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Abstract

Tensor-valued diffusion encoding facilitates data analysis by q-space trajectory imag-

ing. By modeling the diffusion signal of heterogeneous tissues with a diffusion tensor

distribution (DTD) and modulating the encoding tensor shape, this novel approach

allows disentangling variations in diffusivity from microscopic anisotropy, orientation

dispersion, and mixtures of multiple isotropic diffusivities. To facilitate the estimation

of the DTD parameters, a parsimonious acquisition scheme coupled with an accurate

and precise estimation of the DTD is needed. In this work, we create two precision-

optimized acquisition schemes: one that maximizes the precision of the raw DTD

parameters, and another that maximizes the precision of the scalar measures derived

from the DTD. The improved precision of these schemes compared to a naïve sam-

pling scheme is demonstrated in both simulations and real data. Furthermore, we

show that the weighted linear least squares (WLLS) estimator that uses the squared

reciprocal of the noisy signal as weights can be biased, whereas the iteratively WLLS

estimator with the squared reciprocal of the predicted signal as weights outperforms

the conventional unweighted linear LS and nonlinear LS estimators in terms of accu-

racy and precision. Finally, we show that the use of appropriate constraints can con-

siderably increase the precision of the estimator with only a limited decrease in

accuracy.

K E YWORD S

acquisition, diffusion magnetic resonance imaging, optimal experimental design, parameter
estimation, q-space trajectory imaging, tensor-valued diffusion encoding

1 | INTRODUCTION

Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a

unique look into the microstructure of the human brain, in vivo and

noninvasively. This is achieved by sensitizing the signal to the random

motion of water molecules that permeate biological tissues. In isotro-

pic tissues such as gray matter (GM) and cerebrospinal fluid (CSF), the

apparent diffusivity of water molecules can be characterized by a

scalar quantity. However, in anisotropic tissues such as white matter

(WM), the apparent diffusivity will depend on the direction along

which it is probed, and a tensor-valued quantity known as the diffu-

sion tensor is more appropriate (Chenevert et al., 1990; Moseley

et al., 1990).

Conventional DW-MRI methods such as diffusion tensor imaging

(DTI) estimate the voxel-averaged diffusion tensor by applying diffu-

sion weighting along multiple spatial directions (Basser et al., 1994).
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The strength of the diffusion weighting is typically described by a sca-

lar quantity called the b-value (Le Bihan et al., 1986), and the direction

along which the diffusion weighting is applied can be described by a

unit vector. Within the context of DTI, a single DW measurement

thus is characterized by a b-vector, or equivalently a b-tensor of rank

one (Basser et al., 1994).

Alternatively, q-space trajectory imaging (QTI) enables diffusion

weighting using higher-rank b-tensors (Westin et al., 2014, 2016). By

assuming that heterogeneous tissues can be modeled by a diffusion

tensor distribution (DTD), these b-tensors can be used to disentangle

microscopic anisotropy (cell shape), orientation dispersion (cell orien-

tation), and heterogeneity of isotropic diffusivity (cell size;

Szczepankiewicz et al., 2015, 2016). Compared to conventional DTI,

QTI can thus provide more specific tissue metrics to assess tissue

anisotropy or to characterize cancers (Andersen et al., 2020; Kamiya

et al., 2020; Lampinen, Zampeli, et al., 2020b; Langbein et al., 2021; Li

et al., 2021; Nilsson et al., 2020, 2021; Szczepankiewicz et al., 2016;

Yang et al., 2018).

Studies that use these novel QTI-derived tissue metrics as a bio-

marker could greatly benefit from a precision-maximizing QTI sam-

pling scheme. Currently, it is not immediately obvious how the

b values and b-tensor shapes of a given number of DW samples

should be distributed to achieve maximal precision in the estimation

of QTI-derived tissue metrics. (Coelho et al., 2019) previously

explored optimal experiment design for QTI using only simulations,

but they did not consider the impact on the final QTI-derived tissue

metrics during their optimization. A common choice is to use a com-

bination of the three major encodings (i.e., linear, planar, and spheri-

cal tensor encoding) at approximately regularly spaced b values

(Nilsson et al., 2020; Szczepankiewicz, Hoge, & Westin, 2019). How-

ever, these b values might not guarantee the highest precision, as

was demonstrated for diffusion kurtosis imaging (DKI) by Poot

et al. (2010).

Not only the sampling strategy but also the choice of the estima-

tor can considerably impact the bias and precision with which the tis-

sue parameters are estimated. As the DTD model can be linearized

using the natural logarithm, the linear least squares (LLS) estimator is a

common choice due to its ease of implementation and the closed-

form solution it provides. However, it is known that the variance of

the log-transformed DW signal is no longer constant (Basser

et al., 1994). As such, the LLS estimator, which assumes a constant

variance across all DW samples, will have suboptimal precision. To

combat this, a weighted linear least squares (WLLS) estimator using

the squared reciprocals of the noisy signal as weights will provide

improved precision (Basser et al., 1994). However, Veraart et al.

(2013) showed for DKI that using these particular weights for a WLLS

estimator may introduce a bias. An iteratively weighted linear least

squares (IWLLS) estimator with its weights based on the squared

inverse of the predicted signal is expected to provide more accurate

and precise parameter estimates compared to WLLS and even non-

linear least squares (NLS; Veraart et al., 2013). Moreover, imposing

certain constraints that follow from the physics of diffusion has the

potential to dramatically improve the precision of DTD parameters

(Basser & Pajevic, 2007; Herberthson et al., 2021; Tabesh et al., 2011;

Veraart et al., 2011).

In this work, we propose two optimized parsimonious sampling

schemes and compare them to a naive sampling scheme in terms of

attainable precision. In addition, we evaluate the precision and accu-

racy of various linear and nonlinear DTD parameter estimators, as well

as various constrained iteratively weighted linear DTD parameter

estimators.

2 | THEORY

In this section, we provide a short overview of the DTD and its

parametrization in the QTI framework, followed by the definition of

the forward model based on the cumulant expansion. Next, we intro-

duce the Cramér-Rao lower bound and we define the optimality cri-

teria used to obtain optimal sampling schemes. Lastly, we introduce

the various estimators and constraints evaluated in this work.

