
Citation: Góez, D.; Soto, P.; Latré, S.;

Gaviria, N.; Camelo, M. A

Methodology to Design Quantized

Deep Neural Networks for

Automatic Modulation Recognition.

Algorithms 2022, 15, 441. https://

doi.org/10.3390/a15120441

Academic Editors: Charalampos

Konstantopoulos and Grammati

Pantziou

Received: 19 October 2022

Accepted: 18 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Methodology to Design Quantized Deep Neural Networks
for Automatic Modulation Recognition
David Góez 1,2 , Paola Soto 1,2 , Steven Latré 1, Natalia Gaviria 2 and Miguel Camelo 1,*

1 Department of Computer Science, University of Antwerp-imec, 2000 Antwerp, Belgium
2 Department of Telecommunications Engineering, Universidad de Antioquia, Medellín 050010, Colombia
* Correspondence: miguel.camelo@uantwerpen.be

Abstract: Next-generation communication systems will face new challenges related to efficiently man-
aging the available resources, such as the radio spectrum. DL is one of the optimization approaches
to address and solve these challenges. However, there is a gap between research and industry. Most
AI models that solve communication problems cannot be implemented in current communication
devices due to their high computational capacity requirements. New approaches seek to reduce the
size of DL models through quantization techniques, changing the traditional method of operations
from a 32 (or 64) floating-point representation to a fixed point (usually small) one. However, there is
no analytical method to determine the level of quantification that can be used to obtain the best trade-
off between the reduction of computational costs and an acceptable accuracy in a specific problem.
In this work, we propose an analysis methodology to determine the degree of quantization in a DNN
model to solve the problem of AMR in a radio system. We use the Brevitas framework to build and
analyze different quantized variants of the DL architecture VGG10 adapted to the AMR problem.
The evaluation of the computational cost is performed with the FINN framework of Xilinx Research
Labs to obtain the computational inference cost. The proposed design methodology allows us to
obtain the combination of quantization bits per layer that provides an optimal trade-off between the
model performance (i.e., accuracy) and the model complexity (i.e., size) according to a set of weights
associated with each optimization objective. For example, using the proposed methodology, we
found a model architecture that reduced 75.8% of the model size compared to the non-quantized
baseline model, with a performance degradation of only 0.06%.

Keywords: automatic modulation recognition; cognitive radio; low computational cost; FPGA;
quantized neural networks; 5G; 6G

1. Introduction

Next-generation wireless communications are geared towards versatility and adapt-
ability to different radio environments and channel dynamics. CR is an enabling technology
that extends the functionality of SDR by providing the mechanism to adapt intelligently to
its environment [1].

One of the critical features of CR is DSA, which allows radios to access and use the
unused spectrum dynamically [2]. DSA involves several tasks that a radio should execute to
improve its performance automatically. Among these tasks, AMR is one of the most studied
in the literature [1,3,4]. One of the main challenges in AMR is to classify a received signal
into a modulation type without (or with limited) prior information about the transmitted
signal under dynamic channel conditions [5].

Traditionally, AMR has been mainly tackled via LB and expert FB methods combined
with pattern recognition methods [6]. While LB methods find optimal solutions by mini-
mizing the probability of false classification at the cost of high computational complexity,
FB methods have lower complexity, and their performance is (near-)optimal when appro-
priately designed. However, these features are usually chosen by an expert and are based

Algorithms 2022, 15, 441. https://doi.org/10.3390/a15120441 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120441
https://doi.org/10.3390/a15120441
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7658-0994
https://orcid.org/0000-0001-5906-6424
https://orcid.org/0000-0001-8152-7143
https://doi.org/10.3390/a15120441
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120441?type=check_update&version=2

Algorithms 2022, 15, 441 2 of 21

on a specific set of assumptions that are typically unrealistic [5]. In recent years, some
limitations of such techniques have been solved by applying DL techniques such as DNN,
which allow both automatically extracting the relevant features from raw time-series data
and performing the classification task [7] on the extracted features.

More recently, several approaches based on DL have been proposed to solve the
AMR task using raw time, frequency, and time-frequency data, outperforming traditional
methods [5,7–9]. However, the primary assumption when using such models is the
availability to train and run such models on high-end computational devices with hardware
accelerators [10,11]. While this can be acceptable on traditional deployments where the
radio is co-allocated with dedicated high-end servers, this is not the case for new approaches
such as the desegregated RAN [12] for private deployments in dense environments. In such
cases, DL models trained in the cloud/core network will not be able to run on the DU or RU
of such desegregated RAN, since such components are intended to run at the edge or far
edge, where computational resources are constrained and shared. Therefore, there is a clear
need to adapt models trained in high-end devices such that they can run on constrained
ones by trading performance (e.g., classification accuracy) against model complexity (e.g.,
model size) [13].

Recently, several frameworks and tools have been proposed to decrease the computa-
tional complexity of DNN using techniques such as quantization. Quantization reduces the
models’ size by truncating the value of parameters such as inputs, activations, and weights.
This truncation is achieved by moving from floating-point precision (e.g., 32 or 64 bits)
representation of such parameters to a more straightforward and reduced representation
using fewer bits as integers (e.g., 2, 4, and 8 bits). The main computational argument for
quantization is that quantized weights and activations occupy much less memory space
while trading-off model performance. The resulting quantized model can be housed en-
tirely in the FPGA of the SDR device, allowing signal processing tasks, including DL-based
ones, to be performed close to the radio. In addition, power consumption is reduced due to
the simplification of the process by not having to work with floating-point modules [14].

The available literature on how to design, implement, and evaluate the performance
of quantized DL for AMR is very limited [13,15]. Most of these works focus on the perfor-
mance of the proposed DL model when all layers are quantized with the same quantization
value. As a result, there are no methodologies or guidelines to design quantized DL models
where the designer can trade-off both main optimization objectives, the models’ perfor-
mance (e.g., accuracy) against the model complexity (e.g., model size). This trade-off is
fundamental since different computational environments will provide different computing
capabilities, and it is up to the designer to find a balance between both objectives.

In this paper, we propose a methodology based on statistical analysis and its related
algorithms to determine the degree of quantization that is required to achieve a given trade-off
between model performance and model complexity and, without loss of generality, we validate
the proposed approach in a well-known DNN architecture that has been used for AMR. To
the best of the authors’ knowledge, this is the first work that proposes a methodology that
allows the design of quantized DL models for AMR with a given trade-off between accuracy
and model complexity. The main contributions of this paper are twofold:

1. We determine the strength of the relationship between the trainable parameters
of a DNN architecture and objectives such as model performance (i.e., accuracy) and
inference cost (related to model size).

2. We provide a method of analysis to determine the degree of quantification that is
required in each layer to achieve the desired trade-off between both objectives.

The rest of the paper is organized as follows. Section 2 introduces some terminology
and background related to quantization in DNN. Section 3 presents the related work on
quantized and non-quantized DNN for AMR. Section 4 shows the experimental method-
ology used to determine the relationship between the parameters quantified in the DL
model and the optimization objectives to trade-off. Section 5 presents the experimental
analysis of the effect of inputs, activation, and quantified weights on the performance

Algorithms 2022, 15, 441 3 of 21

and size of a well-known DL model (VGG10 1D-CNN) that has been used for AMR using
the methodology proposed in the previous section. In addition, we present the related
algorithms that support the methodology and can find model architectures that trade-off
the optimization objectives. Finally, Section 6 concludes the paper and outlines future work
in this research.

2. Background

Hardware accelerators have been a topic of interest in recent years, especially with the
possibility of designing DL architectures that can be implemented on these devices. In the
field of communications, the interest is mainly focused on the possibility of deploying
DL algorithms as close as possible to the radio. For example, Figure 1 shows an SDR
radio system’s schematic with different processing stages in which an FPGA is used as a
hardware accelerator.

