., by removing can-
didate equations that produce negative or fractional results as described in Sec-
tion A.3.1). In order to evaluate the robustness of the proposed models, we train
and evaluate them on a noisy asymmetric candidate set where we add all possible
permutations to the equations involving non-commutative operators. For exam-
ple, if a particular candidate equation is x = 8/2, we would also add x = 2/8 to
the candidate set. Table A.6 shows the statistics of the noisy dataset (ILP + Asym)
with respective deltas that indicate the percentage points (%) of increase/decrease
in the average number of correct/incorrect candidate equations per problem with
respect to the original ILP-generated candidate set. We observe a significant in-
crease in the number of incorrect candidates for all subsets, as well as a drop in
average number of correct equations for the subsets involving asymmetric opera-
tions (Multi and Multiasym). This is because, similarly as in the original ILP setup,
we only consider the first 100 generated candidates, which in ILP + Asym include
more incorrect equations, leaving many correct ones out. This results in a lower
correct/incorrect ratio that makes it more challenging for the evaluated models to
find the right mathematical expression to solve a particular problem. Table A.7
compares our models with the best performing state-of-the-art model (i.e., ALGES)
on candidates generated in the ILP + Asym setting. Compared to the results pre-
sented in Table A.5, we observe a sharp decrease in performance of the ALGES
model on subsets involving multiple operations (Multi, Multisym and Multiasym).
This demonstrates once more the weakness of this feature-based model in captur-
ing the reasoning necessary to distinguish the order of the operands involved in
equations containing multiple and non-commutative operators. Furthermore, we
observe that the sequential B-LSTM model is now significantly outperformed by
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Model Full Complexity Symmetric Asymmetric
Single Multi Singlesym Multisym Singleasym Multiasym

ILP Coverage 91.14 93.33 83.90 94.71 83.82 91.76 84.00
ILP Naive 52.56 56.41 39.83 53.85 69.12 59.34 0.00

ALGES 68.44‡ 75.90† 43.59‡ 85.58 61.76‡ 64.83‡ 18.36‡

B-LSTM 72.99±1.14 78.21±0.97 55.76±2.10‡ 83.36±1.20† 71.76±3.40‡ 72.30±2.37 34.00±2.19⋆

T-LSTM 57.95±1.34‡ 61.69±1.49‡ 45.59±1.25‡ 80.58±2.44‡ 72.65±2.20‡ 40.11±0.92‡ 8.80±0.98‡

NT-LSTM 73.19±0.93 76.97±1.02† 60.67±1.15 80.76±2.37‡ 76.47±0.93 72.63±1.61 39.20±2.40

Table A.7: Comparison of the proposed methods with the state-of-the-art model
(i.e., ALGES) on the SingleEQ dataset in terms of accuracy evaluated
on candidate equations generated using ILP + Asym procedure (see Ta-
ble A.6). Bold font indicates the best results for each subset of SingleEQ
(see Table A.3). The markers ⋆, †, ‡ respectively indicate the achieved
bootstrap significance levels α <0.1, <0.05 and <0.01 with respect to the
best performing model in each of the subsets.

the tree-based NT-LSTM on subsets involving multiple operations to be solved
(Multi, Multisym and Multiasym). This again supports our initial hypothesis that
tree-structured approach is better suited to capture more complex reasoning which
is necessary to solve arithmetic problems. In the ILP + Asym candidate generation
setting this is even more important because of the additional noise introduced with
the incorrect candidates that involve multiple and asymmetric operations. Con-
versely, for arithmetic problems involving single operations to be solved (Single,
Singlesym, and Singleasym subsets), the B-LSTM model shows a competitive per-
formance, surpassing the tree-based NT-LSTM model on problems requiring sin-
gle commutative operations (Singlesym). Additionally, we observe an important
drop in performance of T-LSTM model which is mainly influenced by low accu-
racy scores on asymmetric subsets (Singleasym and Multiasym). This is in line with
our initial intuition that by using a single weight matrices Ui, Uo, U f , Uu to trans-
form either the sum of the children’s states h̃t (see