2.1 | The diffusion tensor distribution

The QTI framework accounts for the heterogeneity of biological tissue

by modeling the fully symmetric second-order diffusion tensor D as a

random variable having a tensor-variate distribution P Dð Þ (Basser &

Pajevic, 2003, 2007; Jian et al., 2007). Under this assumption, the DW

signal probed with a b-tensor B becomes a linear superposition of dif-

fusion tensors D, weighted with P Dð Þ:

S¼ S0

ð
P Dð Þexp �B :Dð ÞdD¼ S0⟨exp �B :Dð Þ⟩, ð1Þ

where B :D is the inner tensor product, S0 is the signal without diffu-

sion weighting, and ⟨:⟩ is the expectation value operator. Several sta-

tistical metrics can be calculated for the DTD P Dð Þ, such as its

expectation value (Topgaard & Söderman, 2002; Westin et al., 2016):

⟨D⟩¼
ð
DP Dð ÞdD, ð2Þ

as well as the fourth-order covariance tensor C (Westin et al., 2014):

C¼ ⟨D⨂2⟩� ⟨D⟩
⨂2

, ð3Þ

where D⨂2 is the outer tensor product of D with itself (Basser &

Pajevic, 2007). The two-term cumulant expansion of Equation (1) is

then given by Westin et al. (2014, 2016):

S¼ S0 exp �B : ⟨D⟩þ1=2B⨂2 :C
� �

: ð4Þ

For computational convenience, we follow the tensor formalism by

Westin et al. (2016) and Nilsson et al. (2018), where the second- and

fourth-order tensors are stored as vectors. For example, the (fully
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symmetric) second-order diffusion tensor D can be represented as a

6�1 column vector:

d¼ dxx dyy dzz
ffiffiffi
2

p
dyz

ffiffiffi
2

p
dxz

ffiffiffi
2

p
dxy

� �T
, ð5Þ

where the
ffiffiffi
2

p
factors are normalization factors. The fourth-order dif-

fusion covariance tensor C with major and minor symmetry

(Cij,kl ¼Ckl,ij and Cij,kl ¼Cji,lk ) can be represented as a 21�1 column

vector:

c¼ cxx,xx cxx,yy…
ffiffiffi
2

p
cxz,yz

� �T
: ð6Þ

2.2 | Forward signal model

Consider the N�1 vector s¼ S 1ð Þ S 2ð Þ…S Nð Þ
� �T

representing the N

diffusion-weighted measurements, and the 28�1 parameter vector θ:

θ¼ log S0 d cð ÞT ¼ log S0 dxx dyy…
ffiffiffi
2

p
dxz

ffiffiffi
2

p
dxy…cxx,xx cxx,yy…

ffiffiffi
2

p
cxz,yz

� �T
,

ð7Þ

where dij corresponds to the six independent parameters of ⟨D⟩ and

cij,kl to the 21 independent parameters of C (with the index pairs ij and

kl� xx, yy, zz, xy, xz, yzf gÞ. The forward signal model can then be

expressed compactly as:

s θð Þ¼ exp Aθð Þ, ð8Þ

with A the N�28 design matrix (Nilsson et al., 2018):

A¼

1 �b 1ð Þ
xx � � � �

ffiffiffi
2

p
b 1ð Þ
yx 1=2b 1ð Þ

xx,xx …
ffiffiffi
8

p
=2b 1ð Þ

xz,yz

1 �b 2ð Þ
xx � � � �

ffiffiffi
2

p
b 2ð Þ
yx 1=2b 2ð Þ

xx,xx …
ffiffiffi
8

p
=2b

2ð Þ
xz,yz

..

. ..
. ..

. ..
. ..

. ..
. ..

.

1 �b Nð Þ
xx � � � �

ffiffiffi
2

p
b Nð Þ
yx 1=2b Nð Þ

xx,xx …
ffiffiffi
8

p
=2b

Nð Þ
xz,yz

0
BBBBBBBB@

1
CCCCCCCCA
, ð9Þ

where bij are the components of the second-order tensor B and bij,kl

the components of the fourth-order tensor B⨂2 (in Voight notation).

The complete expression of Equation (9) can be retrieved from the

appendix of Westin et al. (2016).

While any b-tensor shape could in principle be used to sample the

DW data, in this work we will only consider axisymmetric b-tensors, which

have the following diagonal form in their principal axis system (PAS):

BPAS ¼
b ⊥ 0 0

0 b ⊥ 0

0 0 bk

0
BB@

1
CCA, ð10Þ

where b ⊥ and bk are the radial and axial eigenvalues of the b-tensor,

respectively. The anisotropy bΔ of the b-tensor is defined as (Eriksson

et al., 2015):

bΔ ¼ bk �b ⊥

bk þ2b ⊥
, ð11Þ

with values ranging between �0.5 (planar tensor encoding, or PTE)

and 1 (linear tensor encoding, or LTE). Spherical tensor encoding (STE)

corresponds with bΔ ¼0 and yields isotropic diffusion weighting.

A more compact representation of the experimental parameters

can be achieved by defining an N�5 acquisition scheme matrix Q:

Q¼ G b bΔð Þ¼

g1 b1 bΔ,1

g2 b2 bΔ,2

..

. ..
. ..

.

gN bN bΔ,N

0
BBBBBB@

1
CCCCCCA, ð12Þ

where G is an N�3 matrix containing the N unit row vectors

gi ¼ g ið Þ
x g ið Þ

y g ið Þ
z

� �
representing the direction of the principal axis of

each b-tensor, b is an N�1 column vector containing the b values,

and bΔ is an N�1 column vector containing the b-tensor anisotropies

associated with each DW sample. As the signal model remains the

same throughout this work, the design matrix A will only vary with

the experimental parameters contained in Q. Consequently, we have

that A¼A Qð Þ, and any function that depends on A can also be con-

sidered a function of Q. This property will be used in the following

section.

2.3 | Optimal experimental design

In this section, we describe how maximally precise acquisition

schemes can be obtained by minimizing several criteria based on the

Cramér–Rao lower bound (CRLB). Previous work has used the CRLB

to optimize diffusion acquisition settings (Alexander, 2008; Brihuega-

Moreno et al., 2003; Caan et al., 2010; Coelho et al., 2019; Jalnefjord

et al., 2019; Lampinen, Szczepankiewicz, et al., 2020a; Peña-Nogales

et al., 2020; Poot et al., 2010; Slator et al., 2019; Zhang et al., 2013).

