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Abstract: Frequency-modulated continuous wave (FMCW) radars are currently being investigated
for remote vital signs monitoring (measure of respiration and heart rates) as an innovative wireless
solution for healthcare and ambient assisted living. However, static reflectors (furniture, objects,
stationary body parts, etc.) within the range or range angular bin where the subject is present
contribute in the Doppler signal to a direct current (DC) offset. The latter is added to the person’s
information, containing also a useful DC component, causing signal distortion and hence reducing the
accuracy in measuring the vital sign parameters. Removing the sole contribution of the unwanted DC
offset is fundamental to perform proper phase demodulation, so that accurate vital signs monitoring
can be achieved. In this work, we analyzed different DC offset calibration methods to determine which
one achieves the highest accuracy in measuring the physiological parameters as the transmitting
frequency varies. More precisely, by using two FMCW radars, operating below 10 GHz and at
millimeter wave (mmWave), we applied four DC offset calibration methods to the baseband radar
signals originated by the cardiopulmonary activities. We experimentally determined the accuracy of
the methods by measuring the respiration and the heart rates of different subjects in an office setting.
It was found that the linear demodulation outperforms the other methods if operating below 10 GHz
while the geometric fitting provides the best results at mmWave.

Keywords: DC offset calibration; Doppler; FMCW; heart rate; mmWave; phase demodulation;
remote radar sensing; respiration rate; sub-10 GHz radar; vital signs monitoring

1. Introduction

In the last two decades, frequency-modulated continuous wave (FMCW) radar sensors
have been extensively investigated for remote vital signs monitoring, namely for contactless
measure of the respiration and the heart rates of a subject [1–3]. This opens a multitude
of healthcare and ambient assisted living applications, especially when wearable medical
devices cannot be used (e.g., on patients with severe and extensive burn wounds), create
discomfort, and are unpleasant for long term use (e.g., while sleeping) [4,5].

One of the biggest challenges of accurate remote vital signs monitoring performance
is to distinguish the very weak contribution of the physiological movements from the
disturbances caused by the surrounding environment. The FMCW radar has the capability
of separating the electromagnetic reflections in time. This allows dividing the monitoring
environment into range bins, using a single-input single-output (SISO) architecture, or
in range angular bins using multiple-input multiple-output (MIMO) and beam steering
architectures. In case of the former, the range fast Fourier transform (range-FFT) processing
is used on the radar data, while the range-FFT processing and the beamforming operation
are performed for the latter [6,7]. The vital signs monitoring is performed by extracting the
Doppler signal from the range or range angular bin where the cardiopulmonary activity

Sensors 2022, 22, 9697. https://doi.org/10.3390/s22249697 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249697
https://doi.org/10.3390/s22249697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2384-1107
https://orcid.org/0000-0002-1302-3346
https://orcid.org/0000-0002-7283-2004
https://orcid.org/0000-0003-1938-1758
https://doi.org/10.3390/s22249697
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249697?type=check_update&version=2


Sensors 2022, 22, 9697 2 of 15

is sensed, i.e., locating the subject’s thorax. The latter operation can be performed (1) by
knowing the position a priori, hence selecting the corresponding bin; (2) by determining
the highest variation in the range spectrum [6]; (3) by applying array signal processing
techniques [7]. The capability of dividing the monitoring environment in range or range
angular bins allows the effect of static reflectors (e.g., clutter, objects, furniture, stationary
body part, etc.) to be reduced, though this still remains a problem to deal with. In fact, since
the radar has finite range and angular resolutions, inevitable static reflectors within the
range or range angular bin where the subject is present contribute in the Doppler signal to
an overall direct current (DC) offset. The latter is added to the person’s information (which
containing also a useful DC component) significantly distorting the phase signal related to
the vital signs, thus jeopardizing the monitoring [8,9]. DC offset calibration becomes hence
a pivotal preprocessing operation before performing a proper phase demodulation [8,9].
The goal is to identify the contribution due to the vital signs and to separate it from the
disturbance, i.e., the DC offset, caused by the static reflectors within the range or range
angular bin.

