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MOTIVATION Loss-of-function screens are routinely used to identify genes that, when knocked out, result
in a phenotype of interest. However, screening experiments are inherently noisy, making it hard to distin-
guish true from spurious hits. Previous approaches have tried to address this issue by using very stringent
thresholds for the identification of true hits; however, this limits the discovery of new targets. Moreover,
such a gene-centric approach does not provide insights into the molecular mechanisms underlying a
drug response. Our study aims to provide an approach that avoids these limitations.
SUMMARY
We present deep link prediction (DLP), a method for the interpretation of loss-of-function screens. Our
approach uses representation-based link prediction to reprioritize phenotypic readouts by integrating
screening experiments with gene-gene interaction networks.We validate on 2 different loss-of-function tech-
nologies, RNAi and CRISPR, using datasets obtained from DepMap. Extensive benchmarking shows that
DLP-DeepWalk outperforms other methods in recovering cell-specific dependencies, achieving an average
precision well above 90% across 7 different cancer types and on both RNAi and CRISPR data. We show that
the genes ranked highest by DLP-DeepWalk are appreciably more enriched in drug targets compared to the
ranking based on original screening scores. Interestingly, this enrichment is more pronounced on RNAi data
compared to CRISPR data, consistent with the greater inherent noise of RNAi screens. Finally, we demon-
strate how DLP-DeepWalk can infer the molecular mechanism through which putative targets trigger cell
line mortality.
INTRODUCTION

Loss-of-function (LOF) screens have become a powerful tool for

studying key cellular functions and their relation to disease.

Comparing the phenotypic changes between perturbed and

normal cells allows the identification of genes essential for main-

taining or inducing a certain phenotypic change. This strategy is

of particular interest for the discovery of new disease-specific

vulnerabilities and potential therapeutic targets (Bortone et al.,

2004; Campbell et al., 2016; van Es and Arts, 2005). However,

LOF screens (Campbell et al., 2016; Olst et al., 2017) also come

with technical challenges resulting in false-negatives (McDonald

et al., 2017), false-positives (McFarland et al., 2018; Tsherniak

et al., 2017), and variations in the measured phenotypic change
Cell Rep
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(Lord et al., 2020). Previous studies have sidestepped these is-

sues by imposing a stringent threshold on the observed sig-

nals—for example, by focusing only on genes that show strong

differential phenotypic effects in aminority of the cell lines (Tsher-

niak et al., 2017). Thedownsideof this approach is that it results in

a limited list of hits, restricting the discovery of new disease

genes, potential drug targets, or targeted pathways. However,

meta-analysis of individually collected screening experiments

offers the opportunity to resolve the distinction more accurately

between weakly measured true effects and spurious signals,

consequently recovering some of the missed hits.

We therefore propose a meta-analysis framework that lever-

ages available LOF screening data with prior gene-gene interac-

tions to reprioritize measured phenotypic effects. The framework
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is based on network-based data interpretation techniques

(Cloots and Marchal, 2011; Dimitrakopoulos and Beerenwinkel,

2017; Reyna et al., 2020) inspired by the growing body of work

on network representation learning (NRL) (Stanfield et al.,

2017; Turki and Wei, 2017; Yue et al., 2020). NRL aims to repre-

sent vertices in a graph as low-dimensional, dense vectors that

capture the topology of the vertices. Most NRLmethods attempt

to preserve distances between vertices, such that vertices that

are close in the network are also close in the representation

space. Using standard machine learning techniques, it is then

possible to perform basic tasks on these representations, such

as link prediction (LP) (i.e., predicting the probabilities of the

edges between the vertices in the graph). NRL-based LP

methods are either end-to-end predictors, immediately returning

both the vertex representations and the edge probabilities, or

methods that learn vertex representations from the input graph

(see Table S7) (Perozzi et al., 2014; Tang et al., 2015; Cao

et al., 2015). In the latter case, to obtain edge probabilities, the

vertex representations of the 2 genes are first combined into

an edge representation, for instance, by using a simple binary

operator such as the absolute difference of the vertex represen-

tations. Subsequently, a classification model such as logistic

regression is trained on the obtained edge representations that

allows assigning to all pairs of vertices in the graph a probability

of interaction.

In our study, we show how prioritizing genes that affect a cell

line phenotypically based on LOF screening data can be formu-

lated as an LP problem. We introduce a model coined deep link

prediction (DLP) capable of capturing complex network topol-

ogies by means of non-linear representations. Using publicly

available data from the DepMap Consortium (Dempster et al.,

2019; Tsherniak et al., 2017), we show that our method outper-

forms existing LP methods in prioritizing cancer gene depen-

dencies on both RNAi and CRISPR screens. In addition, we

find that a significant positive correlation exists between

correctly predicting dependencies in cancer cell lines and

retrieving drug targets. These results demonstrate how LP

models enable a valuable reprioritization of LOF screening re-

sults for target discovery. Finally, we illustrate how predictions

made by the LP methods can be used to infer the pathways

affected by a knockdown of a gene.

RESULTS

Integrating LOF screens with known functional
interactions
The noisiness of LOF screening data hampers distinguishing true

from spurious hits. To alleviate this issue, we propose a meta-

analysis aggregating screening experiments across different

cell lines and combining them with a priori known gene-gene in-

teractions. Accordingly, we cast cell line-gene interactions in-

ferred from available LOF screening experiments and a prior

gene-gene interaction network in a single heterogeneous graph.

Then, we use NRL-based LP modeling to predict the probabili-

ties with which 2 entities in the graph interact. The connectivity

in this heterogeneous graph inherently contains information

that can improve the prioritization of genes with a phenotypic ef-

fect on a cell line. First, not all true dependencies necessarily
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display a strong phenotypic effect but are likely part of a pathway

in which other genes do display stronger phenotypic effects

(McFarland et al., 2018; Tsherniak et al., 2017). Hence, not only

should genes that display a strong effect in a cell line be priori-

tized but also genes displaying relatively weak effects but are

close to other genes in the interaction network that do exhibit

strong phenotypic effects in the same cell line. Second, by

leveraging the size of the screening data, we can assume that

weakly measured phenotypic effects can be upgraded in a cell

line for genes that display a strong dependency in another cell

line that shares many dependencies with the first one. NRL-

based LPmethods naturally capture such connectivity in the het-

erogeneous graph to predict cell line-gene probabilities.

Key to our approach is a heterogeneous graph that summarizes

information on gene-gene interactions and dependencies ob-

tained from LOF screening data. Cancer dependency of a cell

line is here defined as the gene that when knocked down results

in the mortality of the cell line (Dempster et al., 2019; Tsherniak

et al., 2017). The resulting heterogeneous graph is defined as

G = ðV ;EÞ, where V = fv1; v2; .; vng is the set of vertices and

E = fei;jg is theset of edges.Note that there canonlybe1edgebe-
tween any 2 vertices. The vertex vi is either a geneor a cell line and

the edge between vi and vj represents either a gene-gene interac-

tion or a dependency relation between a cell line and a gene.