(A.25)

A.10–A.12 and A.14) or the individual children states hk (Eq. (A.13)), the T-LSTM
model is unable to distinguish the order of the operands involved in asymmetric
equations. This difference is less evident in Table A.5 because most of the incorrect
candidates involving non-commutative operations are already filtered out by the
ILP component. However, in our ILP + Asym candidate generation setup, we make
sure that for each candidate involving non-commutative operation, we also include
noisy candidates with all the possible asymmetric permutations. This makes it nec-
essary not only to detect the right operation, but also to distinguish the order of the
operands, where the T-LSTM model fails. Finally, we observe that overall (on Full
dataset) our tree-based NT-LSTM model exhibits less variance among the differ-
ent bootstrap results, compared to the sequential B-LSTM model. This indicates
that NT-LSTM model is less susceptible to different seed initialization during the
training process, making it more robust than other proposed models (T-LSTM and
B-LSTM).
Error Analysis: In order to understand our system’s weaknesses, we manually an-
alyzed the errors that it consistently makes across different training seed instances.
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Type Problem Text NT-LSTM

Complex
reasoning (57%)

Seth bought 20 cartons of ice cream and 2
cartons of yogurt. Each carton of ice cream
cost $6 and each carton of yogurt cost $1.
How much more did Seth spend on ice
cream than on yogurt?

20/2− 1× 6

Parsing and
counting (22%)

Jane’s dad brought home 24 marble pota-
toes. If Jane’s mom made potato salad
for lunch and served an equal amount
of potatoes to Jane, herself and her hus-
band, how many potatoes did each of
them have?

n/a

World
Knowledge
(21%)

Bert runs 2 miles every day. How many
miles will Bert run in 3 weeks?

3× 2

The sum of three consecutive odd num-
bers is 69. What is the smallest of the three
numbers?

n/a

Table A.8: Examples of problems where our NT-LSTM model fails.

We grouped them into three main categories represented in Table A.8: complex rea-
soning, parsing and counting, and world knowledge errors. We observe that more than
half (57%) of our system’s errors are due to problems requiring complex reasoning
while the numbers have been correctly extracted from the text. This reflects the
results from Tables A.5 and A.7 that show lower performance of our models on
problems requiring multiple and/or non-commutative operations. As future work
to alleviate this type of problems we can complement the tree-structures using ad-
ditional information such as the entities inside the sentence. For instance, in the
first example illustrated in Table A.8, if the system would know that “ice cream"
from the second sentence represents the same concept as in the first one, it would
be easier to link numbers 6 and 20. A second consistent type of error is related to
parsing and counting. It mainly happens when there are several entities involved in
a problem statement and the system has to count them correctly. For instance, in
the second example presented in Table A.8, our current system is unable to pro-
duce the correct candidate mathematical expression since it can only extract the
number 24 from text. Further work in improving aspects related to parsing and en-
tity identification in the problem statement should significantly reduce this kind of
mistakes. Finally, the world knowledge related errors account for 21% of the total mis-
takes. Most of these errors are due to the fact that the system is unable to capture
the units correctly (i.e., there are 7 days in a week, or one dime equals 0.1 dollars).
However, as in the second example, some of the problems require a more advanced
conceptual world understanding, such as the notion of odd numbers. Future work
can be directed towards methods that are able to capture and represent this kind of
world knowledge.
Limitations of the current state-of-the-art: We performed an empirical study on
the predicted results to understand better where our proposed model outperforms
the current state-of-the art model, ALGES [2]. Table A.9 illustrates some examples
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Problem Text ALGES NT-LSTM

Nancy bought 615 crayons that
came in packs of 15. How many
packs of crayons did Nancy buy?

615− 15 615/15

Carrie’s mom gave her $91 to go
shopping. She bought a sweater for
$24, a T-shirt for $6, and a pair of
shoes for $11. How much money
does Carrie have left?

91 + 24 + 6 + 11 91− (24 + 6 + 11)

Melanie had 19 dimes in her bank.
Her dad gave her 39 dimes and her
mother gave her 25 dimes. How
many dimes does Melanie have
now ?