In this work, we analyzed four DC offset calibration methods using two FMCW
radars operating within the two most used worldwide ultra-wideband (UWB) unlicensed
frequency ranges for indoor applications, namely 7.25–8.5 GHz and 57–64 GHz at millime-
ter wave (mmWave) [5–16]. The goal was to experimentally determine which technique
achieves the highest accuracy in measuring the vital sign rates in function of the transmit-
ting frequency. To our best knowledge, this is the first time that such a comparison has
been performed involving an UWB architecture at different frequencies. In fact, two simi-
lar studies have been performed in the past only by using a 2.4 GHz CW radar for vital
signs [17] and structural health monitoring [18]. However, current trend in this field is to
employ UWB systems that offer several advantages over the 2.4 GHz CW radar such as
multi-people tracking (localization and speed information), concurrent localization and
vital signs monitoring on multiple subjects, capability of providing both angular and range
information, reducing (but not eliminating) the effect of static reflectors by leveraging the
range/angular resolution [18–32]. We specify that the findings obtained with the 2.4 GHz
CW radar in [17,18] are not directly applicable at the frequencies considered in this work.
This is because (1) the lower the frequency, the lower the phase (Doppler) excursion due
to the vital signs; (2) operating at a single frequency involves oscillators with better phase
noise and phase error performances; (3) the higher the frequency, the lower the signal-to-
noise ratio (SNR) of the extracted baseband signals. Those three points strongly influence
the selection of the DC calibration method as the frequency varies.

2. Methods
2.1. Radar Signal Modelling

The cardiopulmonary activity, namely the physiological movements of the heart and
lungs of a person, causes sub-millimeter motions on the skin surface of the thoracic area.
Due to the Doppler effect, the phase shift caused by these motions and embedded into the
reflected signal can be detected by a radar, so that the respiration and the heart rates can be
measured [33]. The complex baseband signal B(t), obtained after mixing the received signal
with a copy of the transmitted signal, can be modelled as

B(t) = A(t) ejφ(t)= A(t) ej 4πy(t)
λ , (1)

where A(t) is the signal amplitude, φ(t) is the Doppler information, λ is the wavelength
referred to the first frequency of the FMCW signal (chirp), and y(t) is the chest motion due
to the cardiopulmonary activity. The latter is the vital signs information to be extracted,
and it can be approximated as

y(t) = Yb cos(2π f bt)+Yh cos(2π f ht), (2)
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where Yb and Yh are the sub-millimeter amplitudes of the movements caused by the lungs
and heart on the chest surface (with typical amplitudes of 4–12 mm and 0.1–0.5 mm,
respectively), and fb and fh are the breathing and the heart rates, respectively [11]. We refer
the reader to [13] for a detailed spectral analysis of Equation (1).

By determining the angular information of Equation (1), it is possible to retrieve y(t) from
which we can extract the vital sign rates. It must be noted that static reflectors (i.e., furniture,
objects, etc.) as well as the stationary body parts within the range or range angular bin where
the subject is present contribute to an overall signal of magnitude As and phase θs. This is
real case scenario in daily life situation. Equation (1) can be then rewritten as

B(t) = As ejθs+A(t) ej 4πy(t)
λ , (3)

where the first term is the DC offset and the second one is subject’s information. The latter
consists of a variable part and of DC information that is fundamental to perform a linear
phase demodulation [9]. The goal of the DC offset calibration methods is to eliminate
only the contribution of the DC offset (first term) while fairly preserving the subject’s
information, namely the DC information and the variable part. Thus, the main challenge is
to distinguish the DC information from the DC offset.

In practical circumstance, As is stronger than A(t). Under such a condition, Equation (3)
can be approximated as [34]

B(t) ≈ AT(t) ej{θs+
A(t)

As sin [θs− 4πy(t)
λ ]}, (4)

where AT(t) is the overall magnitude. We can note that y(t) is non-linearly combined in
the exponential argument and it is also multiplied by A(t)/As << 1. In this situation, the
resulting Doppler (phase) signal is distorted, and the vital signs information y(t) cannot be
accurately retrieved.