To illustrate our approach, we used publicly available RNAi

screening data from the DepMap Consortium, in which up to

17,309 different genes were knocked down and the effect on

the population size of the cell lineswasmeasured. From theDep-

Map data, we used available cell line-gene dependencies of 7

cancer types (lung, breast, brain, skin, bladder, prostate, and

bile duct) and combined them with STRING (Search Tool for

the Retrieval of Interacting Genes/Proteins) gene-gene interac-

tion data to reconstruct, for each cancer type, a cancer-specific

heterogeneous graph. As the heterogeneous graph is to be used

for training, it contains only highly reliably gene-gene and cell

line-gene interactions (see STAR Methods). For each cancer

type, a different number of cell lines were included in the LOF

screening, such that the heterogeneous graphs of the different

cancer types have a different number of cell line vertices and de-

pendency interactions (see Table S1). To assess the effect of a

larger LOF screening dataset, we also built a heterogeneous

graph by combining the cell lines from all 7 cancer types, here-

after referred to as the pan-cancer setting.

As a second LOF dataset, we ran the same analysis on the

CRISPR knockout data provided by DepMap, using the same

cancer types as for RNAi screening data, but with a different

number of cell lines screened per cancer type (see Table S1).

The CRISPR knockout data contain LOF information on 17,645

genes, 15,421 of which are also knocked down in the RNAi

dataset.

A deep end-to-end LP algorithm
The resulting heterogeneous graph was used to train and bench-

mark several state-of-the-art NRL-based LP methods. We also

implemented a deep learning based model specifically geared

toward the biological setting we envisage, DLP (see STAR

Methods). Our DLP model is different from existing state-of-

the-art methods in its architecture and in the way vertex
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Figure 1. Performance benchmark of several state-of-the-art LP methods on retrieving cancer dependencies from different cancer types

(A and B) Average precision (AP) of LPmethods in predicting cell line-gene interactions, based on (A) RNAi- or (B) CRISPR-derived screening scores. Note that the

cancer types are listed in ascending order of the number of available cell lines per cancer type. The final column is the AP trained on all cancer types combined.
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representations are learned. It uses a deep learning architecture,

consisting of a projection layer containing the representation for

each vertex, followed by several non-linear hidden layers. Both

the representations and the weights in the non-linear layers are

trained directly on the LP problem, by predicting whether an

interaction is present between pairs of vertices from a training

set (see STAR Methods), making it an end-to-end predictor.

We also investigated whether the performance of DLP could

be improved if the weights in the projection layer were initialized

using the representations learned by another method.

Predicting unseen cancer dependencies using LP
methods
After training, LP methods can predict new edges between

vertices, revealing potential previously unidentified cell line-

gene dependencies. To validate the predictive performance,

we randomly omitted edges from the heterogeneous graph

when training each model—in other words, both cell line-gene

and gene-gene—and tested to what extent the LP methods

could recover them. Each method is trained using the remaining

edges in the graph as positive samples and randomly sampled

edges that are not in the graph as negative samples. For negative

cell line-gene interactions, we specifically sampled extremely

weak dependencies as measured by the original corrected

screening score for either RNAi or CRISPR (McFarland et al.,

2018; Meyers et al., 2017) (see STAR Methods).

In addition to state-of-the-art NRL-based LP methods, we

benchmarked against several baselines based on simple heuris-

tics. These reprioritize dependencies by computing a similarity

measure between the neighborhoods of 2 vertices in the hetero-

geneous graph to infer a likelihood of interaction. In contrast to

NRL-based LPmethods, these baselinemethods do not use ver-

tex representations. As references, we included the Adamic-

Adar Index (AAI), the Resource Allocation Index (RAI), Common

Neighbors (CN), preferential attachment (PA), and the Jaccard

coefficient (JC) (see STAR Methods). In addition, Mara et al.

(2020) constructed a simple all baselines NRL-based LPmethod

by combining AAI, RAI, CN, PA, and JC in a single 5-dimensional
edge representation that can be used in combination with logis-

tic regression to compute interaction probabilities.

The performance of the different methods was validated on an

unseen test set, in which we considered both the performance

on recovering gene-gene interactions and cell line-gene interac-

tions. For each method, we repeated the experiment 3 times,

each repeat using a different subsampling of the graph, resulting

in 3 different training and independent test sets. This was done

for the following 7 cancer types in both the RNAi and CRISPR da-

tasets: bile duct, prostate, bladder, skin, brain, breast, and lung.

See Table S1 for an overview of the number of cell lines used in

each setting.

The performance of eachmethodwas evaluated in termsof the

average precision (AP). Note that the dependency problem is

highly imbalanced, as typically a cell line has only�25 strong de-

pendencies for�10,000 weak dependencies (Table S2). For this

reason, we opted to focus on AP as it is shown to be more infor-

mative in cases of imbalanced problems (Saito andRehmsmeier,

2015). To ensure that our benchmarking was independent of the

dataset, we applied the same procedure to both the RNAi and

CRISPR LOF screens (see STAR Methods). Below, we first elab-

orate on the results of the benchmarking obtained with the RNAi

data and then proceed to validate these results on CRISPR.

For the recovery of gene-gene interactions, most methods

achieved a very high AP (Figure S1A), showing that it is feasible

to reliably recover knowngene-gene interactions. Amajor reason

for this superior performance is the substantial number of edges

in the training set. Conversely, predicting unseen cell line-gene

interactions of the RNAi dataset is harder, as both the number

of cell lines and known dependencies per cell line are limited.

Nonetheless, all of the methods achieve an AP that is well above

random on predicting cell line-gene interactions. The discrep-

ancy between gene-gene and cell line-gene performance is

most pronounced for the baseline methods, suggesting that pre-

dicting cell line-gene interactions requires more complex LP

methods that also consider higher-order interactions. In addition,

Figure 1A emphasizes that if more cell lines have been profiled for

a cancer type, thenmore training data are available, which results
Cell Reports Methods 2, 100171, February 28, 2022 3



A B Figure 2. Discrepancy between RNAi depen-

dency and drug sensitivity scores

(A and B) Distribution of drug sensitivity scores for

each RNAi dependency type, specific to (A) lung

and (B) bladder cancer. The x axis shows for all

known drug targets the cell line-gene interactions

binned in 3 categories according to the RNAi de-

pendency score: extremely weak, intermediary,

and extremely strong (see STAR Methods). The y

axis shows drug sensitivities in the same cell lines in

which the dependencies occur. Lower drug sensi-

tivities correspond to a stronger effect. For each

category, the number of targets is indicated.
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in a better performance for most LP methods. This in stark

contrast to the baseline methods, whose performance is seem-

ingly independent of the number of cell lines. These results

show that information can flow between different cell lines to

improve the performance of NRL-based models. In the case of

bile duct cancer, there is only 1 cell line, such that test depen-

dencies are irrevocably lost and their vertex representation is

learned solely from the gene-gene interaction network. For other

cancer types, themodel can use the information from all cell lines

from that cancer type to predict a specific cell line-gene interac-

tion. The pan-cancer setting confirms that having more cell lines

screened results in an overall higher AP. As shown in Figure S2A,

cancer types represented by a lower number of cell lines benefit

themost fromsuchapan-cancerapproach.However, FigureS2B

also shows that generalizing interactions across cancer types

improves the identification of recurrently occurring cell line-

gene interactions at the expense of losing some cancer-type-

specific interactions. These specific interactions contribute less

to the performance than recurrent interactions, but they may be

more relevant to the biology of a specific cancer type.

LP methods can only meaningfully predict interactions be-

tween vertices in the graph if both of the vertices are seen during

training, as otherwise no vertex representation is learned. How-

ever, it is possible to learn a vertex representation of a gene

solely from gene-gene interactions and then predict the cell

line-gene interactions for that gene. Hence, LP methods could

predict new dependencies in a cell line, even for genes that

were never screened in any of the assessed cell lines, provided

these genes were present in the gene-gene interaction network.

