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Abstract—Radio Environmental Maps (REMs) are a powerful
tool for enhancing the cognitive awareness of various communi-
cation and networked agents by providing localized radio mea-
surements of an environment of interest. Generating REMs is a
laborious undertaking, especially in complex 3-Dimensional (3D)
environments, such as indoors. To address this issue, we propose
a system for autonomous generation of fine-grained REMs of
indoor 3D spaces. In the system, multiple small indoor Unmanned
Aerial Vehicles (UAVs) are used for 3D sampling of signal quality
indicators. The collected readings are streamlined to a Machine
Learning (ML) system for its training and, once trained, the
system is able to predict the signal quality at unknown 3D
locations. The system enables autonomous REM generation and
can be straightforwardly deployed in new environments. The
system also supports REM sampling without self-interference and
is technology-agnostic, as long as the REM-sampling receivers
features suitable sizes and weights to be carried by the UAVs.
In the demonstration, we instantiate the system design using two
UAVs and show its capability of visiting 72 waypoints within
10 min and gathering thousands Wi-Fi samples. Our results also
include an instantiation of the ML system for predicting the
Received Signal Strength (RSS) of known Wi-Fi Access Points
(APs) at locations not visited by the UAVs.

I. INTRODUCTION

A Radio Environmental Map (REM) documents radio signal
properties over a given geographic area. These properties can
among others include the frequency, protocol and technology
of the radio signal, as well as an indication of the quality of the
signal (e.g., Received Signal Strength (RSS), Signal-to-Noise
Ratio (SNR), or Channel State Information (CSI)), and are
stored together with the location where they were measured.
These REMs and the data they hold can then be used for a
variety of purposes, for example as an aid in cognitive radio
networks [1], for Radio Frequency (RF) localization [2], or for
optimizing network discovery and handover procedures [3].

As a trade-off to their utility, the generation of REMs is
a burdensome process, particularly for 3D environments [4].
Apart from the significant labor needed for carrying out a
measurement campaign, an additional complexity stems from
the fact that the measurements have to be correlated with the
physical locations at which they were collected, suggesting
the need for accurate localization of the entity collecting such
measurements. The complexity of REM generation is further
exacerbated by the fact that such generation often has to be
performed periodically, as the REMs can become obsolete due
to long-term changes in the signal propagation [5]. Finally, as
a variety of different wireless technologies often co-exist [6],
the generation of the corresponding REMs is ideally to be
done with a single tool for the coexisting technologies.

From the above discussion, there is a need for a system
for autonomous generation of 3D REMs, which has been
recognized in the community. One of the most promising
approaches for such generation is to utilize UAVs as carriers
of the REM-sampling devices [7], [8]. This is primarily due
to their high degrees of freedom in terms of their optimal
positioning in the environment of interest, as well as due to
their accurate navigation capabilities [7], [8]. In such systems,
the samples generated by the REM-sampling devices are
correlated with the UAV-originating location at which the
measurements were taken, providing the primitive for REM
generation. Such systems have mostly been proposed for out-
door scenarios and Global Positioning System (GPS)-enabled
large outdoor UAVs [9]. These systems are intuitively not suit-
able for fine-grained generation of REMs indoors because the
UAVs are not practically utilizable in space-constrained and
more complex environments. In addition, the GPS-originating
location information is not suitable for generating fine-grained
REMs due to the relatively large localization errors that such
information unavoidably features [10]. This is despite the fact
that small UAVs are expected to be an enabler of a variety of
indoor applications in domains such as cultural and creative
industry [11], Industry 4.0 [12], and civil security [13].

Given their envisaged utility in complex indoor spaces,
we argue that UAVs could be designed in a way that the
generation of fine-grained indoor REMS can be piggybacked
to their application-specific tasks, which would in turn be used
for optimizing the communication capabilities and contextual-
awareness in the deployment environment. Toward the attain-
ment of the outlined vision, we propose a system for gen-
erating fine-grained 3D REMs in small indoor scenarios. The
system can be viewed as a toolchain consisting of small-indoor
UAVs with fine-grained localization capabilities supported by
an Ultra Wide-Band (UWB)-based positioning system. The
UAVs are envisioned to serve as the carriers of the REM-
sampling receivers and provisioners of location annotation for
the sampled measurements. The location-annotated measure-
ments are envisioned to be streamlined as training inputs to
an Machine Learning (ML)-based part of the toolchain, which,
once trained, is able to predict the signal quality at locations
not visited by the UAVs.

