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Abstract. Physical reservoir computing, a paradigm bearing the promise
of energy-efficient high-performance computing, has raised much atten-
tion in recent years. We argue though, that the effect of signal propaga-
tion delay on reservoir task performance, one of the most central aspects
of physical reservoirs, is still insufficiently understood in a more general
learning context. Such physically imposed delay has been found to play
a crucial role in some specific physical realizations, such as integrated
photonic reservoirs. While delays at the readout layer and input of Echo
State Networks (ESNs) have been successfully exploited before to im-
prove performance, to our knowledge this feature has not been studied in
a more general setting. We introduce inter-node delays, based on physical
distances, into ESNs as model systems for physical reservoir computing.
We propose a novel ESN design that includes variable signal delays along
the connections between neurons, comparable to varying axon lengths in
biological neural networks or varying length delay lines in physical sys-
tems. We study the impact of the resulting variable inter-node delays in
this setup in comparison with conventional ESNs and find that incor-
porating variable delays significantly improves reservoir performance on
the NARMA-10 benchmark task.

Keywords: Echo state networks · Bio-inspired computing · Evolution-
ary algorithms · Variable delays.

1 Introduction

Echo State Networks (ESNs) [12] offer a promising low-energy alternative for
error backpropagation that has gained attention in recent years. Multiple lay-
ers of reservoirs can be combined in deep ESNs and have proven successful at
several practical applications [7, 18, 6]. Due to ESNs essentially being recurrent
neural networks (RNNs) with fixed-weight input and hidden layer, they can be
approximated in a time-continuous way by many physical systems [20] which
is commonly referred to as physical reservoir computing. In physical reservoirs,
delays between nodes tend to vary [5] due to, amongst other reasons, design con-
straints and imperfections in the manufacturing process. We argue that these
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variations in inter-node delays, which are often imposed by the spatial layout of
the reservoir, i.e. the physical distance of reservoir nodes between each other,
are not merely to be tolerated as they are intrinsic to the underlying physical
processes, but can be embraced as beneficial to reservoir performance.

Similarly, despite artificial neural networks being in general far removed from
biological systems, one can also draw inspiration from a simple and often over-
looked aspect of biological networks: neurons have a spatial location, which
means that there is physical distance between neurons. Animal axon lengths
vary in the order of millimeters, and signal delays can vary in terms of millisec-
onds [3]. This variation in delay has been shown to have a qualitative effect on
plasticity [19]. In contrast, rate-based ANNs and ESNs in particular have no
such feature, meaning that all inputs to a neuron are processed simultaneously,
disregarding possible variation in timing.

ESNs and physical reservoirs bear promise as a low-energy solution for time-
series tasks. Therefore, the understanding of temporal processing in reservoirs
is essential for improving task performance. The use of strong non-linearities in
information-processing dynamical systems decreases the memory capacity of the
system, whereas less non-linearity limits computational power. This observation
is commonly referred to as the memory-nonlinearity-tradeoff [4]. We argue that
the use of variable-length connection delays allows for a simple way to introduce
linear memory at various timescales in the reservoir, mitigating the issue of too
rapidily fading memory in highly nonlinear systems. In more concrete terms, de-
lay lines of different lengths meeting at a single node allow that node to combine
information from two different time points without any decay in memory.

The novel contribution presented in this work is a systematic exploration of
the impact of varying propagation delays on task performance in a substrate-
agnostic setting. We use inter-node distance-dependent delays in ESNs, with
nodes modeled as points in physical space, and distances computed as a eu-
clidean norm of the difference of their coordinates. This begs the question of
how to optimize their spatial locations. We present a novel, spatially represented
ESN implementation which we refer to as distance-based delay network (DDN),
where neuron locations are sampled from a Gaussian mixture distribution. We
optimize the spatial structure of this network by tuning the parameters of the
location distribution with a genetic algorithm. We show a strong and significant
improvement in performance on the NARMA-10 benchmark task compared to
conventional ESNs. Our baseline performance is in accordance with other con-
ventional ESN implementations, whereas our best models perform better than
some deep ESNs. However, showing an absolute improvement of the state of the
art for time series prediction is beyond the scope of this project. We simply show
in a well controlled experimental setting that variations in connection delay are
exploitable by optimizing neuron location distributions in a physical space, all
else being equal.