To assess the performance of NRL-based LPmethod in correctly

predicting unseen cell line-gene interactions, we randomly

removed all cell line-gene interactions for 20% of the genes

that are at least once a strong dependency in lung cancer

cell lines (see STAR Methods). These genes then mimic

unscreened genes for which no cell line-gene interaction is avail-

able in the training data. Then, we calculated for each un-

screened gene the AP of correctly predicting their association

with each of the 133 cell lines. Figure S2C shows how DLP out-

performs methods from Figure 1A in such a challenging setting.

Furthermore, we assessed whether the performance of DLP

could be improved by using representations from a different

method as initialization for the projection layer of DLP. We
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assumed that simultaneously learning representations and clas-

sification is challenging, as the embedding layer alone contains

Vvertices 3 128 weights that need to be trained. To improve the

learning, we initialized the projection layer of DLP using the rep-

resentations of DeepWalk, hereafter referred to as DLP-Deep-

Walk. We chose DLP-DeepWalk as it is the best-performing LP

method, after DLP, when considering all cancer types (Figure 1).

Clearly, providing already-information-rich representations as a

starting point for DLP facilitates the learning of the model, result-

ing in a better performance. We also observed that this method

outperformed all of the other methods, even the combination of

baselines defined by Mara et al. (2020) on predicting both cell

line-gene and gene-gene interactions (Figures 1 and S1, respec-

tively). Moreover, even in the setting in which genes are

completely omitted from all cell line-gene interactions during

training, DLP-DeepWalk seems to achieve superior performance

(Figure S2C). Finally, we also tested the robustness of these find-

ings with respect to the network scaffold used. Therefore, we

repeated the benchmarking procedure on a different gene-

gene interaction network (Reactome FI 2020) (Jassal et al.,

2020). The gene-gene and cell line-gene performances, respec-

tively, are presented in Figures S1C and S1D for the RNAi

screening data. As the results between these 2 interaction net-

works are similar, with a slightly better performance on STRING,

we use the latter throughout the remainder of this work.

Reprioritizing dependencies using LP improves drug
target retrieval
As we have shown above, LP methods can exploit the topology

of the heterogeneous graph to correctly predict dependencies in

cell lines. In fact, LP methods assign a probability to each cell

line-gene interaction, and as such, perform a reprioritization of

potential dependencies for each cell line. This prioritization can

differ from the ranking based on the original LOF scores.

Such re-ranking could be useful to improve the prioritization of

drug targets. This is illustrated in Figure 2, which shows the de-

pendency score that a gene displays in the RNAi screening of a

cell line versus the sensitivity that the cell line displays toward a

drug targeting this gene, called the drug sensitivity score. Drug

sensitivity scores displayed in Figure 2 were also obtained

from DepMap (see STAR Methods). A more negative sensitivity

score indicates the increased sensitivity of a cell line to a drug.
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Figure 3. Relation between drug target retrieval and dependency prediction performance for all LP methods

(A and B) AP of each method for cell line-gene dependency predictions and drug target retrieval using (A) RNAi or (B) CRISPR screening data. x axis: AP on

correctly predicting a gene dependency on a cell line. y axis: AP on correctly labeling a gene as being a drug target. The horizontal dashed line represents the

performance of the ranking based on original RNAi (black) or CRISPR (blue) screening scores in correctly retrieving a drug target. Eachmethod is run 3 times using

a different train and test set, and each repeat is shown as a separate dot.
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If the ranking based on RNAi dependency scores would allow

correctly prioritizing drug targets, then we would expect that tar-

gets of drugs with high sensitivity scores in a cell line also display

a strong dependency in that cell line. Figure 2 shows that

although there is a relationship between the effect a drug has

on the cell line (sensitivity score) and the dependency score

the target of that drug displays in that cell line (Kruskal-Wallis

p < 0.05 for both lung and bladder cancers), many targets are

missed in the RNAi screening data. Table S3 shows that the

same holds true for other cancer types, both in RNAi and

CRISPR screens. A considerable number of drug targets with a

high sensitivity score tend to display weak dependencies in the

same cell lines. As most LOF screening methods put a stringent

threshold on the dependency score to avoid prioritizing FP de-

pendencies, many drug targets will be missed.

We hypothesized that sensitive targets should be, despite not

displaying the strongest dependencies themselves, functionally

related to strong dependencies. In principle, this gene-gene rela-

tion can be captured by LP methods using the heterogeneous

graph, allowing them to prioritize targets.

To validate whether these ranked lists improved the prioritiza-

tion of known targets, we generated a benchmark set of true

drug targets using the DepMap drug sensitivity scores (see
STAR Methods). True cell line-specific targets were defined as

those genes that are known targets of a drug for which a partic-

ular cell line is sensitive. Thus, we focused on drugs with a single

target to avoid introducing a bias to the target retrieval perfor-

mance. In fact, when a drug targets multiple genes and if a cell

line shows sensitivity to that drug, it is unclear which gene eli-

cited the drug response and, hence, which gene should display

high dependency. We calculated the degree to which the LP-

based prioritization resulted in an improved drug target retrieval

as compared to the ranking obtained from DepMap using the

benchmark drug targets as positive labels (see STAR Methods).

This improvement is presented as the AP in drug target retrieval

obtained after reprioritizing dependencies using the cell line-

gene probabilities of each of the LP methods. We assessed

this drug target retrieval AP on the RNAi and CRISPR screening

data for the different cancer types (Table S4). Figure 3 shows the

representative results obtained on lung cancer cell lines for,

respectively, a model trained and assessed on the RNAi data

(Figure 3A) and on the CRISPR data (Figure 3B). The obtained

drug target retrieval performances should be compared to

the performance obtained by prioritizing targets according to

the original RNAi or CRISPR dependency scores, indicated

by the black and blue dashed lines in Figures 3A and 3B,
Cell Reports Methods 2, 100171, February 28, 2022 5
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respectively. Overall, these results show that the added value of

reprioritizing targets with LP is more pronounced for RNAi

screening than it is for CRISPR data. Interestingly, DLP-Deep-

Walk and PA outperform the original prioritization on both the

RNAi and CRISPR data. In addition, in each panel, the drug

target retrieval AP is compared to the AP on retrieving cell

line-gene interactions for lung cancer, hereafter referred to as

the dependency AP. The drug target retrieval AP is 2 orders of

magnitude lower than the dependency AP for both RNAi and

CRISPR, which is to be expected, given that no information

related to targets was seen during training. However, the drug

target retrieval AP correlates with the dependency AP

(Spearman rho = 0.65, p < 0.05). This observed correlation holds

true for both RNAi and CRISPR and for all other cancer types as

well (see Table S4). This indicates that the methods that perform

better in predicting true dependencies by exploiting relation-

ships in the heterogeneous graph also perform better in priori-

tizing true drug targets. Figure 3 confirms the hypothesis that

drug targets must be functionally related to strong depen-

dencies, allowing LP methods to infer missing targets from

dependency information. Notably, DLP-DeepWalk exhibits su-

perior performance on correctly predicting true dependencies

as well as true drug targets. Although DLP-DeepWalk is among

the best-performing methods at prioritizing targets, Figure 3A

shows large variance in its performance between different runs

of the model. Interestingly, the performance of DLP-DeepWalk

is unaffected by this, showing that it learns new representations.