Figure 1 shows a graphical illustration in the complex plane of Equations (3) and (4)
where I (In-phase) and Q (Quadrature) are its real and imaginary components, respectively.
The cardiopulmonary activity involves a rotating vector which describes in the complex
plane a small arc (red solid line) when working with sub-10 GHz radars or a circle (red
dashed line) when operating at mmWave. The static reflectors contribute to an overall DC
offset, pushing the arc/circle away from the origin (magenta vector). This results in a non-
linear combination of θs and φ(t), as modelled in Equation (4), jeopardizing the extraction
of the vital signs information. For a proper phase demodulation, and hence to accurately
extract the vital signs information y(t), the arc/circle must be centered to the origin of the
complex plane, hence performing a DC calibration. This centering operation eliminates the
effect of the static reflectors (i.e., the magenta vector), leaving only the contribution of the
cardiopulmonary activity as modelled in Equation (1).
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2.2. AC-Coupling

The simplest DC calibration technique is to perform alternate current (AC) coupling
operation directly to Equation (3). Assuming to arrange B(t) into a matrix x = [x1, x2] with
x1 and x2 being, respectively, the I and Q components, this method consists in removing
the mean values of x1 and x2. The phase demodulation is performed extracting the angular
information of B(t) as

arctan
[

x2 −mean(x 2)

x1 −mean(x 1)

]
. (5)

2.3. Linear Demodulation

This method can be used under the small angle condition, hence when 4πy(t)/λ << 1
in Equation (3). In such a situation, the trajectory of the baseband signal in the complex
plane is a small arc, meaning that this technique can be used only for sub-10 GHz radars.

The idea behind the linear demodulation is to rotate and to move the arc parallel to
the Q-axis. The result is a demodulated signal being the projection of the arc to the Q-axis.
This means that the phase variation, i.e., the arc, is approximated as a segment. Therefore,
the smaller the angular variation, the higher the accuracy in phase demodulating the signal.
The steps for performing the linear demodulation are:

1. Removing the mean values of x1 and x2 and combining into a matrix x = [x1-mean(x1),
x2-mean(x2)];

2. Calculating the covariance matrix of x;

3. Obtaining the matrix E whose columns are the eigenvectors of the covariance matrix;

4. Multiplying the transpose of E by x. The result is a matrix containing the principal
components listed in descending order depending on the eigenvalues. The first
principal component is the demodulated signal.

2.4. Minimizing the Algebraic Distance

This technique estimates a circle in the complex plane from the I and Q signals. It can
be used both for sub-10 GHz and for mmWave radar. In the latter case, although the IQ
components already describe a circle in the complex plane, this method is still necessary to
reduce the effect of the noise and outliers.

The general form of the equation of a circle is

a xTx + b x + c = 0, (6)

where a 6= 0, b = (b1, b2) and c are the coefficients to be computed to fit the circle from x.
Equation (6) can be rewritten as [35](

x1 +
b1

2a

)2
+

(
x2 +

b2

2a

)2
=
‖ b ‖2

4a2 − c
a

, (7)

from which the center coordinates z = (z1, z2 ) and the radius can be respectively determined as

z =(z1, z2) =

(
− b1

2a
,− b2

2a

)
(8)

and

r =

√
‖ b ‖2

4a2 − c
a

. (9)

Hence, the phase demodulation can be performed computing the angular information
after subtracting the center points from the IQ signals as

φ(t) =
4πy(t)

λ
= arctan

(
x2 − z2

x1 − z1

)
. (10)
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2.5. Minimizing the Geometric Distance

With this method, the center coordinates z are estimated by solving a nonlinear least-
squares geometric fitting problem [35]. The objective function is

min
z,r

N

∑
n=1

dn(z, r)2, (11)

where n = 1, . . . , N, with N being the number of measured points, and

d2
n = (‖ z − x(n) ‖ − r)2, (12)

which represents the geometric distance between the n-th data point and the circle. The
algebraic solution is a good starting vector for methods minimizing the geometric distance.
The angular information can be then determined using Equation (10).

