
Assessment of code, which aspects do teachers consider and how are

they valued?

TOM NEUTENS, Ghent University- imec - IDLab - AIRO, Belgium

KRIS COOLSAET, Ghent University, Belgium
FRANCIS WYFFELS, Ghent University - imec - IDLab - AIRO, Belgium

In many countries, computer programming is becoming an integral part of the secondary school curriculum. However, many
teachers, especially in the irst years of Flemish secondary school, have limited experience with teaching programming.
To improve their knowledge about programming, many diferent types of professional development programs have been
proposed. Nevertheless, these programs mostly focus on technical skills and less on pedagogical skills. One aspect that is
often overlooked in these programs is how teachers can assess code. To get insight into what teachers currently value when
assessing code, we designed an experiment that analyzes the diferent aspects teachers consider during the assessment of code.
During the experiment, the teachers (N=13) assess a set of programs from ive diferent ictional learners. After the assessment,
they participated in a structured interview giving us insight into the assessment process. We evaluated the transcripts of
the interviews using deductive thematic analysis using a coding schema deining the diferent aspects of code that can be
assessed. Additionally, we linked the assessment strategies of teachers to their teaching experience. Our results indicate that
many teachers are unaware of the diferent concepts that can be part of the assessment of code which might lead to inaccurate
or invalid feedback. Moreover, although our experimental group was too small to draw hard conclusions about the inter case
results, our results indicate that the number of concepts considered by teachers seems to increase with experience. These
results provide an initial insight into the code assessment practices of teachers and reveals interesting pathways for future
research into the assessment of code.

CCS Concepts: · Applied computing→ Education; Computer-assisted instruction.

Additional Key Words and Phrases: K12, Programming, assessment, Thematic analysis, Teachers

1 INTRODUCTION

In the 1980s, programming was an established part of the K-12 curriculum. However, as computers got more
powerful, the primary use of a computer in the classroom shifted from being a device that had to be programmed
into a tool that could be used without any programming knowledge [22]. In the last two decades there has been
a resurgence of teaching programming in K-12 education. Many countries around the world are integrating
programming into their national curricula in some shape or form [16]. Consequently, both the research on
programming in K-12 as well as the tools which can be used to teach programming have grown substantially [5].
However, all these changes to the curriculum are mostly implemented in a top down approach. Governments,
researchers, and industry are the main drivers in making the recent changes to curricula. In all these eforts to
improve the programming and computational thinking skills of children one group that is often overlooked are

Authors’ addresses: Tom Neutens, Tom.Neutens@UGent.be, Ghent University- imec - IDLab - AIRO, Technologiepark-Zwijnaarde 126,
Gent, Oost-Vlaanderen, Belgium, 9052; Kris Coolsaet, Kris.Coolsaet@UGent.be, Ghent University, Krijgslaan 281, Gent, Oost-Vlaanderen,
Belgium, 9000; Francis wyfels, Francis.wyfels@UGent.be, Ghent University - imec - IDLab - AIRO, Technologiepark-Zwijnaarde 126, Gent,
Oost-Vlaanderen, Belgium, 9052.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1946-6226/2022/3-ART $15.00
https://doi.org/10.1145/3517133

ACM Trans. Comput. Educ.

HTTPS://ORCID.ORG/0000-0002-1850-224X
HTTPS://ORCID.ORG/0000-0002-7657-900X
HTTPS://ORCID.ORG/0000-0002-5491-8349
https://orcid.org/0000-0002-1850-224X
https://orcid.org/0000-0002-7657-900X
https://orcid.org/0000-0002-5491-8349
https://doi.org/10.1145/3517133

2 • Neutens and wyfels, et al.

the teachers. Previous research has shown that teachers encounter several hurdles when having to integrate
programming into their teaching. Consequently, some researchers have looked into how these hurdles can
be overcome through teacher professional development [10, 14, 39]. However, these professional development
workshops mainly focus on supporting the teachers’ technical knowledge about programming and related STEM
content while the required pedagogical knowledge to efectively teach those subjects gets less attention. One
speciic example of that pedagogical knowledge is the assessment of code. Previous research has suggested
diferent frameworks for the assessment of code [8, 40]. However, there is no knowledge about if and how these
frameworks are applied in practice.

In this paper, we aim to couple the existing pedagogical frameworks for the assessment of code to the assessment
teachers perform in practice. We believe that identifying the areas where theory and practice either do or do
not meet is of signiicant interest and will allow us to formulate concrete steps for teachers to improve their
assessment. To do this, we set up an experiment in which middle school teachers had to assess a set of ive
diferent graphicalvisual programs for ive diferent ictional students. The participants were asked to provide
both formative and summative feedback. After the teachers inished the assessment, we conducted a structured
interview to determine how and why they made certain assessment decisions. In the following chapters, we irst
characterize the various assessment strategies for programming described in the literature. Thereafter, we deine
the educational context in which we are working. This is followed by an explanation of our experimental design,
the experimental results, and a discussion section.

1.1 Assessment of code

Assessment is a broad subject. It refers to a diverse set of techniques that educators use to evaluate, measure, and
document the learning progress, skill acquisition, or educational needs of students. Analyzing all of these aspects
at once is impractical. Consequently, we chose to focus on the purpose of assessment (what can be assessed) and
less on the diferent assessment formats which can be used (how it is assessed) [31]. Even though we believe that
this is an important distinction, much of the literature about the assessment of code does not explicitly state this
diference resulting in frameworks in which these two aspects are intertwined. In the following paragraphs, we
give an overview of multiple assessment techniques and frameworks for programming described in the literature.
Since literature about the assessment of code is limited, we looked at a broad range of assessment research
covering diferent contexts and age groups.

In our search for assessment techniques, we started by looking at papers about the assessment of computational
thinking. Since computational thinking is sometimes considered as an overarching term encompassing program-
ming speciic skills as well as other computing related skills, literature about the assessment of computational
thinking often includes diferent assessment criteria for code without explicitly stating this distinction. In their
review, Tang et al. clarify the diference between the types of computational thinking skills [42]. They explicitly
put coding related concepts into their own category within the wide range of computational thinking concepts.
Using this knowledge, we searched for the coding concepts which were present in previous work about the
assessment of computational thinking. In [33] the authors describe an assessment tool for computational thinking
based on the framework by Brennan & Resnick [8]. This framework contains multiple elements which are
directly linked to the assessment of coding skills. For example, the authors describe concepts like sequences,
loops, events, and parallelism. In [11] the authors created an assessment tool for computational thinking. They
split up the concepts into ive categories: syntax, data, algorithms, representing problems through a model or
formula, and revising with the goal of eiciency and efectiveness. Their test does not explicitly include the
assessment of code. However, a set of the questions they created were deined as coding problems. In [29], the
authors suggest methods for automatically assessing seven computational thinking concepts using code features
of Scratch programs. The concepts they assess are: abstraction and decomposition, parallelism, logical thinking,

ACM Trans. Comput. Educ.

Assessment of code • 3

synchronization, low control, user interactivity, and data representation. For each concept they deine four
competence levels, the competence level of a learner is determined by which code-blocks this learner uses in
their programs. For example, the competence level for logical thinking is determined by the following criteria:
0) No if-statements used, 1) used if-statements, 2) used if-then-else statements, 3) used logical operations. The
categorization is useful, however, it is limited to the context of scratch programs and does not take into account
the context for the assessment.
Further exploration of the literature reveals that the criteria put forward by the diferent frameworks for

computational thinking are not the only ones that can be used to assess code. Stegeman et al. [40] look at the
assessment of code from a perspective of code quality. They deine four categories for assessing the quality of a
piece of code: documentation, presentation, algorithms, and structure. The category for documentation contains
elements like clear variable naming and the correct use of comments. Presentation mainly deals with layout
and formatting. Algorithms speciies criteria for how a program is solved. Finally, the structure category looks
at how the code is split into sub-problems (decomposition) and how these sub-problems are grouped together
(modularisation). Stegeman et al. further explored the assessment of code quality by deining a rubric to aid in the
assessment [41]. This rubric associates an assessment scale with the diferent categories they deined before. In [6]
the authors explore how diferent people value certain code quality metrics. They deine three groups, students,
educators, and developers and have them rate the importance of the following code quality metrics: readability,
structure, comprehensibility, documentation, dynamic behavior, testability, correctness, maintainability and
miscellaneous. In [3] the authors combine the assessment criteria for code associated with both computational
thinking and code quality and extend them with assessment criteria for user experience. They propose a rubric
for assessing a free choice Scratch project that has three main categories: overall proiciency, user experience, and
coding and computer science concepts. Their rubric has a total of 19 dimensions for assessing student programs.
As recognized by [11], another important aspect that can be assessed when looking at code is creativity.

It has been argued that writing code can foster creativity and can be used as an indicator for that creativity
[37, 38]. The standard deinition of creativity combines originality and usefulness however, [35] have argued that
other criteria like surprise might need to be added to the deinition. Consequently, there are diferent deinitions
used in literature. Treinger et al. deine four types of creativity. 1) Divergent thinking: the ability to generate
ideas. 2) Convergent thinking, the ability to dive deeper into ideas. 3) Openness and courage to explore ideas.
4) Listening to one’s inner voice [43]. Moreover, many consider creativity to be a multifaceted phenomenon
involving cognitive, personality, and environmental components [36].

The previous paragraphs have listed a broad range of aspects that can be used for assessing code. These aspects
are sometimes extended with other concepts that are indirectly linked to programming. One of those concepts is
mathematics. In [15], the authors propose ive mathematical reasoning principles associated with programming:
Boolean logic, discrete math structures, precise speciications, modular reasoning, and correctness proofs. Others
have taken a speciic mathematical concept like Boolean logic and integrated it with other code assessment
categories [19]. Another aspect related to coding is the assessment of testing and debugging. In [8] testing and
debugging is described as an essential skill required when writing programs and that should be a part of the
assessment process. Even though debugging and testing skills are closely intertwined with programming skills,
some consider them to be skills that should be taught and assessed separately [24]. A inal aspect which is not
directly related to code but might be a part of the assessment of code are the learners’ personal characteristics
like punctuality and neatness. As described in [20], multiple empirical studies have revealed that personal aspects
are often taken into account by teachers when assessing the cognitive ability of students.

ACM Trans. Comput. Educ.

4 • Neutens and wyfels, et al.