19− 39 + 25 19 + 39 + 25

On Saturday, Sara spent $10.62 each
on 2 tickets to a movie theater. Sara
also rented a movie for $1.59, and
bought a movie for $13.95. How
much money in total did Sara spend
on movies?

10.62 + 2 × 1.59 +
13.95

10.62 × 2 + 13.95 +
1.59

Table A.9: Examples of problems that NT-LSTM provides a correct solution, but
current state-of-the-art ALGES [2] fails.

of the problems where our model gets consistently correct predictions on different
training initialization weights (Section A.4). Most of the gains came from improv-
ing on problems requiring multiple and/or asymmetric operations, corroborating
our previous findings.
Strengths of the current state-of-the-art and limitations of our approach: Ta-
bles A.5 and A.7 illustrate that in the case of single symmetric operations (Singlesym),
the ALGES method outperforms the proposed architectures (i.e., B-LSTM, T-LSTM,
and NT-LSTM). We hypothesize that the main reason for this is the use of carefully
hand-engineered features, many of which depend on third-party tools (e.g., depen-
dency parsing). Table A.10 illustrates four examples whose solution requires math-
ematical expressions with a single operator. In the first two cases our NT-LSTM
model is outperformed by the current state-of-the-art ALGES which correctly pre-
dicts the commutative operators (+ in the first example and × in the second one).
We have found that these correctly predicted commutative cases are highly cor-
related with the entity match feature (i.e., when the noun phrase connected to the
number such as “pounds” in the first example is the same in two numbers). This
feature has high positive correlation with addition and negative correlation with
multiplication operations, which is illustrated in the first and second examples re-
spectively. It also requires an additional dependency parsing which, in case of
ALGES, is performed using Stanford Dependency Parser7. Other word-based fea-
tures are also highly correlated with some operations. For example, the presence
of the word “and” in the description of the problem is correlated with addition.
However, while these features may be a strong indicators of some operators, their

7More concretely, the Stanford Dependency Parser in CoreNLP 3.4 is used.
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Problem Text ALGES NT-LSTM

Diane is a beekeeper. Last year, she
harvested 2,479 pounds of honey.
This year, she bought some new
hives and increased her honey har-
vest by 6,085 pounds. How many
pounds of honey did Diane harvest
this year?

6, 085 + 2, 479 6, 085− 2, 479

Jack has a section filled with short
story booklets. If each booklet has 9
pages and there are 49 booklets in
the short story section, how many
pages will Jack need to go through
if he plans to read them all?

9× 49 9 + 49

Benny received 67 dollars for his
birthday. He went to a sporting
goods store and bought a baseball
glove, baseball, and bat. He had 33
dollars left over. How much did he
spent on the baseball gear?

67 + 33 67− 33

Jane’s mom picked cherry tomatoes
from their backyard. If she gathered
56 cherry tomatoes and is about to
place them in small jars which can
contain 8 cherry tomatoes at a time,
how many jars will she need?

56 + 8 56/8

Table A.10: Examples of problems that require a single operation to be solved.
The first two involve commutative operations (+ and × respectively)
where our NT-LSTM model fails compared to the feature-based model
(ALGES; [2]). The rest of the examples illustrate cases where ALGES
fails and NT-LSTM returns the correct answer. The words that repre-
sent features used in ALGES that are highly correlated with the pre-
dicted operation (entity match and the word “and”) are highlighted.

application is limited to problems where the underlying patterns appear. This is il-
lustrated in the last two examples that contain two features highly correlated with
the addition (i.e., entity match and “and” word), but that require a different (non-
commutative) operation in their solutions. In both cases, biased by the most likely
feature-based operation, the answer given by ALGES is incorrect. This contrasts
with our feature-independent NT-LSTM model which manages to predict the cor-
rect equation. This is reflected in Tables A.5 and A.7, where the features-based
approach falls short in capturing the more intricate nature of solutions involving
non-commutative operations (Singleasym and Multiasym). In these cases, our tree-
based NT-LSTM model exhibits superior performance.
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A.6 Conclusion
In this work we addressed the reasoning component involved in solving arithmetic
word problems. We proposed a recursive tree architecture to encode the underly-
ing equations for solving arithmetic word problems. More concretely, we proposed
to use two different Tree-LSTM architectures for the task of scoring candidate equa-
tions. We performed an extensive experimental study on the SingleEQ dataset and
demonstrated consistent effectiveness (i.e., more than 3% increase in accuracy on
the Full dataset and more than 15% for a subset of complex reasoning tasks) of our
models compared to current state-of-the-art.