The learning itself, however, is facilitated by the sensible initial

weights provided by DLP-DeepWalk (Perozzi et al., 2014).

Although the baseline methods typically perform worse than

the NRL-based methods, there is 1 notable exception, namely

PA. The reason PA has a consistently good drug target retrieval

AP despite its relatively low-dependency AP is because it only

considers the degree of the vertices in the heterogeneous graph

to prioritize dependencies. As such, its predictions are more

biased toward the highly connected genes in the network than

those of DLP-DeepWalk (see Figure S3A). These are by definition

the most studied genes, which often correspond to known drug

targets. In fact, drug targets typically have a higher degree in the

network, which is also confirmed by the Mann-Whitney U test

between the degree of all of the targets used in the benchmark

and the remaining genes in the interaction network (1-sided p

value = 1.563 10�81). Therefore, PA can be expected to perform

well on prioritizing known drug targets that act as hubs in the

network. In contrast, DLP-DeepWalk allows the identification

of a higher diversity of targets than a degree-based approach,

as it does not solely rely on degree information for its predictions

(Figure S3B). Therefore, it improves the potential identification of

less-studied genes as potential new drug targets.

LP-based reprioritization enriches the number of
putative drug targets among the top 100 highest ranked
dependencies
Figure 3 shows that the re-ranking of dependencies using LP

methods generally results in a better overall drug target prioritiza-

tion. However, in an applied setting, only the genes showing the

strongest dependencies are used for follow-up validation experi-

ments. Hence, to achieve an optimal success rate in follow-up
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analysis, theselected topgenes shouldbeenriched ingenesof in-

terest (here, drug targets). Tomimic such a situation, we selected

for each LP method its top 100 predicted dependencies per cell

line and subsequently assessed whether the top 100 ranked

genes in fact contained significantly more drug targets than ex-

pected by chance. The top 100 were chosen as an arbitrary

threshold to mimic a practical situation in which a small gene list

is constructed out of the top predictions for further, more detailed

analysis into their potential as drug targets (see STAR Methods).

Given that the added value of the LP methods was most pro-

nounced for the RNAi dataset, we used this dataset here.

To estimate the expected number of targets that can be

retrieved, we randomly picked 100 genes from the interaction

network in 2 ways: (1) either using a uniform distribution in which

each gene has an equal chance of being selected and (2) using a

degree-based distribution in which the probability for each gene

of being selected is proportional to its degree in the gene-gene

interaction network (see STAR Methods). Due to the aforemen-

tioned bias in the gene-gene interaction network, in which

high-degree genes are more likely to be drug targets, degree-

based random sampling should be harder to beat than uniform

sampling (Guney et al., 2016).

Prioritization performance was assessed by comparing the

number of drug targets retrieved in the top 100 of each method

with the number of targets present among 100 randomly

sampled genes in each cell line. Cell lines were subdivided into

3 classes: (1) significantly worse than random (i.e., cell lines for

which a method retrieves significantly fewer targets; p < 0.05),

(2) significantly better than random (i.e., cell lines on which a

method retrieves significantly more targets; p < 0.05), and (3)

neutral (i.e., cell lines for which amethod does not perform signif-

icantly better or worse than random).

Figure 4 shows the results for both random sampling strate-

gies, highlighting that DLP-DeepWalk is the top performer in

prioritizing drug targets and outcompetes the original RNAi de-

pendency scores in many cell lines. Consequently, methods

such as DLP-DeepWalk combine gene-gene interaction infor-

mation with LOF screening data in such a way that the 100 high-

est-scoring genes become enriched in drug targets. None of the

methods performed significantly worse than random.

The fact that LP methods still manage to outperform degree-

based random sampling indicates that the higher-order connec-

tivity captured by some LP methods, especially DLP-DeepWalk,

provides additional information that can improvedrug target prior-

itization. The added value of the prioritization obtained by DLP-

DeepWalk becomes even more apparent when considering, for

each cell line, the percentage of true cell line-specific targets

retrieved in that cell line. Figure 5 shows that in lung cancer,

DLP-DeepWalk has a median target retrieval in its top 100 genes

of �6.5% of the benchmark drug targets, which is significantly

more than the 3.1% obtained by ranking the DepMap RNAi de-

pendency scores (Wilcoxon signed-rank test, false discovery

rate [FDR] corrected p-value < 0.05). Moreover, DLP-DeepWalk

recovers benchmark targets in most cell lines, whereas GraRep,

DLP-DeepWalk, and AROPE do not retrieve any target in � 25%

of the cell lines (see Figure 5).

Next, we investigated why certain targets are preferentially

retrieved by DLP-DeepWalk. Here, we again used the definition



A B

Figure 4. Performance of each method in recovering benchmark drug targets in the top 100 prioritized genes per cell line as compared to

random

(A and B) This is assessed by showing the number of cell lines in which each method retrieves the targets (1) significantly better than random; (2) better, yet not

significantly, than random; and (3) worse than random. The expected results were obtained by randomly sampling genes from the input graph using a scheme in

which each gene has an equal chance of becoming selected—uniform (A) and based on a scheme in which a gene has a probability of being selected equal to its

relative degree in the gene-gene interaction scaffold (B).
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that a method correctly retrieves a gene as a target in a cell line if

the gene is a benchmark target and is in the top 100 predicted

cell line-gene interactions of that method for that cell line. For

each such target, we could then count in how many cell lines it

was correctly retrieved. This allowed us to compare, for each

target, in how many cell lines it is correctly retrieved by DLP-

DeepWalk compared to the original RNAi screening data. Fig-

ure 6 shows on the y axis the difference in the number of cell lines

in which a target is correctly retrieved between DLP-DeepWalk

and the original RNAi data. Large positive values, such as for

XPO1, show that XPO1 is correctly retrieved in 54 more cell lines

by DLP-DeepWalk than the original data. Conversely, negative

values indicate that the original screening data retrieves targets

in more cell lines. Interestingly, the higher target retrieval rate of

DLP-DeepWalk can mainly be attributed to 5 genes: XPO1,

TOP2A, AURKB, PLK1, and HSP90AA1. The figure also shows

why DLP-DeepWalk can retrieve these targets, as typically

they have many neighbors in the heterogeneous graph that are

strong RNAi dependencies.

Inferring processes triggered by interfering with a gene
of interest using LP predictions
Finally, we verified whether LP methods, and more specifically

DLP-DeepWalk, could also be used to infer the pathways or pro-

cesses triggered by silencing a gene of interest and hence proxy

the pathway on which a future drug should act. To infer these

processes, we selected the 4 query genes that on average

received the highest prioritization across the 133 lung cancer

cell lines from the DepMap RNAi dataset and that were also

known drug targets from the benchmark set: KIF11, XPO1,

VCP, and PLK1 (see STAR Methods). Focusing on these known

targets allows us to compare the inferred processes to those

described in the literature that are triggered by interfering with

these targets.

For each of these 4 genes, a subnetwork was constructed to

reflect the processes triggered by interfering with the gene of in-

terest. Accordingly, we made use of the gene-gene and cell line-
gene probabilities predicted by DLP-DeepWalk trained on the

lung DepMap RNAi dataset. We calculated for all of the genes

in the network, other than the gene of interest, a weighted score

that strikes a balance between displaying high functional similar-

ity to the gene of interest, captured by gene-gene probabilities,

and being a dependency in the same cell lines as the gene of in-

terest, captured by the cell line-gene probabilities (see STAR

Methods). Using this score, genes that are both functionally

similar to the gene of interest and present as a dependency in

the same cell lines as the gene of interest will be candidates to

include in the subnetwork around the gene of interest. To draw

the subnetwork, the 20 highest-scoring genes were mapped

on the STRING interaction network, and the largest connected

component induced by these genes and containing the gene

of interest was selected.