The most similar existing effort to our work is [14], where
the authors propose a UAV-based system for the generation
of a training dataset for 3D Wi-Fi fingerprinting-based indoor
localization. In contrast to their work focusing solely on Wi-
Fi-based fingerprinting, we argue that REMs can be beneficial
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and utilized more broadly, for example in optimizing the
positioning of UAVs serving as mobile relays [15] or planning
the extensions of any wireless networking infrastructure by
adding Access Points (APs) or base stations to cover “dark”
connectivity regions in an environment [16]. Hence, our sys-
tem abides to two additional design requirements compared to
[14]. The first one is a modular design of the interface between
the UAV-based system and an REM-sampling device. This
requirement allows for a simple integration of different REM-
sampling devices (e.g., Wi-Fi, LoRa, BLE, mmWave) with the
UAV, extending the REM capabilities beyond traditional Wi-
Fi. The second is to guarantee no self-interference between
the wireless communication for controlling the UAVs and the
REM-sampling device the UAV is carrying, allowing highly
repeatable measurement collections with minimized external
influences. Finally, we envision the possibility of seamlessly
integrating additional UAVs into the toolchain, allowing for
sequential data collection and scalable REM generation.

We instantiate the proposed design on two CrazyFlie UAVs
to autonomously gather IEEE 802.11b/g/n Wi-Fi beacon frame
data in the 2.4 GHz Industrial, Scientific, and Medical (ISM)
band. In a real-world indoor environment, we demonstrate
that the UAVs are each able to visit 36 waypoints over a
10 min period and collectively gather thousands of Wi-Fi
beacon data samples. Finally, we instantiate the remaining
part of the toolchain on several contemporary regression-
and neural network algorithms, train the system using the
data collected by the UAVs, and demonstrate a reasonable
prediction accuracy at locations not visited by the UAVs.

II. SYSTEM OVERVIEW

The REM generation is envisioned to be initiated from the
control station by providing a set of waypoints to be visited by
a fleet of UAVs. The first UAV is envisioned to visit a subset
of the provided points, with the main limitation on the number
of points that can be visited stemming from the constrained
battery capabilities of the UAV. At each location, the UAV
instructs the REM-generating receiver to collect the signal
quality indicators of interest, and upon each response it reports
the obtained results to the control station. This procedure is
repeated until all points have been visited or all UAVs in
the fleet have depleted their batteries. To visit the instructed
locations, each UAV requires a means for self-localization,
which is supported through its localization system consisting
of a client mounted on the UAV and a set of infrastructural
devices (i.e., anchors) for the client’s localization.

The main design requirements for the envisioned system in-
clude i) accurate location-annotated sampling for streamlined
generation of fine-grained 3D REMs, ii) straightforward de-
ployment of the system in unknown complex indoor environ-
ments, iii) support for technology-agnostic REM-generating
receiver, iv) guaranteed mitigation of self-interference.

We have compared a range of commercial off-the-shelf
UAVs based on the design requirements. This comparison
can be found in the accompanying technical report [17]. We
have decided to utilize BitCraze Crazyflie 2.1 (Figure 1),

primarily as it is an open hardware and software platform.
Crazyflie 2.1 UAVs come with a FreeRTOS-based operating
system and a radio and Bluetooth LE transceivers for control.
They also feature an accelerometer, gyroscope, magnetometer,
and a high precision pressure sensor through its 10-DOF
Inertial Measurement Unit (IMU). These capabilities can be
extended by adding up to two expansion boards or decks as
shown in Figure 2. In this work, both expansion slots are
used: one for the Loco Positioning Deck (LPD), the other for
the integration of an REM-generating receiver. The Crazyflie
provides a set of interfaces that can be addressed over 20
pins for communication with each expansion deck. Figure 3
documents the pin allocations, where one can choose between
an I2C, SPI, STM32, and two UART interfaces.