We observed that, while very strong on simple instances involving single oper-
ations, the current feature-based state-of-the-art model exhibits a significant gap in
performance for mathematical problems whose solution comprises non-commutative
and/or multiple operations. This reveals the weakness of this method to capture
the intricate nature of reasoning necessary to solve more complex arithmetic prob-
lems. Furthermore, our experiments show that, while a traditional sequential ap-
proach based on recurrent encoding implemented using BiLSTMs over the equa-
tion proves to be a robust baseline, it is outperformed by our recursive Tree-LSTM
architecture to encode the candidate solution equation on more complicated prob-
lems that require multiple operations to be solved. This difference in performance
becomes more significant as we introduce additional noise in our set of candidates
by adding incorrect equations that contain non-commutative operations.
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Predicting Psychological Health

from Childhood Essays The
UGent-IDLab CLPsych 2018 Shared

Task System

In this chapter we describe our contribution to CLPsych 2018 shared task where we achieve
competitive results using an ensemble consisting of multiple models to predict depression
and anxiety in textual surveys.

⋆ ⋆ ⋆

K. Zaporojets, L. Sterckx∗, J. Deleu, T. Demeester and C. De-
velder
5th Annual Workshop on Computer Linguistics and Clinical Psychology (CLPsych
2018) at NAACL-HLT 2018

Abstract This paper describes the IDLab system submitted to Task A of the CLPsych
2018 shared task. The goal of this task is predicting psychological health of children
based on language used in hand-written essays and socio-demographic control
variables. Our entry uses word- and character-based features as well as lexicon-
based features and features derived from the essays such as the quality of the lan-
guage. We apply linear models, gradient boosting as well as neural-network based
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regressors (feed-forward, CNNs and RNNs) to predict scores. We then make en-
sembles of our best performing models using a weighted average.

B.1 Introduction
The goal of the CLPsych 2018 shared task is to predict the psychological health of
children based on essays and socio-demographic control variables. The provided
data stems from the National Child Development Study (NCDS) which followed
a number of people born in a single week of March 1958 in the UK [1]. The psy-
chological health of this group of individuals was monitored in intervals of several
years. At the age of 11, participants were asked to write an essay describing where
they saw themselves at age 25. Simultaneously, their psychological health was eval-
uated by their teachers based on metrics defined by the Bristo Social Adjustment
Guides (BSAG) [2].

Given the written essays and social control variables (gender and social class),
CLPsych participants are to predict three types of BSAG scores: (i) total BSAG
score, (ii) the depression BSAG score, and (iii) the anxiety BSAG score. In order
to predict these scores, participants are allowed to use the social control variables
next to the features extracted from the essays themselves.

Our system uses several types of features: bag-of-word and bag-of-character
features, features derived from lexicons and term lists, and features based on text
statistics (see Section B.3.2 for more details). Using these features, we apply several
types of regressors: linear models, gradient boosting and neural-network based
models. For each of the regressors, we explore different combinations of features to
predict each of the BSAG scores. Subsequently, these models are combined using
weighted average ensembling. Two sets of predictions were made: the first one is
based on the single best models, a second uses an ensemble of models for each of
the three scores (depression, anxiety and total BSAG scores).

Our ensemble of models gives a competitive result, positioning our system on
the second place with only 0.01 points under the winner of this shared task. We
think that this good performance is mostly due to the different nature of our indi-
vidual models which complement each other when ensembled.

