
A Geometric Approach to Real-time Quality of
Experience Prediction in Volatile Edge Networks

Tom Goethals
Department of Information Technology

Ghent University - imec, IDLab
Gent, Belgium

ORCID 0000-0002-1332-2290

Bruno Volckaert
Department of Information Technology

Ghent University - imec, IDLab
Gent, Belgium

ORCID 0000-0003-0575-5894

Filip De Turck
Department of Information Technology

Ghent University - imec, IDLab
Gent, Belgium

ORCID 0000-0003-4824-1199

Abstract—In recent years, the continuing growth of the net-
work edge, along with increasing user demands, has led to
the need for increasingly complex and responsive management
strategies for edge services. Many of these strategies are cloud-
based, offering near-perfect solutions at the cost of requiring
massive computational power, or edge-based, offering reactive
strategies to changing edge conditions. This paper presents a
decentralized, pro-active Quality of Experience (QoE) based
architecture designed to run on edge nodes, which allows nodes
to predict optimal service providers (fog nodes) in advance and
request their services. The concepts behind the components of the
architecture are explained, as well as geometry-inspired design
decisions to limit model size. Evaluations on an NVIDIA Jetson
Nano show that the architecture can predict optimal service
providers for an edge node in real-time for 5 to 20 QoS (Quality
of Service) and QoE parameters, with at least 50 potential fog
nodes, and that overall QoE resulting from its use is improved
by 1% to 18% over previous work such as SoSwirly, depending
on the scenario.

Index Terms—edge computing, edge intelligence, edge AI,
quality of experience

I. INTRODUCTION

The number and variety of edge devices has grown im-
mensely in recent years, while changing user demands keep
increasing the need for fog and edge services. Combined with
a volatile network topology due to mobile nodes (e.g. Internet
of Vehicles applications), edge services require increasingly
responsive and intelligent management strategies.

Predictive models for service placement are generally de-
signed for the cloud, and consist of tens of millions of
parameters that generate near-perfect solutions at the scale
of cloud data centers. However, the network edge is highly
decentralized and consists of low-resource devices incapable
of running such models, while the relevant parameters are
radically different due to its scale, volatile topology, and
variety. Edge service orchestrators often use basic reactive
algorithms to determine service placement; however, condi-
tions in the edge may be such that a proactive approach
using Artificial Intelligence (AI) results in an overall preferable
solution. Additionally, optimal selection of service providers
for edge nodes depends on user experience, so subjective QoE
parameters should be considered alongside QoS.

SoSwirly [1] is a decentralized edge service orchestrator
which uses agents on edge devices to discover other nodes
in their neighbourhoods, and request services from optimal
providers depending on a generic distance metric. However,
SoSwirly is reactive, and only changes its service topology
when unacceptable QoS conditions are detected. This paper
presents a compact, but effective, neural network architecture
for real-time prediction of fog service QoE, designed to
work with SoSwirly to replace its default reactive algorithm.
As such, the proposed architecture is edge-driven, entirely
decentralized, and aimed at low-resource edge devices. Al-
though designed for decentralized operation with SoSwirly,
the concepts and architecture developed in this paper are
orchestrator-agnostic, and can be used for other solutions with
minimal adaptation. Concretely, the contributions of this paper
are:

• Confirming the feasibility of decentralized, edge-driven
service orchestration with acceptable QoE.

• Illustrating the possibility of small but highly accurate
neural network models based on geometrical concepts,
and their performance on low-resource edge nodes.

• Building a neural network for QoE approximation based
on the geometrical interpretation of neural networks as
coordinate transformations on high-dimensional mani-
folds.

• Predicting near-future QoE changes through a (Recurrent
Neural Network) RNN-based model borrowing from Q-
learning concepts.

Considering that the solution is aimed at edge devices with
<1GiB memory and low-power processors, there are some
requirements:

Req1 Its added resource use should be less than that of
default SoSwirly. CPU should not exceed 5% of a single core
on average, and memory use should not exceed 10MiB.

Req2 It must be fast enough to react to edge topology
changes in near real-time. A single update round, estimating
the QoE of up to 50 nearby nodes, should take less than 50ms.