A. Interfacing with REM-generating Receivers

The FreeRTOS Crazyflie 2021.06 firmware-flavored custom
driver is responsible for interfacing with an REM-generating
receiver. The driver should support: i) initializing and ii)
checking the state of the receiver, iii) instructing the receiver to
collect a measurement, and iv) enabling parsing of the output
of the previous instruction. For integration with the UAV, the
user is required to provide the driver for the REM-generating
receiver to react to the four specified instructions. In terms
of hardware integration, the user can choose between UART
and I2C interfaces available on the UAVs. We argue that such
an integration procedure is straightforward as it is supported
by well-known hardware interfaces and a four instructions-
long C driver, as long as the REM-generating receiver features
suitable size (i.e., USB-dongle dimensions) and weight (up to
20 grams) to be carried by the UAV.

B. UAV Localization

We use the Crazyflie’s Loco Positioning System (LPS) to
provide accurate indoor positioning. This system works with a
tag, the LPD, and multiple anchors distributed in the environ-
ment. The system can be deployed by simply positioning of
the localization anchors, measuring their coordinates relative
to a chosen origin, and initializing their automated calibra-
tion for synchronizing their transmission schedules. Once the
localization anchors are self-calibrated, they can be used for
localizing the UAVs and consequently for the generation of a
3D REM. Given that the procedure for the REM-generating
system is relying solely on physical deployment, localization,
and self-calibration, we argue that it can be utilized for rapid
deployments in complex new environments.

The LPS is based on the Decawave DWM1000 and uses
UWB technology for communication and localization. The tag
can estimate its own position based on the UWB signals re-
ceived from the anchors. The localization is then performed us-
ing either the Two-Way Ranging (TWR) procedure or different
flavors of the Time Difference of Arrival (TDoA) procedure,
the latter featuring slightly better accuracy and supporting
simultaneous localization of multiple UAVs. Regardless of the
utilized localization procedure, the LPS is able to localize the
tag in a 3D environment at the range of up to 10 m [14].



Figure 1: Customized Crazyflie 2.1 UAVs
Figure 2: Crazyflie expansion boards

Figure 3: Crazyflie interfaces and pin allocation Figure 4: The Crazyflie commander framework

A minimum of four anchors are required to support UAV
localization in 3D environments. A Crazyflie equipped with an
LPS deck makes use of an extended Kalman filter to estimate
its state (orientation and position), its implementation is based
on [18]. An increase in the number of anchors increases
the robustness and accuracy of this process. Hence, Bitcraze
advises to use at least six such anchors to mitigate potential
negative effects (e.g., no Line of Sight (LoS) to an anchor,
fluctuating tag orientation). Chekuri and Won have shown in
their tests [14] that localization with 6 anchors can achieve an
accuracy of 9 cm when the UAV is hovering, this is important
as we will record the UAV’s position and scan while the UAV
is holding its position and orientation. In summary, the system
is able to generate location-annotated measurements for REM
generation with decimeter-level accuracy at 10 m range.

C. UAV Communication and Control

UAV control is done through a Python application that uses
the Crazyflie Python library. The application can communicate
with the UAV to send instructions to move to a waypoint, scan
for signal quality indicators and other relevant information,
parse the results, and store them for later processing. It runs
through the following sequence: i) initialize and instruct the
UAV to take-off. For every configured waypoint, make the
UAV: ii) move to the waypoint defined with the coordinates
〈x, y, z〉, iii) initiate an on-demand scan, iv) shutdown the
Crazyradio while the scan is running, v) restart the radio
connection after the scan is done, vi) fetch the scan results,
parse and store them. Communicating with and controlling the
Crazyflie UAVs remotely can be done using a custom USB
dongle called the Crazyradio. This radio uses a nRF24LU1
chip providing 126 channels and works with a custom pro-
tocol for communication: the Crazyradio RealTime Protocol
(CRTP). These 126 channels are uniformly distributed over
the 2400 MHz - 2525 MHz frequencies.

There are three potential sources of self-interference from
the system to the REM-generating receiver. The first two are
the positioning system and the propulsion of UAV’s rotational
engines, although [14] showed that these types of interferences
have a negligible effect on the REM-generating receiver op-
erating in 2.4 GHz ISM band. The third potential source of
interference is the Crazyradio. The interference generated by
the Crazyradio while the System Under Test (SUT) is scanning
for available APs at a given location is illustrated in Figure 5.
The figure shows the average number of APs detected at
different 2.4 GHz Wi-Fi channels for 6 operating frequencies
of the Crazyradio and in case when the radio was turned off.
As visible (and with more details provided in Section III), the
interference from the Crazyradio is significant, irrespective of
its operating frequency.

