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Abstract

Microphone arrays use spatial diversity for separat-
ing concurrent audio sources. Source signals from differ-
ent directions of arrival (DOAs) are captured with DOA-
dependent time-delays between the microphones. These can
be exploited in the short-time Fourier transform domain
to yield time-frequency masks that extract a target signal
while suppressing unwanted components. Using deep neu-
ral networks (DNNs) for mask estimation has drastically
improved separation performance. However, separation of
closely spaced sources remains difficult due to their similar
inter-microphone time delays. We propose using auxiliary
information on source DOAs within the DNN to improve the
separation. This can be encoded by the expected phase dif-
ferences between the microphones. Alternatively, the DNN
can learn a suitable input representation on its own when
provided with a multi-hot encoding of the DOAs. Experi-
mental results demonstrate the benefit of this information
for separating closely spaced sources.

1. Introduction
Speaker separation is the extraction of individual speech

signals from a mixture of multiple overlapping talkers and
additive noise. This has several use cases, such as au-
tomatic speech recognition (ASR) and transcription, tele-
communication devices, and hearing aids [1]. Typically,
separation is done in the short-time Fourier transform
(STFT) domain. Because of the spectro-temporal sparsity
and approximate disjointness of speech [21] in the STFT
representation, a target speaker can be extracted from the
mixture by selecting the time-frequency (TF) bins which
are dominated by that speaker. This corresponds to apply-
ing a mask to the STFT representation of the microphone
signal, where the mask has values close to 1 when the target
source is dominant at the TF bin, and 0 when an interferer
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or noise is dominant. As an alternative to the direct applica-
tion of the masks to extract the target signal, the masks can
be integrated into a spatial filtering framework, where they
can control the updates of the different components of adap-
tive beamformers. For example, in [12,18] the masks guide
the adaptation of the spatial statistics required for minimum
variance distortionless response (MVDR) beamforming or
the multichannel Wiener filter (MWF). For a good source
separation, therefore, estimation of robust time-frequency
masks for each source is the key.

If there is only one active speaker at one time, a sin-
gle microphone may be sufficient to separate speech from
background noise. The structure of speech is then used to
detect the target signal in the noisy mixture. However, when
multiple speakers are active simultaneously, they cannot be
separated based on generic speech structure alone. Then
additional information is needed about the specific speaker
characteristics, such as the gender of the target speaker [8]
or some latent space embedding of the speaker characteris-
tics [10, 24]. With a compact microphone array, however,
multiple overlapping speakers can be separated without the
the need for prior knowledge on the speaker characteristics
- as long as they are not co-located in space. The extra
information for the source separation then comes from the
spatial diversity: the time difference of arrival (TDOA) of
the signals at the different microphones is dependent on the
speaker locations. This information can be exploited to de-
fine appropriate time-frequency masks for the separation.

However, the spatial diversity is limited when the
sources are closely spaced. Indeed, when the sources get
closer, they generate increasingly similar TDOAs. Thus,
separating such closely spaced sources becomes difficult. In
this work, we investigate the possible advantages of adding
auxiliary information, in the form of direction of arrival
(DOA) information, to a deep neural network (DNN)-based
mask estimation framework. Two different techniques of
embedding this information are studied. The first approach
uses hand-crafted features: the expected phase difference
at the microphones corresponding to DOAs where active
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speakers are located. The second approach lets the DNN
derive a suitable representation from a multi-hot encoded
vector representing active speaker DOAs.

In order to generate these features, we will assume the
target locations to be perfectly known. Of course, extracting
this information from the microphone signals is also chal-
lenging if the sources are closely spaced but this is outside
the scope of this paper. We note, however, that additional
sensors, such as a camera, can help in this regard.

In terms of DNNs, architectures based on convolutional
and recurrent neural layers are efficient and have been
shown to perform well for speech processing, see, e.g.,
[3–5, 15, 26]. Our baseline, therefore, is a straightfor-
ward multi-channel extension of a state-of-the-art convolu-
tional recurrent U-net architecture for speech enhancement
(CRUSE), originally proposed in [26] (and optimised in [4])
for single-microphone noise suppression.