Req3 The efficiency of the model must be higher than that
of default SoSwirly, measured as the range of QoE for a
node for a prolonged period of time. The required efficiency
improvement depends on the additional load caused by the
model.978-3-903176-51-5/22/$31.00 ©2022 IEEE

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
DOI: 10.23919/CNSM55787.2022.9964775

https://doi.org/10.23919/CNSM55787.2022.9964775

The rest of this paper is organized as follows: Section II
presents existing research related to geometrical neural net-
work interpretations and QoE management in the edge. Sec-
tion III provides a theoretical framework and basic design for
both components of the model, while Section IV discusses
implementation details. In Section V, the evaluation setup and
methodology are presented, while the results are presented in
Section VI and discussed in Section VII. Finally, Section VIII
draws high level conclusions from the paper.

II. RELATED WORK

Although the classical geometric interpretation of neural
networks is an optimization function finding a global minimum
in an arbitrary n-dimensional space, often focused on the ge-
ometry of loss functions [2], some alternative approaches exist.
Notably, Hauser et al. [3] provide a mathematical framework
that shows how neural networks can determine Riemannian
metric tensors for any parameter input space, and that those
tensors can be transformed into Euclidian metrics.

Some studies present neural architectures that explicitly
calculate non-linear functions. There are, for example, studies
that present architectures for approximation of quadratic func-
tions [4] and full polynomial fitting [5]. However, this paper
relies on the properties of tensor algebra to learn non-linear
(and possibly non-polynomial) coordinate transforms.

Magableh et al. [6] illustrate the use of a Deep Recurrent
Q-Network (DRQN) for an effective self-adaptive service
architecture, although the algorithm is not designed for decen-
tralization and can not be used in real-time, unlike the solution
presented in this paper. Lu et al. [7] use a solution based
on double dueling Deep Q-networks (DQN) to determine
optimal offloading policies in the edge. Although deployed
in the edge, the algorithm is quite resource intensive and
thus run on more powerful edge servers. QoE-DEER [8]
uses a game-theoretic to edge resource allocation, thereby
decentralizing resource allocation and giving end-users some
degree of control over their QoE. However, it is focused on
allocating scarce resources between the needs of various users,
rather than service orchestration. Various other decentralized
edge solutions exist, for example for offloading [9] and for
minimizing the energy use of QoE-constrained services [10].
Many studies, for example 5G-QoE [11], are focused on
modeling QoE in the edge for the purposes of reliable and
qualitative media streaming, as a particularly QoE-sensitive
application. Such domain-specific strategies can be integrated
into the proposed solution. Finally, Barakabitze et al. [12]
provide a survey on the subject of intelligent QoE management
for multimedia in the edge. An overview of useful embeddings
related to QoE parameters is given by Potdar et al. [13].
Tokuyama et al. [14] show how timestamps and traffic volume
data can be encoded for IoV models, and their findings indicate
that day of week is an important factor in addition to a daily
timestamp.

Fig. 1: Complete architecture of QD-based service node se-
lection.

III. ARCHITECTURE COMPONENTS

For the purposes of this paper, Qualitative Distance (QD)
is used rather than QoE, as a lower QD value means better
(i.e. higher) QoE. QD is equated to “distance” in arbitrary
manifolds, simplifying the notation of several equations. One
option of calculating a useful QoE from QD is

QoE = 1− tanh(QD) (1)

which approaches 0 QoE asymptotically as QD increases.
The architecture, shown in full in Fig. 1, depends on a QD

approximation model and a QD prediction model. The edge
node running the architecture is assumed to regularly discover
its neighbourhood and query nearby fog nodes (i.e. service
providers) for their properties and locations. QoS-related input
parameters (e.g. network, memory) can be measured directly,
while QoE-related parameters can be constructed from limited
user input, e.g. preference sliders or big data analysis from
user feedback. When the querying node receives the required
information, the distance or QD vector DN to node N is
fed into the QD approximation model. The resulting distance
(or QD) DN , along with the timestamp TN are stored in a
QD cache, which contains the latest QD of each fog node
in the neighbourhood. Both DN and TN are also fed into
the QD prediction model, calculating an estimated future QD
DN,+t. The model is also run for every other known fog node,
after which the closest one is returned as the optimal service
provider for the short term future.