The remainder of this paper is organized as follows: Section B.2 describes the
shared task in more detail. Section B.3 presents the features used by the regressors.
Section B.4 describes regressors and the general methodology of our approach. Sec-
tion B.5 describes results we obtained during development on our internal valida-
tion set and on the real test set. Finally, we summarize our findings and present
future directions in Section B.6.

B.2 Task and data
Input for task A consists of essays written by 11-year-old children describing where
they see themselves at age 25, as well as several social control variables:

1. Gender: gender of the participant child.

2. Social Class: the job hierarchy of the father of the participant child. The do-
main comprises 6 values representing different job categories: starting with
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professional and managerial occupations and ending with unskilled occupa-
tions.

3. Essay: content of the essay written by the participant child. Originally, the
essays were hand-written and later transcribed in digital format. The aver-
age length of the essays is 225 characters.

The goal of shared task A is to predict the current psychological health of the
children. Psychological health is measured using scores assigned by teachers of
the children following metrics defined in the BSAG. These guides score the total
psychological health using 12 different syndromes (depression, anxiety, hostility,
etc.). CLPsych shared task A requires participants to predict three scores:

1. Total: the sum of all the BSAG scores of all the different syndromes.

2. Depression: the BSAG score related to the depression syndrome.

3. Anxiety: the BSAG score related to the anxiety syndrome.

Participants are given a training set consisting of essays from 9,217 children
with corresponding input variables and BSAG scores.

B.3 Features
In this section, we present features used by our models, and experiment with a
number of different categories of feature extraction.

B.3.1 Lexical features
We use bag-of-n-gram features both on word- and character-level. The latter pro-
vides robustness to the spelling variation found in children’s writing. For word-
level we experiment with n-grams for n ranging from 1 to 4. At character-level, we
experiment with 3- up to 6-grams. These one-hot encodings are weighted using
TF-IDF.

B.3.2 Feature engineering
Next to the sparse bag-of-n-grams representations of the essays, we apply several
manually designed features.
Social control features These features are given as input in the data and consist of
the gender and social class of the participants. In order to be used in regressors, we
encode these features as one-hot vectors.
Lexicon-based features We experiment with features based on two lexicons: the
Linguistic Inquiry Word Count (LIWC) described in [3] and the DepecheMood [4].
The LIWC is a psycholinguistic lexicon that allows to measure the emotional health
of individuals by providing a set of term categories related to different mental
states. In our experiments we use all 73 (partly overlapping) psychological word
categories found in the LIWC dictionary.

Similarly, DepecheMood is a lexicon consisting of 37k different words (verbs,
nouns, adjectives and adverbs). Each of the words has weights associated to the
following 8 mental states: afraid, amused, angry, annoyed, don’t care, happy, in-
spired and sad. In our experiments, we calculate the average of TF-IDF weights for
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these categories. These TF-IDF weights are already given inside DepecheMood lex-
icon and are originally calculated on articles from rappler.com based on Rappler’s
Mood Meter crowdsourcing.
Textual statistics features We extract a number of features describing several char-
acteristics of the essays:

• Total number of words

• Average sentence length

• Average word length

• Ratio of spelling mistakes

• Ratio of different words

• Number of words not recognized (illegible) when transcribing the essays
from hand-written to digital form.

Sentiment features We reason that the participants’ psychological health can par-
tially be detected by evaluating the essay in a positive-negative sentiment spec-
trum. We use the pretrained sentiment classifier from [5].1 We hypothesize that
individuals with good psychological health will tend to use more positive expres-
sions than individuals with high scores in any of BSAG syndromes.
Language model features Coming from the intuition that mental state may be re-
lated to the development of language skills, we include two language model fea-
tures. Our primary language model feature is the average perplexity of the essays,
as it is an often used metric to score the general language quality and coherence of
the texts. As a secondary feature, we include the fraction of out-of-vocabulary to-
kens over the entire essay, with respect to the Penn Treebank data. We use the word-
level AWD_LSTM language model trained on the Penn Treebank, presented by [6].