Although the use of time delays in rate-based neural networks is limited,
timing is inherently considered to some extent in spiking neural network imple-
mentations due to the temporal nature of spike encoding. Jeanson et al. explored
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the use of simulating axonal delays for robot control [16]. However, the added
computational complexity of SNNs is an added challenge for practical applica-
tions. Therefore we study the effect of delays in a more general sense. The use
of delay lines in ESNs has been previously explored in for both readout con-
nections [11] and input connections [15]. The former work introduced learnable
readout delays, which was shown to improve network performance. The latter
work showed an improvement in performance of untuned reservoirs by using in-
put delays To our knowledge, no previous work explores the use of inter-neuron
signal delays in a rate-based echo state network by freely varying neuron posi-
tions.

2 Methods

In this section we describe our approach to the implementation of an ESN that
includes varying signal delays in its connections (both input and recurrent).
This is opposed to conventional ESNs, where the network activation at time t
is instantaneously processed to produce the recurrent input at time t+1. These
conventional ESNs can be represented by the following equation [13]

x(n+ 1) = (1− a)x(n) + a · f(Wresx(n) + bres +Winv(n)) (1)

where x(n), a, Wres, Win, b, f , and v(n) refer to the network state at timestep
n, the decay rate, the (recurrent) reservoir weight matrix, the input weight ma-
trix, the bias weights of the reservoir, the activation function, and the input
at timestep n respectively. This equation needs to be augmented for the pro-
posed distance based delay networks (DDNs), as we do not directly take the
current network state x as input for our activation function, but rather the sum
of incoming delayed input signals to each neuron.

With DDNs, we propose an ESN whose delays are dependent on neuron
locations. Any signal travelling between two neurons is delayed by an amount of
time steps proportional to the physical distance between them. Given a set of
2D neuron coordinates, we can define a N by N Euclidean distance matrix D,
with N indicating the number of neurons and element Di,j corresponding to the
distance between neuron i and neuron j. Since the simulation approach that we
use requires a finite number of distance values, the elements of D are discretized
over the set of {1, 2, .., Dmax}, where Dmax corresponds to the maximum number
of possible delay steps. This means that the longest connection implements a
delay of Dmax simulation steps, and the shortest connections applied only one
simulation step delay. We refer to D as a delay matrix. In order to extend Wres

from equation 1 to incorporate varying delays, instead of a single weight matrix,
we define a set of “masked” weight matrices WD=d where for each element

Wi,j,D=d = δd,Di,j ·Wi,j (2)

where d ∈ [1, Dmax] and δ is the Kronecker delta operator. As such, the weights
in WD=d corresponding to connections with a delay different from d are set to
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0. Using the same notational conventions as in equation 1, we can formalize the
state update mechanism of a DDN as

x(n+ 1) = (1− a)x(n) + ay(n) (3)

y(n) = f

(
Dmax∑
d=0

(
Wres

D=dx(n− d) +Win
D=dv(n− d)

)
+ bres

)
(4)

In concrete terms, this means that, in order to compute the current reservoir ac-
tivation, we consider the historical activation from up to Dmax earlier timesteps.
We multiply the activation of each of these previous timesteps with their corre-
sponding masked weight matrix, such that we obtain the corresponding delayed
neuron input.

Notably, we are now left with the challenge of selecting optimal neuron coor-
dinates. The coordinates could be treated as hyperparameters to be optimized.
However, this is inconvenient due to the large amount of neuron coordinates
(2N). Moreover, for many physical implementations, it is likely unrealistic that
location can be assigned precisely. Therefore, we sample the neuron locations
from a 2D Gaussian Mixture Model (GMM) distribution, with a fixed number
of Gaussians, described by

p(θ) =

K∑
i=1

ϕiN (µi,Σi) (5)

These Gaussians represent K clusters of neurons. Instead of optimizing each
neuron location, we optimize the parameters of this distribution. These consist
of the mixture parameters ϕ, means µ, correlations, and variances (each existing
for the x and y coordinates), which are used to compute the covariance matrices
Σ. As such, with K being the number of Gaussians in our GMM and N the
number of neurons in our reservoir, we have a drastic reduction from 2N location
parameters to K values for the mixture parameters, 2K values for the means,
K values for the correlations and 2K values for the variances, resulting in 6K
parameters. Note that in ESNs, N is usually in the order of hundreds, whereas
in our experiments we use K ≤ 4.