The CRLB provides a lower bound for the covariance of any unbiased

estimator bθ of θ, and it can be calculated by inverting the Fisher infor-

mation matrix (FIM). Its diagonal elements provide a theoretical lower

bound for the variance of bθ:For the model described in Equation (8),

assuming independent and zero mean identically Gaussian distributed

noise with variance σ2, the FIM takes the following form (van den

Bos, 2007, p. 52):

I θ, Að Þ¼ 1
σ2

s θð ÞA½ �T s θð ÞA ð13Þ

The FIM for a set of K derived metrics mi θð Þ (with i¼1,2,…,KÞ can be

calculated as follows (van den Bos, 2007, p. 54):

J θ, Að Þ¼MT I θ, Að Þ�1M, ð14Þ

where the 28�K matrix M is defined as:

MOREZ ET AL. 1795
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M¼ ∂m1

∂θ
∂m2

∂θ
� � � ∂mK

∂θ

� �
: ð15Þ

Several optimality criteria are available based on either Equation (13)

or Equation (14). A commonly used criterion to be minimized is the

product of the variances, or equivalently the determinant of the CRLB

(known as D-optimal design; Pukelsheim, 2006). The objective func-

tion then takes the following form:

f2 θ, Qð Þ¼det I�1 θ, Qð Þ
� �

, ð16Þ

where we now use the acquisition scheme matrix Q instead of the

design matrix A as a function argument (see the last paragraph of

Section 2.2).

If equal relative variances for a set of K metrics mj θð Þ are pursued,

the objective function should be calculated from the weighted sum of

the CRLB diagonal elements:

f3 θ, Qð Þ¼
XK
j¼1

wjJ θ, Qð Þ jjð Þ, ð17Þ

with J θ, Qð Þ jjð Þ denoting the jth diagonal element of the CRLB and

each weight wj equal to the squared reciprocal of the magnitude of

the jth tissue metric (van den Bos, 2007, pp. 85–86):

wj ¼ 1

m2
j θð Þ : ð18Þ

With the weights of Equation (18), we ensure that there is an

equal gain in relative precision for each metric mj θð Þ.To ensure acqui-

sition schemes that are optimal for both WM and GM, we minimized

the average of the optimality criterion across a representative set of

M voxels consisting of both WM and GM (Poot et al., 2010):

bQk ¼ arg min
Q

Fk Qð Þ¼ arg min
Q

1
M

XM
i¼1

fk θi, Qð Þ, ð19Þ

where bQk is the optimal acquisition scheme obtained with optimality

criterion fk (with k� 2, 3f g). In addition, we randomly oriented these

voxels to avoid tailoring the optimal acquisition scheme to a particular

fiber orientation.

2.4 | Estimators

Here we describe the various estimators that were compared in terms

of accuracy and precision. In practice, the DW measurements will be

Rician-distributed, and Basser et al. (1994) showed that the log-

transformed signal intensities can be modeled as:

log s¼Aθþε, ð20Þ

where ε is the column vector of independent error terms. The ordi-

nary linear least squares (LLS) estimator of θ is given by:

bθ¼ ATA
� ��1

A log s: ð21Þ

It is unbiased under the condition that ε has expectation zero. If the

variance of the error terms can be assumed constant across all mea-

surements (an assumption known as homoscedasticity), the LLS esti-

mator is the best linear unbiased estimator of θ (van den Bos, 2007).

However, it can be shown that var εð Þ¼ σ2diag ~s�2
� �

, where ~s is the

underlying noise-free signal vector (Basser et al., 1994). This means

that the homoscedasticity assumption does not hold for the log-

transformed data and LLS will have a suboptimal precision. To account

for this, a weighted linear least squares (WLLS) estimator was pro-

posed by Basser et al. (1994):

bθ¼ AW1Að Þ�1AW1 log s, ð22Þ

with W1 a diagonal matrix with the reciprocal squares of the elements

of the signal vector s on its diagonal:

W1 ¼diag s�2
� �

: ð23Þ

Alternatively, the iteratively weighted linear least squares (IWLLS)

estimator proposed by Salvador et al. (2005) consists of updating the

weights of the nth iteration with the signal predictions of the previous

iteration, up to some maximum nmax :

Wn ¼diagbs�2
n�1: ð24Þ

In this work, we set nmax ¼2, as the weight matrix W3 did not differ

substantially from the previous iteration.

Finally, we define the unweighted nonlinear least squares (NLS)

estimator as:

bθ¼ argmin
θ

s� exp Aθð Þk k22, ð25Þ

where :k k22 is the squared two-norm.

Because, in this case, the data are no longer log-transformed, the

variance can be assumed to be constant across all measurements, and

weights are not required. In this work, the NLS estimator was initial-

ized with LLS.

2.5 | Constraints

In this section, we describe the various constraints that can be

imposed on the parameters to guarantee their physicality. The mean

diffusion tensor ⟨D⟩ is known to be positive semidefinite, or equiva-

lently, for any b-tensor B, we impose nonnegative diffusivity

(Basser & Pajevic, 2007):

1796 MOREZ ET AL.
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⟨D⟩ :B≥ 0: ð26Þ

Similarly, C is positive definite (Westin et al., 2014):

C :B⨂2 ≥0: ð27Þ

Note that the constraints described by Equations (26) and (27) have

recently been investigated by Herberthson et al. (2021). In this work,

we propose two new and more specific nonnegativity constraints on

several parameters defined by Westin et al. (2016). The first con-

straint is a nonnegativity constraint on the isotropic kurtosis:

MKi ¼3
C :bulk

⟨D⟩
⨂2

:bulk

≥0, ð28Þ

with bulk defined as:

bulk ¼1
9

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð29Þ

A second constraint is nonnegative anisotropic kurtosis:

MKa ¼6
5

C :shear

⟨D⟩
⨂2

:bulk

¼MK�MKi ≥0, ð30Þ

with MK the mean kurtosis, and with shear defined as:

shear ¼1
9

2 �1 �1 0 0 0

�1 2 �1 0 0 0

�1 �1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð31Þ

Finally, we also introduce a constraint that enforces monotonic

signal decay as was done previously for diffusion kurtosis imaging

(Tabesh et al., 2011):

dS
db

≤0, ð32Þ

which implies:

C : g⨂4�bmax ⟨D⟩ : g⨂2 ≤0: ð33Þ

The three constrained estimators and their associated constraint com-

binations are described in Table 1. From here on we will prepend the

estimator acronym with the letter “C” to indicate the use of con-

straints and append the number of the constraint combination. For

example, the IWLLS estimator combined with constraint combination

3 (Table 1) will be referred to as CIWLLS3, and so on. Note that the

second and third constraint combinations (corresponding to CIWLLS2

and CIWLLS3) also implicitly impose semi-positive definiteness on C
(i.e., the constraint described by Equation 27). Moreover, the con-

straint combination corresponding with CIWLLS2 is similar in spirit to

the constraints imposed by Tabesh et al. (2011) for DKI.