B.4 Models description
We train a variety of different regression models predicting the three aforemen-
tioned BSAG scores. We include simple linear models as well as gradient boosted
trees and neural network-based models. Our best performing models are subse-
quently combined using ensembling. As a general rule, we try to select different
model function types in order to achieve lower correlation between predictions
from the different types of models.

B.4.1 Linear models
We experiment with two types of linear regressors: support vector machines (SVMs)
and ridge regression. Linear models are trained on two sets of features.

1. Lexical features based purely on the text of the essays (see Section B.3.1). Here
we use TF-IDF weighted bag-of-word features as well as character features.

2. Designed features through feature engineering (see Section B.3.2).

1The python library can be found at: https://pypi.python.org/pypi/sentiment classifier

https://pypi.python.org/pypi/sentiment_classifier
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To avoid overfitting, we tune the regularization parameter α on a validation
set. For SVM models this parameter corresponds to squared L2 penalty. For ridge
models, it corresponds to the strength of L2 regularization term. We experiment
with selecting models based on lowest RMSE error as well as the ones with highest
disattenuated Pearson correlation score.

B.4.2 Gradient boosting
We apply gradient boosted tree regressors using XGBoost [7] trained on the designed
features (see Section B.3.2). To train XGBoost models, we use early stopping by
evaluating on a validation set with 10,000 estimators and a logarithmic scale grid
search of learning rate from 10e−5 to 10e+5. We experiment with RMSE as well as
disattenuated Pearson correlation scores as criterion to perform early stopping.

B.4.3 Feed-forward neural networks
As a second type of non-linear models, we use feed-forward neural networks (FFNNs).
We train FFNNs on our designed features (see Section B.3.2) expecting that the intro-
duced non-linearity will complement the results of previous models. Our FFNN ar-
chitecture consists of 3 hidden layers with tanh activation units. We apply dropout
regularization of 0.5 between each of the layers. The network has a total of 223
input features in the first layer and 256 neurons in each of the three intermediate
hidden layers. We experiment with optimizing for three loss functions:

1. Mean squared error (MSE): this is our default choice used for most of the
regressors.

2. Huber: Huber loss is less sensitive to outliers which are present in BSAG
scores (high BSAG scores for few individuals).

3. Pearson correlation: we experiment with correlation loss because it is di-
rectly related to the metric used to evaluate the model performance by orga-
nizers of shared task A.

B.4.4 Neural sequence encoders
We include two types of models based on neural networks which encode the essays
to a low dimensional representation, after which a score is predicted using a feed-
forward layer. Essays are encoded using two of the most prevalent neural network
architectures for modeling of sequences, convolutional neural networks (CNN) and
recurrent neural networks (RNN).
Pretrained embeddings The first layer of NN architectures embeds the one-hot
token representations into a vector space of lower dimensionality, which it then
fine-tuned through back-propagation. We initialize the embedding layer using em-
beddings from dedicated word embedding techniques Word2Vec [8] and Glove [9].
This proved to be essential for good performance of the neural sequence models.
CNNs We apply the architecture proposed by [10] which consists of a single con-
volutional layer with multiple filter sizes, followed by one feed-forward layer over
the three-dimensional score vector. We use filters of size 3, 4, 5, 6 and 7 and vary
the amount from 64 to 512 filters for each size.
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Anxiety Depression Total

RMSE MAE Diss. R RMSE MAE Diss. R RMSE MAE Diss. R

Development
Ridge RMSE (lex. feat.) 1.222 0.784 0.2100 1.460 1.076 0.3493 8.356 6.472 0.4532
+Diss. R (lex. feat.) 1.225 0.782 0.2160 1.497 1.138 0.4046 8.643 7.043 0.4783
+RMSE (des. feat.) 1.218 0.773 0.2136 1.446 1.073 0.3781 8.272 6.280 0.4719
+Diss. R (des. feat.) 1.218 0.773 0.2136 1.446 1.073 0.3781 8.272 6.280 0.4719