3. Material
3.1. Radar Sensors

We used two different FMCW radar sensors, whose parameters are listed in Table 1.
One device is the sub-10 GHz imec Mercurius V1.1 radar sensor [11]. The other device is
the commercial Texas Instruments IWR6843ISK mmWave radar sensor.

Table 1. Radar parameters.

Parameters Imec Mercurius V1.1 IWR6843ISK

Starting Frequency 7.3 GHz 60.645 GHz
Total Bandwidth 750 MHz 3.7 GHz
Chirp Duration 102.4 µs 64 µs

Fast Time Sampling Rate 10 MHz 4 MHz
Slow Time Sampling Rate 325.52 Hz 20 Hz

Range Resolution 20 cm 4 cm

3.2. Reference Sensor

The NeXus-10 MkII device (FDA approved and CE class IIa conform), integrating an
electrocardiograms (ECG) sensor and respiration belt, has been used to provide reference
measurements for the respiration and the heart rates. The physiological signals have been
acquired with a sampling rate of 256 Hz.

4. Experimental Validation
4.1. Signal Processing for Vital Sign Extraction and Data Collection

For each measurement, we extracted the complex baseband signal from the bin corre-
sponding to the location of the subject’s thorax. The localization is performed by determin-
ing the highest variation in the range spectrum (this approach was also used in [6]). We
lowpass filtered the complex baseband signals before applying the DC offset calibration
methods and performing phase demodulation to extract the vital sign (Doppler) signals.
We retrieved the respiration and heartbeat signals after filtering the Doppler signals and
estimated the corresponding rates through FFT. Note that both radar devices operated in
a single-channel mixer mode and that the resulting IQ signals have been obtained after
performing the FFT-based range processing. This ensures a perfect quadrature between the
two signals.

We conducted the experimental validation in a typical office setting with 12 subjects,
10 males and 2 females, differing in height (155–195 cm), weight, and age (20–45 years).
Only a single volunteer at a time was present in the room, which contained furniture to
increase the effect of the static reflectors. Each subject was normally breathing, sitting on
a chair at 1.5 m away from the radar, which was fixed at 1.2 m above the floor. A total
of 24 measurements of 2 min have been collected. More precisely, we first collected half
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of the measurements with the sub-10 GHz imec Mercurius V1.1 radar and then the other
half with the mmWave radar. Each measurement was processed by applying all the four
methods described in Section 2 and considering sliding windows of 30 s with overlaps of
5 s. It should be specified that the linear demodulation was not applied to the data acquired
with the mmWave radar since at those operating frequencies the small angle condition is
no longer valid.

4.2. Results

In this Section, we present the results of the experimental validation. We determined
the mean absolute errors (MAEs) and the root mean square errors (RMSEs) expressed in
terms of BPM which stands, respectively, for breaths per minute and beats per minute
when it refers to respiration rate (RR) and heart rate (HR).

Figures 2 and 3 show the boxplots obtained, respectively, with the sub-10 GHz
and mmWave radars.
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Figure 2. Boxplots of the experimental validation using the sub-10 GHz radar. (a) MAE RR. (b) RMSE
RR. (c) MAE HR. (d) RMSE HR.

