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1. Introduction

Metal–oxide–semiconductor field-effect
transistors (MOSFETs) are crucial compo-
nents of electronic systems such as logic,
memory, sensor, and neuromorphic
devices.[1–3] Therefore, to improve the
design convenience and reliability of the
application, quick and accurate estimation
of MOSFET device parameters is required.

To obtain the primary MOSFET device
parameters such as threshold voltage
(Vth), subthreshold swing, and mobility,
the drain current versus gate voltage
(ID–VG) characteristics are utilized. For
MOSFET modeling, Vth is a key factor,
determining the design margin of the sys-
tem as an on-off standard, and it is used as
a reference factor while calculating other
electrical parameters.[4–6]

To extract the Vth from ID–VG character-
istics, the “constant current” (CC) method
was generally applied in industry[1,2,7]

because it simply designates the corre-
sponding VG with a prespecified current

level, as shown in Figure 1a. However, the accuracy of Vth extrac-
tion can be affected by noise, humps, or unwanted current
degradation, caused from various short-channel effects in the
subthreshold region (off-current, IOFF).

[7–9]

Numerous alternatives to the CC method were proposed to
extract a more accurate Vth. For example, the “extrapolation in
linear region” method[1] is often used instead of the CC method.
The method is not affected by IOFF because it uses ID turned on
enough (called on-current). However, it is significantly affected
by parasitic-series resistance and the mobility degradation of the
carrier at the short channel. To avoid the parasitic-series
resistance, the “transconductance linear extrapolation”[10,11]

and “2nd derivative” methods[12] were suggested. Additionally,
the “Y-function” method[13–16] was investigated to solve mobility
degradation and series resistance issues. Also, integration-based
method has been used to extract Vth without influence of series
resistance and noise.[17]

Compared to the CC method, the alternatives use additional
numerical analysis such as differentiation and linear
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A fast and precise threshold voltage (Vth) extraction method is required for
the process design of electronic systems using metal–oxide–semiconductor
field-effect transistors (MOSFETs) and its immediate on-site analysis during
fabrication. The selection of a suitable Vth extraction method is a complicated
task because it involves a trade-off between accuracy and simplicity according
to the device scheme. Herein, an automatic-prediction method of the MOSFET
Vth using machine learning (ML) is proposed. The ML model is trained with
Vth, extracted using different methods (2nd derivative, constant current, and
Y-function) and from various kinds of FETs (finFET, 2D FET, and metal–oxide
thin-film transistors). The concept of threshold ratio (Rth) for universal Vth
prediction, which considers the normalized Vth within certain VG ranges, is
suggested. The precision and accuracy of ML models are statistically verified by
calculating the root mean square error (RMSE), mean absolute error, and mean
coefficients of determination (R2) values. The universal ML model (k-nearest
neighbor (kNN)) achieves 1.35% of RMSE and 0.98 of R2 for the best score. The
ML model eliminates the ambiguity in Vth extraction and provides objective
Vth prediction for most FET schemes used in the semiconductor industry and
research field.
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extrapolation. The complexity of the extraction process is a
disadvantage when prompt and intuitive interpretations of device
analysis are required. To solve the trade-off between simplicity
and accuracy of Vth analysis, different extraction algorithms were
selectively applied and merged with the CC method based on the
faced case.[7] Due to the significance of the resultant Vth in deter-
mining the device performance and reliability,[18] many research-
ers have attempted to obtain an optimal Vth extraction algorithm,
and it has not been solved thus far.

In semiconductor engineering, machine learning (ML) has
gradually replaced the role of humans.[19] For example, ML
was used to detect and repair defects in the 7 nmmask design.[20]

Currently, automatic circuit design with ML is being developed.
Additionally, ML algorithms were used to operate devices
efficiently in FET-based sensor applications and optimize the
fabrication processes.[21–26] However, Vth estimation by ML
has not been investigated thus far.