3 | MATERIALS AND METHODS

3.1 | Optimal experimental design

Following the theory in Section 2.3, we generated two optimized

acquisition schemes each containing 120 DW samples: bQ2 which min-

imizes the determinant of the covariance matrix of the raw DTD

parameters (see Equation 16), and bQ3 which minimizes the weighted

average of the variances of derived scalar measures (see Equation 17)

and compare them to a naïve acquisition scheme of equal length Q1

(see Table 2 for the specifications of this acquisition scheme). The set

of metrics for which the acquisition scheme bQ3 was optimized using

Equation (17) was MD, μFA, MKi, and MKa. The naïve reference

scheme Q1 was based on the scheme in Szczepankiewicz, Hoge, and

Westin (2019) from which we took the distribution of b values and b-

tensor schemes, but reduced the total number of samples to 120 to

ensure fair comparison. For each set of DW samples corresponding to

a specific b-value and b-tensor shape combinations, we additionally

applied electrostatic repulsion to the principal b-tensor axes to ensure

rotational invariance of Q1.As the CRLB depends on the underlying

tissue parameters θ, a random selection of 2000 representative voxels

(consisting of WM and GM) were selected from the open data set

provided by Szczepankiewicz, Hoge, and Westin (2019). To ensure

rotational invariance of the optimized scheme, the gradient scheme of

each voxel was randomly reoriented. For each voxel, we then esti-

mated θ from the densely sampled open dataset provided by

TABLE 1 The various constrained estimators used to estimate the 28 tensor parameters of the signal model

Estimator ⟨D⟩ :B≥0 C :B⨂2 ≥0 MKi ≥0 MKa ≥0 dS
db ≤0 Reference

CIWLLS1 Yes Yes No No No Herberthson et al. (2021)

CIWLLS2 Yes Yes* No No Yes Similar to Tabesh et al. (2011)

CIWLLS3 Yes Yes* Yes Yes Yes –

Note: The asterisk indicates that the constraint is imposed implicitly as a consequence of the other constraints.
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Szczepankiewicz, Hoge, and Westin (2019) (N¼377 DW samples, see

Table S1 for acquisition details) using the CIWLL3 estimator.

The starting point for minimizing Equation (19) was obtained by

generating 120 directions distributed uniformly on the unit sphere

with electrostatic repulsion and initializing the b values b and b-tensor

anisotropies bΔ by drawing them randomly from a uniform distribution

such that 0:1 < b<2 s=μm2 and �0:5≤ bΔ ≤1. We minimized

Equation (20) with respect to b and bΔ for the two objective functions

f2 and f3 (described by Equations (16) and (17)) using MATLAB's built-

in patternsearch function, while keeping the directions G (see

Equation 12) fixed. Fixing the directions of the b-tensors has several

advantages. First, it greatly reduces the number of parameters that

have to be optimized, reducing the computational cost and making

the optimization less prone to local minima. Second, it ensures that

the resulting acquisition scheme will be more or less rotationally

invariant. Nevertheless, the resulting optimization is not convex. For

this reason, we used the Direct Search algorithm from MATLAB's

Global Optimization Toolbox (patternsearch).

To ensure a shell-wise acquisition, we grouped all samples of the

optimized acquisition scheme with similar b values and b-tensor

shapes together. To ensure rotational invariance, the b-tensor princi-

pal axes of each group of DW samples were then redistributed uni-

formly on the unit sphere using electrostatic repulsion.

3.2 | Acquisition and preprocessing

An in vivo data set of a healthy human brain was acquired from a

29-year-old male volunteer after obtaining written informed consent.

It contains five repetitions of each acquisition scheme (Q1,bQ2, andbQ3Þ, resulting in a total of 3 �5�120 = 1800 DW samples. We used

a Siemens MAGNETOM 3T Prisma system with a custom pulse

sequence based on a diffusion-weighted spin-echo that supports free

waveform encoding (FWF, version 1.19 s), enabling PTE, STE, and LTE

(Szczepankiewicz, Sjölund, et al., 2019). The imaging parameters used

were: TR = 4 s, TE = 91ms, FOV = 220 �220 �62.5mm,

matrix = 88 �88�25, isotropic voxel size = 2.5mm3, partial-Fou-

rier = 7/8, bandwidth = 1960Hz/px, echo spacing = 0.6 ms. Further-

more, we used in-plane acceleration iPAT = 2 with GRAPPA

reconstruction without simultaneous multiband acquisition (SMS). We

preprocessed it with a state-of-the-art pipeline consisting of denoising

(Veraart et al., 2016), Gibbs-ringing correction (Kellner et al., 2016),

and extrapolation-based affine motion and distortion correction

(Nilsson et al., 2015). Denoising and Gibbs-ringing correction were

performed using MRtrix3 (Tournier et al., 2019).

3.3 | Simulations

To evaluate the different estimators, we compared the bias, the stan-

dard deviation, and the root-mean-squared error (RMSE) of the

unconstrained LLS, WLLS, IWLLS, and NLS estimators with whole-

brain Monte-Carlo simulations. We estimated the ground truth θ from

2000 voxels (consisting of both WM and GM) across the entire brain

using the CIWLLS3 estimator, using the open data set provided by

Szczepankiewicz, Hoge, and Westin (2019). The noise-free signal was

generated with the forward model (Equation 8) using acquisition

scheme bQ3. To add Rician noise, a realistic σ was estimated from the

open dataset by averaging a WM-masked noise map, obtained from

the denoising approach proposed by Veraart et al. (2016), resulting in

an average SNR of 25 at b = 0 ms/μm2 in WM.

To evaluate the effect of the different constraints, we additionally

compared the bias, the standard deviation, and the RMSE of the esti-

mators IWLLS and CIWLLS1 to CIWLLS3 at an SNR of 25 in the same

WM and GM voxels.

3.4 | Real data experiments

To validate the precision improvement of the different acquisition

schemes or real data, we used the five repetitions of each acquisition

scheme and empirically calculated the standard deviation of several

scalar DTD parameters. To avoid the unwanted effects of residual

misregistration and CSF pulsation between those five repetitions, we

restricted this analysis to a conservative WM mask, steering away

from the ventricles and outside of the brain where misregistration

could adversely affect the estimation of precision.

To demonstrate the performance of the LLS, WLLS, NLS, and

IWLLS estimators on real data, we compared the estimates obtained

from a single, undenoised repetition of acquisition scheme bQ3 to high-

precision “benchmark values.” These benchmark values were obtained

as follows. First, all 1800 DW samples available across repetitions and

acquisition schemes were concatenated and denoised simultaneously.

