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Abstract—This paper proposes a novel sensor fusion method
capable of detection and tracking of road users under nominal as
well as in border cases of system operation. The proposed method
is based on a sensor-agnostic Bayesian late fusion framework,
augmented with an optional exchange of detector activation
information between sensors, referred to as cooperative feedback.
Experimental evaluation confirms that we obtain competitive
detection and tracking performance in normal operation. The
main benefit of the proposed method is in cases of sensor failure
where, due to the probabilistic modeling, we observed significant
improvements of both detection and tracking accuracy over the
state of the art.

Index Terms—cooperative fusion; camera; lidar; tracking;

I. INTRODUCTION

With the new wave of autonomous vehicles expected to
come on the market, perception algorithms are an important
research topic in companies and academia. Higher levels of
driving autonomy [1] require both high accuracy and system
redundancy in cases of failures. To satisfy these requirements,
prototype autonomous vehicles are equipped with multiple
sensors. Information from different sensors must be combined
to make driving decisions, referred to as sensor fusion. In
literature, many approaches to sensor fusion have been pro-
posed, validated on specialized benchmarks such as KITTI[2],
nuScenes [3], Waymo [4], etc.

Sensor fusion approaches can be broadly divided into two
categories: late fusion and early fusion. In late fusion, each
sensor’s data is processed independently into high level se-
mantics (e.g., object candidates) which are then combined
across sensors. In an early fusion system, data from multiple
sources is aggregated prior to analysis which usually leads
to higher precision than late fusion. However, early fusion
has many practical disadvantages: higher bandwidth, models
computationally intensive models, and system flexibility is
reduced. In addition to these practical considerations, early
fusion is more prone to the effect of domain shift. Therefore,
late fusion remains very relevant to real-world deployment.

In this paper we propose a road user detection and track-
ing algorithm based on cooperative fusion between a lidar
and multiple camera sensors, designed to be easily tuned
to specific sensor configurations and environment conditions
(figure 1). At the core is a sensor-agnostic Bayesian late
fusion framework that can be used with any combination
pre-trained detector, augmented with an optional exchange of
detector activations between sensors, referred to as cooperative
feedback. The main contribution of this paper is the theoretical

Figure 1. System diagram of the proposed cooperative fusion object detector.

model for cooperative fusion of detection confidence. A key
benefit of the proposed method is the robustness to sensor
failures. Moreover, we demonstrate that a probabilistic tracker
built on this framework outperforms other state-of-the-art
trackers in an on-line setting thanks to our rigorous treatment
of object confidence.

The rest of the paper is organized as follows. In section §II
we present the theoretical foundation of the fusion algorithm
and give examples on how to estimate the models in practice.
In section §III we demonstrate the effectiveness of the method
through experimental evaluation. Finally, in section §IV we
formulate the key conclusions and outline potential avenues
to further develop and validate the method.

II. PROPOSED METHOD

The goal of the sensor fusion is to combine detections from
heterogeneous sensors into a scene description containing the
estimated locations of road users. A detection z

(k)
l is a tuple

containing the location u
(k)
l and size s

(k)
l of the detection in

a sensor specific coordinate system as well as a reliability
score, or an activation a

(k)
l (u

(k)
l , s

(k)
l ). A road user (r,g) is

a tuple of the road user’s location r in world coordinates,
and a feature vector g. We model the scene in terms of
occupancy of a 2D surface defined as binary-valued function
o(r), where value 1 means occupied and 0 non-occupied [5].
In the following analysis we will assess the presence of road
users by calculating the a posteriori probability of presence
from their prior estimated probabilities and the likelihood of
these supposed locations given the detections.