1.2 Research questions

As described in the previous paragraph, there are many aspects that can be taken into account when assessing
a program. The main question we try to answer in this paper is which of these aspects are used by teachers
and how important they are in the assessment.The main question we try to answer in this paper is whether the
assessment criteria that teachers use in practice align with the ones documented in literature. Speciically, we are
interested in how many diferent aspects teachers consider in their assessment and how they are valued. For
clarity we formulated twothe following research questions:

(1) Which criteria do teachers take into consideration when assessing code?
(2) What value do teachers attach to the diferent criteria they consider when assessing code?
(3) How does teaching experience inluence which criteria are selected and how they are valued?

2 METHOD

Because little is known about how teachers assess code, the main aim of this study was to lay the groundwork
for additional research in this ield. Since we wanted to ind new insights into the assessment of code with the
goal of opening up directions for future research, we opted for a multi-case study. We collected qualitative data
for each case using a semi-structured interview and analyzed the interviews using deductive thematic analysis.

2.1 Context

In the educational context we are working in, programming is slowly being introduced into the curriculum.
For now it is only part of the curriculum in the irst two years of Flemish secondary school (ages 12 to 14).
Moreover, the Flemish government has decided that these skills are part of the core competences all students in
the population have to master. Concretely, the government requires learners to acquire procedural knowledge
about sequence, iteration, and selection [44]. It should be noted that, the government only deines the concepts
students have to master and not how teachers should teach these concepts. 1. As a result of the context we are
working in, our research focuses on teachers who are active in the irst two years of secondary school.

To get some more detailed information about the background of the participants, we sent out a survey with
the following questions: (1) In which grades of secondary school do you teach? (2) Which courses do you teach?
(3) How many years have you been teaching programming? (4) How many hours on average did you teach
programming last school year. (5) On a scale of one to ten, what is your personal experience with programming?
The responses to these questions provided insight into the background of the participants.

Since graphicalvisual programming environments are often used in the irst year of secondary school, we chose
to do the same for our experiment. Moreover, since physical computing is often used as a context for teaching
programming to that age group and our research team has a lot of experience with physical computing exercises
using an Arduino based microcontroller platform, we chose it as the platform for our exercises. To collect the data
required to answer our research questions we set up an experiment consisting of two main parts. In the irst part,
the teachers get a set of 25 programs. These programs are solutions to ive diferent programming assignments
for ive diferent ictional learners. The teachers are asked to give personal written feedback to the learner as well
as a score for each question. In the second part of the experiment we conduct a semi-structured interview [23]
with the teacher asking them to explain the reasoning behind the assessment as well as other aspects like how
diicult they thought the assignment was. In the following paragraphs we explain these parts in more detail.
In the following sections we irst describe our experimental setup, thereafter, we explain the instruments used,
inally, we give a detailed description about the data collection and analysis.

1https://onderwijsdoelen.be/

ACM Trans. Comput. Educ.

https://onderwijsdoelen.be/

Assessment of code • 5

2.2 Instruments

To organize our experiment, we created the following research instruments: 1) A list of student personas describing
the background of ive ictional learners. 2) Five programming assignments the ictional learners had to solve. 3)
A set of 25 solutions, one for each persona-assignment pair. 4) A blank feedback form the teachers had to ill
out. 5) A set of questions for our semi-structured interview. 6) A small questionnaire to collect data about the
teaching experience of the participants. Below, these instruments are discussed in more detail.

2.2.1 Personas. Since the variation of personal attributes for learners in the real world is large, we used a persona
methodology to gather the information in a manageable format [12, 45]. These personas describe a learner and
deine the knowledge they have about programming. They were created by one of the members of the research
team and were validated in a group discussion between three members of the team. Our aim was to create
personas for which the programming skill varied from limited to very good. The choice of ability for each of the
personas was mainly based on the teaching experience of the members of the team. The personas were used as a
reference to deine solutions linked to thetheir background knowledge of the persona. Table 1 deines these ive
personas in detail. In this table, we gave the personas a name to be able to use them as a reference in this paper.
However, we did not provide these names to teachers to prevent any biases.

Table 1. Learner personas

Name Description

Lisa Lisa likes STEM. Her father is an engineer and he often takes her to diferent STEM-workshops
where she has come into contact with multiple programmable platforms. At home, she has written
multiple programs in Scratch. At school, she inds that STEM classes go too slow for her. How-
ever, she always tries to solve the exercises to the best of her abilities. When she inishes all the
assignments, she likes to add her own creative touch.

David David likes programming. However, he has no experience apart from the exercises they do in class.
He has a good understanding of the iteration concept. Consequently, he tries to apply it as much as
possible. He does not fully understand how the if-then-else-block works and sometimes has issues
evaluating conditions.

Sarah Sarah usually pays attention during class. Programming is not her favorite subject but she tries her
best to solve the exercises. She missed some of the previous classes because she was ill. During
these classes the teacher explained the if-then-else-block. Because she missed that explanation, she
still does not fully understand how the block works.

Kim Kim has done multiple coding games at home like Blockly Maze, Code Combat and LightBot. She
has mastered basic concepts like iteration, condition, and selection. However, these games do
not contain any time based behaviour like the use of a delay command in an Arduino program.
Consequently, she often has trouble with exercises that contain speciic time behaviour.

Sep Sep does not like programming. He tries to solve the exercises and he has a basic knowledge of the
diferent programming constructs he can use. However, he only uses these constructs when he
really has to. He thinks loops are stupid and prefers just copy and pasting blocks, which is a lot
faster in his opinion.

2.2.2 Programming assignments. In addition to the ive personas deined above, we deined ive programming
questions. We used the DwenguinoBlockly programming environment2 and a simulator as a platform (igure

2https://www.dwengo.org/dwenguinoblockly/

ACM Trans. Comput. Educ.

https://www.dwengo.org/dwenguinoblockly/

6 • Neutens and wyfels, et al.

1). Consequently, the questions were speciically made to be solved using this platform. The platform has a
graphicalvisual programming environment based on Google Blockly and supports multiple robot simulations
which can be executed inside the browser. For this experiment we used the simulation of the Dwenguino
microcontroller board which includes an LCD-screen, buttons, and LEDs and the simulation of a driving robot
with two wheels and a distance sensor. In this environment, programs are written using the structure of an
Arduino program. The program always has a setup-loop-block into which all other code blocks are snapped. The
environment supports diferent input and output blocks to, for example, read a sensor value or turn an LED on or
of. It also includes blocks for the basic programming constructs like loops, if-statements, and variables. This
programming environment was used as the context for the ive questions we deined.

Fig. 1. Overview of the DwenguinoBlockly programming tool. a) The visual code editor (showing Lisa’s solution to the first

assignment). b) Simulation of the microcontroller board including an lcd-screen, 9 LEDs, a buzzer, and five push butons. c)

The simulation of the riding robot with two dc-motors.

In table 2 you can read the ive questions we deined. Using both the personas and the questions, we created
a solution for each persona for each question resulting in 25 solutions. We aimed to make the questions open
enough so teachers would be able to attach the assessment criteria they thought were relevant to the question
but not too open, so the variety of possible answers would be too large. These types of open assignments are
also common a physical computing context since, when working with physical systems, it is often impossible to
create exact solutions as a result of inluences from the real world.

2.2.3 Solutions. We created a solution for each persona-question pair resulting in 25 solutions. The set of
solutions was created using an iterative review process. One researcher was responsible for creating and updating
the set of questions. After each update, the set was reviewed by The set of solutions was reviewed by four experts
from our research lab with diferent levels of teaching and programming experience. Two of the experts have
professional experience teaching in secondary school while the others have experience in higher education. Three
of the researchers are computer scientists while the fourth is a mathematician. We considered these diferent
points of view to ensure the solutions we provide are on par with solutions real learners from the selected grade

ACM Trans. Comput. Educ.

Assessment of code • 7

Table 2. uestions that were solved by the personas

Nr. Question

1 Write a program that makes the robot drive in a square shape on the ground.
2 Write a program that makes the robot drive straight and stop before it hits the wall.
3 Use the LEDs on the board to simulate a racing light. Have the lights count down one by one, after the

countdown they have to blink three times.
4 Make up a yes or no question. Show this question on the lcd-screen. Let the player answer using the

buttons on the board. When the player presses the wrong button, show a message on the screen informing
the player of the mistake. If the answer is correct also inform the player using the lcd-screen

5 Make the robot drive forward. Make sure the robot stops and turns 90 degrees when it is less than 30cm
from a wall. After the robot has nearly hit the wall four times, the robot should stop.

levels would produce. Since the solutions are written in a visual programming language, including screenshots of
all of them here would be impractical. Consequently, we created two tables explaining the solutions. Figure 2
visualizes the solution to question three for each persona. Table 3 shows a descriptive overview of the solutions.

2.2.4 Assessment sheet. To add some structure to the assessment made by the participants, we created a basic
assessment sheet. The sheet has ive sections, one for each of the ictional learners. Each section has a table into
which the participants can ill out the scores for each solution as well as a text box for writing down the personal
feedback for that student. This sheet was also used as a guide during the interview.

2.2.5 Interview questions. To collect data about how teachers performed the assessment, we conducted a semi-
structured interview. An overview of the main interview questions is given in table 4. Questions (1), (3), and (4)
were designed to collect data about what teachers consider during the assessment as well as the value they attach
to diferent criteria. Questions (2), (5), and (6) give us information about the teachers’ experience and conidence
allowing us to contextualize the assessments they make. All interviews were recorded for future reference and
the teachers were asked to send us the papers or documents they used for the assessment to further document
the process.

2.2.6 Experience questionnaire. To get some more detailed information about the background of the participants,
we created a small survey with the following questions: (1) In which grades of secondary school do you teach?
(2) Which courses do you teach? (3) How many years have you been teaching programming? (4) How many
hours on average did you teach programming last school year. (5) On a scale of one to ten, what is your personal
experience with programming? The responses to these questions should give us some insight into the background
of the participants.