Using the full dataset as a reference maximizes data redundancy

TABLE 2 Optimal experimental
design: Distribution of the 120 DW
samples across the b values and b-tensor
shapes of the naive acquisition scheme
Q1, the acquisition scheme bQ2 obtained
from optimizing the determinant of the
CRLB matrix and the acquisition schemebQ3 obtained from optimizing the
weighted trace of the CRLB of MD, MKi,
MKa, and μFA (Section 3.1)

Acquisition scheme Q1
bQ2

bQ3

b (ms/μm2Þ PTE STE LTE PTE STE LTE PTE STE LTE

0.1 3 17 3 – – 6 7 – 9

0.7 3 17 3 – – – – – –

0.8 – – – – – 30 9 – 50

1.4 5 17 5 – – – – – –

2 15 17 15 36 – 48 – 30 15
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which will boost the efficacy of random matrix denoising (Veraart

et al., 2016). We then estimated the benchmark parameters from this

large and highly denoised data set using the IWLLS estimator.1 The

deviation in the estimation of MD, FA, μFA, MKi, MKa, and Cc was

then evaluated by applying the LLS, WLLS, NLS, and IWLLS estima-

tors to the same single repetition without denoising.

To demonstrate the performance of the IWLLS and CIWLLS1 to

CIWLLS3 estimators on noisy real data, the standard deviation in the

estimation of MD, FA, μFA, MKi, MKa, and OP was empirically calcu-

lated across to the five repetitions acquired with acquisition schemebQ3 without denoising.

4 | RESULTS

4.1 | Optimal experimental design

Table 2 depicts the distribution of DW samples across the b values

and b-tensor shapes of the naive acquisition scheme Q1 , and that of

the optimized acquisition schemes bQ2 and bQ3 after clustering

(Figure S1 shows the optimized schemes before clustering). Interest-

ingly, despite the optimization being allowed to select any axially sym-

metric b-tensor, the optimal b-tensors were strongly clustered around

the quintessential shapes LTE, PTE, and STE. Given the strong

clustering, we opted to limit the final acquisition scheme to only use

pure LTE, PTE, and/or STE at discrete b values as this facilitates

adoption.

Compared to the naive scheme Q1, fewer (b, bΔÞ clusters can be

observed in both bQ2 and bQ3. Acquisition scheme bQ2 has 6, 30, and

48 LTE samples at b values 0.1, 0.8, and 2 ms/μm2, respectively, and

36 PTE samples at a b-value of 2 ms/μm2. Acquisition scheme bQ3 has

9, 50, and 15 LTE samples at b values 0.1, 0.8, and 2 ms/μm2, respec-

tively, 30 STE samples at a b-value of 2 ms/μm2, and 7 and 9 PTE

samples at b values 0.1 and 0.8 ms/μm2.

Figure 1 shows the lower bounds on the precision of the raw

DTD parameters as well as for the derived scalar metrics for the opti-

mized schemes as well as for the naive acquisition scheme Q1.

Figure 1a depicts the CRLB at an SNR of 15 of the 28 parameters

contained in θ. For the naive scheme Q1, the CRLBs of the tensor

parameters (i.e., parameters 2–28) are comparable in magnitude. For

acquisition scheme bQ2, the CRLBs of all parameters are consistently

lower than those of the naive scheme Q1. For acquisition scheme bQ3,

parameters 1–10 and 17–22 have a lower CRLB compared to the

naive scheme, whereas parameters 11–16 and 23–28 have a substan-

tially higher CRLB than those of the naive scheme.

Figure 1b shows the relative precision gain for each parameter

with respect to the naive scheme:

pgain Qið Þ¼ pabs Qið Þ
pabs Q1ð Þ withpabs Qið Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CRLB Qið Þp ð34Þ

with values lower than 1 indicating a drop and values higher than

1 indicating a gain in precision compared to the reference scheme.

For acquisition scheme bQ2, a precision loss of a factor of 0.5 can be

observed for parameter 1 (i.e., S0), whereas precision gains of a factor

(a) (b)

(c) (d)

F IGURE 1 Optimal
experimental design: (a) the
median CRLBs across 2000 WM
and GM voxels of the raw DTD
tensor parameters θ at SNR = 15
for the naive acquisition Q1, bQ2

and bQ3. (b) The median relative
precision increase of the raw DTD
tensor parameters of the

optimized acquisition schemes
compared to the naive scheme
Q1. (c) The CRLBs of the tissue
metrics at SNR = 15. The units of
MD are in μm/ms2. (d) The
relative precision increase of the
tissue metrics of the optimized
schemes compared to the naive
scheme

1The benchmark estimator for the real data experiments was chosen based on the outcome

of the simulation experiments (see Section 4.2). When choosing the benchmark estimator

used for the real data experiments, we chose the estimator that performed best in the

simulations (lowest bias and standard deviation), which was the IWLLS. Since the benchmark

estimator also made use of the superset of data and on top of that used denoising, this way

we obtained a reference with the best possible accuracy and precision.
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of 1.5 up to 3.5 can be observed for the remaining parameters. Acqui-

sition scheme bQ3 shows a precision loss of a factor of 0.85 for param-

eter 1, precision gains of a factor of 1.7 up to 4 for parameters 2–10

and 17–22, and a precision loss of a factor of 0.3 for parameters 11–

16 and 23–28. The mean precision gains over all parameters are 2.32

and 1.67 for acquisition schemes bQ2 and bQ3, respectively.Figure 1c

shows the CRLBs of the scalar DTD parameters mean diffusivity

(MD), fractional anisotropy (FA), microscopic FA (μFA), isotropic kur-

tosis (MKi), the anisotropic kurtosis (MKa), and the order parameter

(OP). The definition of these parameters can be retrieved from Westin

et al. (2016). Although the CRLBs of the naive scheme do not vary

considerably in magnitude across the raw DTD parameters (compared

to the other two acquisition schemes), the CRLBs of the metrics can

vary considerably in magnitude. Compared to the naive acquisition

scheme Q1, acquisition scheme bQ2 has a higher CRLB for MD but

lower CRLBs for the remaining metrics, whereas acquisition schemebQ3 has lower CRLBs for all metrics.

Figure 1d shows the relative precision gain with respect to the

naive scheme for the metrics MD, FA, μFA, MKi, MKa, and

OP. Compared to the naive acquisition scheme, acquisition schemebQ2 exhibits a precision loss of a factor 0.8 for MD. For the remaining

metrics, a considerable precision gain ranging from a factor of 1.1 for

F IGURE 2 Simulations: Bias, standard deviation, and RMSE of the different estimators for: MD (in μm/ms2) (a–c), FA (d–f), μFA (g–i), MKi (j–
l), MKa (m–o), and OP (p–r) of WM and GM voxels across the whole brain at SNR = 25. The distance between the whiskers is five times the
interquartile width
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MKi up to factor of 3.1 for FA is observed. Acquisition scheme bQ3

exhibits a larger precision gain than acquisition scheme bQ2, ranging

from a factor of 1.2 for MD up to a factor of 3.8 for FA. The mean

precision gains over all metrics are 1.77 and 2.17 for acquisition

schemes bQ2 and bQ3, respectively.