SVM RMSE (lex. feat.) 1.260 0.690 0.1129 1.517 1.046 0.2542 8.643 5.940 0.4526
+Diss. R (lex. feat.) 1.360 0.573 0.1220 1.811 1.007 0.4094 9.047 6.091 0.4624
+RMSE (des. feat.) 1.241 0.723 0.1227 1.470 1.005 0.3736 8.683 6.920 0.3418
+Diss. R (des. feat.) 1.352 0.573 0.1026 1.897 1.694 0.3508 8.449 6.019 0.4473

XGBoost RMSE (des. feat.) 1.221 0.769 0.1982 1.452 1.081 0.3624 8.302 6.257 0.4600
+Diss. R (des. feat.) 1.225 0.768 0.1997 1.458 1.073 0.3579 8.312 6.343 0.4557

CNN RMSE loss 1.221 0.772 0.2053 1.473 1.128 0.3863 8.390 6.488 0.4556
RNN RMSE loss 1.228 0.769 0.1630 1.444 1.070 0.3938 8.271 6.206 0.4805

FFNN MSE loss (des. feat.) 1.216 0.775 0.2253 1.445 1.073 0.3837 8.219 6.310 0.4945
+Huber loss (des. feat.) 1.246 0.697 0.2294 1.483 0.997 0.3921 8.486 5.884 0.5000
+Diss. R loss (des. feat.) 1.288 0.616 0.2010 1.675 0.959 0.3488 11.556 7.743 0.4290

Ensemble 1.223 0.743 0.2660 1.435 1.035 0.4246 8.252 6.047 0.5191

Test Runs
Submission 1 (Ensemble) 1.119 0.476 0.1946 1.393 1.004 0.4536 7.843 5.691 0.5667
Submission 2 (Single Model) 1.022 0.697 0.1760 1.403 1.019 0.4192 8.134 5.688 0.5140

Table B.1: Results on internal evaluation set for best individual models; “lex. feat."
refers to the lexical features (see section B.3.1), whereas “des. feat." are
the designed features (see section B.3.2).

RNNs We experiment with two types of RNNs to encode the essays, long short-
term memory networks (LSTM) [11] and gated recurrent units (GRU) [12]. After
encoding the essay in forward and backward direction, we use the concatenated
sequences of hidden states to predict scores. To reduce the dimensionality of this
representation, we use max-pooling and self-attention to obtain the final essay en-
codings [13]. We experiment with single-layer bidirectional RNNs with hidden
state vectors of 64, 128 and 256 dimensions. A fully connected layer of 32 and 64
nodes is used to predict scores.

B.4.5 Model ensembling
To produce weighted averages of predictions, we use the forward model selection
algorithm that greedily selects the combination of models that maximizes the dis-
attenuated Pearson correlation on the evaluation set. We use 100 iterations and
choose the best model if there is no improvement after 30 iterations on the evalua-
tion set.

B.5 Experiments

B.5.1 Training details
We divide the training set of 9,217 individual evaluations into two parts: (i) a
train set consisting of 7,835 examples, and (ii) an evaluation set consisting of the rest
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Anxiety Depression Total

Ridge RMSE (lex. feat.) 0.2698 0.0625 0.1825
Ridge RMSE (des. feat.) - - -

SVM RMSE (lex. feat.) - - -
SVM RMSE (des. feat.) 0.0688 0.1563 0.0584

XGBoost RMSE (des. feat.) 0.2646 0.0469 0.0949

CNN RMSE loss 0.0423 0.1250 -
RNN RMSE loss - 0.3281 0.2993

FFNN MSE loss (des. feat.) - 0.2813 0.0365
FFNN Huber loss (des. feat.) 0.3545 - 0.3285
FFNN Diss. R loss (des. feat.) - - -

Table B.2: Weights of the ensemble components.

(1,382 examples). For SVM, Ridge and XGBoost models, we select the best models
on our evaluation set using two metrics: (i) models with the lowers RMSE score,
and (ii) models with the highest disattenuated Pearson correlation score. For feed-
forward neural nets we experiment with three loss functions: (i) MSE, (ii) Huber,
and (iii) disattenuated Pearson correlation. Finally, for neural sequence encoders,
we use MSE as a loss function. In order to build an ensemble of models, we further
subdivide our evaluation set in two equal parts:

1. Validation set: the validation set is used to choose the best combination of
models using forward model selection (see Section B.4.5).