2.3 Data collection

Using this list of questionsUsing the instruments described above, the rest of our experiment was set up as follows.
To recruit participants for the experiment, we used snowball sampling. First, we sent out an invitation to teachers
through multiple channels. These included contacts from a list of schools, school groups, and the government.
These people were asked to forward the information to teachers in their contact lists. We reached out to teachers
from across the Flanders to get a group of teachers with varying backgrounds. The invitation letter contained a
detailed description of the experiment as well as the data we would be collecting. It also contained a link to a
form the teachers could use to register to participate in the experiment, when registering, they had to consent
to the data collection statements in the invitation letter which is in accordance with our university guidelines.
Teachers who registered were contacted and provided the necessary information about the experiment. Initially,

ACM Trans. Comput. Educ.

8 • Neutens and wyfels, et al.

Table 3. Summary of the solutions to be assessed by the participants.

Nr. Lisa David Sarah Kim Sep

1 Uses the loop section
of the setup-loop

block to repeat going
straight and turning
90 degrees. Added

text to the lcd-screen
when going straight

and turning.

Uses a for-loop to
repeat going straight

and turning 90
degrees four times.
Stops motors after

for-loop.

Uses the loop section
of the setup-loop

block to repeat going
straight and turning

90 degrees.

Uses the setup-loop
block for ininite
repetition. Uses
loops to create an

artiicial delay. Delay
block is not
understood.

Does not use loops,
iteration steps are

copy and pasted after
each other.

2 Basic program to
stop at wall (as

shown in igure 1). If
measured distance <
100 then stop motors

else turn both
motors.

Same solution as Lisa
but motor blocks are

switched.

If measured distance
< 100 stop motors
and wait 10000ms.

After the if
statement turn both
motors on. This is
functionally correct

for the irst 10
seconds of execution.

Same as Lisa but
without delay blocks.

Does not use sensor
input or if-then-else
block. Used trial and
error to let the robot
drive forward and
stop after 3 seconds
(close to the wall).

3 Detailed overview is provided in igure 2.

4 Question in setup,
large if-then-else
structure in loop. If
North button pressed
show correct else if
south button pressed
show not correct else
show button press
options. Buttons

have to be held down
to see the answer.

Same structure as
Lisa her solution,

however, the second
condition is inverted.
Consequently, the
solution shows not
correct by default.

Uses three while
loops instead of the
if-statement in Lisa
her solution. While
no buttons pressed,
show answer options.
While north pressed,
show correct. While
middle pressed, show

not correct

Same solution as Lisa
but without delay.
This causes lcd

lickering.

All code in setup. No
loops or

if-statements. Uses
special wait until

button pressed block

to show correct
answer only when
north button is

pressed.

5 Combination of
solution 1 and 2 with

variable speed.
Reduces speed by

25% of original speed
on each turn.

All code in setup: for
i from 1 to 4: { while
distance from wall >
30 { go straight; }
turn robot } stop

robot

Similar to David his
solution, however,
without the for loop.
Consequently, the
robot only turns
once and not four

times.

Similar solution to
Lisa, however, uses
variable for the

number of iterations
instead of reducing
the speed of the
robot. Also uses a

loop to make the 90°
turn instead of using
a delay block like in

question one.

Similar solution to
David, however, code
is in loop and keeps
repeating forever.
Additionally, the
angles are far from

90°.

24 teachers registered for the experiment using our form. However, in the end, just 13 responded to our request
to schedule a date for the experiment, all but two came from diferent schools. Even though 13 participants seems
low, since the data we collected was suiciently rich, containing in depth information on the speciic strategies
each individual teacher used to assess code and it reached suicient saturation by having participants with similar
assessment strategies, we decided that 13 participants yielded suicient data [2, 17]. Adding participants would

ACM Trans. Comput. Educ.

Assessment of code • 9

Fig. 2. Solutions to question 3 (racing light). (a) Lisa came up with the more or less optimal solution. (b) David used a loop

to initialize the state of the lights instead of the LEDS block. (c) Sarah turned the LEDs on individually. (d) Kim used the

execution time of a single block to delay the code. (e) Sep does not use loops.

have added little additional insight into the diferent criteria that are considered during the assessment and would
not immediately invalidate the trend observed between teaching experience and assessment strategies. Moreover,

ACM Trans. Comput. Educ.

10 • Neutens and wyfels, et al.

Table 4. Interview questions

Nr. Interview question

1 How did you proceed with the assessment?
2 How hard/easy was this assignment for you?
3 Could you give a description of the diferent students you assessed?
4 Could you point out some of the strengths/weaknesses of each of the students?
5 Do you think your assessment is a better representation of the capabilities of the learners than the

assessment another teacher would make?
6 Is there something you think could help you with the assessment you just performed?

these small scale experiments allow us to identify where possible shortcomings in the assessment lie and allow us
to formulate hypotheses for future research. These hypotheses can than be tested on a larger group of teachers
from the irst two years of Flemish secondary education.

The initial information we sent to the teachers contained a short tutorial explaining the details of the program-
ming environment we would use during the experiment. The teachers were asked to go through this tutorial
and make sure they understood the concepts that would be used in the experiment. Once the teachers had gone
through the tutorial, we scheduled a time and date for the experiment itself. The teachers were not compensated
for their participation, however, they did receive a certiicate of participation which they can include in their
professional development plan at their school. Initially, we were planning to invite the teachers into our lab to
conduct the experiment. However, due to governmental restrictions, we decided to do the experiments using
one-on-one online meetings between a teacher and a researcher. Each experiment required about three hours.
We started a video call with the teachers using the platform of their preference. At the start, we explained the
structure of the experiment, sent them the solutions to the questions they had to assess in a digital executable
format and explained what was expected of them. After the introduction, the teachers got about 1 hour and 15
minutes to perform the assessment. During this period, the teachers turned of their cameras and muted their
microphones to work independently. When they inished the assessment the camera and microphone were turned
back on and the interview started. The researcher doing the call, remained online to answer any questions the
participant had during the assessment. The interview started by asking the teacher to go over each exercise and
explain how they performed the assessment, what score they gave, and what feedback they wrote down. This
part of the interview was guided by what the teachers wrote down on the assessment sheet described in section
2.2.4. In some cases the interviewer asked to specify, clarify, or explain certain elements of the assessment. In the
second part of the interview, the researcher continued by asking the rest of the questions deined in section 2.2.5.
Sometimes, depending on the course of the interview, these questions were asked during the irst part of the
interview. After the interview, the participants were asked to ill out the experience questionnaire described in
section 2.2.6.

2.4 Data analysis

Once the interviews were collected we used deductive thematic analysis to further analyze our data [7]. To extract
the necessary information from the interviews, we manually transcribed the recordings (because automatic
transcription tools yielded insuicient results for our language) and applied the coding schema on the text. The
coding was performed using classic word processing software by highlighting the text in accordance with the
categories in the coding schema. The highlights for each schema category were then grouped in a new document
for further analysis. Finally, we summarized how each teacher assessed each concept in our coding schema.
The coding was performed by one of the researchers in our team and was reviewed by another member of the

ACM Trans. Comput. Educ.

Assessment of code • 11

research team, both with extensive background knowledge in computing education. The reviewer assessed if
the coding was consistent with the description in the schema. We chose this reviewed single coder strategy
described above because: 1) It was feasible for one person to code the transcripts. 2) It avoids the application
of special techniques for enhancing inter-coder reliability[32]. 3) Reviewing the coding enhances the reliability
when depending on a single coder [9, 13]. To analyze the transcripts we constructed a coding schema containing
the diferent aspects of code that can be assessed. This coding schema was constructed by irst listing all aspects
that literature describes as possible assessment criteria for code (section 1.1), supplemented with personal aspects
of the learner, and then grouping and iltering them. We mainly considered practical reasons for not including
certain aspects into our coding schema. For example, concepts like parallelism or events are not present in the
pieces of code we presented to the teachers. Consequently, there is little value in including them in our coding
schema. The inal version of our coding schema is shown below.The inal version of our coding schema is shown
in table 5, it lists all categories and subcategories together with a sentence to contextualize the category. In the
following paragraphs we provide a more in depth discussion about each concept in the schema.

Function: This category contains assessment criteria related to the functionality of the code [3, 18]. Under the
category of function we included the concepts: 1) Correctness: Does the program do what the assignment said it
should do? Does it meet the requirements set forward by the teacher? 2) Eiciency: How much computational
power is required for executing the program? Are there more computationally eicient ways of writing the
program? 3) Usability: Is the application easy to use by the teacher? Is it clear how the program can be controlled?

Readability: All aspects of the program that contribute to more readable code. We limited ourselves to
the following four indicators of readability since the others presented in the literature are less relevant for
graphicalvisual programs [6]: 1) Variable names: Does the variable name communicate the meaning of the
variable? Is the name relevant to the program context? 2) Comments: Does the learner use comments in his or
her code? Are the comments easy to read? Do they communicate the meaning of the program? 3) Layout: Is
the layout of the blocks clear? Are there any overlapping blocks? Are there unused blocks in the program? 4)
Conciseness: Is the code DRY (Do Not Repeat Yourself)? Is there any copied and pasted code? Does the code
contain blocks which are not executed? Conciseness is especially important in graphicalvisual programs since
these programs quickly get too large to it onto the screen.

Application of programming concepts: There are many possible programming concepts to include into
our analysis [3, 4, 8, 33] . We limited the concepts we selected to those which are used in the solutions presented
to the teachers. These are sequence, iteration, selection, condition, variables, time, and inputs/output.

Application of algorithmic thinking: Algorithmic thinking has been deined as: łmental orientation to for-

mulating problems as conversions of some input to output and looking for algorithms to perform the conversionsž[26].
Since this is a broad deinition we deined the following aspects, which we will analyze: 1) Analyze a given
problem. 2) Specify a problem precisely. 3) Construct a correct algorithm to a given problem using the basic
actions. 4) The ability to think about all possible special cases [18].

Execution of testing and debugging: Are learners able to locate faults in their code? Are learners able to
correct these faults? Do learners suiciently test their code to be able to locate faults? [24, 27, 30]

Mathematical concepts: Many mathematical concepts can be linked to programming [15]. However, simple
graphicalvisual programs often only contain a limited number of mathematical concepts. The concepts we decided
to include for our analysis are Boolean logic [19] and basic arithmetic [3] since these were the only concepts
present in our exercises.

Creativity: Since creativity has many deinitions, we mainly focus on the category of divergent thinking [43].
We limit our coding to this category since other categories like convergent thinking and the ability to generate
ideas are less relevant for the experiment we set up because we do not provide enough artifacts to teachers to
be able to assess them. Divergent thinking itself can be characterized in multiple ways like luency, originality,

ACM Trans. Comput. Educ.