4.2 | Simulations

Figure 2 shows boxplots of the bias, standard deviation, and RMSE in

the estimation of MD, FA, μFA, MKi, MKa, and OP using the LLS,

WLLS, NLS, and IWLLS estimators, based on 400 noise realizations

(SNR = 25) in whole-brain WM and GM voxels. The forward signal

was generated with acquisition scheme bQ3.The bias of IWLLS and LLS

is lower compared to WLLS and NLS for MD, μFA, and OP

(Figure 2a,g,m,p). For FA, the bias is comparable for all estimators

(Figure 2d), whereas for MKa and MKi the bias of IWLLS and LLS are

comparable and lower than that of NLS and WLLS, respectively

(Figure 2j,m).

The standard deviation in the estimation of MD is lowest for

WLLS and slightly higher but comparable for LLS, NLS, and IWLLS

(Figure 2b). For MKi and MKa, the standard deviation is lower for

F IGURE 3 Simulations: Bias, standard deviation, and RMSE of the IWLLS and CIWLLS1 to CIWLLS3 estimators for MD (in μm/ms2) (a–c), FA
(d–f), μFA (g–i), MKi (j–l), MKa (m–o), and OP (p–r) of WM GM voxels across the whole at SNR = 25. The distance between the whiskers is five
times the interquartile width
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WLLS and NLS (Figure 2k,n), whereas, for FA, LLS, NLS, and IWLLS

have a lower standard deviation. For μFA and OP, LLS, NLS, and

IWLLS have a standard deviation lower than WLLS (Figure 2h,q).

The RMSE in the estimation of MD is lower for IWLLS and NLS

(Figure 2c). For FA, the RMSE is comparable and lower for WLLS,

NLS, and IWLLS (Figure 2f) than that of LLS. For μFA, MKi, MKa, and

OP the RMSE is lowest and comparable for LLS, NLS, and IWLLS and

the RMSE for WLLS is highest (Figure 2i,l,o,r). The results of the same

experiment but at an SNR of 15 can be appreciated in Figure S2.

In summary, although WLLS offers a slightly more precise estima-

tion of some parameters, it also has a considerable bias for almost all

parameters considered (with the median relative bias ranging from

�0.83% to 32.74% for MD and MKi, respectively). Conversely, LLS and

IWLLS exhibit a much smaller bias (with the medial relative bias ranging

from 0.01% up to 7.42% for MD and MKi, respectively), while IWLLS

simultaneously offers a slightly improved precision for some parameters

compared to LLS. In terms of RMSE, the LLS and IWLLS estimators are

comparable, whereas WLLS consistently performs worse.

Figure 3 shows boxplots of the bias, standard deviation, and

RMSE in the estimation of MD, FA, μFA, MKi, MKa, and OP using the

IWLLS and CIWLLS1 to CIWLLS3 estimators, based on 400 noise

realizations (SNR = 25) in whole-brain WM and GM voxels.

For MD, IWLLS and CIWLLS2 and CIWLLS3 are least biased, fol-

lowed by CIWLLS1 (Figure 3a). For FA and OP, CIWLLS3 exhibits the

lowest bias, followed by CIWLLS1, CIWLLS2, and IWLLS

(Figure 3d,p). For μFA, IWLLS, CIWLLS1, and CIWLLS2 are least

biased, whereas CIWLLS3 exhibits a slight overestimation (Figure 3g).

For MKi, CIWLLS1 is the least biased, followed by IWLLS and

CIWLLS2, and lastly CIWLLS3 (Figure 3j). For MKa, IWLLS, CIWLLS1,

and CIWLLS2 are least biased, whereas CIWLLS3 is more biased

(Figure 3m).

The standard deviation in the estimation of MD is highest for

IWLLS, followed by CIWLLS1 and CIWLLS2, with CIWLLS3 having

the lowest standard deviation (Figure 3b). For FA and OP, IWLLS has

the highest standard deviation, whereas the standard deviation

becomes progressively lower going from CIWLLS1 to CIWLLS3

(Figure 3e,q). For μFA, MKi, MKa, IWLLS, CIWLLS1, and CIWLLS2

have a higher and comparable standard deviation, whereas CIWLLS3

has the lowest standard deviation (Figure 3h,k,n). In terms of RMSE,

similar trends can be observed as those seen for the standard

deviation.

In summary, in terms of bias, there is no clear best estimator, as

this varies across the different metrics considered, but its magnitude

is small compared to that of the unconstrained estimators. For the

standard deviation, the CIWLLS3 estimator shows the best perfor-

mance, and IWLLS the worst. In terms of RMSE, the CIWLLS3 estima-

tor performs best.

4.3 | Real data experiments

Figure 4 shows axial maps and boxplots of the empirically calculated

standard deviations of several metrics for the different acquisition

schemes. Similar trends as in Figure 1 can be observed. For MD,

acquisition scheme bQ2 has a lower precision than acquisition schemes

Q1 and bQ3, corresponding with the predicted SNR loss. For FA and

OP, a considerable increase in precision can be observed for acquisi-

tion schemes bQ2 and bQ3, compared to the naive. For MKi and MKa,

acquisition scheme bQ2 exhibits a lower precision compared to the

naive scheme Q1 and bQ3. For μFA, acquisition scheme bQ3 has the

highest precision, followed closely by acquisitions bQ2 and Q1, respec-

tively. Overall, acquisition scheme bQ3 has the highest precision for all

parameters considered. The median precision gains overall metrics are

0.90 and 1.16 for acquisition schemes bQ2 and bQ3, respectively.Figure 5

depicts an axial slice of the deviation from the benchmark values in

WM and GM voxels of the LLS, WLLS, NLS, and IWLLS estimators

when applied to noisy real data. Similar trends can be observed as pre-

dicted in the simulations. The WLLS estimator tends to underestimate

MD, μFA, and MKa, whereas it tends to overestimate MKi and OP.

Figure 6 depicts the standard deviation of the IWLLS and

CIWLLS1 to CIWLLS3 estimators. Across the metrics MD, FA, μFA,

MKi, and MKa, a clear increase in precision can be observed as the

constraints become more stringent. For OP, the increase in precision

is only minor.

Figure 7 shows an axial map of metrics obtained with the IWLLS

and CIWLLS1 to CIWLLS3 estimators, estimated from a single repeti-

tion acquired with only half the data (i.e., 60 DW samples). Compared

to IWLLS, the constrained estimators progressively (i.e., going from

CIWLLS1 to CIWLLS3) reduce the number of voxels with spurious fit-

ting results, especially for FA, μFA, MKa, and OP, and to a lesser

extent also in MD and MKa.