Figure 1. General scheme of an SDR device. Two general stages are identified, the first is the RF-front-
end, and the second is the baseband processing stage. FPGA is the closest hardware accelerator to the
RF-front-end; it is here where DL algorithms can be downloaded to fulfill specific CR tasks. Taken
from [16].

The FPGA is flexible enough to accommodate different DL models due to its repro-
grammable architecture; that is, the FPGA can be reprogrammed according to the problem
to be solved. However, the available computing resources on an FPGA are limited, and,
therefore, DL algorithms have to be designed with those constraints in mind. More precisely,
the traditional approach of training DL models on the cloud and directly deploying them
on the radio is not suitable anymore. The main reason is that DL models are large, i.e., they
usually contain millions of single-precision (FLOAT32) or double-precision (FLOAT64)
floating-point trainable parameters and use a large amount of training data to achieve
high performance in terms of accuracy. In order to remove such limitation, it is necessary
to adapt such large DL models so that they can be deployed on the resource-constrained
FPGA to perform the inference.

2.1. Quantization

Quantization is a mapping operation between a real value r and an integer value.
Quantization reduces the numerical precision of a value in bit-width, or what is the same,
to reduce the number of bits used to represent a number. In the case of CNN, reducing the
bit-width representation in inputs, activations, and weights results in a model that requires
less memory space. In symmetric quantization, Equation (1) defines the clip range in which
the real value is mapped to the integer value using q-bit quantization.

(−s,+s) = (−2q−1 + 1, 2q−1 − 1) (1)

Once the limits of the clipping range are defined, the second step is to map the full-scale
range of floating-point values to a range of integer format values by defining a threshold,
as indicated in Equation (2). Then, positive values of the input are mapped to positive
values of the integer representation.

Algorithms 2022, 15, 441 4 of 21

INTthreshold =

{
+s if rValue > 0
−s if rValue < 0

(2)

Then, scale of the quantization is defined as shown in Equation (3), where Valuerange =
[rmax, rmin].

Scale =
Valuerange

INTthreshold
(3)

Finally, the quantified value is as follows:

rINT =
rFLOAT
Scale

(4)

2.2. Quantization Frameworks

The two most common frameworks that already provide functionalities to quantize for
quantizing DL models are Tensorflow and Pytorch. These frameworks aim to quantize DL
models that can run on resource-constrained CPU- or GPU-based hardware. However, these
frameworks do not support FPGA-type hardware accelerators. On the other hand, Brevitas
is a new Pytorch library for designing QNN models with different extraction levels that can
be deployed to Xilinx FPGA via the experimental framework FINN [14]. Table 1 shows the
currently most widely used quantization frameworks and the hardware they support.

Table 1. The table above gives us a general idea of the frameworks for quantized neural networks.

Frameworks Technique Supported Hardware

TensorFlow
Quantization

Post-training float16 quantization
Post-training dynamic range quantization
Post-training integer quantization
Quantization-aware training

CPU, GPU
CPU, GPU (Android)
CPU, GPU (Android), EdgeTPU, Hexagon DSP
CPU, GPU (Android), EdgeTPU, Hexagon DSP

Pytorch
Quantization

Dynamic/weight only quantization
Static quantization
Dynamic quantization

x86 CPUs with AVX2 support or higher.
ARM CPUs (mobile/embedded devices)
NVidia GPU –> TensorRT through fx2trt.

PyTorch
Brevitas

Quantization-aware training
- Integer quantization
- Binary quantization
- Ternary quantization

FINN –> Xilinx FPGA

Since the interest of our work is oriented to build DL models that can be run on devices
with limited computing resources such as FPGA, we focus on the Brevitas framework as
it is the only framework that allows the design, development, and execution of QNN in
FPGA [14,17–20]. Figure 2 shows the workflow followed by Brevitas, where:

1. The model is developed and trained using Brevitas since it allows designing QNNs
with different quantization levels oriented to their deployment in FPGAs. One dis-
tinguishing factor of Brevitas is its ability to allow input features to be quantized.
Quantizing the input features is an aspect to consider since it is a feature that is
not implemented in other frameworks and provides one more source of additional
reduction that counts a lot in very constraineddevices such as the FPGA.

2. Once the model is trained, it is exported using the ONNX standard. ONNX enables
DL models to be transformed into a portable format. This preliminary step is carried
out to bring the DL model to specific hardware.

3. Once the model is in a standard format, it can be translated into the FPGA logic by
FINN, using the Finn-hlslib Vivado HLS FPGA library.

Algorithms 2022, 15, 441 5 of 21

Figure 2. Workflow from Brevitas to the FPGA.

3. Related Work

AMR is a field of interest in CR and intelligent communication systems [21]. The possi-
bilities offered by detecting and identifying modulations are extensive in resource manage-
ment, shared spectrum, and security. Therefore, it is not a new topic, and classic methods
such as LB and FB on distribution tests perform the detection with an acceptable degree
of certainty [3]. However, many researchers have been interested in improving the results
obtained with classical methods using AI. Research on DL applications has been promoted
in all phases of the end-to-end communication model.

3.1. AMR

Numerous works have investigated DL architectures that seek to improve the ability
to detect and classify modulations compared to traditional methods such as LB and FB [6].
DNN-based classifiers have overcome the performance of traditional methods and methods
based on statistical ML [5]. Moreover, DNN [22], i.e., ANN with more than one layer be-
tween the input and the output layers, have shown the best performance without explicitly
requiring an FB method to extract the features of the radio signal [5,7–9]. DNN architectures
can perform both the feature extraction and the classification of the radio signals using
a unique ANN. Authors in [5] showed that a DNN based on a CNN outperformed several
expert FB methods using different classifiers. CNNs are ANNs that use convolution in
place of general matrix multiplication in at least one of their layers [22]. The CNN achieved
a rough accuracy of 87% across all the 11 types of modulated radio signals and SNR in the
test dataset, and using only raw I/Q samples of modulated radio signals as input. Similarly,
Shengliang et al. [8] proposed a CNN classifier for images generated after data conversion
from raw I/Q samples to gray images. Again, improvements and better classification
accuracy were achieved over cumulant and ML-based AMR algorithms.

The authors of [23] proposed a CNN architecture trained on the DeepSig dataset
named RadioML Dataset 2018.01A, which has 24 modulation classes. The results indicated
that the classification accuracy improves in the range of SNR from −4 dB to 20 dB. In [24],
the authors proposed a method that uses I/Q samples to form images with the “Stockwell
discrete orthonormal transform”. Another technique is to perform transformations on the
input I/Q samples to find other types of characteristics of the signal. Furthermore, it is
possible to combine models trained on different datasets for better performance, such as
in [25], where two models from CNN were integrated into a single general model that
allows more accurate classification of different modulations. However, this method is not
computationally cheap since it does not use dimensionality reduction methods.

Instead of using CNN, authors in [26] proposed a DL architecture based on ENN for
AMR in multipath fading channels. The proposed DNN is based on the natural logarithmic
energy model. The proposed ENN uses three smaller DNNs, each trained to recognize the
radio signal’s amplitude, phase, and frequency. The results showed that the proposed ENN
has a higher probability of correct classification than traditional algorithms for classifying
modulations within the same training sequence and SNR. In [27], a CNN and an LSTM were
combined to create an HDMF. A DL-based AMR method employing SCF was introduced.
In the proposed method, a DBN is applied for pattern recognition and classification with
high accuracy, even in the presence of environmental noise. Recently, works such as [28–30]
addressed the problem of AMR based on the design and implementation of new AI
architectures with improved performance.