12 • Neutens and wyfels, et al.

and lexibility [34]. Our work will mainly focus on originality since both luency and lexibility are impossible to
measure using a single artefact.

Personal aspects: This category encompasses all personal traits the learners show which are not directly
linked to programming or computational thinking. We are looking for aspects like helpfulness in the classroom,
neatness, disruptive behavior, student efort [20]. We deine this broadly since it is not directly related to the
assessment of code. However, we do want to analyse what value teachers attach to these aspects compared to the
ones more directly related to code.

We are aware that these concepts are extracted from a broad literature exploration formany diferent educational
contexts. Consequently, we realize that not all of these concepts might be applied/be applicable in certain
educational contexts. However, our goal is to identify if and how these concepts are used to assess learners.
Using the proposed coding schema, we annotated the interview transcripts. Each time a teacher talked about a
speciic concept, we marked it in the text. After marking all elementshighlighting and grouping the concepts
from our coding schema in the interview of each teacher, we made a summary for each concept. These summaries
contain the diferent aspects teacher consider when assessing each concept. These summaries are listed in the
results section. Finally, after analyzing if and how the diferent assessment criteria in our coding schema are used,
we explored the relation between teaching experience and assessment strategy. We grouped the participants
into the groups: teachers without any prior experience teaching programming, teachers with between one and
ive years of experience teaching programming, and teachers with more than ive years of experience teaching
programming. Using these groups, we performed a qualitative intra- and inter-group analysis of similarities and
diferences.

3 RESULTS

The interviews we conducted (N=13) resulted in 408 minutes of video recordings. We manually transcribed the
interviews to have a textual reference for our analysis. Using the coding schema deined in the previous section,
we annotated the transcripts by highlighting the parts where the interviewed teacher was talking about one
of the concepts in our coding schema. After this annotation process, we grouped the highlighted parts of the
text according to their respective coding concept. Next, we summarized how the diferent teachers assess each
concept in our coding schema.These were transcribed and coded using the techniques described in section 2.4.
Table 6 shows an overview of how many teachers mentioned a certain aspect. It is clear that some aspects like
functionality are considered more often than others. Additionally, based on the results of our survey, we divided
the teachers into four groups: (1) Teachers without previous programming teaching experience (N = 2). (2)
Teachers with one to ive years of programming teaching experience (N = 2). (3) Teachers with more than ive
years of programming teaching experience (N = 5). (4) Teachers who did not wish to disclose their experience
for processing in our experiment (N = 4). We performed an inter- and intra-group qualitative analysis of the
diferences and similarities in the assessment strategies. The following sections irst elucidate the results of our
deductive thematic analysis thereafter, we describe how teaching experience afects the assessment strategies.

3.1 Function

Our coding schema deines three aspects related to the functionality of the program. The irst element is functional
correctness. All of the thirteen participating teachers included functional correctness as an element in their
assessment. For many of the teachers, executing the program in the simulator and checking if it has the desired
function is the irst part of their assessment process. For most teachers, the result of this execution strongly
determines the score and feedback learners get. Some teachers explicitly state the criteria they want the solutions
to adhere to. When more of these criteria are satisied, the learners get a higher score. When we analyze the
criteria, the teachers propose it is clear that most of them are related to the functionality of the program. One

ACM Trans. Comput. Educ.

Assessment of code • 13

Table 5. Coding schema summary

Category Sub categories Contextualization

Function

Correctness Does the program do what is required?
Eiciency How computationally eicient is the program?
Usability Is it clear how the program can be used?

Readability

Comments Are comments used and are they understandable?
Layout Does the code layout follow a certain structure?
Conciseness Is there repeated code?
Variable names Do variable names give a clear indication of the types of

values it will contain?

Programming

con-

cepts

Sequence Are commands executed in the correct order?
Iteration Are loops used correctly?
Condition Is a certain statement true or false?
Selection Is it clear how the control low can be changed based on

a condition?
Variables How can values be stored during execution?
Time How does time inluence the execution of the applica-

tion?
Input/output How can external (sensor) values be read and how can

external actuators be controlled?

Algorithmic

think-

ing

Analyze given problem Which sub-problems exist?
Specify precisely Which solution strategies can be used to solve the prob-

lem?
Construct algorithm How can the solution strategy be translated to a pro-

gram?
Think of special cases How can we be sure our program works in all cases?

Testing and debugging / Why does our program not do what we want it to do?

Mathematical

con-

cepts

Boolean logic Is this true or false?
arithmetic How do I add, subtract, divide, or multiply these num-

bers?

Creativity
additional elements How can I add my own touch?
novel solutions Are there diferent ways of accomplishing the same re-

sult?
Personal aspects / How does he or she behave in the classroom?

teacher described his assessment method as follows: łFor exercise 5, the one where the robot tries to escape. There
the students had to fulill multiple criteria. For example, the robot had to drive. It had to stop at 30cm from the wall. It

should be able to turn 90 degrees and should stop after four attempts.ž Other teachers did not go into as much detail

ACM Trans. Comput. Educ.

14 • Neutens and wyfels, et al.

Table 6. An overview of the concepts extracted from literature with the number of teachers in each experience group that

mentioned elements of these concepts in their interview.

Aspect of assessment Number of teachers

Less then

one year

experience

(N = 2)

One to ive

years

experience

(N = 2)

More then

ive years

experience

(N = 5)

No

experience

data (N = 4)

Total

(N = 13)

Function 2 2 5 4 13
Readability 1 2 4 2 9

Programming concepts 2 2 5 4 13
Algorithmic thinking 0 1 2 1 4
Testing and debugging 0 1 4 1 6
Mathematical concepts 1 1 2 1 5

Creativity 1 1 5 3 10
Personal aspects 2 1 4 4 11

Average number of

concepts per teacher

4.5 5.5 6.2 5 5.46

when deining criteria. For example, one of the teachers used the following criteria: łI mainly looked at: Does the

program work? Did they achieve their goal? And did they do any unnecessary steps?ž Even though functionality is
the most important factor in determining a score, some teachers do make exceptions. For example, in one of the
solutions they have to assess, the student reversed a condition by using a greater than symbol instead of a less
than symbol. Consequently, the code has no visible output. For some teachers this results in a very low score.
However, some teachers recognize that the reversal of the symbol is only a small error resulting in a high score
and a small remark in the written feedback.
Notwithstanding that most teachers attach a high value to the functional correctness of the programs, some

teachers (N=2) do not consider this as a primary element for their assessment. These teachers do take function
into account, but only as a last step in the assessment process. They deine criteria based on the coding constructs
they think the learners should be able to apply in that speciic exercise. Some of these criteria are: does the
student correctly use sensors and actuators, and does the student apply the principle of iteration correctly? Once
these questions are answered, the teachers look at how the program executes to determine their inal judgement.
The second aspect related to function we deined in our coding schema is eiciency. We speciically deine

this as computational eiciency, which is the computational power required for executing a program. Since we
are working with simple programs, computational eiciency is mainly determined by the number of blocks
in the program that get executed but do not contribute to the function of the program. Ten of our thirteen
participants mentioned criteria related to eiciency during the interview. However, it is not always clear if they
are considering computational eiciency or program conciseness. For example, one of the teachers stated the
following: łIf they used too many blocks, then I don’t consider the code to be eicient.ž Using more blocks can
result in computational ineiciency, verbose code, or both. Consequently, only considering the number of blocks
when looking at a solution might not be a valid way of assessing computational eiciency. Other teachers take
a diferent approach to assessing eiciency, one of them explained it as follows: łStudent 2 always reaches his
goal. However, sometimes he has unnecessary steps. When I removed those parts from the program, it still functioned

correctly. So, in my opinion, those were unnecessary.ž

ACM Trans. Comput. Educ.

Assessment of code • 15

The inal aspect related to function we analysed is usability. None of the participants explicitly mentioned
program usability as a criterion for their assessment. However, some teachers do include it as a general assessment
of function. For example, one of the teachers said the following about a solution to question four: łFor student 4, I
noted, the question is correctly shown on the screen. However, it was quickly replaced by the possible answers. Very

quickly, I was not able to read the question before the possible answers were shown. ž This shows that usability is a
criterion for some; however, it is not explicitly deined as usability.

Previous paragraphs explained that teachers attach a lot of value to the function of a program. Many teachers
consider functional correctness as the main aspect of their assessment. Nevertheless, some teachers attach less
value to functional correctness and focus more on the correct application of certain programming concepts.
Functional usability is never explicitly used as an assessment criterion. However, some teachers include it as part
of the assessment of program functionality without being aware it is a separate aspect related to function. Most
of the participating teachers are aware that eiciency should be part of the assessment. Nonetheless, the concept
of computational eiciency is not clearly deined by any of the participants. Often, computational eiciency and
code compactness are assessed together, possibly leading to an inaccurate and invalid assessment of the code.

3.2 Readability

Our coding schema deined the following aspects of readability: 1) variable names, 2) code comments, 3) layout,
and 4) conciseness. The aspects readability, variable names, and layout were not mentioned explicitly by any
of the participants. When the participants talked about readability their descriptions remained very general
not specifying which aspects were not clear. Some of the statements about readability include: łWhen writing a

program the learner should try to make the code as simple as possiblež, łThis piece of code was not structured and
unclearž, and łI mainly looked at how compact the program was.ž From the transcripts it is clear that teachers do
prefer code that is easily readable and understandable. However, the notion of what readable and understandable
code is seems dependent on the preference of the individual teacher. Nevertheless, some teachers do try to
quantify how readable the code is by looking at its conciseness. Nine of the participants used the number of blocks
in the program as a metric for the assessment. As explained in the previous paragraph about functionality, we
believe that the number of blocks used in a program can inluence both computational eiciency and readability.
From the interviews, it is clear that teachers are not aware of this diference. We realize that looking at the
number of blocks is an easy way for teachers to get a sense of a student’s competence. However, using this metric
raises concerns about the validity of the assessment. Giving students feedback based on the number of blocks
they use might result in an incorrect representation of the learner’s programming skills. The following quote
clearly shows an example of how the number of blocks is used as a metric. łYou sometimes have students who use

less blocks, in that case I would give them a perfect score (blue). If they use the number of blocks they were allowed to,

they get green (represents a score for meeting the requirements), and if they use more blocks, they get orange (failing

grade).ž
To summarize, the teachers in our experiment do realize that readability is an important component of the

assessment of code. However, most of the assessment of readability is done based on the opinion of the teacher.
Concrete aspects like variable names, code comments, and layout were not mentioned by any of the teachers.
However, most teachers realize that conciseness is an important factor when writing readable code. Nevertheless,
teachers often struggle to quantify this conciseness resulting in an assessment purely based on the number of
blocks that are present in the program.