Figure 7 shows as a representative example the inferred sub-

network for the benchmark target, KIF11. The inferred KIF11

subnetwork consisting of 19 genes, including KIF11 itself, con-

tains only 8 of the 215 direct neighbors that KIF11 has in the

original STRING interaction network. Thus, our approach allows

selecting only those neighbors from the interaction network that

have a significant chance to also inhibit the same cell lines as

KIF11. A gene set enrichment analysis (GSEA) (see Table S7)

(Subramanian et al., 2005) indicates that the subnetwork around

KIF11 is involved in cell-cycle-related processes in line with the

known role of KIF11, which belongs to the kinesin-like protein

family involved in various kinds of spindle dynamics. The inhibi-

tion of KIF11 by filanesib, a kinesin inhibitor, is known to prevent

the formation of the mitotic spindle during the prophase causing

cell-cycle arrest (Tao et al., 2005).

Remarkably, the subnetwork of KIF11 contains 3 other

benchmark targets: AURKB, PLK1, and XPO1. Interestingly,

AURKB and PLK1 in combination with KIF11 have been found

necessary to prevent excessive DNA replication and aneuploidy

(Vassilev et al., 2016). Drugs that target them are known to

induce cell-cycle arrest by promoting excessive DNA replica-

tion, causing damage and apoptosis (Vassilev et al., 2016).
Cell Reports Methods 2, 100171, February 28, 2022 7



Figure 5. Distribution of the percentage of

retrieved sensitive drug target in each of the

88 lung cancer cell lines

Methods that retrieve significantly (Wilcoxon

signed-rank test, FDR corrected p-value < 0.05)

more benchmark drug targets (DLP-DeepWalk and

GraRep) as compared to the original RNAi

screening score are highlighted. The whiskers

capture all data within 1.5 times the inter quartile

range.
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The subnetwork contains another 3 targets that were not

considered in the benchmark: POLA1—no drugs targeting it

were identified with a sensitivity in any cell line below the

threshold—and CDK1 and PSMA4, which were not considered

as they were targets of drugs known to hit multiple targets.

Interestingly, the inhibition of CDK1, a cyclin-dependent kinase

(Malumbres et al., 2009), is known to cause a synergistic effect

with kinesin inhibitors targeting KIF11 to promote cell death by

mitotic slippage (Tao et al., 2005). Synergistic effects between

KIF11 inhibitors and Aurora kinase inhibitors have also been

described (Ma et al., 2014).

The resulting subnetwork nicely illustrates that known drug tar-

gets such as KIF11, AURKB, PLK1, XPO1, POLA1, CDK1, and

PSMA4 are indeed closely connected on the gene-gene interac-

tion network, as they are involved in similar essential processes.

The fact that, aside from the query gene, no target information

was used to obtain the KIF11 subnetwork clearly shows that inte-
Figure 6. Genes that have more neighboring genes in the hetero-

geneous graph that are RNAi dependencies (x axis) aremore likely to

be found by DLP-DeepWalk than by the original RNAi data

The y axis represents the difference in the number of cell lines in which a gene

is correctly recovered as target, between DLP-DeepWalk and DepMap. The

orange squares denote drug targets that are recovered in more cell lines by

ranking on the original RNAi screening score, while blue dots are recovered

more by ranking based on the probabilities provided by DLP-DeepWalk.
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grating LOF screenswith known gene-gene

interactions can reveal interesting biology. It

also suggests that to discover putative tar-
gets, it may merit searching around a known target—here,

KIF11 in the induced subnetwork.

Subnetworks inferred for each of the 3 other query genes are

shown in Figure S4. The functional annotation of each of the sub-

networks using GSEA can be found in Table S3. Subnetworks

around XPO1 and PLK1 are enriched in cell-cycle pathways,

related to the G1/S phase and G2/M phase, respectively. Drugs

inhibiting these targets are known to trigger similar cell-cycle-

related processes. For instance, exportin antagonists, which

target XPO1, invoke DNA double-stranded breaks, associated

with the G1/S phase, causing decreased DNA replication (Burke

et al., 2017). Similarly, the inhibition of PLK1 kinase with a peak

expression in the G2/M phase also leads to cell-cycle arrest

because PLK1 loses its function as a cell-cycle regulator (Pezuk

et al., 2013).

The subnetwork around VCP is enriched in protein degrada-

tion processes. This agrees with the known role of VCP, a mem-

ber of the AAA-ATPase gene family (Beskow et al., 2009), and the

known effect of inhibiting of VCP. ATPase inhibition of VCP leads

to cancer cell line mortality due to increased proteotoxic stress

(Bastola et al., 2019; Deshaies, 2014).

These subnetworks inferred around query genes provide

insight into the functional role of the query genes in the cells

and hence, also into the potential mode of action of drugs inter-

fering with this target.

DISCUSSION

In this work, we have shown how integrating a priori known gene-

gene interaction information with available screening data can

be used to improve the inference of true dependencies from

LOF screening data. Accordingly, we cast the reprioritization

problem as an LP problem.

Our results demonstrate that the heterogeneous graph that

integrates gene-gene with cell line-gene interactions contains

information that allows capturing the original prioritization but

can also predict unseen hits. Representation-based LP

methods are ideally suited for this task, as they do not rely

on a binary representation of edges, allowing them to naturally

cope with the incompleteness of the interaction information

and LOF screening data. Although cell line-gene interactions,

denoting strong dependencies, represent only a small fraction

of the edges in the heterogeneous graph, we have shown



Figure 7. Subnetwork around known drug

target KIF11 proxying the molecular mecha-

nism through which it affects cell lines

Genes connected by green edges are all first-order

neighbors of KIF11 in the original STRING interac-

tion network.
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that most LP methods can still accurately predict these

interactions.

To improve the dependency prediction, we have introduced a

model named DLP-DeepWalk. This model outperforms all of the

other methods in predicting gene-gene and cell line-gene inter-

actions for both the RNAi and CRISPR screening data. DLP-

DeepWalk combines the power of non-linear layers from neural

networks with the embeddings that are learned by another LP

method, in this case, DLP-DeepWalk. For both RNAi and

CRISPR, the performance of the different LP methods indicates

that dependencies do not occur at random throughout the inter-

actome but follow distinct topological patterns that can be

captured using LP. Interestingly, the benchmarking results are

in general better on CRISPR data, suggesting that the incidence

of CRISPR dependencies on the network follows an even better-

defined pattern, which could be caused by less off-target effects

(Evers et al., 2016; Shalem et al., 2014). This suggests that LP

performance could give an indication of the quality of screening

experiments.

In addition, our results highlight the value of screening multiple

cell lines from the same disease as, for most methods, the per-

formance increases with the number of screened cell lines. We

also demonstrated that the added value of NRL-based methods

still holds when using a different gene-gene interaction network.

This shows that not the specific gene-gene interaction network,

but the underlying biology is important. Figure 6 shows that most

targets recovered are genes that are neighbors of strong depen-

dencies. These genes do not have a strong phenotypic readout

themselves, but are expected to belong to the same essential

pathway as many adjacent genes that do have a strong pheno-

typic readout.