Hence, our experimentation setup features the (default)
possibility of automatically turning off the Crazyradio while
performing a measurement. To avoid self-interference, the
radio is turned off right before the scan starts and restarted
again once the scan is finished. The Crazyflie will go into
position hold mode while the radio is turned off. Small adjust-
ments were made to the firmware to enable operation when
the radio is turned off. First, the CRTP_TX_QUEUE_SIZE
was increased so that full scan results can be temporar-
ily stored until the radio comes back online and the re-
sults can be sent to the controlling application. Second, the
COMMANDER_WDT_TIMEOUT_SHUTDOWN was increased to
10 sec. This timeout is a safety measure, if there is no set-
point received within this interval, the Crazyflie will shut down
under the assumption that something went wrong. The default
value does not allow to bridge the radio shutdown period.

When the UAV loses its radio connection, it also loses its
ability to get new waypoints (i.e., target locations) from the
base station. When no new setpoint is received for over 500
ms, the UAV will set its attitude angles (pitch, roll and yaw)



to 0 in order to keep itself stabilized. Figure 4 details how
the base station’s custom Python client can forward waypoints
to the Commander in the UAV’s firmware through the CFlib
library. To make the UAV hold its position after shutting down
the radio, an extra FreeRTOS task was added to the ESP8266
driver that feeds back the scanning position every 100 ms
to the UAV’s commander during such a scan. This task gets
resumed at the start of the scanning task and suspended at the
end of it so that it does not interfere with regular waypoint
activities. This feedback process results in the UAV having
stability and guaranteed lack of interference while scanning.

III. VALIDATION

A. Collection of 3D REM-generating Measurements

We demonstrate1 one instantiation of the proposed system
design for small UAVs-supported autonomous generation of
fine-grained 3D indoor REMs. The system was deployed in a
living room of an apartment in a large apartment building in
Antwerp, Belgium. The 3D environment for the UAVs to scan
is a rectangular cuboid of 3.74 m long (x-axis), 3.20 m wide
(y-axis) and 2.10 m high (z-axis). At each of the 8 corners of
the cuboid, an anchor was placed and localized for enabling
the UAVs to estimate their locations within the environment.
Once the self-calibration procedure was finished, using the
controlling application we have instructed a fleet of Crazyflie
UAVs to generate an REM of the environment.

We have opted for generating an REM of 2.4 GHz ISM Wi-
Fi. This was supported through AI Thinker ESP-01 modules
with Espressif Systems ESP8266 Wi-Fi chips. The modules
were soldered on Crazyflie prototyping decks and enabled to
interact with the UAVs as one of their expansion decks. Using
the Crazyflie 2021.06 firmware release as basis, a custom
driver communicates with the ESP-01 module over its UART
interface by sending AT instructions and parsing the output.
Since the module is only used to scan for available APs, it suf-
fices that the driver supports just the following AT instructions:
i) AT - testing AT start-up, ii) AT+CW_MODE_CUR - setting
the current Wi-Fi mode (to put the module in station mode),
iii) AT+CWLAP - listing the available APs and scanning for
Wi-Fi beacons, AT+CWLAPOPT - formatting the output of the
AT+CWLAP instruction to 〈ssid, rssi,mac, channel〉 tuples.

Wi-Fi REM was selected due to self-interference with
CrazyRadio, as its frequency range overlaps with the 2.4 GHz
band that the Wi-Fi modules use. To get an idea of how
pronounced this expected interference is, the Crazyradio was
run on different frequencies over its range in 25 MHz in-
crements (2400, 2425, 2450, 2475, 2500 and 2525 MHz).
At each of these frequencies, 3 AP scans were done using
the ESP-01 module on the Crazyflie. To generate a baseline
for comparison, an additional three scans were performed
with the Crazyradio turned off. The interference generated
by the Crazyradio while scanning for APs is illustrated in
Figure 5. It shows for every Wi-Fi channel the average count
of APs that were detected over the 3 runs and shows this

1Demonstration video: https://youtu.be/fxDkR-Qat6w

for 6 different frequencies of the Crazyradio as well as the
radio turned off. The Wi-Fi channels that did not feature any
detected AP were left out for clarity. These scans were done
in a short timespan and with the Crazyflie and Crazyradio
in a fixed position. Not only does this data clearly show
that the interference of the Crazyradio is significant, it also
demonstrates the benefits of our design decision to turn off the
Crazyradio while performing REM-generating measurements.