Algorithms 2022, 15, 441 6 of 21

Other approaches focus on the preprocessing of the input signal, which allows high-
lighting features that would otherwise not be observed, reduced, or extracted. For example,
using different input types, an SAE was evaluated in [31]. The I/Q samples, the centroids
of the constellation points, obtained using a fuzzy C-means algorithm, and the high-order
cumulants of the received samples were used as training inputs. Each autoencoder layer
was trained using unsupervised learning followed by a softmax classifier. The results
showed that the accuracy of the proposed architecture outperformed AMR methods using
an LB classifier, cumulant-based genetic programming in combination with KNN clas-
sifiers, and DNN using cumulants and instantaneous PSD as the features. Finally, the
authors in [32] proposed an alternative approach to extract relevant features for AMR in
the preprocessing phase. The authors used a GNN for AMR. However, since the GNN is
function-based, while the input signal is a signal in the time domain, a CNN is needed to
extract the functions and build the graphs for the GNN.

3.2. AMR with Low Computational Cost

Although the results of modulation detection and classification using the DL tech-
niques presented above are promising, integrating these kinds of algorithms at the radio
side to perform the task in real time requires high-end devices due to the high computa-
tional cost [10,11]. This computational cost comes from the many floating-point operations
that must be performed while performing inference. As a solution, compressing the DL
models has the advantage of reducing the number of floating-point operations and, in some
cases, replacing them with fixed-point functions to trade-off the accuracy/performance
of the model against its complexity, i.e., its computational cost.

The main advantage of compressing DL models is that it allows their deployment on
resource-constrained devices while increasing processing speed and improving energy efficiency.
In the case of new-generation communications such as 5G-NR, DL algorithms running on DU
(e.g., an INTEL NUC or an NVIDIA Jetson) or at the RU (e.g., an SDR), will need to be
compressed to guarantee real-time operation on constrained devices such as the ones deployed
at the edge or far-edge. These devices are at the other end of capabilities compared to the
cloud/core network, where, traditionally, DL models are trained and run for other AI tasks.

To reduce the model’s complexity, two well-known approaches are used to compress
DL models: the first is based on network pruning techniques, and the second is based on the
quantization of the input parameters of the network. Although they are entirely different
techniques, they can be used individually or in combination on the same model to improve
results. Pruning is the process that searches and identifies the weights of connections
among neurons in DL models [33] that are redundant or are not needed such that the drop
in accuracy is minimal when they are eliminated [23].

Reducing computational cost through quantization is an entirely different process
than pruning since it replaces floating-point operations with fixed-point operations. With
this approach, the authors of [13] proposed a QNN model for AMR. The quantized model
achieved a classification accuracy of 75% with a signal-to-noise ratio SNR of 10 dB, similar
to an unquantized model. In [15], a more versatile approach was followed. The authors
suggested combining pruning and quantization techniques to reduce the model size further.
The authors used different quantization levels and found no suitable combination, as
the results indicated that the accuracy degraded considerably. As a solution, the authors
applied pruningtechniques to the quantized model. The results showed a reduced inference
cost with a limited drop in accuracy.

While the literature on DL models for AMR is extensive, this is not the case for
compression methods that allow such models to run on constrained devices such as those
found at the edge or far edge. In addition, the few works that provide evaluation results on
compressed models for AMR focus on the performance of a single model with all layers
quantized with the same quantization value. Having the same quantization level for all the
model’s layers limits the application of such results since they do not provide insight about
how to design the model so that we can trade-off the accuracy and model size.

Algorithms 2022, 15, 441 7 of 21

4. Design Methodology for Quantization Selection

As seen in previous sections, robust DL models are typically used.Nevertheless, due to
the size/complexity of such models, signal processing must be performed in machines with
high computational power, which is not the characteristic of the devices composing the
radio access, edge, or far-edge networks. In Section 2, we saw how quantization helps to
reduce the computational cost of implementing a robust DL model; however, in Section 3,
we showed that only few works focus on quantization of DL models for radio signals.
Moreover, we could verify that there is no general approach or methodology that guides
researchers and radio practitioners in selecting the degree of quantization of a model DL to
achieve a desired trade-off level between performance and the model’s complexity.

To start the description of the proposed methodology, let us consider an experiment
with three design factors, where each element has three possible levels. Then, using
a complete factorial design, we would need to run the same experiment 33 − 1 = 26 times
to determine which design factor impacts the response variable (i.e., the outcome) the most.
Translating this small example to the field of DL model quantization, if we have three
quantifiable parameters (e.g., the input, the activation layers, and the weights), each in
the range of 1 to 32 bits, it gives 323 − 1 = 32, 767 possible combinations. Evaluating the
impact of each parameter’s quantization level regarding the accuracy and inference cost is
prohibitively time- and resource-consuming.

Based on a fractional factorial design [34], our methodology allows reducing the num-
ber of experiments concerning quantifiable parameters. We divide the methodology into
four stages. After each stage, we measure the trade-off between the model’s performance
metric (e.g., accuracy) and its inference cost (e.g., space in memory, number of operations)
regarding the unquantized model. It is worth mentioning that it is possible to include
a preprocessing of the input signals to reduce their size before applying this methodology,
such as dimensionality-reduction methods or averaged filters. Figure 3 illustrates a detailed
block diagram of the developed methodology.

Data pre-processing

- Select a subset of quantization levels

- Evaluate all possible combinations in the subset use

Spearman to identify most important parameter

Screening1

-Vary the quantization level of a given layer while keeping

the quantization level of non-dominant parameters and

the remaining layers the same.

Layered

Evaluation

- Calculate mean, median and quartiles of cumulated data.

- Calculate Spearman Coefficient, map to quantization level

Data dispersion

and Spearman

mapping

STOP

Is the trade-

off met?

Is the

trade-off

met?

No

- Select the quantization level, using Eq. 6

- Optionally, use weighted sum of variables to compute

final quantization level.

Decision

Yes

Yes

0

2

3

4

Yes

Figure 3. Proposed methodology based on fractional factorial design.

During the first stage, we identify the dominant parameter in the quantization. To
perform this, we select a subset of representative levels and evaluate all the possible
combinations over that subset (i.e., screening). That evaluation is made regarding the
model accuracy and the NICS (i.e., the outputs). Accuracy is the ratio between the number
of correct and the total number of predictions in all classes. The NICS calculation is obtained
by comparing the weight bits, total activation bits, and BOPS against the reference model,
as described in Equation (5).

Algorithms 2022, 15, 441 8 of 21

NICS = 0.5 ∗ (bops/bopsbaseline) + 0.5 ∗ (wbits/wbits_baseline) (5)

where bops and bopsbaseline are the BOPS of the evaluated (quantized) and the reference
(non-quantized) model, respectively. Similarly, wbits and wbits_baseline are the total bits used
by the weights in the evaluated and the reference models, respectively.

Note that previous information can help refine the selection of subsets. For in-
stance, [35,36] showed that an 8-bit quantized CNN model achieves an accuracy close
to that of an unquantized model for AMR. Then, a reduced subset of quantization levels
can be used (i.e., from 1- to 8-bit quantization).

Once we obtain the performance and the inference cost for each combination of the subset,
we apply Spearman’s correlation coefficient (see Equation (6)) to identify which quantized
parameter (i.e., input, activations, and weights) has the highest impact on the output, i.e., the
dominant parameter. We use Spearman’s correlation, where n is the number of observations
and D is the variable of interest, since it allows for correlation variables that bear a nonlinear
relationship. If, during the screening, a combination that meets the expected trade-off is found,
e.g., by creating the Pareto front using the resulting accuracy and NICS metrics from the
quantized models, then we can conclude our search. Otherwise, we can move to the second
stage. Algorithm 1 shows the pseudocode of the first stage. Notice that the resulting accuracy
and NICS metrics from the quantized models are returned in variable E in Algorithm 1.