In this study, we propose a novel method by supervised ML to
determine the reliable Vth. This is a pilot attempt at adopting the
ML for extracting the device parameters of MOSFETs.[26–29]

Regardless of selecting extraction methods and device schemes,
the automatic Vth prediction method was designed to recognize

the shape of ID–VG characteristics. Figure 2 shows the process of
extracting Vth using ML.

To train the MLmodel for the prediction of Vth, three different
device schemes, fin field-effect transistors (finFETs), metal–oxide
thin-film transistors (TFTs), and two-dimensional (2D) FETs,
and three different Vth extraction methods (2nd derivative,
Y-function, and CC method) were used. A threshold ratio
(Rth) was suggested to make a universal ML model. To achieve
precise prediction results, a preprocessing process of input data
was investigated. Finally, the Rth of various device schemes was
precisely predicted by the ML model.

2. Result and Discussion

2.1. Optimized Preprocessing and ML Algorithm using FinFET

Four different preprocessing cases were tested with finFET data
to obtain the optimized ML algorithm: 1) decision tree regression
with only normalized VG, 2) k-nearest neighbor (kNN) regression
with only normalized VG, 3) decision tree regression with the
normalized dataset for both VG and ID, and 4) kNN regression

Figure 1. Comparison of Vth extraction between a) CC and b) 2nd derivative method with the same ID–VG curve. Depending on the extraction method, the
result of Vth is different.

Figure 2. a) Schematic of preprocessing for the ML model. Normalized ID–VG characteristics of finFET, 2D FET, metal–oxide TFT were used. Rth is the
output of sample and normalized drain current is input feature matrix. b) Flowchart of the predicting Vth process using ML.
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with the normalized dataset for both VG and ID. To examine the
reliability of prediction, tests were repeatedly conducted 50 times
with randomly selected 30 finFET devices that are not included in
training set. The best case of the four different preprocessing
methods was observed by comparing the mean value and stan-
dard deviation (STD) for each evaluation metric.

Figure 3 shows evaluation metrics for all cases of preprocess-
ing methods and ML algorithms. Both root mean squared error
(RMSE) and mean absolute error (MAE) indicated an error
between the output (extracted by 2nd derivative method) and
predicted Rth values, indicating overall prediction accuracy: the
smaller, the better. In the RMSE point of view, kNN algorithm
with both VG and ID normalization showed the lowest mean
value of error (Figure 3j, 1.14� 10�2, �17mV for finFET)
The largest mean value of RMSE was shown in decision tree algo-
rithm with only VG normalization, and it was only 1.47� 10�2

(Figure 3a). Because Rth was a position in the normalized VG

range, RMSE was<1.47%, which was�22mV for the prediction
of Vth in finFET and still small. Mean coefficients of determina-
tion (R2) values indicate the accuracy of a model in predicting
data. The value was large enough (from 0.95 to 0.97,
Figure 3c,f,i,l) for all cases of preprocessing methods and ML
algorithms.

The STD of the metrics captured the precision of the predic-
tion: the smaller STD value has the more stable prediction. The
kNN algorithm with VG and ID normalization showed the most
reliable RMSE and MAE (Figure 3j,k). Any algorithms with nor-
malized VG and ID (Figure 3g–l) showed smaller STD than those
with only VG normalization (Figure 3a–f ). Although mean values
of errors and R2 were not significantly different, the kNN
algorithm with both VG and ID normalization was the most stable
and reasonably accurate model for the Rth prediction of finFET.

Figure 4 shows the best results among 50 test sets using the
kNN algorithm with VG and ID normalization. In Figure 4a,

Figure 3. Histograms of Rth prediction about finFET with four different preprocessing cases. Each vertical column shows a,d,g,j) RMSE, b,e,h,k) MAE, and
c,f,i,l) R2 of preprocessing cases, respectively. a–c) is decision tree with normalized VG. d–f ) is kNN with normalized VG. g–i) is decision tree
with normalized VG and ID. j–l) is kNN with normalized VG and ID.