As an application of our method, we have compared the pre-

dictions of our model to a set of cell line-specific drug targets.

Interestingly, it appears that methods that excel at predicting de-

pendencies also perform better at recovering targets, without

explicitly being trained on cell line-target information. This

finding was observed in all cancer types and for each dataset

in both RNAi and CRISPR, indicating that at least some drug tar-
Cell Repor
gets are functionally related to genes ex-

hibiting a dependency. To assess the

practical use of these LP methods, we

additionally verified their ability to better

prioritize potential targets, restricting our

attention to the top 100 genes prioritized

by each method in RNAi. Several LP

methods outperformed the ranking based

on the original RNAi dependency scores,

indicating that LP methods can aid in ob-

taining a better reprioritization for down-

stream validation experiments. Still, a
large fraction of true cell line-specific drug targets was missed

by both DLP-DeepWalk and RNAi in their top 100 predictions.

Explicitly using target information during training (Sachdev and

Gupta, 2019) could enrich the top 100 predictions in drug targets

even more, but this was not the intention of our approach, which

aimed at an unbiased ranking based on experimental screening

information only. Such an unbiased approach could be very use-

ful for other disease areas for which less therapeutic information

is available.

Finally, we have shown how these LP methods can be used to

elucidate the processes affected when interfering with a gene of

interest. Using 4 known drug targets as an example, we have

illustrated how predictions on the probabilities of gene-gene

and cell line-gene interactions made by DLP-DeepWalk can be

used to infer processes triggered by interfering with a gene of in-

terest. We could observe that the subnetworks were also en-

riched in other true cell line-specific drug targets, indicating

that several genes in the same essential processes or pathways

affect a cell line in the same way. This was confirmed by the fact

that the different drugs hitting these different targets are known

to interfere with the same process. For target discovery, LP

methods could thus be used to identify the affected processes

when interfering with candidate targets. Such an identification

could result in the discovery of previously unidentified putative

targets involved in similar processes.

Limitations of the study
This work focuses only on a single disease area, namely cancer,

as for cancer large screening datasets were available which al-

lowed to benchmark various LP methods. However, the pro-

posed approach could be even more beneficial for recommend-

ing dependencies in less-studied disease areas.

All predictions only relied on topological information of the het-

erogeneous graph. To improve target retrieval, a useful exten-

sion of the model, it is necessary to turn to a supervised

approach that considers more features related to the properties

of the drugs used and to explicitly model drugs as a separate ver-

tex type in the heterogeneous graph. In this work, we omitted all
ts Methods 2, 100171, February 28, 2022 9
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drugs that have multiple annotated drug targets to mitigate

ambiguity in the analysis, but explicitly modeling drug-related

this information could also resolve ambiguity. Finally, when pre-

dicting drug targets directly using a gene-gene interaction

network, one needs to carefully correct the performance of the

model for the inherent bias of these networks toward known

drug targets.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d All RNAi and CRISPR screening data as well as drug sensitivity screening data are publicly available from the DepMap portal

(https://depmap.org/portal/download/). Specifically for the RNAi data: DEMETER2 Data v6, file name ‘‘D2_combined_gene_

dep_scores.csv’’ added on 04/20. And for the CRISPR data: DepMap Public 21Q2, file name ‘‘CRISPR_gene_effect.csv’’,

released on 05/21. Finally, for the drug sensitivity dataset: PRISM Repurposing 19Q4, file name ‘‘primary-screen-replicate-

collapsed-logfold-change.csv’’, released on 12/19.

d All original code has been deposited at https://github.com/pstrybol/DeepLinkPrediction_Public and is publicly available as of

the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHODS DETAILS

DepMap data RNAi and CRISPR
The RNAi dataset consists of LOF screening results from 713 cell lines covering 17,309 genes in total, while the CRISPR data cover

990 cell lines and 13,345 genes in total. For each cell line-gene pair, the dataset contains a dependency score, a continuous value

ranging from below�5 to almost 3 for RNAi and from below�2 to around 1 for CRISPR. RNAi measurements were corrected for off-

target effects using the DEMETER2 tool (McFarland et al., 2018) while the CRISPR data were corrected using the CERES tool (Meyers

et al., 2017). The more negative the dependency score, the stronger the dependency, i.e., cancer cell proliferation is halted more

when these genes are knocked down. If the dependency score of a gene is close to zero or positive, the effect of knocking down

the gene does not result in any cell death or change in proliferation. The latter type of dependencies is referred to as weak depen-

dencies. In total, cell lines from seven different cancer types were considered. Cell lines from lung, breast, brain, and skin cancer were

selected because these types have the largest number of cell lines profiled in DepMap. Bile duct, prostate, and bladder were also

added to represent cancer types for which less samples are available. Having a wide range of sample sizes allowed us to assess
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the impact of the sample size on the method performance and particularly for bile duct to test whether LP-methods could also deal

with a single cell line. Finally, we also considered a pan cancer setting that combined all cell lines from these seven cancer types.

Because dependency scores in DepMap are expressed as continuous values, we subdivided them in three categories: strong,

intermediary, or weak. To this end, we used two stringent thresholds: a certain geneG being a dependency of cell lineCwith DepMap

score SðC;PÞ above Tneg falls in the weak dependency category, while genes with DepMap score below Tpos are categorized as strong

dependencies, with EðC; GÞ representing an edge between cell line C and gene G, Vc and VG representing the collection cell line and

gene nodes, respectively.

EðC;GÞ;C˛Vc ;G˛VG
=

�
0; if SðC;GÞ> Tneg

1; if SðC;GÞ< Tpos

Interactionswith adependency score inbetweenTneg andTpos are referred toas interactionswith an intermediarydependency score.

For those, it is harder to judge whether they represent a true dependency or not. As the ground truth label for these interactions is un-

known, these interactions with intermediary dependencies are not used to train any of the LP methods. For RNAi data, Tneg was�0.5

and Tpos �1.5. The thresholds for CRISPR data were chosen in such a way that the number of positive and negative samples exactly

matches those of the RNAi data to obtain comparable results (the specific thresholds can be found in Table S5).

Drug sensitivity data were also obtained from the DepMap portal. This dataset contains 4,686 compounds screened for sensitivity

in 578 cell lines spanning 24 different cancer types (Corsello et al., 2019). We used this dataset to construct a benchmark dataset of

known drug targets per cell line. Only drugs that were sensitive for a cell line for which LOF screening was available, were considered

for the benchmark. For each tested cell line, the benchmark dataset contains the targets of drugs that display a high sensitivity in that

cell line. To construct a conservative benchmark, we chose quite a strict sensitivity threshold of �2 on the drug sensitivity level. For

each of these retained drugs, the matching targets were retrieved from the annotation file (version 3/24/2020) available on the drug

repurposing hub (Corsello et al., 2017). For benchmarking, only the drugs with a single reported target were considered (see Table

S7).

DLP model description
The DLP model proposed in this paper is inspired from the field of NRL and uses a deep neural network architecture as shown in

Figure S5A. The model takes as input a pair of vertices and converts them using an embedding or projection layer to their -dimen-

sional representations. Then, these two vertex representations are combined, using one of four binary operators (Mara et al., 2020), to

form a vertex-pair representation. This vertex-pair representation is further used as the input to a feedforward neural network that

consists of two hidden layers (32 neurons each with ReLU activation) and an output layer. The vertex representations, i.e. the weights

of the embedding layer, and the feedforward network are learned simultaneously using binary cross entropy loss and Adam adaptive

learning rate (Kingma and Ba, 2017), using the default values in Keras version 2.2.4 (Chollet, 2015).