ρ = 1−
6 ∑n

i=1 D2
i

n(n2 − 1)
(6)

Algorithm 1 Screening: Detection of relevant parameters.

Require: I/Q samples data set DS.
Require: DNN model M.
Require: Set I with different number of bits to quantize the input parameter.
Require: Set a with different number of bits to quantize the activation function parameter

on all layers.
Require: Set W with different number of bits to quantize the weight parameter on all

layers.
1: Initialize set E of experiments
2: for i ∈ I do
3: Quantize M’s input with i bits
4: for a ∈ A do
5: Quantize M’s activation functions with a bits
6: for w ∈W do
7: Quantize M’s weights with w bits
8: Apply quantize-aware training to M and use dataset DS
9: Accuracy{i, a, w} ← Calculate accuracy of M

10: NICS{i, a, w} ← Calculate NICS of M
11: Experiment{i, a, w} ← [NICS{i, a, w}, Accuracy{i, a, w}]
12: E = E ∩ Experiment{i, a, w}
13: end for
14: end for
15: end for
16: Calculate Spearman’s correlation analysis on E
17: Return E and the parameter with higher correlation with respect to accuracy and NICS

Since modern DL models are composed of several layers, if the dominant parameters
are activation or weights, we can evaluate in a layered way which layer has the highest
effect on the trade-off (stage 2). Notice that the weights are more likely to significantly
impact the accuracy and inference cost outputs compared to activations and inputs since
there are more hidden units and connections among them than layers.

Algorithms 2022, 15, 441 9 of 21

During the second stage, we measure the degree of quantization per layer required
to meet a given trade-off. Notice that if the input is the parameter that most impacts the
outputs, then the second stage is the same, but the only layer to alter is the input one.
A good starting point is to take the same quantization subset as in stage one. In this stage,
we vary the quantization level of a given layer while keeping the quantization level of the
non-dominant parameters and the remaining layers the same.

Compared to previous works such as [13,15], our second stage differs from them since
they typically apply the same quantization level to all the model’s layers. Suppose the
trade-off between the model performance metric and the inference cost is met, then we
conclude our search by obtaining an architecture in which we have identified which layer
of the model has the highest impact. Otherwise, we can continue with the third stage.
Algorithm 2 summarizes the procedure to analyze the effect of the quantization level in
each layer of a DNN independently, assuming the weight parameter has the most impact
in the output (from Algorithm 1).

Algorithm 2 Stage 2: Layered evaluation for weights.

Require: I/Q samples data set DS.
Require: DNN model M.
Require: Set L with the layers of M to be quantized.
Require: Fixed number of bits i to quantize the input parameter.
Require: Fixed number of bits a to quantize the activation function parameter on all layers.
Require: Set W with different number of bits to quantize the weight parameter.

1: Initialize set E of experiments
2: for l ∈ L do
3: Quantize M’s input with i bits
4: Quantize M’s activation functions with a bits
5: for w ∈W do
6: for p ∈ L ∧ p 6= l do
7: Quantize layer p of model M with max[W] bits
8: end for
9: Quantize layer l of model M with w bits

10: Apply quantize-aware training to M and use dataset DS
11: Accuracy{l, w} ← Calculate accuracy of M
12: NICS{l, w} ← Calculate NICS of M
13: Experiment{l, w} ← [NICS{l, w}, Accuracy{l, w}]
14: E = E ∩ Experiment{l, w}
15: end for
16: end for
17: Return E

So far, we have analyzed the impact of only one layer in the trade-off. However, we
may obtain a better model’s configuration by quantizing different layers using different
quantization levels. Using the results from the previous stage, we analyze the data disper-
sion using the mean, the median, and the main quartiles per layer, per variable of interest
(i.e., model performance metric and inference cost). At this point, the layer with higher
dispersion is the layer that influences the trade-off the most. This allows us to analyze the
behavior of each layer, but we still need to determine its level of quantization. To answer
this question, we must correlate the information using Spearman. Since the Spearman’s
correlation ranges from 1 to −1, we can obtain an equivalent scale for the quantization
level. During the search, we identify the quantization level that, in general terms, offers
a better trade-off. This quantization level is regarded as the highest Spearman’s correlation
coefficient. Then, it is possible to obtain the quantization level and the direction, e.g., a 1 as
correlation coefficient means that the layer must be quantized at the highest quantization
level possible. In contrast, a −1 as correlation coefficient means that the layer must be
quantized with the lowest level possible.

Algorithms 2022, 15, 441 10 of 21

In the last stage (stage four), we can select the level of quantization that every model
layer should have. Thus, having the Spearman’s correlation results per layer, we map
the correlation coefficient with the quantization level as described above and following
Equation (7), where M is the median, and D is the variable of interest. If there is more than
one variable of interest, Equation (7) should be applied per variable, and the quantization
level of each model layer can be selected as a weighted sum of the quantization levels per
variable of interest. In this way, the experimenter can choose which variable of interest to
care for the most. In Section 5, we derive a detailed procedure to realize stages 3 and 4 with
a concrete set of experimental results on a well-known DNN architecture for AMR.

quantizationlayer =

4 + (4∗M)+4
2 if ρ > 1− 6 ∑n

i=1 D2
i

n(n2−1)

−4 + (4∗M)+4
2 Otherwise

(7)

5. Analysis and Results

In this section, we apply the methodology proposed in Section 4 to a model for solving
the AMR problem. In AMR, a model tries to automatically detect the type of modulation
used by a received radio signal. One of the most prominent DL models for solving AMR
is proposed by O’Shea et al. in [37], where they adopt the well-known VGG10 1D-CNN
model [38] from classifying images to classifying modulations. This DL model is composed
of 18 layers (one input layer, seven convolutional layers, seven pooling layers, and three
fully connected layers) and was trained using the RadioML 2018.01A dataset, also proposed
by O’Shea et al. [37]. The dataset includes synthetic, simulated channel effects and over-
the-air recordings of twenty-four analog and digital modulation types.

By default, the VGG10 1D-CNN model is not quantized. By applying the proposed
methodology, we expect to maintain the accuracy achieved by the unquantized model
but at a much lower computation cost. For completion purposes, we also quantized the
original model’s layers at 8 bits. All models described here (quantized and not quantized)
were trained and tested using only 10% of the dataset. Notice that although depicted in the
methodology (see Figure 3), we did not preprocess the dataset. The evaluation of all the
resulting models was made in terms of accuracy and the NICS. In the following, we show
the results obtained at each stage of the methodology.

5.1. Stage 1: Screening, Analyzing the Effect of Quantizing Inputs, Activations, and Weights
Reference Model

The first step in the methodology is to select the subset of quantization levels to be
considered for the screening. From the literature review, we noticed that an 8-bit quantized
CNN model achieves an accuracy close to that of an unquantized model. Therefore, our
subset of quantization levels starts at eight. Moreover, instead of considering the full range
of quantized values, which is from 1 to 8, we use a subset of that range. As a result, we
consider only quantization at {2, 3, 4, 5, 6, and 8} bits. Secondly, we quantized the input
layer (i), the layers that include an activation (a), and the layers that include weights (w),
using each of the defined quantization levels.

Figure 4 shows the solutions represented by their degree of quantization in aquama-
rine color. Notice that we intentionally do not discriminate between the quantization levels.
Following this figure, it is possible to select one of the quantization options quickly; the
choice will depend on how much accuracy we are willing to sacrifice in search of a lower
inference cost. In this case, performing a Pareto optimal analysis can identify the quan-
tizations with the best solutions so far. For example, the configuration (i2, a2, w2), the
one located at the bottom-left corner in which all layers (input, activations, and weights)
are quantized at 2 bits, shows the lowest inference cost equivalent to a 99.4% reduction.
Nevertheless, this solution also offers the lowest classification accuracy with a drop in
accuracy to 29.3%. On the contrary, the benchmark quantization (i8, a8, w8), in the upper
right corner, shows the highest accuracy, which is similar to that of the unquantized model,

Algorithms 2022, 15, 441 11 of 21

but with a higher inference cost. However, it is possible to find a middle ground that allows
for a sound inference cost reduction and acceptable accuracy.