Figure 4. a) Comparison between extracted Rth (by 2nd derivative method, black line) and predicted Rth using kNN with VG and ID normalized finFET
dataset (blue circle). b) Correlation between extracted Rth and predicted Rth. It shows 0.99 of R2.
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predicted Rth by ML (circle) and extracted Rth by 2nd derivative
method (line) are compared for each test. In this test set, Rth of
finFET varied from 0.30 to 0.74 (from 0.07 to 0.91 V for Vth vari-
ability). Besides the Rth variability in finFET, the ML model using
the kNN algorithm with VG and ID normalization accurately
predicted Rth, and RMSE and MAE were 0.33� 10�2 and
0.08� 10�2. In Figure 4b, the correlation plot is shown with
the same data as Figure 4a. In this case, R2 was 0.99.

2.2. Universal ML Model for Rth Prediction

The selected ML model using the kNN algorithm with VG and ID
normalization was extended to the other devices. The universal
model was trained with randomly selected 1290 ID–VG curves of
finFETs, metal–oxide TFTs, and 2D FETs. One test set included
Rth of 30 devices (ten for each type of device, not used for train-
ing). The prediction results of 30 test sets are shown in Figure 5a.
Mean values of RMSE, MAE, and R2 were 3.46� 10�2 (in mV,
�69mV for finFET case), 2.01� 10�2, and 0.93, respectively, and
they were larger than the prediction result in the previous section
that was applied to only finFET (Figure 3j,k), however, still
comparable.

In Figure 5b,c, the superior result of predicted Rth was com-
pared with Rth estimated by the conventional Vth extraction
method. In this case, RMSE and MAE were 1.35� 10�2 and
0.84� 10�2, respectively. As shown in Table 1, the RMSE
and MAE of 2D FETs and metal–oxide TFTs are larger than
those of finFETs, and the largest error is shown in the 2D
FET case. Similar to RMSE and MAE, R2 of the 2D FET
showed the worst value (0.97). In the universal ML model,
the numbers of devices used for the training set were different
(finFETs: metal–oxide TFTs: 2D FETs¼ 1217:47:26), and three
different Vth extraction methods were used, thereby
making the ML model biased to the finFET and 2nd derivative
method. With enough number of metal–oxide TFT and 2D
FET, the prediction result of the universal ML model
could be improved. Also, the more device type could make
the better performance of ML model. More details are dis-
cussed in Supporting Information (Figure S3, Supporting
Information).

3. Conclusion

In this study, the very first ML approach for Vth extraction was
proposed. The ID–VG characteristics and extracted Vth with CC,
2nd derivate, and the Y-function method were used as input and
output of ML model to predict Vth. To select the proper ML algo-
rithm, four types of preprocessing methods were tested with the
kNN and decision tree regression about finFETs. The kNN
regression with normalized for both VG and ID was selected
for the best scores of prediction performance and the lowest
STD. For a mixed dataset with finFET, metal–oxide TFT, and
2D FET, the universal ML model achieved 1.35% of RMSE,
0.84% of MAE, and 0.98 of R2 for the best score. The approach
was unconstrained by the structure of the FET device, channel
material/polarity, gate-bias range, etc., exhibited reliable results
even in repetitive learning and prediction using each different
test set. Therefore, extracting Vth with the ML approach can
reduce time and effort. In addition, the objective Vth can be
obtained beside researcher’s personal consideration of data char-
acteristics. Although experiments indicate high performance for
extracting Vth, much higher performance is expected
when different kinds of devices’ data are used for the training
dataset.

4. Experimental Section

Preprocessing of Data (Data Description): In this study, ID of a transistor
and its Vth were used as an input and output of the MLmodel, respectively.
The Vth was extracted from each ID–VG characteristic dataset. For the
universal ML model, various Vth extraction methods and different FET

Figure 5. a) Histograms of Rth prediction using selected preprocessing (VG and ID normalization) and the kNN ML model. Ten finFETs, ten metal–oxide
TFTs, and ten 2D FETs were randomly tested 30 times. b) The best result of a) and c) shows the correlation plot of b). For each device scheme, different
Vth extraction methods were used; however, ML predicted accurate Rth regardless of selecting extraction methods and device schemes.