2. Mask-based source separation
2.1. Signal model

We assume that a mixture of the target speech and in-
terference speech is captured by an M -element microphone
array in a reverberant and noisy room. Thus, each captured
speech signal can be modelled by convolving the dry signal
at the source location with the speaker-location dependent
room impulse response (RIR). So we may model the mix-
ture with J speakers at microphone m as:

ym(n) =

J∑
j=1

hm,j(n) ∗ sj(n) + vadd
m (n) , (1)

where sj(n) is the (dry) speech signal of source j,
hm,j(n) is the RIR modelling the direct path (hdir

m,j(n))
and reflections (href

m,j(n)) from the location of source j to
microphone m, ∗ is the convolution operator and vadd

m (n)
is the additive noise at microphone m. Using the STFT
representation, xm,j(n) = hdir

m,j(n) ∗ sj(n) and vm(n) =

href
m,j(n) ∗ sj(n) + vadd

m (n), we can write (1) as:

Ym(l, k) =

J∑
j=1

Xm,j(l, k) + Vm(l, k) , (2)

where k is the frequency index and l the frame index of
the STFT. We assume that the speakers do not move during
utterances, which is indeed a valid assumption in many sit-
uations e.g. people sitting around a table for a meeting, or at
the bar. By stacking the individual microphone signals into
a column vector, a more compact representation is obtained
as:

Y(l, k) =

J∑
j=1

Xj(l, k) +V(l, k) , (3)

where Xj(l, k) = [X1,j(l, k), · · · , XM,j(l, k)]
T and

V(l, k) = [V1(l, k), · · · , VM (l, k)]T .

2.2. Separation by time-frequency masks

The well-known properties of sparsity and disjointness
of speech signals in their STFT representation [21] im-
ply that each TF bin is typically dominated by one source.
Thus, by identifying and preserving the TF bins dominated
by a target speaker j and suppressing the remaining TF bins,
an estimate X̂j(l, k) of the target speaker signal can be ob-
tained. In effect, this corresponds to generating a speaker
specific mask Mj(l, k), which has values close to 1 for TF
bins (l, k) dominated by Xj(l, k) and values close to 0 oth-
erwise, and applying it to the STFT spectrum of the chosen
reference microphone as:

X̂j(l, k) = Mj(l, k)Yref(l, k) . (4)

The separation mask can be defined in a wide variety of
ways (see, e.g. [28]). Here, without loss of generality, we
choose the (bounded) spectral magnitude mask (SMM):

Mj(l, k) = min
(( |Xref,j(l, k)|2

|Yref(l, k)|2
)β

; 1

)
, (5)

where β is a parameter that controls the trade-off be-
tween speech distortion and suppression of the interference
and noise. We set β = 1, which suppresses the interferer(s)
and noise more aggressively compared to the typical choice
of β = 0.5, at the cost of a slightly increased distortion of
the target signal. Further, as it is easier to learn a bounded
target, we clip the SMM at 1. Also, without loss of general-
ity, we assume microphone 1 is chosen as the reference.

3. DNN-based mask estimation
The masks needed for the separation are typically es-

timated using a DNN, e. g., a fully-convolutional network
such as Conv-TasNet [17], which performs an end-to-end
separation, or a convolutional recurrent neural network such
as [5], which operates in the STFT domain. To guarantee a
high speech quality when an STFT-based masking is per-
formed, it is particularly important that the TF mask cap-
tures the local structure of the target. One way to accom-
plish this is to process frequency subbands separately, as
done in [3, 15]. A more computionally efficient solution is
given by encoder-decoder architectures, where local infor-
mation can be preserved by means of skip connections be-
tween encoder and decoder. In recent years, many TF mask
estimation approaches of this type have been proposed,
e. g., [6,14]. In this work, we consider the optimised convo-
lutional recurrent U-net for speech enhancement (CRUSE)
structure from [4], and extend it to the multi-channel case.

3.1. Extended CRUSE for multichannel separation

The extended CRUSE architecture is depicted in Fig. 1.
The convolutional layers in the first part of the U-Net (the
encoder) have a kernel size of (2, 3) and a stride (1, 2) along
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Figure 1: U-Net structure (assuming K = 257 discrete fre-
quencies at the input). The bigger yellow box at the top will
be defined by the selection of the input features. This choice
of input features will also dictate the dimension (Fin) of in-
put features.

the time and frequency dimension respectively. Thus, each
encoder layer successively reduces the frequency dimension
by half, while the feature dimension increases as depicted.