For instance, when applying the configuration (i2, a4, w4), the accuracy drop is only
about 1.2% regarding the highest. Moreover, the inference cost is reduced by 73.2%. Besides
the good results regarding the quantization objective (i.e., good accuracy at lower inference
cost), this last configuration also shows us that each quantized parameter (input, activations,
and weights) has an independent effect on the accuracy and the inference cost. Therefore,
we can analyze the impact of each layer in the second stage of the process.

��� ��� ��� ��� ��� ���

��������������������������������������

����

����

����

����

����

����

����

����

�
�
�
�
��
�
�

���������������������������

���������������

���������������

���������������

���������������

���������������

���������������

����������������������������������

i2, a4, w4

i2, a2, w2

i8,a8,w8

Figure 4. Effect of quantization in the VGG10 1D-CNN architecture regarding the accuracy and
inference cost. Inputs, activations, and weights are quantized in a range of 2 to 8 bits in the first stage
(in aquamarine). Points in different colors represent the degree of quantization in the weights (see the
second-stage methodology). In blue, the points with the best solutions obtained thus far with the
Pareto front are highlighted.

Using the results, we compute Spearman’s correlation coefficient to identify the param-
eter that most influences the trade-off. Table 2 shows the dependency between quantized
parameters and their effects on NICS and accuracy. Quantizing the input, which corresponds
to the I/Q signal used to train the model, does not significantly affect accuracy. For instance,
the correlation coefficient has values of 0.295 and 0.275, corresponding to NICS and accuracy,
respectively, representing low dependency,where the highest correlation coefficient is one.
Regarding activations, the correlation shows that they have a mid-strong relationship with
accuracy, higher than NICS. This means that quantizing the activations impacts the accuracy
(e.g., does not heavily reduce the accuracy) but barely affects the inference cost. On the
contrary, quantizing the weights correlates strongly with NICS and, to a lesser extent, with
accuracy. With a correlation of 0.955, it is clear that the parameters that, when quantified, have
the most significant impact in reducing inference cost are the weights. Moreover, it can also
be seen that the accuracy is barely affected, having a value of 0.790, which is considered to be
high. This indicates that we can quantize the weights to obtain similar accuracy at a reduced
inference cost regarding the reference model.

Table 2. Degree of correlation between the quantified parameters (input, activations, weights) and
the total BOPS, accuracy, and NICS. The weight is the parameter with the highest correlation.

Total BOPS NICS Accuracy

Input 0.351 0.295 0.275
Activations 0.470 0.336 0.442
Weights 0.893 0.955 0.790

Algorithms 2022, 15, 441 12 of 21

5.2. Stage 2: Layered Evaluation, Analyzing the Impact of Quantization per Layer

In this experiment, we independently quantized the weights of each layer over a range
of 2 to 8 bits. Contrary to the previous stage, we used the full range in quantization bits.
The quantization of inputs, activations, and non-considered layers was set to 8 bits. This
was due to the results observed in the previous section, where it was shown that quantifying
these two parameters does not strongly affect the inference cost and classification accuracy.
An example of how this stage was carried out is shown in Table 3, where a particular layer
is quantized at 2 bits, keeping the remaining layers quantized at 8 bits. As can be inferred,
for the VGG10 1D-CNN, we executed ten runs per quantization level.

Table 3. Example of quantization in each layer independently; in this case, the inputs and activations
were statically set to a given value (e.g., 8 bits) while the quantization values of the weights were
varied in each run at a given layer (e.g., 2 bits).

VG10 1D CNN
Run

1 2 3 4 5 6 7 8 9 10

Conv 1 (CNN L1) 2 8 8 8 8 8 8 8 8 8
Conv 2 (CNN L2) 8 2 8 8 8 8 8 8 8 8
Conv 3 (CNN L3) 8 8 2 8 8 8 8 8 8 8
Conv 4 (CNN L4) 8 8 8 2 8 8 8 8 8 8
Conv 5 (CNN L5) 8 8 8 8 2 8 8 8 8 8
Conv 6 (CNN L6) 8 8 8 8 8 2 8 8 8 8
Conv 7 (CNN L7) 8 8 8 8 8 8 2 8 8 8
FC 1 (D1) 8 8 8 8 8 8 8 2 8 8
FC 2 (D2) 8 8 8 8 8 8 8 8 2 8
FC out (D3) 8 8 8 8 8 8 8 8 8 2

5.3. Stage 3: Data Dispersion and Spearman Mapping, Distribution of the Results by Layer

We obtained the accuracy and the inference cost for each configuration (i8, a8, w)
in which the quantized value for the weights in a given layer were varied. Then, we
analyzed the data distribution of those results, i.e., whether it was possible to define
a specific behavior that would shed light on possible alternatives for quantification by layer
discrimination. Figure 5a shows the box plot of the mean, median, and quartiles of the
results obtained in the previous stage per layer and their impact on the inference cost. The
figure shows that NICS is symmetric in the bit range used in the experiments. In this sense,
it is observed that layer two (CNN L2) has the most significant impact on the reduction
of the NICS, and to a lesser extent, layers three (CNN L3) and four (CNN L4). However, the
input layer (CNN L1) does not significantly impact the computational cost reduction when
quantified in the range of 2 to 8 bits. As for the FC layers, it is observed that the first dense
layer (D1) significantly reduces the computational cost when quantized, but the output
layer (D3) does not.

Furthermore, Figure 5a shows that each quantized layer has an exponential effect on
the computational cost reduction; this behavior is due to the max pooling filter applied to
the output of the convolutional layers. Similarly, Figure 5b shows the box plot of the results
obtained and their impact on accuracy. From the figure, we can see that the quantization
of each layer does not have a clear effect or general behavior regarding accuracy. This in-
dicates that each layer could be quantized independently to achieve good accuracy with
a lower computational cost. Nevertheless, we still need to determine the recommended
quantization level for each model layer.

Algorithms 2022, 15, 441 13 of 21

L1 L2 L3 L4 L5 L6 L7 D1 D2 D3
Layer

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

No
rm

al
ize

d
in

fe
re

nc
e

 c
os

t s
co

re

(a)

L1 L2 L3 L4 L5 L6 L7 D1 D2 D3
Layer

0.534

0.536

0.538

0.540

0.542

0.544

0.546

0.548

Ac
cu

ra
cy

(b)

Figure 5. Impact of quantization applied in the VGG10 1D-CNN architecture proposed by [37]
used in the classification of communication signals. Panel (a) shows the effect of the reduction in
computational cost observed in each CNN layer. Panel (b) shows the accuracy observed at each layer.
In this case, the red dots indicate outlier accuracy values corresponding to configurations with a high
degree of quantization.

To determine the recommended quantization level per layer, we calculated the Spear-
man’s correlation coefficient with the results obtained from the previous stage. Figure 6
shows a box plot with Spearman’s correlation. As can be observed, it is possible to measure
how strong the relationship is between each layer and the accuracy (see Figure 6a) and
the inference cost (see Figure 6b) is. Concerning the accuracy, we observe that the results
are dispersed. However, in most cases, the median of the data is above or below ρ = 0,
indicating a possible direction at the quantization level; that is, the quantization level
should be increased (ρ > 0) or decreased (ρ < 0). In the case of the inference cost, we
observe that there is no dispersion in the results. Only layers one, six, and fully connected
layer two showed minimal dispersion. However, a similar approach can be followed to
define the direction at the quantization level.