Specifically, from the training set a single vertex pair, representing a positive or negative training sample, is fed to the first layer of

the DLPmodel known as the input layer. This layer is connected to the projection or node embedding layer in which numerical vector

representations, i.e. embeddings, will be learned during training. As with other layers in a neural network, the projection layer is a V 3

D weight matrix, where V is the total number of vertices in the input graph and D is the embedding dimension, i.e., the number of

neurons in the projection layer. In order to select the correct row of the V 3 D weight matrix, corresponding to one of the input

vertices, a one-hot-encoded vector is constructed from each input vertex.

The flexibility of our DLPmodel can be further exploited by initializing the vertex embedding layer with embeddings learned by any

other NRL-based LPmethod. As is commonwith neural networks, a single layer consists of amatrix of weights that are updatedwhen

the model is shown positive and negative samples. It is possible to initialize this weight matrix with a specific pre-calculated embed-

ding matrix with dimensions V 3 D.

The subsequent learning and prediction process remains the same aswith the standard DLPmodel. Throughout this work, we have

used the embedding from another method, DeepWalk, as initialization, using the same edge embedding operator that was selected

for the original DeepWalk model (weighted-l2). DeepWalk was chosen based on its high average performance on retrieving bench-

mark drug targets and dependencies as compared to other state-of-the-art LP methods.

Generating the input graph for LP
To construct the heterogeneous graph used as input to perform LP, the gene-gene interaction network from STRING was integrated

with theDepMap data by adding cell line vertices and connecting those to genes fromSTRING that display a strong dependency. The

STRING scaffold was downloaded from the GitHub repository of Yue et al. https://github.com/xiangyue9607/BioNEV/tree/master/

data/STRING_PPI (Yue, 2019; Yue et al., 2020). All functional interactions contained in the largest connected component of the

STRING network were used, consisting of 14,633 vertices and 350,832 interactions. The original network used Ensembl protein

IDs as vertex labels. These were converted to HGNC symbols v75 using data available on the official HUGO Gene Nomenclature

Committee website (Braschi et al., 2019). Ensembl protein IDs for which no suitable HGNC symbol could be retrieved were dropped

from the functional interaction network. In total, there are 12,853 genes overlapping between the functional interactome and the Dep-

Map LOF screen.
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To test the robustness of eachmethod against the use of a different gene-gene interaction scaffold we also tested the integration of

DepMap data with the Reactome FI 2020 interaction network (Wu et al., 2010), consisting of 13,785 Nodes and 259,009 interactions.

A different heterogeneous graph was constructed for each cancer type separately and one was constructed combining all cancer

types together (i.e., the pan cancer setting). As each cancer type has a different number of profiled cell lines, the final size of the het-

erogeneous graph differs per cancer type, screening technology, and used gene-gene interaction scaffold (see Table S1).

Training data
To learn the distinction between the presence and absence of an edge in the input graph, LPmethods require a training set of positive

and negative interactions, i.e. the problem is formulated as a binary classification. As positive samples, all edges present in the largest

connected component of the heterogeneous input training graph were used. Given the heterogeneous nature of the input graph, the

presence of an edge corresponds to either the presence of an interaction in the gene-gene interaction network or to an interaction in

the cancer specific cell line-gene dependency network (or pan cancer network in case all cell lines were combined). Negative sam-

ples correspond to randomly sampled vertex pairs for which no interaction occurs in the original network, using a ratio of five neg-

atives per positive sample to capture the sparseness of networks while simultaneously restricting computational burden as

compared to sampling according to the real imbalance.

For the cancer dependency network, for each cell line, positive and negative edges were obtained by selecting respectively strong

dependencies (DepMap score < Tpos) and weak dependencies (DepMap score > Tneg), see Table S5 for the specific thresholds used

for RNAi and CRISPR. Here we used a slightly lower positive-negative ratio of one to three, to prevent the model from being too con-

servative. Focusing only on weak and strong dependencies ensures that the cell line-gene interactions seen during training are reli-

able representatives of true positive and true negative dependencies (Tsherniak et al., 2017).

Note that for the pan cancer setting we combined all training and validation sets from each of the seven cancer types into a single

training and validation set. Consequently, the performance was evaluated using the exact same test sets as was done for each can-

cer type separately.

Benchmarking LP methods with EvalNE
The benchmark was performed using the Python package EvalNE (Mara et al., 2019). This framework allows comparing different NRL

methods for various downstream tasks, including LP, based on a separate held-out test set.

To perform benchmarking, the heterogeneous input graph is divided into three separate datasets: a training, a validation, and a test

set. The first two are used for training the LPmethods, i.e. learning the correct vertex representation and avoiding overfitting; while the

held-out test set is used to assess the generalization performance. For each combination of method and binary operator, which is

used to combine the vertex representation of a particular interaction into an edge representation necessary for LP, the benchmark

was evaluated on three differently sampled training, validation, and test sets, as was described by Mara et al. (2020). Since we are

dealing with two different interaction types in our heterogeneous input graph, namely gene-gene interactions and cell line-gene,

separate training, validation, and test sets were constructed for each interaction type and subsequently combined. The standard split

of 80–20 was used to distinguish a training and test set. For validation, 20% of the training set was used. Table S7 provides a brief

description of the 13 LP methods used in our benchmarking (i.e., Jaccard coefficient, preferential attachment, resource-allocation-

index (Zhou et al., 2009), academic-adar-index, common neighbors, all baselines, AROPE (Zhang et al., 2018), VERSE (Tsitsulin et al.,

2018), LINE (Tang et al., 2015), DeepWalk (Perozzi et al., 2014), node2vec (Grover and Leskovec, 2016, p. 2) and GraRep (Cao et al.,

2015)). All methods were used with their default parameters except for the embedding size, which was set to 128 for all methods (see

Table S6). All methods were tested using each of the same four binary operators used by Mara et al., (2020), namely weighted- l1,

weighted-l2, hadamard and average. Only the performance for the highest scoring operator is mentioned for each method. The spe-

cific operators for each method and each run are stored in the files returned by EvalNE.

Predicting unseen genes
As LP methods do not allow predicting interactions for vertices not seen during training, each vertex needs to be seen at least once

during training for the method to learn a representation for that vertex. However, as there are two types of interactions in the hetero-

geneous graph, a gene representation can be learned solely from gene–gene interactions and then used to predict cell line–gene

interactions. This allows identifying dependencies in cell lines from genes that were not included in the LOF experiment. To mimic

such a setting where not all genes were included in the LOF screening of a certain cancer type, 20%of all vertices representing genes

that were positive dependencies in at least one cell line were randomly removed before training. Consequently, no dependency in-

formation was used for these genes in the heterogeneous graph during training (no cell line-gene interactions are present for the

considered genes in the graph), and each model will have to predict the interactions between those genes and the cell lines purely

based on the representation constructed during training of the gene-gene interactions in the heterogeneous graph. All LP methods

were trained in the same way as was done in the benchmark.