3.3 Application of programming concepts

For the analysis of which programming concepts are used by teachers in their assessment, we only looked at
concepts that were present in the programs we presented to them. Those concepts were: sequence, iteration,

ACM Trans. Comput. Educ.

16 • Neutens and wyfels, et al.

selection, condition, variables, time delay, input/output. Since the solutions we presented to the teachers did not
always contain all concepts and not all concepts were used equally across the diferent solutions, there is little
value in comparing the absolute number of times each concept is mentioned by the teachers. However, it is clear
that some concepts are considered more often than others. For example, all but two of the teachers mentioned the
concept of iteration, either by explicitly stating that the learners should use iteration or saying they should add a
loop to the program. One of the teachers who did not mention iteration mainly assessed the programs based on
their function. The only reference they made was: łIf the program does what it should, I think the student should

get a maximum score. If it doesn’t, then I will look at the intermediary steps he has.ž With these intermediary steps,
she refers to the program itself. From the other programming concepts in our coding schema, only selection was
mentioned by a majority of the teachers. The rest of the concepts were rarely mentioned explicitly, they were
mostly grouped together under the term łspecial blocksž or łspecial functionsž The following quote demonstrates
that some concepts are more clearly deined for teachers than others: łFor some of the students I wrote down that

they know what is happening but still have issues with loops and special functions of programming.ž This shows
that all concepts except iteration are grouped into one category.
In summary, most teachers included at least some programming concepts in their assessment. Iteration and

selection are concepts most teachers are familiar with and look for during the assessment. However, when giving
an assessment of a learner, teachers often fail to identify the speciic concept that the learner has not mastered
yet. The feedback often only contains references to terms like łspecial blocksž indicating that teachers tend to
group concepts together, often resulting in unspeciic feedback not tailored to the student’s needs.

3.4 Application of algorithmic thinking

From our interviews, it is clear that only looking at the learner’s code is insuicient when assessing the application
of algorithmic thinking. Teachers rarely mention the skills related to algorithmic thinking we deined in our
coding schema. When some of these concepts are mentioned, they are not directly linked to the assessment of the
programs we gave them but to their own classroom assessment experience where they have more information for
the assessment. The following quote conveys how algorithmic thinking is mentioned by the diferent teachers:
łWhen I teach programming to beginners, we irst talk about the problem. What is the main problem? What are we

looking for? Which blocks do we need? Then we often write down the steps on a piece of paper, step, arrow, step, arrow,

... Do we need a loop somewhere? That really teaches them how to think.ž When algorithmic thinking is mentioned
it is related to the process and not the product. Indicating that assessing algorithmic thinking by only looking at
code is not considered by the teachers in our experiment.

3.5 Mathematical concepts

Mathematical concepts rarely appear in the transcripts. This might be the nature of the solutions we gave the
teachers. These solutions only contain a limited number of mathematical concepts like addition, less/greater than,
and Boolean logic. Addition is never mentioned by any of the teachers. Boolean logic is sometimes mentioned
implicitly: łI also look at if the student is able to think logically.ž However, most of the time the teachers refer to one
speciic condition in one of the solutions where the greater-than symbol should be reversed by the smaller-than
symbol without relating this to Boolean logic.

3.6 Execution of testing and debugging

None of the participants talked about debugging during the interview. However, six of the teachers included
the concept of testing in their assessment. None of them directly linked it to the score they gave but did include
it in the written feedback. This feedback is often related to the functional correctness of the program. When a
program does not execute as it should, the teachers think it should be tested more thoroughly. The following

ACM Trans. Comput. Educ.

Assessment of code • 17

quote demonstrates this clearly: łWhen I execute the code and it does not work, or the robot only goes forward once,

I always wonder if the student actually tested his or her solution before submitting it.ž This link between function
and testing often results in written feedback like: łIf you test your program, you can avoid these errors.ž or łAlways
check your work!ž This shows that most of the teachers are aware of the importance of testing. However, teachers
have to be aware that remarks about more testing are necessary but not suicient feedback. Just saying a program
should be tested more because it does not have the desired function is not a replacement for providing explicit
feedback about why it does not have the desired function. The diference is illustrated by the following quotes:
łAs feedback I wrote down, you made some careless mistakes however, if you test your programs more those errors

will go away. ž and łDeinitely test your programs, try to change the parameters of the delay blocks and make sure

everything works correctly.ž The irst quote is more general than the second quote which might not be enough to
help the student with his or her speciic problems.

3.7 Creativity

ElevenTen of the thirteen teachers included creativity in their assessment. The teachers consider two types of
coding behaviour as creative. The irst type is the addition of an extra element to the program which does not
afect the main goal of the exercise. For example, the learner writes his or her name on the lcd-screen while
making the robot drive in a square pattern. The extra text on the lcd-screen does not afect whether the robot
drives in a square pattern or not. The second type is when the learner solves the problem in an unexpected way,
surprising the teacher with his or her solution. For example, for the inal question shown in table 2 one of the
ictional learners solved the problem by reducing the speed of the robot by a quarter of the original speed instead
of limiting the number of collisions explicitly using a counter. All of the ten teachers who took creativity into
account in their assessment mentioned examples of the irst type of creativity. However, only two of the teachers
described examples of the second type of creativity. Moreover, those two teachers don’t diferentiate between the
two types and assess them both in the same way. This seems to indicate that teachers are either unaware of the
second type or do not consider them to be suiciently diferent to assess them in a diferent way.
Not only do teachers difer in the types of creativity they assess, they also difer in the value they think

creativity has. Some teachers explicitly state that creativity is one of the criteria they always assess when looking
at the types of solutions we presented to them. This means that their assessment includes a category for creativity.
This category is then one of the aspects determining the students’ score. Other teachers do value the creative
touch learners add to their program, they reward it by writing a positive note in their formative feedback text
to the learner. However, these teachers do not consider it as an element that should inluence the student’s
score. The main argument teachers give for not including creativity is that the questions the learners got do not
explicitly ask them to be creative or add their own creative touch. When asking if they would consider increasing
a student’s score when he or she added a creative touch to the program, one of the teachers answered: łNo, I don’t
think a student should get a lower score just because he or she did not add anything extra to the program.ž Besides
the teachers previously described who generally consider the creative elements added by learners as a positive
aspect of the learner’s abilities, some other teachers consider these aspects as detrimental to the overall quality
of the program. Consequently, these teachers subtract from a student’s score when there are elements in the
program which are not explicitly asked for in the assignment. One of these teachers put forward the following
argument for his method of assessment: łYeah, well, its cool to add those things but when you work for a company

and you put a bunch of Easter eggs into the code, the customer will not understand. They have to learn that they

don’t program for themselves but for someone else.ž Interestingly, this same teacher negatively scores both types
of creativity described in the previous paragraph. The argument he gives for negatively scoring the irst type
seems sound. However, he applies the same reasoning to the second type of creativity. When students solve a
problem in a diferent way than the other students did while still reaching a correct result, it is punished in the

ACM Trans. Comput. Educ.

18 • Neutens and wyfels, et al.

same way as when they add extra elements which were not stated in the assignment. This strengthens the idea
that teachers are not aware of diferent types of creativity.

To summarize, while many teachers consider creativity when assessing programming, they do not seem to be
aware of the diferent ways creativity can manifest itself in a program. Additionally, even though many teachers
take creativity into account, the value assigned to creativity varies a lot from one teacher to the next.

3.8 Personal aspects

Even though we do not provide any information about the personality of the learners during the experiment,
many teachers (N=11) do try to imagine a personality that its the students. Some teachers explicitly state that
they need this information to make an accurate assessment of the code: łI think it is hard to write down feedback

for these students. I would have to have more information about them. Is it a stronger or weaker student? If it is a

weaker student and he has 6/10 I would write that he did a good job but if it is a stronger student I would write that

he should have done better.ž Other teachers go even further and attach personal aspects to the learner based on
the solutions they handed in: Student 5 is someone, I would not say he has autism however, he likes to see everything

written out in steps.ž Some teachers say there are certain aspects they usually use as criteria for the assessment
of programming which are impossible in this context. These criteria are related to what learners do during
programming class and not what they produce. Some examples are: the amount of efort they put in a solution, if
they help other students, and how motivated they are.

3.9 Link between assessment strategy and teaching experience.

To elucidate the link between teaching experience and assessment strategy, we divided the teachers into four
groups: (1) Teachers without previous programming teaching experience (N = 2). (2) Teachers with one to ive
years of programming teaching experience (N = 2). (3) Teachers with more than ive years of programming
teaching experience (N = 5). (4) Teachers who did not wish to disclose their experience for processing in our
experiment (N = 4). We irst describe the background of the teachers in groups one to three as well as the
intra-group similarities and diferences To assess the relation between teaching experience and assessment
strategy, we summarized the intra-group similarities and diferences for the experience groups described in
section 3 . Thereafter, we look at the inter-group similarities and diferences to get a sense of how these teaching
strategies might evolve with experience.

No experience teaching programming. Two of the participants indicated that they had no prior experience
teaching programming. Additionally, they both indicated to have little experience with programming in general,
scoring themselves one out of ten and three out of ten. Up till now, these teachers primarily taught mathematics.
However, they participated in the experiment because they might bewould be required to teach programming in
the future as a result of changes to the curriculum. Even though their experience with teaching programming was
the same, one had a lot more teaching experience than the other, 25 years as opposed to 3 years. Both teachers
considered functional correctness as the main criterium for their assessment. Nevertheless, they are aware that
other aspects like programming concepts and eiciency might be important for the assessment. However, they
have a hard time deining these aspects and refer to them as łintermediate stepsžor łunnecessary stepsž. It is clear
from the interactions that these teachers are aware that their knowledge about programming is insuicient to
accurately assess these intermediate or unnecessary steps. Interestingly, they cope with this diferently. One of
the teachers (with three years of teaching experience) decided to only assessscore the programs based on their
functional correctness using a list of criteria like the length of time a text is shown on the screen or the angles
the riding robot turns when driving a square pattern on the loor. The other teacher (with 25 years of teaching
experience) tries to identify unnecessary blocks by comparing the solutions of all ive learners. This information
is then used to identify redundant blocks in certain solutions. This teacher also considers other aspects like

ACM Trans. Comput. Educ.