Algorithms 2022, 15, 441 14 of 21

L1 L2 L3 L4 L5 L6 L7 D1 D2 D3
Layer

0.4

0.2

0.0

0.2

0.4

Sp
ea

rm
an

 c
oe

ffi
cie

nt
 c

or
re

la
tio

n

(a)

L1 L2 L3 L4 L5 L6 L7 D1 D2 D3
Layer

0.4

0.2

0.0

0.2

0.4

Sp
ea

rm
an

 c
oe

ffi
cie

nt
 c

or
re

la
tio

n

(b)

Figure 6. Spearman’s correlation per layer. Panel (a) shows the accuracy and Panel (b) shows the
NICS against each quantized CNN layer. Note that a correlation is negligible when ρ < |0.1|, low
when |0.1| < ρ <= |0.3|, medium when |0.3| < ρ <= |0.5|, and strong or high when ρ > |0.5|.

5.4. Stage 4: Selection of the Quantization Level per Layer

In the last stage of the methodology, we propose using the Spearman’s correlation
coefficient as an indicator for the degree and direction of the relationship of each layer
regarding the accuracy and inference cost. Then, since the Spearman’s correlation ranges
from 1 to −1, we map the bit quantization levels from 4 to −4 to have an equivalent scale.
This way, the highest possible quantization level (8 bits) is never exceeded. Since there are
two variables we want to control (accuracy and inference cost), we applied Equation (7)
to each of them. As a result, Equations (8) and (9) show how we define the scale to map
the quantization bits according to the sign of the ratio. Using these equations, it is possible
to determine a configuration that achieves the best compromise between accuracy and
cost of inference. In the Equations, βlayer is the bit selection from the accuracy perspective,
while δlayer is the bit selection from the inference cost perspective. SaMl and SnMl are the

Algorithms 2022, 15, 441 15 of 21

medians of the Spearman coefficient for a given layer, regarding accuracy and inference
cost, respectively (see Figure 6).

βlayer =

4 +

(
4∗SaMl

)
+4

2 if ρ > 1− 6 ∑n
i=1 Accuracy2

i
n(n2−1)

−4 +

(
4∗SaMl

)
+4

2 Otherwise
(8)

δlayer =

−4 +

(
4∗SnMl

)
+4

2 if ρ > 1− 6 ∑n
i=1 NICS2

i
n(n2−1)

4 +

(
4∗SnMl

)
+4

2 Otherwise
(9)

Then, we can select a layer-discriminated quantization level for the model using
Equation (10), which is a weighted sum that takes into account the contribution of each
variable of interest. Q is the quantization level to be applied to a given layer, while α1
and α2 represent the importance given to accuracy or inference cost, with α1 + α2 = 1.
The result is a quantization level that considers both accuracy and inference cost.

Q =
⌊

α1 ∗ βlayer + α2 ∗ δlayer

⌉
(10)

Finally, complementing the analysis methodology with Equations (8)–(10), we select
the quantization levels discriminated on each layer in the DNN. Algorithm 3 shows the
procedure’s pseudocode to perform stages three and four. We call this the LDQ algorithm.
In LDQ, we define the necessary steps to determine the degree of quantization of each
layer of a DNN for AMR. Note that the first part of the algorithm obtains the resulting
accuracy and NICS metrics from the quantized models when varying the quantized values
on each layer in Algorithm 2. Between lines 4 and 7, the solutions are mapped, grouping
them by layers, and then analyzed with Spearman’s correlation (lines 8 and 9). In lines
10 and 11, using Equations (8) and (9), the decision threshold for each layer of the DNN
is obtained. Finally, the quantification values are obtained between lines 13 and 17. Note
that in this part, the alpha parameters allow different quantification configurations to be
obtained depending on the importance assigned to them following Equation (10).

Algorithm 3 Stage 3 and 4: Layered Discriminated Quantization LDQ.

Require: Set E from Algorithm 2
Require: Set L with the layers of M to be quantized
Require: α1 ∈ range[0, 1] and α2 ∈ range[0, 1], where α1 + α2 = 1

1: for l ∈ |L| do
2: En ← []
3: Ea ← []
4: for w ∈W do
5: En = En ∩ E{l, w}[0]
6: Ea = E1 ∩ E{l, w}[1]
7: end for
8: SaMl ← Calculate Spearman’s correlation analysis on Ea
9: SnMl ← Calculate Spearman’s correlation analysis on En

10: βlayerl
= Apply Equation (8) using SaMl

11: δlayerl
= Apply Equation (9) using SnMl

12: end for
13: for j; j ++; |α1| do
14: for l ∈ |L| do
15: Q{α1[j], α2[j]}[l]← Apply Equation (10) with parameters α1 = α1[j],
16: βlayer = βlayerl

, α2 = α2[j], and δlayer = δlayerl
17: end for
18: end for
19: Return E

Algorithms 2022, 15, 441 16 of 21

5.5. Classification Evaluation

This section evaluates the configurations obtained from the layer discrimination
analysis. This exercise aims to determine a suitable model configuration with a low bit
size but that simultaneously does not compromise accuracy. Figure 7 shows, in red, the
configurations obtained following the methodology described in the previous section.
The solutions obtained with the quantizations used in the screening stage are also shown.
The figure shows the two best results when the CNN model is quantized following the
configuration c1 = [6, 2, 3, 3, 2, 6, 6, 2, 4, 4] and c2 = [6, 2, 4, 4, 2, 6, 6, 2, 4, 4]. Configuration
c1 has an accuracy of 0.541 and an inference cost of 0.210, while configuration c2 has
an accuracy of 0.550 and an inference cost of 0.241, equivalent to 78.9% and 75.8% lower
computational inference cost with respect to the non-quantized model. However, the
reduction in accuracy is only 1.74% in the former case and 0.06% in the latter compared to
the reference model. Therefore, we have shown that by independently quantizing every
layer of the model, we can achieve similar performance to the reference model but at much
lower computational cost.

��� ��� ��� ��� ��� ���

��������������������������������������

����

����

����

����

����

����

����

����

�
�
�
�
��
�
�

���������������������

���������������

���������������

���������������

���������������

���������������

���������������

���������������������������

�������������

Figure 7. Configurations obtained following the proposed methodology (in red). The solutions
obtained in previous phases are also shown. Notice that by varying α1 and α2, different configurations
can be obtained that were not found in the initial experimentation analyzed with the Pareto optimum.

To verify this result, we compare the modulation classification accuracy of a configura-
tion given by the methodology against the 8- and 10-bit quantized reference model. Since
8-bit quantization values were used as the basis for experimental quantization, we defined
a reference model whose values were above any other test settings and could be used as
a benchmark. Figure 8 shows the accuracy of the original model (not quantized), the 8- and
10-bit quantized model, and configuration c2. Notice that all the layers are quantized at 8
and 10 bits in their respective versions. As we can see, the accuracy of all models is similar
across different SNR values. As expected, the inference cost in Figure 9 is much lower in
the quantized models than in the original model. In addition, a significant difference is
observed in the solution found by using the methodology proposed in this paper.

Algorithms 2022, 15, 441 17 of 21

−20 −10 0 10 20 30
SNR [dB]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
as

sif
ica

tio
n

Ac
cu

ra
cy

Our work
VGG10 (8)
VGG10 original
VGG10 (10)

Figure 8. Modulation classification accuracy of the original (unquantized) model and the quantized
versions with different SNR values.

 VGG10 original VGG10 (8) VGG10 (10) Our work
0

1

2

3

4

5

6

7

8

No
rm

al
ize

d
in

fe
re

nc
e

co
st

 sc
or

e

NICS

Figure 9. Comparison of the quantized VGG10 1D-CNN model versus the non-quantized.