A. QD approximation

A metric tensor is a mathematical object that can calcu-
late non-euclidean (i.e. curved) distances between positional
vectors in arbitrary coordinate systems. While it is impossible
to calculate a global metric tensor in an edge network due
to varying topology features at each node [1], it is possible
to learn an individual metric tensor at each edge node. This
subsection uses a geometric approach to construct a neural
network model for QD approximation suitable for inference
on edge nodes.

Given some distance vector d between nodes, in a mani-
fold containing all dimensions relevant to QD, their relative
distance d can be calculated with a metric tensor gij , defined as

representing the gradient products of each pair of dimensions
in a manifold:

g = gijdx
idxj (2)

d =

∫
d

√
ds2 =

∫ d

t=0

√
gij

ddi

dt

ddj

dt
(3)

As the metric tensor can only calculate magnitude incre-
ments ds2, it can not be used directly on vectors in any
space apart from Euclidian coordinates and other orthogonal
coordinate systems. Furthermore, Eq. 3 shows that if the
components gij are learned directly as weights between two
layers, treating D as input, this method would be limited
to metrics that represent linear combinations of the input
dimensions. At most, the activation function introduces some
non-linearity, but complex functions can not be learned.

However, interpreting the weights tensor between (fully
connected) layers of n neurons as a coordinate transform,
and assuming a random metric tensor go of an n-dimensional
manifold o representing the input data, there exists a sequence
of m coordinate transforms in manifolds xm which reduce the
metric tensor to Euclidian distance ge in space e:

ge =

[
dei
doj

]
go =

m∏
k=1

[
dxk,i

dxk−1,j

]
go, i, j = 0..n (4)

Each such a coordinate transform can be represented by a
weight tensor w, with the restriction that for the input vector
x and output vector y of each layer:

yk =
dyk

dxl
xl = F

(
∂yk

∂xl
xl

)
= F(wk

l x
l) (5)

Where each component of both x and w is a scalar. Thus,
while technically the operation can be performed by a single
tensor, the restriction makes those components too complex
for individual neurons or layers to model. Instead, several
layers of linear combinations are preferred, with the activation
functions F for each layer introducing non-linearity. Hauser
et al. [3] show that hyperbolic activation functions allow a
network to learn the requisite transformations. The correctness
of this method is confirmed by the dual nature of tensors, in
which one-forms d and vectors v are inversely affected by
coordinate transforms Λ, and as a result the magnitude m
calculated by the metric tensor is constant for each layer l:

v2
i = Λi

jv1
j ,d1i = Λj

id2j (6)

m = gl,ijxl
ixl

j = ct,∀l (7)

With the final layer conveniently representing Cartesian
coordinates. The size of the input vector for each layer
is identical, and the network is relatively shallow due to
the modeling ability of hyperbolic functions. As such, this
approach is acceptable for both Req1 and Req2. Fig. 2 shows

Fig. 2: General architecture of metric tensor-based QD ap-
proximation network.

the proposed theoretical model to predict QD D from an m-
dimensional distance vector x through hidden layers Hi.

Finally, the properties of the distance vector components
should be considered. Spatio-temporal dimensions of the dis-
tance vector d are naturally associated with distance between
nodes (e.g. geographic location, latency), but property di-
mensions merely represent target node properties (e.g. free
memory, bandwidth). To calculate D = ptarget−psource, the
property dimensions of position vector psource should be set
to 0.