To mitigate interference among UAVs, the UAVs are run in a
sequence, not jointly. The LPS is configured to use the TDoA-
based localization procedure. The Crazyflie is advertised as
having a flight time of up to 7 min depending on how it is used.
This is, however, without the weight and power consumed
by the LPD and the custom ESP8266 deck. There are also
several other factors that can influence the UAV’s endurance
including flight and scan parameters, the choice between TWR
and TDoA or the distance to the anchors, to name a few. To
get a notion of the UAV’s endurance in a baseline scenario,
a UAV was manually flown until it became less responsive
and its motions erratic, considering a fully charged standard
battery, eight active anchors in TWR mode, periodic scanning
mode with an interval of 8 sec, with a beacon scan duration
of around 2 sec. The UAV was kept in a steady position about
1 m above ground level for the duration of the test. The UAV
was able to perform 36 scans over a timespan of 6 min and
12 sec before it experienced erratic behaviour.

Obviously, the endurance is expected to be lower when
the UAVs visit different locations and scan more frequently.
With this constraint in mind, 72 locations evenly spread over
the volume were identified, with each UAV responsible for
scanning 36 of them. The UAVs had 4 sec to fly from a
location to another and 3 sec for scanning. Thus, scanning
36 locations was expected to take at least 4 min and 12 sec.
Contributing to that the time required for takeoff and landing,
the UAVs were expected to operate at their operating limits.

The UAVs were controlled by a base station, i.e., a laptop
running the custom Python client software. The client was
responsible for sending the UAVs to a waypoint and instructing
the scanning. Once the scanning at a waypoint was finished,
the UAV would send the results back to the client for parsing
and storing for further processing. The client was configured
to be able to control multiple UAVs with a matching set
of waypoints and parameters such as radio address, starting
position, and yaw. While in the paper we show the operation
of a two-UAV system, the system can be scaled by simply
adding sets of waypoints and above-mentioned parameters.

Using this setup, data was collected for further analysis
and processing. A total of 2696 samples were collected, 1495
by UAV A and 1201 by UAV B. During data collection,
UAV A was active for 5 min and 3 sec and UAV B for
precisely 5 min. In the collected samples, there were 73
distinct Medium Access Control (MAC) addresses and 49
Service Set Identifiers (SSIDs), with the mean RSS of around
-73 dBm. When looking at the samples collected per UAV
and scanned location (cf., Figure 6), we see no issues with the
number of samples collected by UAV B, although this number



Figure 5: The number of APs detected per IEEE 802.11 channel with the
Crazyradio set at different frequencies or completely turned off

Figure 6: Number of samples per UAV and scanned location

Figure 7: Histograms showing the number of samples collected per bin of 0.5 m along the
x and y-axis Figure 8: RMSE of prediction for different models

is generally lower than for UAV A. There are environmental
factors that can play a role, however i) the positive x-axis and
negative y-axis point towards the center of the building where
we can expect to see more signals, and ii) there is a wall
segment that is 40 cm wider where UAV B’s measurements
are taken compared to UAV A, as illustrated in Figure 6.

We expected to observe a gradual increase in the number
of RSS observations (more APs) toward the center of the
building, irrespective of which UAV collected the samples).
An illustration of this can be seen in Figure 7, which shows
a histogram per axis that groups the x and y values in bins
of 0.5 m with the height representing the number of samples
collected by the UAVs in that bin. We can clearly see that
the number of samples collected increases with an increasing
x-coordinate and a decreasing y-coordinate.

B. Generation of Fine-grained 3D REMs

A few pre-processing steps were taken before utilizing the
data in an ML model. Since SSIDs can be shared between
devices, they were generally not used. Instead, RSS readings
were grouped based on their MAC addresses. The timestamps
were left out of consideration as well. The time difference
between the first and last collected sample was less than

10 min, hence considered as irrelevant. MAC addresses with
less than 16 samples were dropped, since the goal was to
predict RSS values of APs with sufficient number of measure-
ments. Finally, MAC and channel features were considered as
categorical and one-hot encoded. This pre-processing results
in 2565 retained samples (131 dropped).