Assessment of code • 19

creativity and mathematical concepts when determining a score. By using the strategy of comparing solutions,
this teacher reaches a fairly accurate ranking of the diferent students. However, the personal feedback learners
receive remains vague, for example, Sometimes your programs can be a bit simpler or Be aware of the details.

These results indicate that having no experience with teaching programming as well as programming in general
results in assessment mainly based on functional criteria which are sometimes arbitrarily chosen. However,
having limited programming experience does not necessarily result in a purely functional assessment. The second
teacher tries to get more insight into the solutions by using more general assessment strategies. The diference
between these two teachers might be a result of their general teaching and assessment experience, allowing the
second teacher to apply more general assessment techniques to programming problems.

One to ive years of experience teaching programming. Two teachers had been teaching programming for less
than ive years (three years and four years), both less than two hours a week. The main subject they teach is
łtechniekž, which can be loosely translated to łtechnologyž. łTechniekžis a STEM subject in the irst two years of
secondary school covering multiple STEM-related topics. The two teachers had similar teaching experience in
general (20 and 21 years). Moreover, they rated their general programming experience as six out of ten and seven
out of ten.

These two teachers used similar strategies when assessing the solutions presented to them. Like the teachers
without any programming experience, these teachers start by looking at functional criteria like Does the riding
robot stop after driving one square pattern on the ground or does it keep going. However, both teachers elaborate
more on other aspects, mainly conciseness and programming concepts. They explicitly state that they look
at loops and if-statements when judging a solution. The use of these concepts is often related to conciseness,
however, sometimes they know a program isn’t concise based on the number of blocks but are unable to explain
why.

One of the teachers does not go beyond the strategy discussed above except for briely mentioning that extra
creative elements added to the program were not considered in the assessment. The other teacher does elaborate
on other aspects like computational thinking and personal aspects. This teacher attaches a lot of value to the
programming process and less to the result. This teacher also wants to know if the learners enjoy programming
since this is one of the main criteria they use to formulate advice for future study choices.

Having one to ive years of programming teaching experience seems suicient to be able to assess some basic
programming concepts. This allows teachers to give more accurate feedback about the concepts the students
have not mastered yet. Nevertheless, these teachers also focus on a set of semi-arbitrarily functional correctness
criteria, mainly focus on the number of blocks to determine the compactness of a program, and mostly ignore
criteria like creativity, eiciency, and testing and debugging.

More than ive years of experience teaching programming. Five teachers indicated they had more than ive years
of experience teaching programming. However, the number of hours a week they teach programming varies.
Three participants teach programming less than two hours a week, one participant teaches programming between
two and ive hours a week, and one teacher teaches programming more than ten hours a week. All participants in
this group gave themselves a score of seven or eight out of ten for general programming experience. The number
of years they have been teaching varies from 5 to 33 years. Three teachers explicitly teach a programming course,
the other two teach STEM.
The transcripts of these teachers reveal that these teachers have a much broader view on the assessment

than the teachers in the irst two groups. Almost all teachers in this group consider functionality, readability,
programming concepts, testing , and creativity during their assessment. Most of them look at personal aspects
and creativity as well. Mathematical concepts and algorithmic thinking were only mentioned oncetwiceand none
of the teachers said anything about computational thinking. Overall, their assessment is more balanced than the
teachers in the previous two groups. Instead of mainly looking if the functional requirements of the program

ACM Trans. Comput. Educ.

20 • Neutens and wyfels, et al.

are correct and afterward adapting their valuation based on another concept like compactness, these teachers
irst consider the diferent aspects and then value the solution based on these diferent criteria. Even though
these teachers mostly consider the same concepts, how each of these concepts is valued varies between the
diferent teachers. One example is creativity, some teachers do not consider creativity in their assessment, others
want to encourage it by scoring creative solutions higher, and one of the teachers deducts points for creative
solutions because they do not conform to the standard way of solving the problem. Another concept with diferent
valuations by the teachers in this group is functional correctness. Some teachers deduct a signiicant amount of
points from the inal score when the program does not function as requested while others deduct only one or
two points and focus more on other aspects like the correct use of programming concepts. From our interviews,
it is not clear why some teachers attach a diferent value to these concepts. However, the transcriptsinterviews
indicate that the speciic context in which the teachers works impacts their valuation. This context can vary
signiicantly across the educational system. In our experimental group, we could identify two variations in the
context that inluence the way teachers assess code. The irst is if the teacher is used to teach in an open or
closed problem context. Teachers working in an open problem context (usually linked to STEM education) often
attach less value to the functional requirements of the program than teachers mostly working with closed-ended
problems. This is illustrated by the following statement made by one of the teachers who assessed the solutions
in our experiment with a focus on functionality: łIf I had to assess these programs in a STEM context, I would

look at if they analyzed the problem correctly, do they use the correct control structures, did they use variables, is

the solution readable, can you immediately understand the program, how much time did it take, and did they add

improvements.žAnother aspect that seems to inluence the context is the cohort these teachers usually work with.
In theory, the irst two years of secondary school in Flanders should have similar student cohorts. However, the
average socioeconomic status [1] of learners varies across diferent schools and can have an inluence on the
motivation of learners. This might encourage teachers to focus more on what learners do well, like using the
correct programming concepts, add additional creative elements and correct functionality of speciic elements in
the program. In contrast, teachers who are confronted less with these issues might focus more on adhering to
strict assessment criteria. These observations are interesting, however, they require a lot more research in order
to be conirmed.

Inter group comparison. By analyzing these three groups, a pattern towards a more broad assessment seems
to appear. Inexperienced teachers mainly focus on functional correctness. However, using general assessment
techniques like comparing solutions, they are able to more-or-less rank the students according to their abilities.
Nevertheless, their personal feedback written is supericial rendering it less useful for the learners. Teachers
with moderate experience use a similar technique to the teachers without experience but do show a better
understanding of some programming concepts like loops and if-statements. Consequently, their feedback is more
concrete. However, they pay less attention to the other concepts linked to programming. Finally, experienced
teachers have a much broader view of the assessment of code. They consider a lot more concepts during the
assessment and do not necessarily see function as the main criterium for their assessment. However, the strategies
for valuing the diferent aspects difer a lot between these teachers. A irst analysis indicates that this valuation is
inluenced by the context in which these teachers work. This trend towards a broader assessment seems to be
supported by the average concepts considered in each group shown in table 6. However, we do not believe this
quantitative comparison has much (if any) value since our experimental groups were small. Nevertheless, during
the interviews, it became clear that more experienced teachers seem to have a deeper insight into the assessment
criteria for programming.

ACM Trans. Comput. Educ.

Assessment of code • 21

4 DISCUSSION

4.1 Primary assessment strategies

The irst two research questions we tried to answer with this experiment are which criteria teachers consider
when assessing code and how they value these diferent aspects when assessing code. Our results have shown
that the answers to these questions are closely intertwined. Consequently, discussing them separately is of
little value. From our analysis it is clear that most teachers consider functionality as one of the most important
aspects to base their assessment on. Speciically, functional correctness seems to be the most important facet
related to functionality, especially teachers with limited conidence and experience seem to focus on functional
correctness. Other aspects related to function like eiciency and usability are considered less often and when
they are considered, teachers are not aware that they are assessing a speciic concept related to programming.
Even though most teachers attach a lot of value to program functionality, some teachers primarily focus on the
application of programming concepts. They deine which concepts should be used in each exercise and assess if
that concept was understood by looking at the code the learner wrote. If the concepts were applied correctly, the
students will get a higher score independent of whether the complete program was functionally correct or not.
The teachers in this group indicated that they valued the assessment of the process over the assessment of the
product which would explain why they attach less value to the functional correctness of the programs.

4.2 Secondary assessment strategies

Despite that most teachers predominantly consider the functionality of the program for their assessment, some
of the teachers also look at the correct usage of programming concepts in a second stage of the assessment.
Conident and experienced teachers seem to prefer this method of assessment. However, these teachers are still
unaware of some of the aspects they assess and attach a diferent value to them. From the aspects related to
programming concepts we deined in our coding schema, iteration and selection were mentioned by many but
not all teachers. Those concepts seem to be the ones that most teachers are familiar with, other concepts are
often grouped together into one category. Besides functionality and programming concepts, most teachers also
consider readability in some form during their assessment. However, readability is never deliberately cited as a
criterion for the assessment. It is mostly assessed implicitly as part of the clarity of the program. If the teacher can
easily understand the program, it is considered readable. Speciic indicators of readable code like clear variable
names, code comments, and layout are never explicitly mentioned by the teachers.

4.3 Creativity

Other aspects like creativity would also beneit of a clear description of how it can manifest itself in a program.
Our results have shown that many teachers see creativity as a part of the assessment of programming. However,
not all of them deine and value creativity in the same way. Some only look at the extra elements students added
to the program while others go further and also attribute creativity to the way a certain problem is solved.

4.4 Personal aspects

The inal assessment criterion we deined is the learner’s personal aspects. We recognize that our experiment did
not provide suicient information about the learners to get an accurate image of the personalities of the diferent
learners. However, our interviews have shown that these personal aspects are an important element teachers
use when assessing programming exercises. Many teachers either construct a personality in their head based on
the solutions they have, others explicitly state that they need this information to make an accurate assessment.
We believe it is valuable that teachers try to use a more personalized approach when assessing programming
problems. However, we believe that solutions to programming problems are a weak indicator of the personality
of the learner. Consequently, constructing an image of a learner personality based on solutions to programming

ACM Trans. Comput. Educ.

22 • Neutens and wyfels, et al.

problems will lead to inaccurate and invalid assessment. Moreover, since our data indicates that many teachers
only consider a subset of all possible aspect of programming for their assessment, using this subset of criteria to
construct a personality will result in an inaccurate representation of a learner’s personality.