Additionally, network architecture is dependent on reservoir connectivity,
which is the fraction of non-zero weights. Using the cluster representation of
neurons, connectivity can be defined within and between each cluster rather
than a single connectivity parameter. We define a K + 1 by K + 1 connectiv-
ity matrix. Each element (i, j) in this matrix indicates the fraction of non-zero
weights (with respect to full connectivity) from cluster i to cluster j (the last
row and column correspond to the input neuron). As such, the diagonal elements
indicate the recurrent connectivity of each cluster. We performed experiments
with single-cluster, as well as four-cluster networks, in both DDNs and standard
ESNs (i.e. K = 1 and K = 4). Note that even though standard ESNs do not
take into account neuron locations, the presence of multiple clusters still influ-
ences the size of the connectivity matrix. This allows us to study the effect of
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optimizing a multi-cluster connectivity matrix and optimizing neuron locations
as two independent factors.

Additionally, like other ESN implementations, optimization of several other
hyperparameters is necessary. Specifically, we optimize input weight scaling,
reservoir weight scaling, bias scaling, the decay parameter, the fraction of in-
hibitory neurons, next to the previously mentioned between- and within-cluster
connectivity, and location distribution parameters. The scaling parameters are
scalars ranging between 0 and 1 that are multiplied with the corresponding sub-
set of weights. The decay parameter, referred to in equation 3 as a, also ranges
between 0 and 1.

We make use of a hyperbolic tangent activation function. The values of Wres,
Win and bias weights bres are uniformly sampled between -0.5 and 0.5. We use
300 neurons for our reservoirs. For our readout layer we use ridge regression [10]
with 5-fold cross-validation.

To optimize the hyperparameters we make use of the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [8, 9]. At each generation, a popula-
tion of 20 parameter sets (i.e., individuals) is generated. From each parameter
set, five networks are generated and evaluated. A fitness score is determined
for each parameter set based on the average performance of these five networks,
which is fed back to the evolutionary algorithm. In turn, a new population of pa-
rameters is returned based on the best performing individual. We run CMA-ES
for 99 generations.

In the remainder of this paper we refer to the different parameter sets in
a population from one generation as different candidates. We refer to the gen-
eration of networks based on a set of parameters as sampling networks from a
candidate, due to the fact that most network aspects are random.

We optimize the hyperparameters of both standard ESNs and DDNs with
CMA-ES in order to compare performance. In case of a standard ESN with
one cluster (our baseline models), location parameters are not used and the
connectivity parameter is just one scalar defining the percentage of non-zero
connections in the whole network.

To validate the benefit of variable delays in ESNs, we use a 10th-order Non-
linear Auto-Regressive Moving Average (NARMA) task [2]. This system is de-
scribed by the following equation.

y(t+ 1) = 0.3y(t) + 0.05y(t)

9∑
i=0

y(t− i) + 1.5u(t− 9)u(t) + 0.1 (6)

Here y(t) and u(t) are respectively the output and input at time t. We generate
a training sequence of 8000 samples, a validation sequence of 4000 samples and
a test sequence of 10000 samples. We only use the test sequence after evolution,
to evaluate our best parameter settings.

NARMA-10 is a commonly used benchmark for ESNs, hence validating our
model on this task allows us to understand how DDNs compare to state-of-
the-art ESNs. We generate our training, validation and test data with an input
sequence that is uniformly distributed between 0 and 0.5 as input. These inputs
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are sequentially fed to the NARMA-10 system to generate the task labels. To
train the model, the same input sequence is used as input for the reservoir. A
linear regression is performed with the reservoir activity as independent variables
and the task labels as dependent variables. However, the first 400 samples are
discarded before regression, to account for initialization of the reservoir (see
[14]).

In the case of conventional ESNs, the input at time t corresponds with the
network activity at time t and the label at time t. However, this only makes
sense if there are no connection delays. Due to the introduction of delays in the
proposed DDN reservoir, it takes an unknown amount of additional simulation
steps until the information that is relevant for a particular label is sufficiently
present in the reservoir activity. Therefore, it is necessary to shift the input
values in time with relation to the labels. For this purpose, we introduce a new
lag parameter l (indicating the lag of relevant information), which controls how
many time steps the labels are shifted. We optimize l by doing a grid search for
each network evaluation, i.e., instead of evaluating a network once, we evaluate it
multiple times using different positive integer values for l and pick the one that
performs best. We measure performance using normalized root mean squared
error (NRMSE) [5], considering the lag parameter by pairing every network
activation vector x(n) with label y(n− l).

3 Results

The purpose of our experiments is to establish if the introduction of variable
connection delays improves ESN performance. Therefore, we compare the test
performance on a fixed dataset of a baseline network (i.e. a network without
delays), and a variable delay DDN. Both are tuned using CMA-ES as described
in section 2. Our variable delay model has delays that can range between 1 and 20
simulation steps. The actual range of delays will depend on the sampled neuron
positions, which in turn depend on location distribution parameters selected by
the evolutionary strategy.