This is repeated 5 times until we get a latent space rep-
resentation. The feature and frequency dimensions are then
flattened to form the feature dimension for the gated recur-
rent unit (GRU) [7]. To reduce the complexity of the model,
the features are divided into 4 groups, which are processed
by 4 GRU layers of smaller size in parallel [4]. The outputs
of the GRUs are ‘unflattened’ into the frequency and feature
dimensions. Deconvolutional layers in the decoder are then
used to reverse the dimensionality reduction of convolu-
tional layers in the encoder. Additive skip connections with
a learnable scaling and bias are inserted between encoder
and decoder [4]. These propagate information throughout
the network, and make it easier for the network to learn via
back-propagation.

After each convolutional and deconvolutional layer,

batch normalisation is applied. All layers, except for the
output layer, use the Rectified Linear Unit (ReLU) activa-
tion function.

The yellow box in Fig. 1 will change depending on the
input features: it will either be the baseline inputs, discussed
in Sec. 3.2, or one of the novel input features, incorporating
auxiliary information, discussed in Sec. 4.

3.2. Input features

Z
(2×3) Conv (64 feature maps)

L×K×2M

L×128×64

Figure 2: Baseline input features: Z is a L×K×2M tensor
where the third dimension is given by the vector Z(l, k)
defined in (8). The elements of Z(l, k) consists of the real
and imaginary part of the normalised amplitudes from the
microphones signals. Fin = 2M .

As input features for the reference (baseline) model, we
straightforwardly change the single channel inputs from [4]
to integrate the spatial diversity available through the mi-
crophone array. We take the real and imaginary parts of the
normalised amplitude Ym(l,k)

||Y(l,k)||2 at each microphone [30]:

ZR
m(l, k) = ℜ

{
Ym(l, k)

||Y(l, k)||2

}
(6)

and

ZI
m(l, k) = ℑ

{
Ym(l, k)

||Y(l, k)||2

}
(7)

where ∥.∥2 is the ℓ2 norm of a vector.
We use the following short hand notation in Fig. 2:

Z(l, k) = [ZR
1 (l, k),ZI

1 (l, k), · · · ,ZR
M (l, k),ZI

M (l, k)] (8)

where Z(l, k) is a 2M vector, to form the third dimension
of the L×K × 2M tensor Z .

Since the spatial information is essentially present in the
phase, the chosen representation encodes this information
well. However, compared to using the phase (∠Ym(l, k))
directly, the above representation is advantageous as it
avoids the 2π phase wrapping problem.

While there is also some spatial information, like room
reverberation, contained in the amplitude, normalising the
amplitude across the microphones delivers (in our experi-
ence) a better generalisation to scale, speakers and also to
different signal types. With this set of features, we obtain
an input dimension of Fin = 2M for each TF bin.



3.3. Network output

For the output, we adopt the approach of [3]. The po-
tential target locations are divided into Φ different angular
sections, each corresponding to one DOA class. For each
section ϕ, the network generates a mask Mϕ(l, k) that can
be used to extract a speaker from that direction. The correct
mask for any speaker is then selected based on their (known
or estimated) location: Mj(l, k) = Mϕ(l, k) if source j is
located in angular section ϕ at time frame l (later written as
1(ϕj(l) = ϕ)). This mask is then applied as in (4).

The advantage of the chosen output representation,
where different outputs correspond to different directions,
is the implicit resolution of permutation. Thus, additional
measures to resolve the permutation problem, e.g. permuta-
tion invariant training (PIT) [29], are not needed.

The outputs of the DNN are set to estimate the log-masks
log(Mj(l, k)). In this manner the dynamic range of the
mask values is better utilised and a more accurate estimation
of lower values is obtained. However, the log-masks have
no lower bound, which is undesirable for a training target.
Thus, a mingain gmin is imposed to limit the suppression.
This is achieved by setting the output activation function to
be a clipped linear function between gmin and 1. Another
benefit of the mingain is that it can also reduce artifacts such
as musical tones.