5 | DISCUSSION

In this work, we have aimed to improve the precision and accuracy of

metrics estimated from QTI data. We have found that a precision-

maximizing sampling scheme, combined with an iteratively reweighted

linear least squares estimator provides the best results in terms of

accuracy and precision.

5.1 | Implications for the acquisition of QTI data

The sampling strategy has a considerable impact on the maximally

attainable precision of the raw DTD tensor parameters, which directly

affects the precision of the scalar DTD parameters (i.e., MD, FA, μFA,

MKi, MKa, and OP). Optimal experiment design for QTI has been

explored previously in the work by Coelho et al. (2019), where the

same criterion as the one described by Equation (16) was used

(Section 2.3), that is, the determinant of the CRLB matrix of the raw

DTD tensor parameters. Although we used a different data set for the

prior distribution of WM and GM voxels, our results align remarkably

well with their findings. In their work, an acquisition scheme optimized

for the maximally precise estimation of the raw DTD parameters

requires 75% of LTE and 25% of PTE samples at b values of 0.1, 0.7,

1802 MOREZ ET AL.
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and 2 ms/μm2. Similarly, in this work, we found 70% of LTE and 30%

of PTE samples at b values 0.1, 0.8, and 2 ms/μm2 (see bQ2 in Table 2).

However, their analysis only considered the impact on the raw DTD

tensor parameters, not the precision of the scalar DTD parameters.

In this work, we found that, compared to a naive sampling

scheme, a sampling scheme that maximizes the precision of the raw

DTD tensor parameters can even hurt the precision of the scalar DTD

parameters. Indeed, as is shown in Figure 1d, there is a relative

precision loss down to a factor of 0.83 for MD. The remaining param-

eters have a relative precision gain ranging from a factor of 1.05 for

MKi, up to a factor of 3.13 for FA. To avoid the loss in precision for

MD, we minimized a criterion based on the weighted trace of the

CRLB matrix of the scalar DTD parameters MD, μFA, MKi, and MKa,

described by Equation (17) (Section 2.3). Using this criterion, the sam-

pling scheme bQ3 was obtained, which consisted of 13% PTE samples,

25% STE, and 62% LTE samples. The b values were again 0.1, 0.8, and

F IGURE 4 Real data: (a) empirically
calculated standard deviations of various
metrics based acquisitions Q1, bQ2, and bQ3

in an axial slice. (b) Boxplots of the
distribution of standard deviations in the
axial slices depicted in (a). The distance
between the whiskers is five times the
interquartile width. The units of MD are
μm/ms2
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2 ms/μm2. This sampling strategy resulted in relative precision

increases ranging from a factor of 1.18 for MD, up to a factor of 3.75

for FA, and outperforming acquisition bQ2 across the board. We vali-

dated these three acquisition schemes with real data and, however,

we observed similar trends in precision (Figure 4).

Note that bQ2 allocated most samples to the highest b-value shells,

as is customary in multi-shell acquisition schemes, because these con-

tain higher angular frequencies. bQ3, on the other hand, allocated more

samples to the intermediate shells, which might be counter intuitive. It

is important to realize that bQ2 is a set of DW samples that minimizes

the determinant of the covariance matrix of the raw QTI parameters

(1 + 6 +21 = 28 parameters). These parameters encode not only the

radial dependency, but also the angular dependency of the signal. To pre-

cisely capture this angular dependency, it makes sense that bQ2 favors a

high number of directions at the outer shell. Moreover, because STE

contains no angular information, bQ2 does not contain any STE mea-

surement and PTE measurements are favored instead. By contrast, bQ3

minimizes the uncertainty of the (rotationally invariant) scalar parame-

ters. As bQ3 does not rely on (complete) angular information, it makes

sense that fewer directions are required at the outer shell. Moreover,

angular contrast (from PTE and LTE) in bQ2 is traded in for shape con-

trast (STE) in bQ3.The optimal acquisition scheme bQ3 is closely related

F IGURE 5 Real data: (a) deviation
from the benchmark values for the
different estimators (based on acquisition
scheme bQ3). (b) Boxplots of the slices
depicted in (a). The distance between the
whiskers is five times the interquartile
width. The units of MD are μm/ms2
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to recent work by Arezza et al. (2021), which optimized a sequence

specifically for μFA estimation based on powder-averaged STE and

LTE images. They looked for the b-value, and proportion of STE to LTE

samples at this b-value, that results in maximal contrast-to-noise-ratio

between the STE signal and the (powder-averaged) LTE signal, as,

under certain assumptions (variance in ADC is negligible compared to

the variance in μFA and ADC does not depend on tensor shape), this

provides a proxy for the precision of μFA. Note that, because of the

way their optimization criterion is constructed, it is limited to STE and

LTE samples only, whereas our approach explores all axially symmetric

b-tensor shapes. Moreover, their approach can only make recommen-

dations about the proportion of STE to LTE samples at a single b-value

and does not optimize a comprehensive multi-shell acquisition scheme

like in our work. Despite these differences, the recommendations of

Arezza et al. (2021) are in good agreement with ours. First, they found

an optimal b-value of 2 ms/μm2, which corresponds to the outer shell

found in our optimized scheme. Second, they found the optimal propor-

tion of STE to LTE samples at this b-value to be approximately 1.7,

which is close to the proportion of 2 found in bQ3 for the b = 2 ms/μm2

shell. About the number of b = 0 ms/μm2 samples and intermediate

F IGURE 6 Real data: (a) standard
deviation of the IWLLS and CIWLLS1 to
CIWLLS3 estimators (based on five
repetitions of acquisition scheme bQ3).
(b) Boxplots of the slices depicted in (b).
The distance between the whiskers is five
times the interquartile width. The units of
MD are μm/ms2
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b values, the optimization criterion in Arezza et al. (2021) provides no

recommendations due to its single-shell nature.

Our results show that the choice of optimality criterion has a non-

trivial effect on the maximally attainable precision. When using the

criterion based on the determinant of the CRLB, all DTD tensor

parameters simultaneously have a higher precision compared to the

naive sampling scheme, and the precision for the scalar DTD parame-

ters FA, μFA, MKi, MKa, and OP also increases. However, the preci-

sion of MD is lower than that of the naive acquisition scheme. By

contrast, a criterion that is tailored to maximize the precision for the

scalar DTD parameters of interest results in the proposed optimal

acquisition scheme bQ3, which provides a precision increase for all sca-

lar DTD parameters compared to the naive acquisition scheme. For

studies that employ these parameters as a biomarker, we recommend

using acquisition scheme bQ3.The proposed optimal acquisition scheme

consists of only 120 DW samples, which translates to a scanning time

of only 8 min. Note that we did not employ SMS, which could reduce

the scanning time down to almost 4 min.