6. Conclusions and Future Work

New-generation communications are geared toward coverage, service quality, and
greater bandwidth with better use of available resources. In this sense, AI and parallel
processing are tools that are called to support this type of task in modern radio systems.
However, implementing DL algorithms in hardware is a non-trivial task due to the reduced
ability to support large models. This has created a gap between research on intelligent
communication algorithms and the implementation of such algorithms in radios. To close
this gap, quantization is a technique that reduces the computational cost (e.g., model size in
memory, number of operations, among others) of DL models, so that they can be deployed
in devices with limited computational resources such as FPGA.

However, most of the proposed quantization methods for DL models apply the same
quantization level to all the trainable parameters in the model, including inputs, activations,
and weights. On the contrary, this article proposes a methodology to analyze the impact
on accuracy against the inference cost of a quantized DNN model. Then, depending on
the quantization level, a similar accuracy to the non-quantized model can be achieved
at a much-reduced inference cost. Furthermore, our findings show that it is convenient

Algorithms 2022, 15, 441 18 of 21

to quantize the layers independently, as each layer has a different effect on inference cost
and accuracy. In this sense, we showed that by independently quantizing the model layers
according to the level of compromise in the model’s performance, an accuracy close to that
obtained with the same model without quantization could be obtained.

In future work, we want to use our methodology to find the appropriate quantiza-
tion level using other DNN architectures for AMR. In addition, the combination of our
method with other quantization techniques or in combination with pruning remains to
be addressed, which could provide an even more significant reduction in the inference
cost and validation to the generality of the proposed approach. We will also validate our
methodology with other DL architectures solving the same problem and DL architectures
used to solve other related problems at the radio receiver side that will benefit from ob-
taining low-computational-cost models. Finally, we will complement our experimental
results with performance evaluations of some of the resulting models as a part of a wire-
less communication system running on an FPGA. This is fundamental to provide further
quantitative results of the trade-off between model accuracy and other metrics related to
the model size, such as energy consumption and processing speed.

Author Contributions: Conceptualization, all authors; methodology, D.G. and M.C.; validation, D.G.;
software, D.G.; writing—original draft preparation, D.G., M.C., P.S.; writing—review and editing, all
authors; supervision, S.L., N.G., M.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by the European Union’s Horizon 2020 research and
innovation program under Grant Agreement No. 101017109 (DAEMON), and by the Colombian
Ministry of Science Technology and Innovation (Minciencias) and the Communications Regulation
Commission (CRC), under the contract CT 80740-035-2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. The data set was
obtained from Deepsig Inc. and is available at https://opendata.deepsig.io/datasets/2018.01/2018.0
1.OSC.0001_1024x2M.h5.tar.gz (accessed on 18 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
ML Machine learning
CNN Convolutional neural network
FC Fully connected layers
5G Fifth-generation technology standard for broadband cellular networks
5G-NR 5G new radio
SDR Software-defined radio
ISM Industrial, scientific, and medical
ANN Artificial neural network
GNN Graph neural network
SNR Signal-to-noise ratio
BW Bandwidth
AWGN Additive white Gaussian noise
DL Deep learning
NUC Next unit of computing
RU Radio unit
DU Distributed unit

https://opendata.deepsig.io/datasets/2018.01/2018.01.OSC.0001_1024x2M.h5.tar.gz
https://opendata.deepsig.io/datasets/2018.01/2018.01.OSC.0001_1024x2M.h5.tar.gz

Algorithms 2022, 15, 441 19 of 21

USRP Universal software radio peripheral
ReLU Rectified linear unit
DNN Deep neural network
FPGA Field-programmable gate array
I/Q In-phase and quadrature components
ENN Extensible neural networks
DBN Deep belief networks
ENN Extensible neural networks
PSD Power spectral density
KNN K-nearest neighbors
HDMF Heterogeneous deep model fusion
BOPS Bit Operations
LSTM Long short-term memory
SCF Spectral correlation function
DBN Deep belief network
SAE Sparse autoencoder
CR Cognitive radio
RAN Radio access networks
QNN Quantized neural network
QCNN Quantized convolutional neural network
NICS Normalized inference cost score
FLOPs Floating-point operations per second
FINN Experimental Framework from Xilinx Research Labs
AMR Automatic modulation recognition
FCC Federal Communications Commission
SDR Software-defined radio
API Application programming interface
DSP Digital signal processor
DSA Dynamic spectrum access
AMC Automatic modulation classification
DNN Deep neural network
DL Deep learning
LB Likelihood-based
FB Feature-based
LDQ Layered discriminated quantization
RF Radio frequency
ONNX Open neural network exchange
HLS High-level synthesis
GPU Graphics processing unit
CPU Central processing unit

References
1. Bkassiny, M.; Li, Y.; Jayaweera, S.K. A Survey on Machine-Learning Techniques in Cognitive Radios. IEEE Commun. Surv. Tutor.

2013, 15, 1136–1159. [CrossRef]
2. Garhwal, A.; Bhattacharya, P.P. A survey on dynamic spectrum access techniques for cognitive radio. arXiv 2012, arxiv:1201.1964.
3. Zhu, Z.; Nandi, A.K. Automatic Modulation Classification: Principles, Algorithms and Applications; John Wiley & Sons: Hoboken, NJ,

USA, 2014. [CrossRef]
4. Dobre, O.A. Signal identification for emerging intelligent radios: Classical problems and new challenges. IEEE Instrum. Meas.

Mag. 2015, 18, 11–18. [CrossRef]
5. O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional Radio Modulation Recognition Networks. In Proceedings of the Engineering

Applications of Neural Networks; Jayne, C., Iliadis, L., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016;
pp. 213–226.

6. Dobre, O.A.; Abdi, A.; Bar-Ness, Y.; Su, W. Survey of automatic modulation classification techniques: Classical approaches and
new trends. IET Commun. 2007, 1, 137–156. [CrossRef]

7. Liu, X.; Yang, D.; Gamal, A.E. Deep neural network architectures for modulation classification. In Proceedings of the 2017 51st
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1 November 2017; pp. 915–919.
[CrossRef]

http://doi.org/10.1109/SURV.2012.100412.00017
http://dx.doi.org/10.1002/9781118906507
http://dx.doi.org/10.1109/MIM.2015.7066677
http://dx.doi.org/10.1049/iet-com:20050176
http://dx.doi.org/10.1109/ACSSC.2017.8335483

Algorithms 2022, 15, 441 20 of 21

8. Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Zhou, Y.; Sebdani, M.M.; Yao, Y.D. Modulation Classification Based on Signal
Constellation Diagrams and Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 718–727. [CrossRef]

9. Mao, Y.; Dong, Y.Y.; Sun, T.; Rao, X.; Dong, C.X. Attentive Siamese Networks for Automatic Modulation Classification Based on
Multitiming Constellation Diagrams. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–15. [CrossRef]

10. Tilghman, P. Will rule the airwaves: A DARPA grand challenge seeks autonomous radios to manage the wireless spectrum. IEEE
Spectr. 2019, 56, 28–33. [CrossRef]

11. Camelo, M.; Soto, P.; Latré, S. A General Approach for Traffic Classification in Wireless Networks using Deep Learning. IEEE
Trans. Netw. Serv. Manag. 2021, 1. [CrossRef]

12. Garcia-Saavedra, A.; Costa-Pérez, X. O-RAN: Disrupting the Virtualized RAN Ecosystem. IEEE Commun. Stand. Mag. 2021, 1–8.
[CrossRef]

13. Budgett, S.; de Waard, P. Quantized neural networks for modulation recognition. In Proceedings of the Artificial Intelligence and
Machine Learning for Multi-Domain Operations Applications IV SPIE, Orlando, FL, USA, 3 April–13 June 2022; Volume 12113,
pp. 397–412.