During training, we consequently minimise the mean
squared error (MSE) loss between the estimated log-mask
log M̂j(l, k) and the desired log-mask logMj(l, k) over
all active sources, as in [3]:

L =
∑
l,k,j

(
log M̂j(l, k)− logMj(l, k)

)2

. (9)

Masks for directions without active speakers are treated as
don’t cares and do not contribute to the loss function.

4. Incorporation of auxiliary DOA information
We will show in the evaluation in Sec. 5 that this baseline

system is good in separating multiple sources in general. In
contrast however, the separation of closely spaces sources
leaves some room for improvement. To improve upon these
situations, we propose to add extra DOA information to the
network. With this extra information, the network should be
able to extract more useful information from the very first
network layer. Additionally, there should be less confusion
between closely spaced sources, since the network already
knows that these sources exist and are in close proximity.

We present the two different options: the first one is the
use of hand crafted features, while the second one uses a
multi-hot encoding of the DOA, allowing the network to
learn its own representation.

Z

(2×3) Conv

L×K×2M

X (ϕ=1)

(2×3) Conv

L×K×2(M−1)

··· X (ϕ=Φ)

(2×3) Conv

L×K×2(M−1)

Add

L×128×64 L×128×64L×128×64

···

1(ϕj(l)=ϕ)

···

L×128×64

Figure 3: Baseline features with auxiliary expected phase
difference features X (ϕ), as defined in (13). Additionally,
the weights of the first convolutional layer are dependent on
the target DOA: 1(ϕj(l) = ϕ), indicated in the dotted box.
Fin = 2M + 2J(M − 1).

4.1. Expected phase differences

A representation of the DOAs that permits their inclusion
within the input to the neural network is given by the cor-
responding expected phase difference between the micro-
phones of the array, as used in e.g. [19]. To avoid unneeded
redundancy, we only take the expected phase difference be-
tween the reference (first) and mth microphone:

2πfk∆τm(ϕ) = 2πfkτm(ϕ)− 2πfkτ1(ϕ) , (10)

where fk is the central frequency at the frequency bin k and
∆τm(ϕ) is the time delay at microphone m, of a plane wave
originating from the direction corresponding to DOA index
ϕ, measured with respect to the array reference. Mathemat-
ically, ∆τm(ϕ) = [rxm, rym][cos(ϕ), sin(ϕ)]T /c, with rxm
and rym the x- and y-coordinate of the mth channel with re-
spect to the microphone reference microphone, and c the
speed of sound.

To match the real and imaginary inputs at (6) and (7), we
take the cosine and sine of the phases at (10) respectively:

XC
m(ϕ, k) = cos (2πfk∆τm(ϕ)) , (11)

XS
m(ϕ, k) = sin (2πfk∆τm(ϕ)) . (12)

We make Φ tensors X (ϕ) of size L×K×2(M−1), where
the third dimension is given by the 2(M − 1) vector:

X (ϕ, k) = [XC
2 (ϕ, k),XS

2 (ϕ, k), · · · ,XC
M (ϕ, k),XS

M (ϕ, k)] .
(13)

The same elements are repeated over the frame dimension
L so the input size corresponds to Z . Note: as the expected
phase difference for the reference microphone is always 0, it
conveys no additional information and is thus not included.

This manner of including auxiliary DOA information
is depicted in Fig. 3. In order to give the network maxi-
mum flexibility, the weights of the first convolutional layer



(for each X (ϕ)) is dependent on the DOA and the cor-
responding expected phase differences. This means that
we have Φ different sets of weights. Further, only the in-
puts corresponding to an (estimated) active target speaker
at time frame l are passed though: 1(ϕj(l) = ϕ). Oth-
ers are multiplied with zeros as to have no influence on
the mask estimation. When all J speakers are active, this
yields an additional 2J(M − 1) features per TF bin: Fin =
2M + 2J(M − 1).

1 0 0 1 ··· 0 0 0

1 0 0 1 ··· 0 0 0

0 0 0 1 ··· 0 1 0
...