We present the results of tuning single cluster and four-cluster networks
based on the baseline ESNs and variable delay DDNs with CMA-ES in Figure
1a and Figure 1b respectively. We show the average achieved validation score
for the best found set of hyperparameters in a generation as well as the average
validation scores achieved by the whole population for 99 generations. The vali-
dation performance of a single set of hyperparameters was obtained by training
5 networks previously generated using the set in question. Subsequently, we have
evaluated the performance of each network on the validation set, and computed
the average of all resulting errors.

We can see that in both experiments, the variable delay models achieve a
lower validation NRMSE than the baselines. This difference is especially pro-
nounced in the single cluster experiment. However note that the best candidates
of the variable delay model in the four-cluster experiment still show signs of
improvement during the final generations. In both experiments we see a larger
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(a) Validation performance per generation for single-cluster experiment. We notice
that both conditions in this experiment converged to a stable NRMSE. The best per-
formance and average performance are close, and the variance within a population is
low (not reported here). We see that the average baseline and variable delay validation
NRMSE converge around 0.18 and 0.05 respectively.

(b) Validation performance per generation for four-cluster experiment. Although it
appears that the best baseline model has converged to a stable NRMSE, we see that the
average NRMSE of both conditions have not yet stabilized. Moreover, in the variable
delay condition, both average and best performances are still improving during the
final generations. The average validation scores over the last 10 generations for the
baseline and variable delay models are 0.14 and 0.09.

Fig. 1: NRMSE on validation set throughout the CMA-ES optimization. We show
the average performance per generation averaged over all candidate solutions,
as well as the average performance of the best candidate within each generation.
The best performing candidate solution of the single-cluster baseline networks
achieves an average NRMSE of 0.1579 in generation 81 when evaluated on the
NARMA-10 validation set. For the best performing single-cluster variable delay
network, we get an average NRMSE of 0.04234 at generation 86. Analogously,
the best four-cluster baseline candidate has a validation NRMSE of 0.08319 in
generation 53 and the best four-cluster variable delay candidate a validation
NRMSE of 0.03696 in generation 98. All four network types consist of 300 reser-
voir units and all four reported validation scores were averages of 5 networks
sampled from the candidate.
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drop in NRMSE for the variable delay models. Furthermore, in the single clus-
ter experiment we observe that good scores for the best candidates are obtained
after few generations, with already adequate best performances at the start of
evolution. Obtaining a good average performance takes additional optimization.

To fairly compare the variable delay models with the baselines, we use the
best baseline and variable delay parameter sets to randomly generate 40 networks
for both conditions. We train these networks using the same NARMA-10 training
set as used during evolution, and evaluate them on a test set. We show the
results in performance in Table 1. These test scores are in line with our previous
observations, as both DDNs perform consistently better than their respective
baselines, but also similarly or better compared what is reported in several recent
novel ESN implementations [5, 17, 1].

Note that in our single cluster experiment, sampling neuron location from a
GMM with K = 1 means that we are in fact sampling from a simple Gaussian
distribution, so no extra constraints are added to the connectivity of the weight
matrix. As such, we can isolate the use of variable delays as the only alteration
compared to conventional ESNs. We can interpret the improvement seen in the
K = 1 DNNs compared to baseline ESNs as solely the result of variable delays.
Although our single-cluster networks achieve the reported scores with random
connectivity, in our four-cluster experiment, the within- and between-cluster
connectivity is specified and optimized. As such networks are free to evolve
into more specific architectures, including deep architectures. Hence, we cannot
isolate variable delays as the only cause of improvement. However, we can see
that the four-cluster baseline performs better than the single-cluster baseline, but
worse than the single cluster DDN. Furthermore, the best four-cluster variable
delay candidate achieved the best NRMSE that we report.

Table 1: Average NRMSE on unseen test set of 40 networks sampled from the
best candidates from the evolution. Bold font indicates best found approach.