B. QD Prediction

The positional vectors and resulting QD of nodes at each
timestep are essentially time-series data, ideally processed by
an RNN. Reinforcement Learning (RL) is required, as the
volume of training data for each node would be difficult or
even impossible to label, depending on if and how the metric
tensor for QD is defined. A deep network, however, is not
required due to the limited complexity of the inputs. However,
by default an RNN witn RL would merely predict the next
value in a timeseries, whereas the model should be able to
look ahead several timesteps, with a discount on the future.
While an explicit time difference could be passed to the model
to determine how far it should predict, such an input would
significantly increase the number of training samples required.
Additionally, it would be hard to discount such a value to any
degree. Furthermore, the error for future predictions would
grow increasingly larger, as like a metric tensor, an RNN is
more suitable for predicting in smaller increments, i.e. the
next timestep. To solve this, a property of Q-learning [15]
is borrowed, which incorporates a discounted expected future
reward using the Bellman equation:

Q(st, at) = rt + γmax Q̂(st+1, a) (8)

In which rt can be considered the immediate reward for
choosing a node (i.e. Dt+1 −Dt) and γ is the discount factor
for future rewards. This is converted to a more suitable form,
by using Dt directly and extending to n timesteps:

DW,t+n =

∑n
i=0 γ

iDt+i∑n
i=0 γ

i
(9)

Fig. 3: Proposed architecture of QD prediction RNN.

Where Dt+i is the QD of a node at a specific timestep, and
DW,t+n is the discount-weighted QD for the next n timesteps.
Whereas the Bellman equation is used for maximizing re-
wards, Eq. 9 is more suitable for an RNN attempting to predict
time-series data, for which Mean-Squared Error (MSE) is used
as a loss function.

The proposed model is shown in Fig. 3. As the QD DN

of a fog node is already known, it is used directly as an
input. Other inputs include node identification IN , the QD
timestamp TN and previous QD timestamp T−1N . As with the
QD approximation model, a suitable encoding or embedding
for each input must be constructed, although Sections IV and
VI show that IN is not always a requirement for accurate
predictions. A single recurrent layer with GRU cells is used, to
store state information and calculate complex time-dependent
relations between measurements [16]. After the recurrent layer,
3 fully connected layers calculate up to third-order features
using ReLU activation functions, which is enough to make
accurate predictions from the recurrent inputs. A final neuron
outputs the expected QD DN,t+1 for the near future.

IV. IMPLEMENTATION

The architecture components are implemented in Python us-
ing TensorFlow, and executed as TensorFlow and TensorFlow
Lite 1 models, the latter being explicitly designed for low-
resource use.

For QD approximation, 3 fully connected hidden layers
with tanh activation functions are used, which is enough to
model most curvilinear spaces with acceptable accuracy. This
assumption is confirmed using a version with 5 fully connected
hidden layers. The depth of the network is independent of
the number of input dimensions; each coordinate transform
considers each pair of dimensions, and more layers only
improve how accurately the model can represent random
nonlinear dimensions. This model uses neither dropout nor
regularization, as all parameters are potentially important for

1https://www.tensorflow.org/lite

the end result. Furthermore, each input dimension is normal-
ized into a single floating point input, removing the need for
embedding and encoding. The final layer converting Cartesian
coordinates to distance is slightly modified. Instead of learning
coordinates Hi

3, the third hidden layer learns (Hi
3)

2, changing
the output neuron to a sum and linear activation. The inputs of
the output neuron are also weighted to allow a final scaling of
each Cartesian dimension. The output does not represent the
QD D directly, instead it results in D2/D2

max, from which D
can be calculated given the maximum possible distance Dmax.

The QD prediction network is modified so that no node
ID inputs are required; during training the model is fed time
series data for various nodes, learning general patterns from
their individual behaviors. As such, the architecture is highly
flexible and scalable in terms of discovered nodes. Again, the
input layer is normalized, with D representing the fraction
of maximum distance, and both T and T + 1 representing a
complete temporal “cycle”. Such a “cycle” can be a day or a
week, depending on application needs. All layers contain 30
neurons, apart from the last fully connected layer before the
final output, which contains only 10 neurons.

V. EVALUATION

This section describes the evaluation setup, evaluation sce-
narios, methodology and any tools used, as well as a descrip-
tion of simulated environments. The code for the models and
training sample generator is made available on GitHub2.

All evaluations are performed on an NVIDIA Jetson Nano,
with kernel version 4.9.201-tegra, TensorFlow 2.4.0+nv21.5,
and CuDNN 8.0. While generic edge devices are not neces-
sarily as powerful, a Jetson Nano supports TensorFlow and is
categorically an edge device.