0 0 0 1 ··· 0 1 0

FC (PK feature maps)

L×Φ

Unflatten (L×K×P )

L×PK

Stack

L×K×P

Z

L×K×2M

(2×3) Conv (64 feature maps)

L×K×(2M+P )

L×128×64

Figure 4: Baseline features with auxiliary features obtained
from multi-hot encoding inputs. Fin = 2M + P .

4.2. Multi-hot encoding

Alternatively, we can let the network determine a suit-
able representation on its own via a multi-hot input vector:
we supply a Φ sized input vector for each time frame which
indicates in what angular sector a speaker is active. A 1 is
assigned to the ϕth element when a source is active at the
location with index ϕ. This is then used as input for a fully
connected (FC) layer with PK output features. The same
FC layer is reused for all time frames. The encoding thus
has no temporal context. We concatenate the newly gener-
ated features with the input of the baseline method by set-
ting the convolutional layer to have an output size of PK.
Here P is the number of additional input features for each
TF bin. This is depicted in Fig. 4

We also tried to increase the representation power to pos-
sibly better exploit information about which combinations
of sources are concurrently active. This was done by adding
additional layers between the multi-hot input and the stack-
ing operation in Fig. 4. However, empirically, it was found
to not improve the method.

The multi-hot generated features contribute an additional
P features, thus Fin = 2M + P . We choose P = 2JM ,
which yields a similar number of features as for the ex-
pected phase differences.

4.2 cm

4.2 cm

Figure 5: The 3-element microphone array used for the ex-
periments.

5. Experiments

For the experiments, we use a planar array of M = 3
microphones. These are placed in an isoceles right-angled
triangle configuration, where the lengths of the catheti are
4.2 cm, as depicted in Fig. 5. This array geometry is used
in both training and evaluation.

The sampling frequency is 16 kHz. An STFT frame
length of 512 samples (with 50% overlap between frames)
is chosen, resulting in K = 257 frequency bins (positive
frequency spectrum). The gmin is set to −40 dB.

5.1. Training

For training, we used the TIMIT [9] and PTDB-TUG
speech datasets [20]. During the training, different scenar-
ios are simulated where either one or two sources are con-
currently active, similar to [2]. Thus, we set maximum num-
ber of active sources J to 2. The location of each speaker
is constant until the source becomes inactive (silent). When
the source becomes active again, a new location is randomly
assigned to the source. Source activity and inactivity are
modelled as two states of a Markov chain, where a transition
between the two states occurs once every 1.5 s on average.
See [2] for more details on the training setup.

The source signals are convolved with RIRs simulated
using [11]. There are 10 different rooms with reverberation
times ranging from RT60 = 0.2 s to 0.8 s. Further, for sim-
plicity, we consider that the speakers are present only in the
180◦ angular space around the front of the array. We divide
this region into angular sections of 5◦ width, resulting in
Φ = 37 different sections and, consequently, 37 different
masks at the output. Different sets of RIRs are produced for
training and validation. For the additive noise, we simulate
temporally uncorrelated diffuse noise, as described by [13],
with input SNRs ranging from 0 dB to 30 dB. We stress
that the network is not specifically trained to separate only
closely spaced sources, since the locations are chosen arbi-
trarily, and there are also cases where only one speaker is
active. Thereby, we can ensure that an improved separa-
tion of closely spaced sources does not come at the cost of
a reduced usefulness of the system in other scenarios.
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Figure 6: The ∆SIR metrics (as a function of different input SNRs) for all simulated cases on the left, and for the subset
where sources are separated by only 20 degrees or less on the right.
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Figure 7: The ∆STOI metrics for all simulated cases (left) and the subset with only closely spaced sources (right).
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Figure 8: The ∆PESQ metrics for all simulated cases (left) and the subset with only closely spaced sources (right).



5.2. Evaluation

The test RIRs for the evaluation are simulated via a dif-
ferent generator: pyroomacoustics [23]. We generated 327
random scenarios. Each scenario has a random room di-
mension between {4, 4, 2} and {8, 8, 4} m. Since the focus
of this work is on source separation, we only consider cases
where two speakers are active. The locations of both speak-
ers are fixed during one simulation. We make sure to simu-
late approximately one third of the cases where the sources
are closely spaced (≤ 20 degrees apart), in order to have
a representative sample size. Each source signal consists
of 5 speech utterances. The utterances are taken from the
TSP speech database [16]. For each room, 6 different input
SNRs are generated between −5 dB and 20 dB, where the
noise is again temporally uncorrelated and spatially diffuse.