Analyzing the molecular mechanism of dependencies
To infer a subnetwork reflecting the processes through which a gene is affecting a cell line, we used the cell line-gene aswell as gene-

gene interaction probabilities of the DLP-DeepWalk model.
e3 Cell Reports Methods 2, 100171, February 28, 2022
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Figure S5B shows how, for a given query gene, each gene in the network is scored, based on both a cell line-gene and a gene-gene

component. The gene-genecomponent is obtainedbysimply taking thepredicted interactionprobabilitiesbetween thequerygeneand

all other genes in the network, denoted vfunctional. The cell line-gene component relies on the cell line-gene probabilities to connect the

querygene to theothergenes in thenetwork.Percell line, eachgene in thenetwork is scoredbymultiplying its cell line-geneprobabilities

with the cell line-gene probability of the query gene, resulting in a high score when both genes have a high cell line-gene probability with

that cell line. Averaging this score across all cell lines we obtain a number that lies in [0, 1], similar to the gene-gene component

This cell line component ðvcell lineÞ can be obtained by a simple matrix multiplication:

vcell line = Pbc
Where bc is a c31 vector containing the predicted probabilities between the query gene and the c cell lines, rescaled by the number of

cell lines, andP is a g3cmatrix containing the predicted probabilities between the c cell lines and the g genes in the network. The final

score is then obtained by simply adding vcell line and vfunctional. A high total score implies that a gene is close to the query gene in the

functional interaction network and exhibits a dependency in the same cell lines as the query gene. Hence, it can be expected that

many highly ranked genes are involved in the same molecular processes.

To keep the resulting subnetwork as specific as possible, while still including enough genes, only the largest connected component

of the resulting top 20 genes was selected tomake up the final subnetwork that served as a proxy of the processes triggered by inter-

fering with the query gene. Only edges from the original STRING network are displayed as this shows the influence of the cell line-

gene component. Using only the gene-gene component would result in recovering mainly direct neighbours.

Finally, to annotate the subnetwork, a hypergeometric test was performed between all the genes located in the subnetwork and

genes from pathways as defined by Reactome v75, obtained from MSigDB (Liberzon et al., 2011; Subramanian et al., 2005).

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics
Although traditionally the performance of LP methods is often assessed in terms of the Area Under the Receiver Operating Charac-

teristic (AUROC), we opted for the Average Precision (AP) metric. The AP is a weighted mean of precisions obtained at every prob-

ability threshold, where the weight is equal to the increase in recall obtained at the nextprobability threshold relative to the previous

threshold (Buitinck et al., 2013). For a large number of samples, it closely approximates the area under the Precision Recall (PR)

curve. The AP is more suited to our setting, as we deal with a largely imbalanced datasets in which TN interactions vastly outnumber

TP interactions (Saito and Rehmsmeier, 2015). When plotting the True Positive Rate (TPR) versus the False Positive Rate (FPR) as it is

done with the AUROC, the true performance might be overestimated because the presence of TNs dominate the results. Due to the

imbalanced negative to positive ratio, by chance, there will be an increase in TNs and hence a decrease in FPR resulting in an un-

derestimation of the FPR. AP does not consider the TN and thus is better at representing the performance with imbalanced data.

Additionally, in practice we are interested in correctly prioritizing the rare cases of true dependencies or TP, a performance that is

better captured by the AP. The formula used to calculate the AP is provided below:

AP =
X
n

ðRn �Rn�1Þ � Pn

with Pn and Rn represent the precision and recall at threshold n, respectively.

AP of LP methods in predicting drug targets
For the benchmark, we selected known cell line-specific drug targets. Not all molecules or drugs are equally effective even though

they hit the same target. Because we are focusing on prioritizing genes (dependencies) that could be potential drug targets, we are

interested in knowing whether a cell line is sensitive, if a drug is applied that successfully affects the target. For this reason, we

consider a cell line sensitive, if at least one drug hitting that target shows a large effect in that cell line (sensitivity < �2). Using this

definition, we then compare the number of sensitive cell lines in which a target was retrieved in the top 100 or missed by either

DLP-DeepWalk or the original RNAi screening score.

To assess the performance of the LPmethods in predicting targets of effective drugs, we took for each LPmethod and the original

screening data the top ranked genes per cell line of a particular cancer type. These corresponded to respectively cell line-gene in-

teractions that received the highest probabilities to interact according to the LP probabilities or the strongest original dependency

scores according to the screening experiment. We subsequently assessed to what extent these top ranked genes corresponded

to the benchmark targets described above. The number of top ranked genes was chosen to mimic a routine protocol consisting

of a series of subsequent, increasingly focused LOF screens. From an initial screen, the top prioritized genes are subjected to vali-

dation screenings with more RNAi constructs to gradually limit off-target effects. We take as a representative size of the top rank list

100 predictions. This threshold genes is low enough to allow for further downstream experiments, but also high enough to enable

meaningful statistical analysis. We observed that considering the performance of the top 100 genes is representative of a method’s

performance at higher top K, i.e., the relative ordering of the methods in the performance assessment changes very little when se-

lecting more than 100 genes (Figure S6).
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As a baseline, we also compared the performance of all LP methods and the original DepMap data in correctly inferring targets of

sensitive drugs with a prioritization that could be obtained by randomly picking 100 genes from the functional interaction network and

assessing to what extent these contained true drug targets. Two types of sampling strategies were employed: picking 100 genes

randomly 1) from a uniform distribution or 2) from a degree-based distribution derived from the gene-gene interaction network.

The expected number of targets were calculated using a hypergeometric Probability Mass Function (PMF) in case of a uniform

sampling and using permutation tests in case of a degree-based sampling strategy (10,000 permutations). The expected number

of targets retrieved by each of the sampling strategies varies per cell line with the degree-based sampling often retrieving the highest

number of expected targets. Hence, the degree-based sampling results in the most conservative baseline.

In case of the degree-based sampling strategy, the PMF was derived by counting the number of retrieved drug targets in 10,000

permutations. The p value to assess that a certain number of drug targets x is observed in the top 100 of a cell line by chance is sub-

sequently derived from the following function:

p value = 1� CDFðXÞ= 1� PðX < xÞ
Here, X is the drug target retrieval variable, and CDF(X) is the probability that X will take a value less than x, i.e. the Cumulative

Distribution Function of X. Where x is the number of drug targets retrieved in the top 100, by any LP method or the original RNAi

data. However, we are interested in the probability that a degree-based random model retrieves more drug targets than any LP

method or DepMap, which is why we subtract the CDF from 1.

Performance of retrieving benchmark targets
To assess the performance of the LPmethods in retrieving benchmark targets, the following statistics were used: 1) the average per-

centage of benchmark targets recovered for a certain cancer type across cell lines and 2) the degree to which LP methods retrieve

significantly more benchmark targets than what can be obtained with a ranking based on the original DepMap scores.

To calculate both statistics, we ranked, for each cell line, the genes according to the probabilities that were assigned by a certain

LPmethod.We also ranked for each cell line the genes according to their DepMap score in that cell line. For both rankings and per cell

line, we considered the top 100 genes and calculated the percentage of benchmark targets in the top 100 genes of either ranking.

These numbers were used as entries in a vector with N dimensions (number of cell lines in a cancer type) representing either the re-

sults of the LP method or the original RNAi screening score ranking.

To assess whether LP methods retrieve significantly more benchmark targets than what can be obtained with a ranking based on

the original DepMap scores, both vectors were compared using the one-sidedWilcoxon signed-rank (WSR) test since we are dealing

with paired samples.
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