A. Methodology

Both models are evaluated in terms of model size, memory
consumption, and execution time. Model properties are shown
as reported by the Keras Model Profiler3. Execution time
is measured using TensorFlow for batched execution, and
TensorFlow Lite for single inputs, each for 50.000 to 200.000
samples to amortize any overhead as much as possible. Addi-
tionally, QD approximation accuracy and the efficiency of QD
prediction over SoSwirly are examined.

1) QD approximation accuracy: The position vector pN

for a node N consists of geographical x and y coordinates, a
flag sN showing service deployment status, free memory mN

and (estimated) available network bandwidth bN . Memory and
network bandwidth are considered property dimensions, so the
distance between two nodes N1 and N2 is:

p1,2(xN2 − xN1, yN2 − yN1, sN2,mN2, bN2) (10)

Both component models of the architecture are evaluated
separately to accurately gauge their efficiency.

2https://github.com/togoetha/rnnswirly
3https://pypi.org/project/model-profiler/

Although the primary use of the QD approximation model
is to learn metric tensors which have no known representation,
formally defined metrics provide both a ground truth and
convenient training samples. Two distinct distance metrics are
used for the evaluation:

• DM1 uses only the geographical distance s =
√
x2 + y2.

This metric is meant both as a control mechanism,
and to evaluate how the model handles garbage input
dimensions.

• DM2 uses geographical distance, service deployment
status, free memory and free bandwidth. Lower resources
means higher distance, although an exponential discount
is applied. Concretely, the distance metric is given by Eq.
11.

s2 = x2 + y2 + 104sd + 36S(m, 1024) + 400S(b, 100) (11)

S(x, s) =

(
1− sigmoid

(
6x

s

))
s (12)

S(x, s) is a support function based on the Sigmoid function,
used for a scaled exponential discount of a certain resource.
These distance metrics equate to the following metric tensors
for the input data:

gDM1 = δij , i, j < 2 (13)

gDM2 =

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 0
0 1 0 0 0
0 0 100 0 0
0 0 0 6F (m, 1024) 0
0 0 0 0 20F (b, 100)

∣∣∣∣∣∣∣∣∣∣
(14)

F (x, s) =

(
∂S(x, s)

∂x

)2

=
36e12x/s

(e6x/s + 1)4
(15)

For the evaluation, 200.000 training samples and 100.000
validation samples are generated, all random.

2) QD prediction efficiency: For QD prediction, a car
trip simulator is created which generates datasets containing
the necessary fields for QD calculation and QD prediction.
Several such datasets are used as training samples, while others
are used for validation. The geographical area used for the
simulator is available in the GitHub repository.

The geographical area is defined as 255 by 255 units, with
50 fog nodes at random positions, and an edge node travelling
along a number of predefined paths for 1000 timesteps. At
each timestep, the edge node “receives” positional vectors
from the fog nodes, and calculates the QD for each. Further-
more, a configurable number of static edge nodes are created,
and assigned to the fog nodes. As such, some fog nodes may
be randomly unavailable due to their resources being fully
utilized. Model efficiency is evaluated by comparing QD of
the travelling edge node for an entire path using two methods,
both selecting the lowest QD fog node with available resources
when switching to another fog node:

TABLE I: QD approximation model properties for 5 and 20
dimensions. Memory is main memory + GPU memory.

Model Size Memory Single Batched
QD (5 dim) 2.59Kb 0.375Kb + 0.156Kb 109µs 75ns
QD (20 dim) 7.21Kb 5Kb + 1.49Kb 108µs 195ns

Prediction 32.61Kb 20.82Kb + 5.6Kb 138µs 1876ns

• Fog node selection based on SoSwirly, i.e. greedy. No
switches to another fog node are allowed until the max-
imum allowable QD is reached to avoid overly frequent
switching. No switching to other fog nodes over the
maximum QD is allowed, as they offer no acceptable
improvement.

• Fog node selection based on QD prediction. No switches
to another fog node are allowed until maximum allowable
QD is reached. However, as this method is based on
predictions, switches to “better” fog nodes currently over
the maximum QD are allowed.