5.2 | Impact of the estimator on the accuracy and
precision of tissue metrics

The choice of the estimator plays an important role in the accuracy

and precision of the scalar DTD parameters. Previously, Westin et al.

(2016) estimated the DTD tensor parameters using the WLLS estima-

tor with the squared reciprocals of the noisy DW signal as weights to

account for the heteroscedasticity of the data. In this work, we have

observed a bias when using these weights to estimate the scalar DTD

parameters (Figure 2). To combat this, the IWLLS estimator, which

iteratively updates the weights of the WLLS estimator using the

inverse squares of the predicted signal, considerably reduces the bias

while still offering some of the benefits of improved precision when

using weighted linear estimation. Indeed, compared to LLS, WLLS and

IWLLS offer a median relative precision increase up to a factor of 1.03

for FA. Furthermore, when using WLLS, we observed median relative

biases up to a factor of 1.328 and 1.195 in the estimation of MKi and

OP, respectively, whereas the IWLLS estimator exhibited a median

relative bias in the estimation of these parameters down and up to

factors of �0.024 and 0.074, respectively. This is in accordance with

previous observations for DTI and DKI, where the WLLS estimator is

known to have improved precision over the conventional LLS estima-

tor when using these weights, but at the cost of a severe bias (Veraart

et al., 2013). In addition, in terms of bias, we found that LLS and

IWLLS outperform the NLS estimator, and in terms of precision the

LLS, IWLLS, and NLS estimators are comparable (Figure 2).

5.3 | Impact of constraints on the accuracy and
precision of tissue metrics

The choice of constraints affects the accuracy and precision of the

estimated parameters. Indeed, guaranteeing the physicality of the

estimates of the tensor parameters reduces the size of the search

space, thus improving the noise resilience of the estimator. Imposing

semi-positive definiteness on the diffusion and covariance tensors has

recently been proposed by Herberthson et al. (2021), and they dem-

onstrated that these constraints can substantially improve the quality

of scalar DTD parameter maps, even on very limited data.

Our approach goes one step further, as we impose additional con-

straints on the scalar DTD metrics MKi and MKa, as well as requiring

the signal to decrease monotonically as a function of the b-value.

Compared to the unconstrained estimator, the constraints that had

the largest impact on the precision were the semi-positive

F IGURE 7 Real data: Axial map of scalar DTD metrics estimated
just 60 q-space samples using the IWLLS and CIWLLS1 to CIWLLS3
estimators
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definiteness of the diffusion and covariance tensors, as well as impos-

ing nonnegativity on MKi and MKa. Imposing signal monotonicity

improved the precision only to a lesser extent (Figure 3).

Furthermore, even though the use of constraints can introduce a

bias (Figure 3), the increase in precision and reduction in RMSE justify

this minor loss in accuracy. When comparing CIWLLS3 to IWLLS using

a lengthy 120-sample acquisition scheme, the median relative increase

in precision ranges from a factor of 1.08 for MKa, up to a factor of

1.38 for OP. The median reduction in RMSE of CIWLLS3 versus

IWLLS ranges from a factor of 0.92 for MD, down to a factor of 0.71

for OP. The merits of using constrained estimators become even more

evident in the case of limited data where the scalar DTD parameter

maps are visibly less noisy when using the CIWLLS3 estimator instead

of IWLLS (Figure 7).

5.4 | Limitations

A general limitation of the QTI framework as proposed by Westin

et al. (2016) is that it assumes that the system consists of multiple

Gaussian diffusion components resulting in vanishing intra-

compartmental kurtosis, also known as microscopic kurtosis. As a

result, it considers only two sources of kurtosis: isotropic kurtosis

(arising from variance in isotropic diffusivities) and anisotropic kurtosis

(arising from structural anisotropy). The correlation tensor imaging

(CTI) framework (Henriques et al., 2020; Novello et al., 2022) can be

seen as more general as it does not make this assumption and con-

siders an additional source of kurtosis called microscopic kurtosis

(arising from cross-sectional variance, structural disorder, and restric-

tion). As this article is built around the QTI technique, it does not con-

sider the possibility of non-zero microscopic kurtosis.

Moreover, under certain conditions, microscopic kurtosis can

become negative. For example, in the event of edema with cell swell-

ing, Alves et al. (2022) have shown in simulations that microscopic

kurtosis can become negative. In a limited regime [see figure 2c of

Alves et al. (2022)], this could result in the total isotropic kurtosis

becoming negative, thus violating the non-negativity constraint that

we impose on isotropic kurtosis. More recently, CTI was deployed in

the healthy human brain where the microscopic kurtosis was shown

to be relatively small compared to MKi, but more relevantly, it

appears to be exclusively positive (Novello et al., 2022). Thankfully,

the constrained solvers proposed in this work can be trivially

adapted to accommodate negative lower bounds on isotropic

kurtosis.

We would like to point out that we used the CRLB to arrive at an

optimized acquisition scheme by predicting the precision under ideal

circumstances (e.g., normally distributed data, constant sigma, no arti-

facts other than noise, the model perfectly predicts the data, etc.). As

is always the case with real data, there is a departure from these per-

fect assumptions. The data will not be normally distributed, the sigma

will not be constant throughout the brain, there will be other artifacts

than just noise and the model will not perfectly predict the data.

Moreover, real data undergoes many preprocessing steps apart from

just denoising, including Gibbs ringing correction and motion and eddy

current distortion correction, all of which will introduce departures

from the perfect assumptions. However, this does not preclude the

CRLB-optimized schemes from outperforming the reference schemes,

even in real data where not all these assumptions are perfectly met.

6 | CONCLUSION

Given the great interest in QTI and its ability to provide more specific

tissue metrics than conventional DW MRI approaches, we investi-

gated the precision and accuracy with which various scalar DTD

parameters can be estimated. These depend both on the DW data

acquisition scheme, as well as the estimator used.

We optimized QTI acquisition schemes for maximal precision of

either the raw DTD tensor parameters or scalar DTD parameters. We

obtained two parsimonious 8-min acquisition schemes: one that pro-

vides a maximally precise estimation of the raw DTD parameters, and

the recommended scheme that provides the maximally precise esti-

mation of the scalar DTD parameters MD, FA, μFA, MKi, MKa,

and OP.

Additionally, we found that using the iteratively weighted linear

least squares estimator provides more accurate estimates compared

to a weighted linear least squares estimator, and more precise esti-

mates compared to a conventional linear least squares estimator. We

also found that the use of constraints for both the scalar and tensor

DTD parameters can significantly improve the precision of the itera-

tively weighted linear least squares estimator. As such, we hope to

facilitate the adoption of QTI by both the clinic and the research

community.
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