Evaluation metrics are computed for two sets of scenar-
ios: a first set where all scenarios are included, and a second
set consisting only of cases where the sources are separated
by 20 degrees or less. This second set consists of 114 sce-
narios.

5.3. Metrics

We consider three metrics: the first is the source-to-
interference ratio (SIR), as defined by [27]. This is an im-
portant metric for source separation since it indicates how
much the interferer is suppressed relative to the target.

The other metrics focus on perceptual quality (PESQ:
perceptual evaluation of speech quality [22]) and intel-
ligibility (STOI: short-time objective intelligibility [25]).
These metrics offer important, complementary information
on the separation performance, since the SIR alone can be
misleading: a decent SIR can be achieved by suppressing all
of the interfering source, while only keeping a small portion
of the target speech. This would however lead to unintelli-
gible, poor quality speech.

5.4. Results and discussion

In Fig. 6, the ∆SIR metric is plotted, i.e., the gain with
respect to the input signal. The baseline system, without ex-
tra DOA information, yields a slightly better performance
for almost every input SNR when the results for all spac-
ings are averaged (Fig. 6a) . However, for all three variants,
the ∆SIR is very high, so that the minor difference is in-
significant. In general, we can conclude that the extra DOA
information does not have an influence on the performance
of the CRUSE architecture. The network can infer the spa-
tial information on its own.

In contrast, the advantage of the extra DOA information
is clearly visible when only closely spaced sources are con-
sidered (Fig. 6b). In these scenarios, incorporating auxiliary
information yields a consistent gain of 2 to 2.5 dB over all
input SNRs. However, the ∆SIR is, in general, less than

when the sources are farther apart. This is not surprising
because of the difficulty of separating sources with the con-
sidered compact 3-microphone array when their angles of
arrival are similar.

Comparing the hand crafted expected phase difference
features to the multi-hot encoding, the multi-hot encoding
comes out on top for almost every case. This leads us to
conclude that the network can learn a better representation
than the expected phase differences to encode the DOA in-
formation. Either way, we would expect the multi-hot en-
coding to perform at least as well, since it could generate a
representation equal to the expected phase differences.

The improved interferer suppression obtained by incor-
porating the auxiliary information is evident when listening
to examples with a spacing of 20 degrees between the two
speakers. Some samples can be found as Supplementary
material at the AVSS site (will be moved to a website after
paper acceptance).

The STOI and PESQ graphs from Fig. 7 and Fig. 8 vali-
date these informal perceptual observations, and are largely
in line with what we observed in the SIR graphs: aver-
aging over all inter source distances does not show a sig-
nificant benefit of the additional DOA input features (even
though the PESQ and STOI metrics favour these systems),
but when looking at the performance for closely spaced
sources only, the benefit becomes clear.

There is one outlier: the PESQ score for closely spaced
sources at −5 dB. Here, the original input features do seem
the have an edge. However, this is not in line with our ob-
servations when listening to the examples ourselves. This is
likely because PESQ is less reliable at low input SNRs.

6. Conclusions
We incorporated additional DOA information at the in-

put of a recurrent convolutional U-net in order to improve
the separation of closely spaced sources with a compact mi-
crophone array.

Two representations of DOA information were consid-
ered: expected phase differences and multi-hot encoding.
For sources that are farther apart, the additional inputs did
not have significant impact. This shows that, generally, the
network can separate sources effectively without requiring
knowledge on the exact target locations.

In situations where the sources are closely spaced, on
the other hand, both proposed methods were found to im-
prove the separation. Of the two, the multi-hot encoder
slightly outperformed the handcrafted expected phase dif-
ference features, indicating that the network is able to gen-
erate a superior representation.

For this work, we assumed the DOAs to be known. Fu-
ture work will investigate the influence of DOA errors, re-
sulting from estimation of the DOAs.
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