In Figures 4 and 5, we presented the results using the Bland–Altmann plots obtained,
respectively, with the sub-10 GHz and mmWave radars. With the latter, for both RR
and HR estimation, the best performing method resulted in an average bias very close
to 0 (Figure 5c,d). In contrast, the worst method, while still having an average bias of
around 0.4 BPM for the RR, presents an average bias close to 3 BPM for the HR estimation,
indicating an overestimation on average. The confidence intervals are also higher in the
case of the worst method. Furthermore, a systematic error can be appreciated by looking
at Figure 5b,d. Regardless of the method used, the HR estimated with the radar seems
to be overestimating higher HR and underestimating lower HR. This could be due to the
fact that measuring low HRs might involve errors since the HR fundamental get closer
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to the RR harmonics (especially the 2nd–3rd). Moreover, small random body motion can
influence the HR measurements, especially above 1 Hz. However, in general, sub-10 GHz
radars involve higher SNR than mmWave radars.
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Figure 4. Bland–Altman comparisons of the references and the sub-10 GHz radar. (a) RR and (b) HR
with the AC Coupling method. (c) RR and (d) HR with the linear demodulation method.
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Finally, we report the average MAEs and RMSEs in Tables 2 and 3.

Table 2. Experimental results using the sub-10 GHz radar.

Errors AC
Coupling

Linear
Demodulation

Algebraic
Distance

Geometric
Distance

MAE RR (BPM) 2.90 0.32 0.77 0.56
RMSE RR (BPM) 3.62 0.70 1.63 1.12
MAE HR (BPM) 5.46 1.19 3.36 1.41
RMSE HR (BPM) 6.97 2.07 5.06 2.55

Table 3. Experimental results using the mmWave radar.

Errors AC
Coupling

Algebraic
Distance

Geometric
Distance

MAE RR (BPM) 0.50 0.21 0.22
RMSE RR (BPM) 0.70 0.46 0.45
MAE HR (BPM) 4.87 3.23 2.72
RMSE HR (BPM) 6.56 4.04 3.65

5. Discussion
5.1. Sub-10 GHz Radar

As it is reported in Table 2 and shown in Figure 2, the linear demodulation outperforms
the other methods in retrieving the physiological parameters. However, the geometric
fitting technique achieves similar and satisfactory results. We will justify and explain those
findings with the help of Figures 6 and 7.

Figure 6 shows the baseband signals in the IQ plane before and after applying the
DC calibration methods. As expected, they describe small arcs. Figure 6a shows both
the original arc, i.e., before applying any DC calibration method, and the one after AC
coupling. A yellow circle centered to the origin and intersecting the original arc is also
shown. Although the original arc lies on the yellow circle, it can be seen that it is not
perfectly aligned with it, hence it is not centered properly to the origin of the complex
plane. This is due to the combined effect of static reflectors and stationary body parts. In
the same way, the other arc is not centered to the origin but lies on it, as the AC coupling
also removes the subject’s DC information. Figure 6b shows the arc after applying the
linear demodulation. Like the AC coupling method, the arc is not properly centered to the
origin. However, the key difference is that the arc is properly aligned with the Q-axis. By
exploiting the small angle approximation, the arc is well approximated to its projection
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onto the axis. Finally, Figure 6c,d show the arc after minimizing the algebraic and geometric
distances, respectively. We have also indicated in orange the fitted circles obtained with
the two methods. It is possible to notice that only the geometric fitting yields a proper DC
calibration. Although minimizing the algebraic distance results in a simple method, this
fit is often unsatisfactory for small arcs. However, the algebraic solution can be used as a
starting vector for minimizing the geometric distance.
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Figure 7 compares the vital sign spectra obtained with the reference device and after
applying the DC offset calibration methods to the baseband signals of Figure 6. More
precisely, Figure 7a refers to the respiration rate while Figure 7b to the heart rate. In this
example, only the outputs of the linear demodulation and geometric fitting methods are
aligned with the references. This is because the AC coupling does not center the arc to the
origin while the circle is not always properly estimated with the algebraic fitting, resulting
in an improper DC offset calibration.

Although the geometric fitting yields satisfactory results, in this validation, the linear
demodulation turned out to be the best method. This can be explained by the fact that
the estimation of the circle is strongly dependent on the nominal position of the subject,
hence any (even small) random motions can move the circle to another point of the plane.
Therefore, also the length of the window signal influences the circle fitting: the longer the
window, the higher the accuracy. In the same way, the longer the window, the higher the
probability of random motions. As opposite to that, the linear demodulation does not
estimate a circle and its results are more robust in presence of outliers (e.g., baselines in the
Doppler shift, random body movements).