4.5 Lesser-used concepts

In the previous paragraphs we discussed the main aspects teachers consider when assessing code. However, some
other concepts get less attention. Based on our interviews, we believe that the application of algorithmic thinking
and the execution of testing an debugging are less prevalent in the assessment teachers make since these concepts
are more related to the process of programming and less to the end result. Since our experiment was set up
focusing on the assessment of the end result, these concepts were considered less frequently. Nevertheless, some
teachers do try to include them as part of their assessment. References to mathematical concepts rarely appear in
our transcripts. We assume this is because the exercises contained only a limited number of these concepts and
the concepts that were used were relatively simple. Additionally, mathematical concepts like addition are mostly
part of the learners’ prior knowledge which is probably why the teachers in our experiment did not explicitly
state it as an assessment criterion.

4.6 Assessment pitfalls

Our analysis revealed some pitfalls in the assessment some teachers use. For example, one One speciic aspect
related to readability that teachers often include in the assessment is the number of blocks learners use. However,
teachers are not aware of which underlying concepts this number of blocks can represent. It can either impact
the readability or the computational eiciency. We suspect teachers take the number of blocks a program has
as a criterion because online platforms like Google Blockly or code.org use the same metric to determine if the
learners successfully solved one of the programming problems. However, the problems used on these platforms
are created by experts in a narrowly deined environment. Consequently, they can design the challenges in such
a way that the best solution is also the solution with the least amount of blocks. However, in more open contexts
like the one in our experiment this is not the case. Others have also shown that using certain heuristics during
assessment, like the number of code blocks or the number of lines in a function, can have a negative efect on
the quality of the assessment. Applying these metrics does not necessarily result in a correct assessment [25]. It
is important that teachers are made aware of this to improve the validity of their assessment and facilitate the
assessment of exercises they create themselves.

From the analysis for the criteria functionality, readability, and programming concepts, it is clear that teachers
need a better understanding of the diferent aspects of programming in order to improve the accuracy and validity
of their assessments. Some concepts like usability, eiciency, variable naming, code comments, layout, and certain
programming concepts are either never considered or not speciied suiciently. From our interviews it is clear
that many teachers want to improve their assessments but are unable to do so because they lack the required
framework to reason about why certain ways of programming are good or bad. The last question in the interview
asked teachers what would help them to facilitate the assessment of code. Some teachers said they needed more
content knowledge, however, most teachers said they wanted a checklist, rubric, or clear set of criteria to base
their assessment on. Nevertheless, this list of criteria should not be too limiting and allow them to create an
assessment strategy suited to their needs. Consequently, we believe that improving the awareness of the diferent
programming concepts described in this paper is required to improve the quality and validity of the assessment
of code.

ACM Trans. Comput. Educ.

Assessment of code • 23

4.7 Efect of teaching experience

The third research question we tried to answer was about the relation between teaching experience and assessment
strategy. Our results show the irst indications of the relation between teaching experience and assessment
strategies. It appears that more experience results in a broader range of assessment criteria. However, these
results are only an indication of a possible trend. Further research is required to see if this trend is present in a
larger population. The idea that experience and the number of concepts considered during the assessment are
linked, strengthens the idea that teaching teachers about the diferent criteria can have a positive efect on their
assessments.

4.8 Final thoughts

Previous work has shown that teacher educators struggle to improve the way teachers grade and report student
learning progress [20]. Nevertheless, the application assessment strategies for programming remain under-
explored [28]. Additionally, previous eforts to create professional development programs for programming
teachers often have limited attention for assessment [21]. Our results indicate that the assessment of code should
be an integral part of both teacher education as well as teacher professional development programs. Teachers
should be made aware of the diference between the purpose and the format of the assessment [31] and understand
which formats are useful for certain purposes. Our results show that some aspects of programming like function,
readability, programming concepts, and creativity are often considered when assessing code. However, teachers
are often not aware that they are assessing these concepts. This leads to inaccurate and invalid feedback.This can
lead to inaccurate or invalid feedback. For example, teachers might say a learner’s code deservers a perfect score
because it is functionally correct while it is not compact because no control structures are used. Our results also
showseem to indicate that more experienced teachers consider a lot more aspects related to code than teachers
with less experience. Additionally, the number of concepts considered seems to increase with experience. This
indicates that teachers aremight be discovering these assessment criteria over the years and adding them to
their assessment portfolio. The framework we propose could help teachers to get a better understanding of the
diferent assessment dimensions related to code right away. This understanding should guide the assessment
decisions teachers make, leading to improved accuracy and validity.

4.9 Future work

This small scale case study shows many diferent pathways for future research. A larger scale quantitative
assessment of the relation between teaching experience and assessment concepts is a straightforward next
step. Other topics, like if explaining the categories in our assessment schema to teachers has an efect on their
assessment strategies or if the division between assessing based on the programming process versus the end
result can be identiied on a larger scale. Additionally, adapting and validating our coding schema in diferent
contexts can be of value for teacher educators.

5 CONCERNS TO VALIDITY

Our results reveal multiple issues with the way teachers assess code. However, even though this study contained
an in depth analysis of the assessment techniques of diferent teachers, because our sample size is relatively small
and the teachers were self-selected, our results are not necessarily generalizable to all teachers. All teachers who
participated in our experiment teach programming in the irst two years of secondary school which requires
them to reach the same educational goals. However, they have diferent backgrounds. Some have more experience
teaching practical subjects while others have more experience with theoretical subjects. The target audience the
teachers usually have in their classes also difers depending on the cultural and social characteristics of the school
where they teach. For example, some teachers have more experience with students learning disabilities while

ACM Trans. Comput. Educ.

24 • Neutens and wyfels, et al.

others have more experience of whom Dutch is not their native language. Moreover, the way we presented the
assessment to the teachers and the speciic tools used during the experiment might not align with the assessment
techniques these teachers usually use in practice. In their own classroom, they have more freedom to perform
the assessment which might result in more assessment criteria being covered. Furthermore, the participants
might have a diferent level of familiarity with the speciic type of programming problems we presented in this
work. Having more experience with visual programming languages for physical systems might inluence the
assessment results. Despite these variations in our experimental group, the group does not cover all the possible
experience teachers can have, limiting the generalizability of our results. Exploring the assessment methods for
speciic teacher proiles requires additional research. Nevertheless, our results give an indication of the strategies
that are used for assessing code in the irst two years of secondary school of Flemish education.

6 CONCLUSION

Overall, considering the narrowly deined context for our experiment, teachers do consider multiple diferent
aspects related to programming during their assessment. Nevertheless, most of the teachers mainly look at
functional correctness. Additionally, many teachers are not aware of the diferent concepts they assess, the
concepts they are aware of are often not clearly deined. This lack of insight into the diferent aspects of
programming and how these aspects can be assessed results in threats to the accuracy and validity of the
assessment and may have a negative efect on the diferent learning outcomes related to programming. Ideally,
the feedback provided by a teacher should help learners get a better understanding of how to write high quality
code. This is not the case for some of the feedback teachers gave during the experiment. For example, teachers
who only assess the code based on the functional result often miss other issues with the code resulting in similar
feedback for code of difering quality. Moreover, other teachers make assumptions about the understanding of
certain programming concepts. For example, one teacher said the following about a learner who, in the exercise
where the learners had to make a robot drive a square pattern on the loor, used the ininite loop in the setup-loop
structure as the basis for the repetition in their application: The code is in an ininite loop so the robot doesn’t stop.

They should have used a loop that counts down. They clearly have not mastered that type of loop yet. This feedback
is inaccurate because: 1) The assignment does not specify the number of repetitions. 2) Not using a certain coding
construct does not necessarily mean the learner does not understand it. Not having a mental overview of the
diferent aspects related to programming also prevents teachers from reasoning about which assessment criteria
are best used in certain situations. The ability to reason about assessment criteria would be especially beneicial
for beginner teachers, helping them to provide better feedback to their students. In our opinion, teachers have to
be made more aware of all possible aspects of programming and how these aspects can be assessed.

This paper deines a framework for the assessment of programming by combining the diferent aspects previous
work has shown to be relevant when assessing code. Our framework covers a wide range of topics, however, it is
limited to the concepts which were relevant to the context of our experiment. In this paper, we identiied how the
assessment teachers make in practice adheres to the proposed framework. Moreover, using this framework we
revealed some inconsistencies and threats to validity in the assessment practice like when teachers give negative
feedback to learners with an alternative solution strategy with the argumentation they should not add easter eggs
to ther programs. However, assessment practice has also given insight into the relevance of certain assessment
criteria within our framework. Additionally, we have showour results indicate that a teachers’ understanding
of diferent concepts grows over time with teaching experience. We are convinced the proposed framework
can be used as a reference, however, it should be adapted to the speciic learning context for the assessment.
Consequently, future work should explore how the proposed framework should be extended or adapted to it
diferent learning contexts. Moreover, additional research is required to conirm that creating awareness about
the diferent aspects of programming actually leads to improved assessment. Nevertheless, our framework can

ACM Trans. Comput. Educ.

Assessment of code • 25

already be used as a reference by teachers and teacher educators to help improve insight into the accuracy and
validity of their assessments. Moreover, the speciic problems we have identiied in this paper can be used to
inform teachers about possible good or bad practices when assessing code.

REFERENCES

[1] Elizabeth H Baker. 2014. Socioeconomic status, deinition. The Wiley Blackwell encyclopedia of health, illness, behavior, and society (2014),
2210ś2214.

[2] Sarah Elsie Baker and Rosalind Edwards. 2012. How many qualitative interviews is enough. (2012).
[3] Satabdi Basu. 2019. Using Rubrics Integrating Design and Coding to Assess Middle School Students’ Open-ended Block-based

Programming Projects. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education. 1211ś1217.
[4] Satabdi Basu, Daisy Rutstein, Yuning Xu, and Linda Shear. 2020. A principled approach to designing a computational thinking practices

assessment for early grades. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education. 912ś918.
[5] Rosemary Pessoa Borges, Pablo Roberto Fernandes Oliveira, Romulo Galdino Rocha Lima, and Rommel Wladimir Lima. 2018. A

systematic review of literature on methodologies, practices, and tools for programming teaching. IEEE Latin America Transactions 16, 5
(2018), 1468ś1475.