For the evaluation, maximum QD is set at 100, and DM2 is
used for QD calculation, as it introduces randomness based on
the available resources of each fog node. Finally, three separate
situations are evaluated:

• Normal, in which 750 edge nodes are generated and most
fog nodes have few free resources left.

• Low density, with only 400 edge nodes and plenty of
opportunity to switch to other fog nodes for services.

• High density, a tipping point scenario with 800 edge
nodes, resulting in a significant percentage of fog nodes
with no free resources.

While the difference between Normal and High may seem
minimal, the computational complexity of SoSwirly has an
exponential drop-off near tipping points, depending on node
densities.

Note that the evaluation of QD prediction is entirely in-
dependent of the QD approximation model; both methods
would be equally affected by its use. Furthermore, Section
VI shows that its detrimental impact on total QD (and thus
QD prediction) is acceptably small.

VI. RESULTS

This section presents the results of the evaluations, and
shows how they confirm that the architecture fulfills Req1
through Req3.

A. Model Properties

All model properties are summarized in Table I. The QD
approximation model is evaluated for the 5 input dimensions
discussed in Section V, as well as 20 dimensions, showing
how it performs in larger QD parameter spaces. The size
of both versions is well under 10Kb, showing that they can
be stored on even extremely resource-constrained devices.
Memory consumption is similarly low at less than 10Kb for
RAM and GPU combined. Execution times are extremely fast,
around 100µs for single samples, while batched execution
takes 75ns and 195ns per sample, for 5 and 20 dimensions
respectively.

DM1 3L DM1 5L DM2 3L DM2 5L

0

1

2

3

4

Pr
ed

ic
tio

n
er

ro
r

(%
)

Fig. 4: Prediction error of QD approximation network, using
both 3 and 5 hidden layers. For both metrics, over 75% of the
outputs have less than 1% error.

The QD prediction model is similarly compact, requiring
only 32.61Kb of disk space and 26.5Kb total memory. Its
execution time for single samples is comparable to QD approx-
imation, likely indicating that Python presents a significant
overhead for single samples. Batched execution takes 1.876µs.

As such, the model properties satisfy Req1 and Req2 by
several orders of magnitude.

B. QD approximation

The error of the QD approximation model for both DM1
and DM2 is shown in Fig. 4. Focusing on the 3 hidden
layer version (3L), although over 50% of the outputs have
only a 0.5% error and 75% of sample outputs have an error
of less than 1%, there are some exceptions up to 3% error.
However, large errors are without exception the result of low
QD values (<10% of maximum QD), for which small absolute
errors represent significant relative errors. Additionally, weight
initialization and training samples have a significant influence
on such a small model, and in a batch of 10 trained models
the maximum error ranged from 2% to 5%. As such, accuracy
can be made arbitrarily small by training a batch of models.
A median error of 0.5% is acceptable as input for the QD
prediction component. The results of the 5 hidden layer version
(5L) confirm that 3 layers have sufficient modeling potential;
barring some of the largest errors for DM1, the error rates
improve by only 10-20% at the cost of a 60% increase in
model size and computation. However, as the single sample
execution time does not measurably increase, the 5 layer
version can still prove useful.

C. QD prediction

Fig. 5 shows the range of QD for both (So)Swirly and the
QD prediction model, for various scenarios. With a normal
edge node density, the model performs around 1% better
than SoSwirly overall, from lowest QD to highest QD. With
a low edge node density, more fog nodes are available to
switch to, and the model only improves the high end of QD
(i.e. the worst cases), again by around 1%. For high edge

So
Sw

irl
y

N

R
N

N
N

So
Sw

irl
y

L

R
N

N
L

So
Sw

irl
y

H

R
N

N
H

50

100

150

200

Q
D

(l
ow

er
is

be
tte

r)

Fig. 5: QD distribution for a sample trip for both SoSwirly
(blue) and the proposed RNN (red).

node density however, the model improves the median to
highest QD values by up to 18%. While these numbers present
an overall improvement, it is important to consider that the
evaluation method only switches to a new fog node when
maximum QD is exceeded, and at all other times the QD of
both approaches is more or less equal.