5.2. mmWave Radar

For processing with the mmWave radar, we have not considered the linear demodula-
tion as the small angle approximation condition is no longer valid. As shown in Table 2,
both the algebraic and geometric fitting methods achieve satisfactory results, although
the latter results are significantly better in measuring the heart rate. As in Section 5.1,
we use two figures to argue the findings. In an ideal situation at mmWave, the rotating
vector corresponding to the baseband signals describes a circle of several radians in the IQ
plane. However, in practice, the vector describes a figure which resembles a partial spiral
(Figure 8) due to noise and random body (thoracic) motion. We will refer to that figure as a
circle hereinafter.
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Figure 8 shows the original circle and the ones obtained after applying the DC cal-
ibration techniques. In Figure 8a, we can notice that the original circle is not perfectly
centered to the origin as it presents a small and unwanted DC offset. In an ideal situation,
i.e., with only the contribution of the thoracic motion, the circle would be centered to the
origin. Figure 8b–d shows the results after applying the DC offset calibration methods. It is
hard to notice significant differences with the naked eye. However, although the centering
operations produce slightly different outputs (see Figure 9), they have a significant impact
in accurately retrieving the vital signs parameters. In Figure 8c,d, we have plotted also the
fitted circle.
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applying the DC calibration methods. (a) Spectra obtained from the retrieved respiration signals.
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Figure 9a,b show, respectively, the respiration rate and the heart rate obtained from
the signal of Figure 8. In addition, in this case, we have compared them with the relative
references. As we can see both from Table 3 and Figure 9a, all the three methods result
accurate in retrieving the respiration rates. At mmWave, the thoracic motion due to the
lungs produce a phase excursion of several radians. Therefore, even an imperfect DC
calibration yields satisfactory results. However, this is not valid when retrieving the
heartbeat which involves a phase excursion of a fraction of π. In this case, the AC coupling
results are inaccurate with respect to those achieved using the algebraic and geometric
fitting methods.

5.3. Comparison with the State-of-the-Art

In Table 4, we compared the best results of this work with the ones reported in some
reference works based on UWB architectures.
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Table 4. Comparison table.

Reference Central
Freq. (GHz)

MAE RR
(BPM)

RMSE RR
(BPM)

MAE HR
(BPM)

RMSE HR
(BPM)

[5] 8.5 2.3 1.8 n.a. n.a.
[20] 5.8 0.8 n.a. 3.1 n.a.
[36] 2.5 0.71 0.72 1.04 1.11
[37] 9.6 n.a. n.a. 5.15 n.a.

This work 7.675 0.32 0.70 1.19 2.07

[3] 61.945 1.04 n.a. 3.71 n.a.
[14] 60 0.19 n.a. 0.92 n.a.
[22] 60 n.a. n.a. 2.26 3.26
[25] 77 n.a. 0.66 n.a. 3.60

This work 62.495 0.22 0.45 2.72 3.65

6. Conclusions

In this paper, we analyzed DC offset calibration methods for remote radar-based
respiration and heart rates monitoring at two different operating frequencies. We conclude
that the linear demodulation outperforms the other methods if operating at sub-10 GHz
frequencies. In fact, we reported MAEs of 0.32 BPM and 1.19 BPM and RMSEs of 0.70 BPM
and 2.07 BPM, respectively, for the respiration rate and for the heart rate as a result of the
experimental validation performed. On the other hand, minimizing the geometric distance
provides the best results at mmWave. In this respect, we reported MAEs of 0.22 BPM and
2.72 BPM and RMSEs of 0.45 BPM and 3.65 BPM, respectively, for the respiration rate and
for the heart rate. The same considerations can be drawn from the boxplots and from the
Bland–Altman plots presented in Section 4.2. Finally, it should be noted that the geometric
fitting works well despite the frequency used.
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