[6] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema, Rodrigo Duran, Sara Hooshangi, Johan Jeuring, Hieke Keuning, Carsten
Kleiner, and Bonnie MacKellar. 2018. "I know it when I see it" Perceptions of Code Quality: ITiCSE’17 Working Group Report. In
Proceedings of the 2017 ITiCSE Conference on Working Group Reports. 70ś85.

[7] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative research in psychology 3, 2 (2006), 77ś101.
[8] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and assessing the development of computational thinking. In

Proceedings of the 2012 annual meeting of the American educational research association, Vancouver, Canada, Vol. 1. 25.
[9] John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. 2013. Coding in-depth semistructured interviews: Problems of

unitization and intercoder reliability and agreement. Sociological methods & research 42, 3 (2013), 294ś320.
[10] Mehmet Celepkolu, Erin O’Halloran, and Kristy Elizabeth Boyer. 2020. Upper Elementary and Middle Grade Teachers’ Perceptions,

Concerns, and Goals for Integrating CS into Classrooms. In Proceedings of the 51st ACM Technical Symposium on Computer Science

Education. 965ś970.
[11] Guanhua Chen, Ji Shen, Lauren Barth-Cohen, Shiyan Jiang, Xiaoting Huang, and Moataz Eltoukhy. 2017. Assessing elementary students’

computational thinking in everyday reasoning and robotics programming. Computers & Education 109 (2017), 162ś175.
[12] Alan Cooper et al. 2004. The inmates are running the asylum: Why high-tech products drive us crazy and how to restore the sanity. Vol. 2.

Sams Indianapolis.
[13] Nicole M Deterding and Mary C Waters. 2021. Flexible coding of in-depth interviews: A twenty-irst-century approach. Sociological

methods & research 50, 2 (2021), 708ś739.
[14] Yihuan Dong, Veronica Cateté, Nicholas Lytle, Amy Isvik, Tifany Barnes, Robin Jocius, Jennifer Albert, Deepti Joshi, Richard Robinson,

and Ashley Andrews. 2019. Infusing computing: Analyzing teacher programming products in K-12 computational thinking professional
development. In Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education. 278ś284.

[15] Svetlana V Drachova, Jason O Hallstrom, Joseph E Hollingsworth, Joan Krone, Rich Pak, and Murali Sitaraman. 2015. Teaching
mathematical reasoning principles for software correctness and its assessment. ACM Transactions on Computing Education (TOCE) 15, 3
(2015), 1ś22.

[16] Katrina Falkner, Sue Sentance, Rebecca Vivian, Sarah Barksdale, Leonard Busuttil, Elizabeth Cole, Christine Liebe, Francesco Maiorana,
Monica M McGill, and Keith Quille. 2019. An international comparison of k-12 computer science education intended and enacted
curricula. In Proceedings of the 19th Koli Calling International Conference on Computing Education Research. 1ś10.

[17] Patricia I Fusch and Lawrence R Ness. 2015. Are we there yet? Data saturation in qualitative research. The qualitative report 20, 9 (2015),
1408.

[18] Gerald Futschek. 2006. Algorithmic thinking: the key for understanding computer science. In International conference on informatics in

secondary schools-evolution and perspectives. Springer, 159ś168.
[19] Shuchi Grover and Satabdi Basu. 2017. Measuring student learning in introductory block-based programming: Examining misconceptions

of loops, variables, and boolean logic. In Proceedings of the 2017 ACM SIGCSE technical symposium on computer science education. 267ś272.
[20] Thomas R Guskey and Laura J Link. 2019. Exploring the factors teachers consider in determining students’ grades. Assessment in

Education: Principles, Policy & Practice 26, 3 (2019), 303ś320.
[21] Emily Hestness, Diane Jass Ketelhut, J Randy McGinnis, Jandelyn Plane, Bonnie Razler, Kelly Mills, Lautaro Cabrera, and Elias Gonzalez.

2018. Computational thinking professional development for elementary science educators: Examining the design process. In Society for

Information Technology & Teacher Education International Conference. Association for the Advancement of Computing in Education
(AACE), 1904ś1912.

ACM Trans. Comput. Educ.

26 • Neutens and wyfels, et al.

[22] Ken Kahn and Harriette L Spiegel. 1999. The role of computer programming in education. Journal of Educational Technology & Society 2,
4 (1999), 6ś9.

[23] Hanna Kallio, Anna-Maija Pietilä, Martin Johnson, and Mari Kangasniemi. 2016. Systematic methodological review: developing a
framework for a qualitative semi-structured interview guide. Journal of advanced nursing 72, 12 (2016), 2954ś2965.

[24] ChanMin Kim, Jiangmei Yuan, Lucas Vasconcelos, Minyoung Shin, and Roger B Hill. 2018. Debugging during block-based programming.
Instructional Science 46, 5 (2018), 767ś787.

[25] Diana Kirk, Ewan Tempero, Andrew Luxton-Reilly, and Tyne Crow. 2020. High School Teachers’ Understanding of Code Style. In Koli

Calling’20: Proceedings of the 20th Koli Calling International Conference on Computing Education Research. 1ś10.
[26] Özgen Korkmaz, Recep Çakir, and M Yaşar Özden. 2017. A validity and reliability study of the computational thinking scales (CTS).

Computers in human behavior 72 (2017), 558ś569.
[27] Michael J Lee, Faezeh Bahmani, Irwin Kwan, Jilian LaFerte, Polina Charters, Amber Horvath, Fanny Luor, Jill Cao, Catherine Law,

Michael Beswetherick, et al. 2014. Principles of a debugging-irst puzzle game for computing education. In 2014 IEEE symposium on

visual languages and human-centric computing (VL/HCC). IEEE, 57ś64.
[28] Linda Mannila, Fredrik Heintz, Susanne Kjällander, and Anna Åkerfeldt. 2020. Programming in primary education: towards a research

based assessment framework. In Proceedings of the 15th Workshop on Primary and Secondary Computing Education. 1ś10.
[29] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. 2015. Dr. Scratch: Automatic analysis of scratch projects to assess

and foster computational thinking. RED. Revista de Educación a Distancia 46 (2015), 1ś23.
[30] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda Thomas, and Carol Zander. 2008. Debugging: the good, the

bad, and the quirkyśa qualitative analysis of novices’ strategies. ACM SIGCSE Bulletin 40, 1 (2008), 163ś167.
[31] Guri A Nortvedt and Nils Buchholtz. 2018. Assessment in mathematics education: responding to issues regarding methodology, policy,

and equity. ZDM 50, 4 (2018), 555ś570.
[32] Joel D Olson, Chad McAllister, Lynn D Grinnell, Kimberly Gehrke Walters, and Frank Appunn. 2016. Applying Constant Comparative

Method with Multiple Investigators and Inter-Coder Reliability. Qualitative Report 21, 1 (2016).
[33] Marcos Román-González, Juan-Carlos Pérez-González, and Carmen Jiménez-Fernández. 2017. Which cognitive abilities underlie

computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior 72 (2017), 678ś691.
[34] Mark A Runco and Selcuk Acar. 2012. Divergent thinking as an indicator of creative potential. Creativity research journal 24, 1 (2012),

66ś75.
[35] Mark A Runco and Garrett J Jaeger. 2012. The standard deinition of creativity. Creativity research journal 24, 1 (2012), 92ś96.
[36] Sameh Said-Metwaly, Wim Van den Noortgate, and Eva Kyndt. 2017. Approaches to measuring creativity: A systematic literature review.

Creativity. TheoriesśResearch-Applications 4, 2 (2017), 238ś275.
[37] Ronny Scherer, Fazilat Siddiq, and Bárbara Sánchez Viveros. 2019. The cognitive beneits of learning computer programming: A

meta-analysis of transfer efects. Journal of Educational Psychology 111, 5 (2019), 764.
[38] Young-Ho Seo and Jong-Hoon Kim. 2016. Analyzing the efects of coding education through pair programming for the computational

thinking and creativity of elementary school students. Indian Journal of Science and Technology 9, 46 (2016), 1ś5.
[39] Jocelyn Simmonds, Francisco J Gutierrez, Cecilia Casanova, Cecilia Sotomayor, and Nancy Hitschfeld. 2019. A Teacher Workshop for

Introducing Computational Thinking in Rural and Vulnerable Environments. In Proceedings of the 50th ACM Technical Symposium on

Computer Science Education. 1143ś1149.
[40] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2014. Towards an empirically validated model for assessment of code quality. In

Proceedings of the 14th Koli Calling international conference on computing education research. 99ś108.
[41] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a rubric for feedback on code quality in programming courses.

In Proceedings of the 16th Koli Calling International Conference on Computing Education Research. 160ś164.
[42] Xiaodan Tang, Yue Yin, Qiao Lin, Roxana Hadad, and Xiaoming Zhai. 2020. Assessing computational thinking: A systematic review of

empirical studies. Computers & Education 148 (2020), 103798.
[43] Donald J Treinger, Grover C Young, Edwin C Selby, and Cindy Shepardson. 2002. Assessing Creativity: A Guide for Educators. National

Research Center on the Gifted and Talented (2002).
[44] Onderwijs Vlaanderen. 1999. Onderwijsdoelen - Resultaten. https://onderwijsdoelen.be/uitgangspunten/4814
[45] Anna Yström, Lena Peterson, Björn von Sydow, and Johan Malmqvist. 2010. Using Personas to Guide Education Needs Analysis and

Program Design. In Proceedings of 6th International CDIO Conference, Montreal, Canada.

ACM Trans. Comput. Educ.

https://onderwijsdoelen.be/uitgangspunten/4814

	Abstract
	1 Introduction
	1.1 Assessment of code
	1.2 Research questions

	2 Method
	2.1 Context
	2.2 Instruments
	2.3 Data collection
	2.4 Data analysis

	3 Results
	3.1 Function
	3.2 Readability
	3.3 Application of programming concepts
	3.4 Application of algorithmic thinking
	3.5 Mathematical concepts
	3.6 Execution of testing and debugging
	3.7 Creativity
	3.8 Personal aspects
	3.9 Link between assessment strategy and teaching experience.

	4 Discussion
	4.1 Primary assessment strategies
	4.2 Secondary assessment strategies
	4.3 Creativity
	4.4 Personal aspects
	4.5 Lesser-used concepts
	4.6 Assessment pitfalls
	4.7 Effect of teaching experience
	4.8 Final thoughts
	4.9 Future work

	5 Concerns to validity
	6 Conclusion
	References