As such, Fig. 6 shows the range of QD for only those
moments when the algorithm decides to switch to a new fog
node to improve QD, measured from 2 timesteps before a
switch happens to 2 timesteps after. For normal and low edge
node densities, the median QD is 12-20% lower when using
the QD prediction model, as it accurately predicts which nodes
will offer a lower QD in the near future, and allows pre-
emptive switching. Maximum QD is not significantly lower,
but unlike (So)Swirly, the model never allows it to exceed the
limit of 100. For high edge node density, the model offers a
significant improvement of 10% lower minimum QD and 16%
lower maximum QD. Considering the resource overhead of the
models, the results show that they can significantly improve
QD at an insignificant computing cost, thus fulfilling Req3.

VII. DISCUSSION

Aside from fulfilling the requirements from Section I,
the results also illustrate the feasibility of highly accurate
(R)NN learning and inferring on edge nodes. On one hand,
QD approximation is shown to accurately learn two distance
metrics using parameters spaces likely to occur in the edge.
On the other hand, the RNN-based QD prediction is shown to
accurately predict node movement for several timesteps ahead,
allowing an application to avoid exceeding maximum QD.
The concrete improvement offered by the models depends on
how often an edge node is allowed to switch to other service
providers, and the maximum QD. If no limit is imposed, the
results of QD prediction are likely to keep the QD well below
the maximum at all times. The results of a 20-dimensional

So
Sw

irl
y

N

R
N

N
N

So
Sw

irl
y

L

R
N

N
L

So
Sw

irl
y

H

R
N

N
H

60

80

100

120

140

160

180
Q

D
(l

ow
er

is
be

tte
r)

Fig. 6: QD distribution for a sample trip for both SoSwirly
(blue) and the proposed RNN (red).

model show that scaling the number of QD parameters is
not an issue. In terms of service providers, even if an edge
node discovers 50 fog nodes, a final evaluation shows that
QD approximation takes around 6ms and QD prediction 12ms
with TensorFlow Lite, indicating that real-time operation is
possible. The evaluation of a model with 5 hidden layers shows
that the choice for 3 hidden layers is optimal when weighing
computational cost versus execution time. Several topics for
future work remain open, starting with optimization of the
presented architecture. The QD prediction model does not
currently use regularization or dropout, and could conceivably
be both faster and more accurate. Additionally, the current
architecture is rigid with respect to timestep look-ahead, as
the discounted values are part of the training process. The pre-
diction model would be more versatile if it could predict any
number of timesteps ahead without multiplying the training
data accordingly. Finally, the overall architecture would benefit
from Gossip Learning [17], which is suitable for decentralized
dissemination of weight updates.

VIII. CONCLUSION

This paper presents Qualitative Distance (QD) in relation
to QoE, and a decentralized architecture for QoE optimization
through QD approximation and prediction in the edge, result-
ing from a geometric interpretation of neural networks based
on metric tensors. In the introduction, some requirements are
listed for the architecture to run on resource-constrained edge
devices. The theoretical concepts behind the architecture are
elaborated and component models are developed, keeping in
mind the stated requirements and the resource-constrained
nature of edge devices. An evaluation setup is presented,
in which data is generated by cars travelling around a road
network trip simulator, switching fog nodes as they require
better QD. The component models are evaluated in terms of
resource requirements, execution time, and their accuracy in

approximating and predicting QD. The results indicate that the
models fulfill the requirements by a wide margin, providing
a significant improvement over default SoSwirly fog node
selection. The models require only 35Kb disk space and 27Kb
memory combined, which combined with the measured exe-
cution times allows running them on devices far less powerful
than the evaluation device. In conclusion, the results show that
the architecture can accurately approximate and predict QD
for at least 50 nearby service providers in real-time. Finally,
some topics for future work are listed which can increase the
efficiency, flexibility and adoption of the architecture.

REFERENCES

[1] T. Goethals, F. D. Turck, and B. Volckaert, “Self-organizing fog support
services for responsive edge computing,” Journal of Network and
Systems Management, vol. 29, no. 2, jan 2021.