2. Test set: the test set is used to verify that a given model combination does
not overfit the evaluation set.

Before extracting features from the text of input essays, we perform basic text
preprocessing functions: lowercasing, removal of punctuation and extra spaces.
For TF-IDF and embedding lexical features we also remove the stop words. Ad-
ditionally, we use TextBlob (https://textblob.readthedocs.io/) in order to correct the
spelling mistakes.

Feed-forward neural networks are trained for 100 epochs with learning rate of
1e−5. We also apply a weight decay (L2 penalty) of 1e−6 on the Adam optimizer.
Most of the models converge after training approximately for 20 epochs with a
batch size of 8.

CNN and RNN models are trained with Adam and early stopping based on dis-
attenuated Pearson correlation. Models converge after training for approximately
10 epochs, with batch size 32. For RNN models we apply a dropout with proba-
bility 0.3 on the embedding layer and the output layer. For both CNN and RNN
models we apply dropout on the fully connected layer with probability 0.15.

B.5.2 Results
Table B.1 summarizes results for different models on our validation set. For linear
models, we notice that SVM models are sensitive to optimizing towards RMSE
or disattenuated correlation score. We also observe that SVM models have lower
disattenuated correlation scores for the anxiety BSAG metric. For feed-forward
neural nets, use of the Huber loss obtains the best performance. We speculate that

https://textblob.readthedocs.io/
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this is because this method is not as influenced by outliers as other loss functions.
The rest of the models has approximately similar performance.

A large boost in performance is observed when creating ensembles of models.
We gain between 0.02 and 0.04 points on our validation set for the disattenuated
correlation metric. We don’t see this improvement on RMSE and MAE metrics
since our ensemble is greedily built to optimize for Pearson correlation between
predicted and ground truth results.

Table B.2 shows the weight combinations of our ensemble for all three objec-
tives to predict. We only add best RMSE models for Ridge, SVM and XGBoost re-
gressors. The reason is that adding models that had the best performance on Pear-
son disattenuated correlation score decreased significantly the RMSE and MAE
scores of the ensemble. How these models can still be added without producing
this drop in performance is left for future work.

The bottom rows of Table B.1 show the results of our two submissions on the
official CLPsych test collection. We obtain a considerable improvement using en-
sembles of models with respect to our single best model submission, resulting in
the overall second best submission. We speculate that this is because of different
score distributions produced by dissimilar models used in this work. This gen-
erates low correlation of individual model predictions, which results in better en-
sembles. We were surprised to see that disattenuated correlation score was several
points higher in depression and total BSAG predictions than on our internal val-
idation set. The anxiety score, on the other hand, is considerably lower. Further
analysis is needed to understand these differences, and to investigate the impact of
the individual types of hand-designed features.

B.6 Conclusion and future work

In this paper we briefly described the Ghent University – IDLab submission to
the CLPsych 2018 shared task A. We found that linear models, gradient boosting
as well as neural network based models perform similarly but produce different
models that, when combined, can increase the performance on the test set consid-
erably.

For future work, we plan to conduct a careful error analysis (e.g. ablation tests)
and examine the best ways to design our train-validation splits in order to decrease
the score difference between the validation and test sets. We also plan to experi-
ment with more sophisticated ways of ensembling and stacking techniques.

We consider that in the end, most of the success of this task comes down to
designing a good set of features. In particular, one of the features we didn’t explore
is topic modeling. Additional features can be obtained from topic model distribu-
tions as they provide positive results on similar tasks described in [14] and [15].

Finally, another direction we want to explore consists of using word and phrase
embeddings, pre-trained on a corpus of individuals with psychological disorders.
Some work has already been done to gather this kind of corpus from online re-
sources (Twitter and Reddit in particular) [16] and [17]. We hypothesize that we
can get a significant improvement by initializing our CNN and RNN models with
these embeddings.
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