Table 1. RMSE, MAE, and R2 of the superior universal ML model for 30
test sets. The evaluation metrics for each device are investigated.

Index in Figure 5b RMSE MAE R2

Overall for best set 0–29 1.35� 10�2 0.84� 10�2 0.98

FinFET 0–9 0.10� 10�2 0.04� 10�2 0.99

Metal–oxide TFT 10–19 1.38� 10�2 1.09� 10�2 0.98

2D FET 20–29 1.88� 10�2 1.40� 10�2 0.97
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samples were used. For different FET samples, channel materials, device
structures, and operating-bias range were the variables.

For finFET, 1227 ID–VG data were provided by imec (Belgium), finFET
which had a three-dimensional fin-shaped Si channel, operated at
0 � �2 V gate-bias range since it was used in logic devices for low-power
applications. The 2nd derivative method was used to extract Vth of finFET.
The metal–oxide TFTs and 2D FET are operated in a larger VG bias range
than finFET. Metal–oxide TFTs with an indium–gallium–zinc–oxide
(IGZO) channel were used for display application and operated in the
�40 to 60 V gate-bias range.[30–34] 57 IGZO TFT devices were used,
and the Y-function method was applied for extracting Vth. For device oper-
ation, 36 2D (WS2) FET devices, with �20 to 60 V gate-bias range were
used. Vth of 2D FET was extracted by the CC method.[35–37]

The ML input data, composed of only an ID dataset, do not include the
information of the corresponding VG range. Therefore, real Vth as an out-
put of the ML model causes the overfitting when ML model learns the
input data. Instead of a real Vth value, the proportion of Vth (thresholding
ratio, Rth) in the normalized VG range (0–1) was used for the output of the
ML model, so that the ML model is universally implemented without
considering VG range of device (Figure S1, Supporting Information).

The scale of ID is different based on the device type. For example, a few
2D FETs have several nA levels of ID, whereas ID of somemetal–oxide TFTs
has tens of uA level. Thus, the dataset was preprocessed in two ways for
examining the impact of ID normalization on extraction performance:
1) normalizing only VG and 2) normalizing both VG and ID (0–1). The final
Vth is obtained by converting the predicted Rth into the real value of Vth with
the actual operating bias range of each device. The converting formula is

V th ¼ Rth � ðVGmax � VGminÞ þ VGmin (1)

where VGmax and VGmin are the maximum and minimum value of VG range,
respectively.

Machine Learning Algorithm: The kNN and decision tree ML regression
algorithms were used to predict Vth in this study. There are two types of
tasks in supervised learning: classification and regression. Classification is
applicable when the output value is categorical, consisting of a fixed
number of classes. In contrast, the regression algorithm is used when
the output value is continuous. The output of ML is a continuous quantity
of Rth. Thus, the regression is appropriate; predicting a continuous value
directly would be more accurate than classifying it into a few discrete
values (classes). More details are provided in Figure S2, Supporting
Information.

The value of “k” in kNN and “max depth” in the decision tree were
designated as hyper parameters, which improved the performance of
the model by appropriate values. “k” is the number of training samples
to calculate the output value of the target test sample. “max depth” is
the maximum distance between the top and terminal nodes. The best
number of “k” (nearest neighbor samples of kNN) and “max depth”
(the longest tree path’s nodes of the decision tree), inducing the highest
regression accuracy, were investigated by comparing in the range 1–30.
Three evaluation metrics, RMSE, MAE, and R2, were used for this
experiment.

Python was used to conduct the experiment. Training and evaluation
processes in ML algorithms were implemented by “scikit-learn” package,
which provided various functions for ML.[38]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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