[2] J. Pennington and Y. Bahri, “Geometry of neural network loss surfaces
via random matrix theory,” in International Conference on Machine
Learning. PMLR, 2017, pp. 2798–2806.

[3] M. Hauser and A. Ray, “Principles of riemannian geometry in neural
networks,” Advances in neural information processing systems, vol. 30,
2017.

[4] F. Fan, J. Xiong, and G. Wang, “Universal approximation with quadratic
deep networks,” Neural Networks, vol. 124, pp. 383–392, 2020.

[5] Y. Tong, L. Yu, S. Li, J. Liu, H. Qin, and W. Li, “Polynomial fitting
algorithm based on neural network,” ASP Transactions on Pattern
Recognition and Intelligent Systems, vol. 1, no. 1, pp. 32–39, 2021.

[6] B. Magableh and M. Almiani, “A deep recurrent q network towards
self-adapting distributed microservice architecture,” Software: Practice
and Experience, vol. 50, no. 2, pp. 116–135, nov 2019.

[7] H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, “Edge qoe:
Computation offloading with deep reinforcement learning for internet
of things,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9255–
9265, 2020.

[8] S. Li, J. Huang, J. Hu, and B. Cheng, “Qoe-deer: A qoe-aware decentral-
ized resource allocation scheme for edge computing,” IEEE Transactions
on Cognitive Communications and Networking, pp. 1–1, 2021.

[9] Z. Chen and X. Wang, “Decentralized computation offloading for multi-
user mobile edge computing: a deep reinforcement learning approach,”
EURASIP Journal on Wireless Communications and Networking, vol.
2020, no. 1, sep 2020.

[10] M. Mordacchini, L. Ferrucci, E. Carlini, H. Kavalionak, M. Coppola,
and P. Dazzi, “Self-organizing energy-minimization placement of qoe-
constrained services at the edge,” in Economics of Grids, Clouds,
Systems, and Services, K. Tserpes, J. Altmann, J. Á. Bañares, O. Agmon
Ben-Yehuda, K. Djemame, V. Stankovski, and B. Tuffin, Eds. Cham:
Springer International Publishing, 2021, pp. 133–142.

[11] J. Nightingale, P. Salva-Garcia, J. M. A. Calero, and Q. Wang, “5g-
qoe: Qoe modelling for ultra-hd video streaming in 5g networks,” IEEE
Transactions on Broadcasting, vol. 64, no. 2, pp. 621–634, 2018.

[12] A. A. Barakabitze, N. Barman, A. Ahmad, S. Zadtootaghaj, L. Sun,
M. G. Martini, and L. Atzori, “Qoe management of multimedia stream-
ing services in future networks: A tutorial and survey,” IEEE Commu-
nications Surveys Tutorials, vol. 22, no. 1, pp. 526–565, 2020.

[13] K. Potdar, T. S. Pardawala, and C. D. Pai, “A comparative study of
categorical variable encoding techniques for neural network classifiers,”
International journal of computer applications, vol. 175, no. 4, pp. 7–9,
2017.

[14] Y. Tokuyama, Y. Fukushima, and T. Yokohira, “The effect of using
attribute information in network traffic prediction with deep learning,”
in 2018 International Conference on Information and Communication
Technology Convergence (ICTC). IEEE, oct 2018.

[15] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algorithms:
A comprehensive classification and applications,” IEEE Access, vol. 7,
pp. 133 653–133 667, 2019.

[16] P. T. Yamak, L. Yujian, and P. K. Gadosey, “A comparison between
ARIMA, LSTM, and GRU for time series forecasting,” in Proceedings
of the 2019 2nd International Conference on Algorithms, Computing
and Artificial Intelligence. ACM, dec 2019.

[17] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a decentral-
ized alternative to federated learning,” in IFIP International Conference
on Distributed Applications and Interoperable Systems. Springer, 2019,
pp. 74–90.

COPYRIGHT

© IFIP, (2022). This is the author’s version of the work. It
is posted here by permission of IFIP for your personal use.
Not for redistribution. The definitive version will be published
in IFIP digital library later this year (details will be updated)