Since the data is locational as it represents signal quality
in a 3D space, a k-nearest neighbor (kNN) regressor was
considered. As features, the x, y, z coordinates were chosen,
as well as the one-hot encoded MAC addresses. This one-hot
encoding has the advantage that samples with a different MAC
address are considered farther away than similar samples with
the same MAC address. The kNN regressor was configured
to use Euclidean distance by setting metric=minkowski and
p=2, as yielded by the the grid search with an exhaustive
set of hyperparameters. Similarly, the weights and nneighbors

parameters were tuned using a grid search where the optimal
values were weights = distance and nneighbors=3.

We have considered the samples with different MAC ad-
dresses to be further distinguishable by multiplying the one-
hot encoded values by the factor of 3 and setting the nneighbors

parameter to 16, as yielded by the grid search. Moreover,
as an intuitive alternative to assigning samples with different



MAC addresses a greater distance, we considered a kNN
estimator per MAC address. To achieve that, we kept the
hyperparameters of these regressors the same as previously,
and took samples with the same MAC address into account,
reducing the feature set to only the x, y, z coordinates.

The last solution we considered was a neural network (NN).
In particular, we have built and tested the NN for different con-
figurations, including; i) multiple hidden layers with a varying
amount of nodes, ii) normalized RSS values, iii) multiple
inputs: 1 for the x, y, z coordinates and 1 for the hot-encoded
MAC addresses that get combined into a common hidden
layer, and iv) different activation functions and optimizers. The
optimized NN had an input layer for the x, y, z coordinates
and the one-hot encoded MAC addresses, sigmoid activation
function, hidden layer with 16 fully connected nodes, linear
activation function, output layer with a single node for the
prediction, and Adam optimizer.

The accuracy of the considered estimators was measured
based on the Root Mean Square Error (RMSE) of their pre-
dictions. In order to have an unbiased view on an estimators’
predictive capacity, the preprocessed data was split into a train-
ing (75%) and test (25%) sets. For those estimators that require
an additional validation set for tuning their hyperparameters,
the validation set was taken out of the training set. In order to
assess more elaborate estimators we used a baseline estimator
that always returns the mean per MAC address.

Figure 8 shows a comparison of the RMSEs for the different
utilized predictors. The predictor generally utilizing the mean
per MAC address resulted in an RMSE of 4.8107 dBm.
The k-NN-based regressors generally yielded slightly better
performance than the baseline, with the best performing one
being the k-NN algorithm where the one-hot encoded MAC
feature was multiplied by the factor of 3 and nneighbors=16,
resulting in the RMSE of 4.4186 dBm. Finally, the optimally
tuned NN with a single hidden layer of 16 nodes yielded the
RMSE of 4.4870 dBm. While this is slightly better compared
to the baseline, it does fall short of the best kNN solution, as
indicated in the figure. This collection of regressors was used
with a relatively small set of collected samples, which explains
their comparable performance. Nonetheless, we believe that
this exercise demonstrates the toolchain-like utilization of the
proposed system with different ML tools.

IV. CONCLUSION

We have proposed a system for autonomous collection
of 3-Dimensional (3D) Radio Environmental Maps (REMs)-
generating measurements. The main components of the system
include Ultra Wide-Band (UWB) localization-enabled Un-
manned Aerial Vehicles (UAVs) acting as the carriers of REM-
generating devices. The location-annotated measurements for
3D REM generation are then streamlined in a Machine Learn-
ing (ML) entity for fine-grained prediction of signal quality
indicators at locations not visited by the UAVs.

Future work will include instantiating the system on a larger
number of UAVs, followed by exhaustive data collection for
a set of representative environments and different wireless

technologies. These datasets will be used for deriving the
fundamental limitations on the density of 3D REMs. The
UAV localization is currently utilizing UWB, hence the REM-
generating device has to operate in a different frequency
band to mitigate the self-interference effects. This represents
an obvious limitation of our system. To address this issue,
future work will focus on integrating the BitCraze’s infrared
system called Lighthouse for UAV localization, which features
comparable precision, while requiring less anchors and being
cheaper. In addition to further self-interference mitigation, this
effort is expected to make the system even easier to deploy.
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