14. Blott, M.; Preußer, T.B.; Fraser, N.J.; Gambardella, G.; O’Brien, K.; Umuroglu, Y.; Leeser, M.; Vissers, K. FINN-R: An end-to-end
deep-learning framework for fast exploration of quantized neural networks. ACM Trans. Reconfigurable Technol. Syst. (TRETS)
2018, 11, 1–23. [CrossRef]

15. Kumar, S.; Mahapatra, R.; Singh, A. Automatic Modulation Recognition: An FPGA Implementation. IEEE Commun. Lett. 2022,
26, 2062–2066. [CrossRef]

16. Kumar, N.; Rawat, M.; Rawat, K. Software-defined radio transceiver design using FPGA-based system-on-chip embedded
platform with adaptive digital predistortion. IEEE Access 2020, 8, 214882–214893. [CrossRef]

17. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. Finn: A framework for fast, scalable
binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 65–74.

18. Pappalardo, A.; Umuroglu, Y.; Blott, M.; Mitrevski, J.; Hawks, B.; Tran, N.; Loncar, V.; Summers, S.; Borras, H.; Muhizi, J.; et al.
QONNX: Representing Arbitrary-Precision Quantized Neural Networks. arXiv 2022, arxiv:2206.07527.

19. Haggui, H.; Affes, S.; Bellili, F. FPGA-SDR integration and experimental validation of a joint DA ML SNR and doppler spread
estimator for 5G cognitive transceivers. IEEE Access 2019, 7, 69464–69480. [CrossRef]

20. Reiter, P.; Karagiannakis, P.; Ireland, M.; Greenland, S.; Crockett, L. FPGA acceleration of a quantized neural network for
remote-sensed cloud detection. In Proceedings of the 7th International Workshop on On-Board Payload Data Compression,
Virtual, 21–23 September 2020.

21. Lin, Y.; Zhao, H.; Tu, Y.; Mao, S.; Dou, Z. Threats of adversarial attacks in DNN-based modulation recognition. In Proceedings of
the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 2469–2478.

22. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
23. Kim, S.H.; Kim, J.W.; Doan, V.S.; Kim, D.S. Lightweight deep learning model for automatic modulation classification in cognitive

radio networks. IEEE Access 2020, 8, 197532–197541. [CrossRef]
24. Hiremath, S.M.; Behura, S.; Kedia, S.; Deshmukh, S.; Patra, S.K. Deep learning-based modulation classification using time and

stockwell domain channeling. In Proceedings of the 2019 National Conference on Communications (NCC), Bangalore, India,
20–23 February 2019; pp. 1–6.

25. Wang, Y.; Liu, M.; Yang, J.; Gui, G. Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE
Trans. Veh. Technol. 2019, 68, 4074–4077. [CrossRef]

26. Qing Yang, G. Modulation classification based on extensible neural networks. Math. Probl. Eng. 2017, 2017, 6416019. [CrossRef]
27. Zhang, D.; Ding, W.; Zhang, B.; Xie, C.; Li, H.; Liu, C.; Han, J. Automatic modulation classification based on deep learning for

unmanned aerial vehicles. Sensors 2018, 18, 924. [CrossRef]
28. Huang, S.; Dai, R.; Huang, J.; Yao, Y.; Gao, Y.; Ning, F.; Feng, Z. Automatic modulation classification using gated recurrent

residual network. IEEE Internet Things J. 2020, 7, 7795–7807. [CrossRef]
29. Fu, X.; Gui, G.; Wang, Y.; Ohtsuki, T.; Adebisi, B.; Gacanin, H.; Adachi, F. Lightweight automatic modulation classification based

on decentralized learning. IEEE Trans. Cogn. Commun. Netw. 2021, 8, 57–70. [CrossRef]
30. Zhang, X.; Zhao, H.; Zhu, H.; Adebisi, B.; Gui, G.; Gacanin, H.; Adachi, F. NAS-AMR: Neural Architecture Search Based

Automatic Modulation Recognition for Integrated Sensing and Communication Systems. IEEE Trans. Cogn. Commun. Netw. 2022,
8, 1374–1386. [CrossRef]

31. Ali, A.; Yangyu, F.; Liu, S. Automatic modulation classification of digital modulation signals with stacked autoencoders. Digit.
Signal Process. 2017, 71, 108–116. [CrossRef]

32. Liu, Y.; Liu, Y.; Yang, C. Modulation recognition with graph convolutional network. IEEE Wirel. Commun. Lett. 2020, 9, 624–627.
[CrossRef]

33. Tu, Y.; Lin, Y. Deep neural network compression technique towards efficient digital signal modulation recognition in edge device.
IEEE Access 2019, 7, 58113–58119. [CrossRef]

34. Gunst, R.F.; Mason, R.L. Fractional factorial design. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 234–244. [CrossRef]

http://dx.doi.org/10.1109/TNNLS.2018.2850703
http://dx.doi.org/10.1109/TNNLS.2021.3132341
http://dx.doi.org/10.1109/MSPEC.2019.8727143
http://dx.doi.org/10.1109/TNSM.2021.3130382
http://dx.doi.org/10.1109/MCOMSTD.101.2000014
http://dx.doi.org/10.1145/3242897
http://dx.doi.org/10.1109/LCOMM.2022.3184771
http://dx.doi.org/10.1109/ACCESS.2020.3041463
http://dx.doi.org/10.1109/ACCESS.2019.2919978
http://dx.doi.org/10.1109/ACCESS.2020.3033989
http://dx.doi.org/10.1109/TVT.2019.2900460
http://dx.doi.org/10.1155/2017/6416019
http://dx.doi.org/10.3390/s18030924
http://dx.doi.org/10.1109/JIOT.2020.2991052
http://dx.doi.org/10.1109/TCCN.2021.3089178
http://dx.doi.org/10.1109/TCCN.2022.3169740
http://dx.doi.org/10.1016/j.dsp.2017.09.005
http://dx.doi.org/10.1109/LWC.2019.2963828
http://dx.doi.org/10.1109/ACCESS.2019.2913945
http://dx.doi.org/10.1002/wics.27

Algorithms 2022, 15, 441 21 of 21

35. Ducasse, Q.; Cotret, P.; Lagadec, L.; Stewart, R. Benchmarking Quantized Neural Networks on FPGAs with FINN. In Proceedings
of the DATE Friday Workshop on System-Level Design Methods for Deep Learning on Heterogeneous Architectures, Virtual,
5 February 2021.

36. Bacchus, P.; Stewart, R.; Komendantskaya, E. Accuracy, training time and hardware efficiency trade-offs for quantized neural
networks on fpgas. In Proceedings of the International Symposium on Applied Reconfigurable Computing; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 121–135.

37. O’Shea, T.J.; Roy, T.; Clancy, T.C. Over-the-Air Deep Learning Based Radio Signal Classification. IEEE J. Sel. Top. Signal Process.
2018, 12, 168–179. [CrossRef]

38. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arxiv:1409.1556.

http://dx.doi.org/10.1109/JSTSP.2018.2797022

	Introduction
	Background
	Quantization
	Quantization Frameworks

	Related Work
	AMR
	AMR with Low Computational Cost

	Design Methodology for Quantization Selection
	Analysis and Results
	Stage 1: Screening, Analyzing the Effect of Quantizing Inputs, Activations, and Weights Reference Model
	Stage 2: Layered Evaluation, Analyzing the Impact of Quantization per Layer
	Stage 3: Data Dispersion and Spearman Mapping, Distribution of the Results by Layer
	Stage 4: Selection of the Quantization Level per Layer
	Classification Evaluation

	Conclusions and Future Work
	References