Type K NRMSE (test)

Baseline 1 0.1588 ± 0.0124
DDN 1 0.0639 ± 0.0018
Baseline 4 0.0848 ± 0.0056
DDN 4 0.0391± 0.0025

As discussed in Section 2, inter-neuron delays cause an implicit shift in time
between the network activation (which can be seen as features for the linear
readout) and the task labels. The exact number of simulation steps this shift
amounts to can not be determined beforehand, as it is unclear after how many
steps the relevant information is present in the reservoir. Therefore, we intro-
duced the lag parameter. The regression is performed repeatedly, with a lag
parameter ranging from 0 to 15 for both the baseline as well as our proposed
DDN networks. We can use the performance of DDNs with different lag param-
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eters to gain insight in the effect of the delays. In Figure 2 we show the effect of

Fig. 2: Best network’s average NRMSE on NARMA-10 validation data using
different lag parameters, measured for different generations. The left and right
plots show performances for baseline candidates and variable delay candidates
respectively. The shape of the baseline lag profile remains the same throughout
evolution, and only changes in terms of absolute NRMSE. Conversely, the lag
profiles of the DDNs do not only change in absolute terms, but the optimal lags
are shifted further into the future as evolution progresses.

the lag parameter with respect to performance on the NARMA-10 task. Shown
NRMSE validation scores are averaged across an entire generation as a function
of lag for various generations throughout the CMA-ES evolution process. The
evolution of this lag profile gives insight in the temporal range where the relevant
information is located. Note that Figure 2 only shows the performance for the
conducted single-cluster experiments. Four-cluster lag profiles were qualitatively
similar and differed only in terms of absolute NRMSE or absolute lags. In the
variable delay case we see that the lag parameter resulting in the lowest NRMSE
grows throughout the evolution. This means that processing of task inputs tends
to take longer. It is to be expected that baseline networks consistently find an
optimum using a lag parameter of 0. Any other value would have suggested that
baseline ESNs are superior at predicting future NARMA-10 states without any
knowledge of the corresponding input, compared to predicting simply the next
value based on known input. On the other hand, Figure 2 begs the question as
to why DDNs always find a non-zero optimal lag, and moreover why the lag pa-
rameter grows during evolution. We propose that non-zero delays allow for more
variability in delay, and as such we interpret the consistency of non-zero optimal
lag throughout evolution as additional support for our hypothesis, namely, that
variation in propagation delays can be exploited in echo state networks. To fur-
ther validate this claim, we plot the variance in delay line length among 10 DDNs
generated using the best set of hyperparameters in a single CMA-ES generation
in Figure 3. As the reader can see, the the variance of delays indeed grows as
the number of generations in the CMA-ES optimisation process increases.
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Fig. 3: DDN delay variance in terms of simulation steps throughout evolution. 10
networks are sampled form the best candidate every 10th generation. An average
is taken of the variance competed for each of these sample networks.

4 Conclusion

We proposed an extension of echo state networks (ESNs), wherein neurons have
a stochastically varying physical location. Proximity between neurons guides the
variable propagation delay applied to neuron activation, similar to how varia-
tions in axon length and propagation speed causes variable delays in biological
brains. Similarly, propagation delay is inherent in all physical systems. We hy-
pothesized that this could be exploited to improve the processing of timeseries.
We have shown that the resulting distance delay networks (DDNs) proposed
in such a way reach much lower validation and test errors on the NARMA-10
task than baseline ESNs. When testing 40 randomly sampled networks based on
the best selected parameters on an unseen test set, we observed that the DDNs
performed significantly better. As such, we can conclude that the addition of
variable delays in simulated rate-based reservoirs improves performance on the
NARMA-10 task. Furthermore, inspired by approaches such as DeepESN [7] we
have shown that using multiple clusters in a single DDN can be exploited to
enhance performance with other means than just the use of delays. However,
our single cluster experiments also achieve similar scores with fully random con-
nectivity, hence isolating variable delays as the cause of improvement.

5 Future work

We see that in our four-cluster experiment, the variable delay models are still
improving in performance at the end of evolution, suggesting that there is more
performance to be gained, therefore future exploration in this direction seems
promising.
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Yet, while our findings support our hypothesis, to confirm that this improve-
ment generalises well, our DDNs need to be tested on additional tasks. An es-
pecially important question to answer in future work is whether DDNs offer an
equally significant improvement in tasks based on natural data (as opposed to
artificial tasks such as NARMA-10 task). Additionally, in order to provide better
insight into the consistency in results of our methods, results of many evolution
runs should be analyzed.

Finally, it should be mentioned that our variable delay implementation runs
significantly slower than our baseline. However, as the main objective of this
work is to show that variation in propagation speed can be exploited to our
benefit, we leave the optimisation of our implementation in order to narrow
this performance gap for future work. For newly proposed physical reservoirs,
this additional performance cost can usually be avoided since natural substrates
implement this varying delay implicitly.
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