Because of the limited spatial resolution of sensors, we can
only assess presence and absence hypotheses for a certain
region centered around r, e.g. by defining it as H (r,g) ,
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Figure 2. Log-likelihood ratios for the Centerpoint point cloud object detector
(blue) and the FCOS3D camera object detector (orange) conditioned on
detection activations for the nuScenes class “pedestrian”.

maxr′∈Ω(r,g)o (r′), which equals 1 if at least one road user is
present in the state-space region Ω(r,g) centered around r, and
0 otherwise. We denote the situation H (r,g) = 1 as H1 and
H (r,g) = 0 as H0. We propose a practical method to estimate
two likelihood functions pA,U,S|H,R,G (ak,uk, sk|H1, r,g) for
presence and pA,U,S|H,R (ak,uk, sk|H0, r,g) for absence. To
simplify the estimation, we can omit the dependency on the
road user feature vector g, aggregating instead the likelihood
for any road user in the region regardless of shape, size or
appearance. The shape of these functions can practically be
learned by summarizing the activation in Ω(r) into a histogram
h(αk;u) of the ak values which can serve as an approximation
of pA,U |H,R (ak,uk, sk|H1, r) . For absence, we use a training
set of locations void of road users. In figure 2 we show such
models of likelihood ratios for two object detectors [6] and
[7] trained from data in the nuScenes [3] dataset.

Formally, the sensor fusion evaluates for any r the joint a
posteriori log likelihood ratio for all sensors written as:

ln
pH|a(0),...,a(K−1)(H1|a(0)(r),...,a(K−1)(r))

pH|a(0),...,a(K−1)(H0|a(0)(r),...,a(K−1)(r))
, (1)

where superscripts 0 to K−1 indicate sensor index. If this log
ratio is positive we should conclude road user presence, else
absence. If the detectors are conditionally independent given
r, we can use Bayes’ rule to calculate this joint log-ratio from
the individual sensor likelihood ratios llr(k)(a(r)) as

ln
pH(H1;r)

pH(H0;r)
+

K−1∑
k=0

llr(a(k)(r)). (2)

The first term is the log prior ratio which can be computed
from the prevalence of pedestrians in the dataset. During
tracking, the posterior ratio of the previous time step can be
used as an estimate of the prior for the current time step.
We can write this in a recursive form: llrt(r) ← llrt−1(r) +∑K−1

k=0 llr(a
(k)
t−1(r)).

Computing the posterior in equation (2) for every location
r is intractable. Instead we first determine a set of likely
candidate locations, and only compute the posterior ratio for
those locations. This is done in regions near individual or

matched sensor detections. Matching between detections be-
comes difficult when each sensor outputs many detections. On
the other hand, setting a high detection threshold will suppress
weak evidence. We propose to address this shortcoming by
allowing individual sensors to communicate with each other
in a sensor-agnostic format, a concept we will call cooperative
feedback.

After applying the object detector, each sensor shares
their activation map a(k)(u, s) to the other sensors. This
information allows the receiving sensor to locally adjust its
processing according to what the source sensor perceives
in that region. Concretely, we preemptively boost the log-
likelihood ratio of each weak camera detection in vicinity
of a strong lidar detection, with the amount of boosting
determined by the amount of overlap between the activations,
expressed by the Jaccard index: llr(a(cam)(u, s)) ←(
llr(a(lidar)(ui, si))− llr(a(cam)(uj , sj))

)
J (ui, si,uj , sj) .

The effect of this boosting is that object candidates that
would otherwise be sub-threshold will be selectively passed
on to the Bayesian hypothesis evaluation.

The tracking of the spatial coordinates is performed simi-
larly by using the Bayesian framework. For each individual
hypothesis we spawn a particle filter which models the un-
certainty of measured positions u and shapes s of the true
road user’s position and shape r, g respectively. Ignoring the
variation of activation scores within a local neighborhood
Ω(r,g), the posterior distribution of r is given by the following
recursion:

p
Rt,H|U(0)

t ,...,U
(K−1)
t

(
rt, H1|u(0)

t , ...,u
(K−1)
t

)
=

pRt,H (rt, H1)∏K−1
k=0 p

U
(0)
t ,...,U

(K−1)
t |H,Rt

(
u

(0)
t , ...,u

(K−1)
t |H1, rt

)
,

(3)
where the first term is the prior and the second term is
a product of the K sensor models. The sensor models are
generally considered to be known, either given by the sensor
manufacturer. The prior, however, is estimated by applying a
motion model pRt−1,H|Rt

(rt−1, H1|rt) to the posterior from
the previous time step. Finally, the particle filter formulation
defines the posterior as a set of particles: pRt,H|U (r, H1|u) ≈∑Npts

i=1 w(i)δr(i)
(
dr(i)

)
, where w(i) are particle weights that

sum up to 1 and δr(i)
(
dr(i)

)
are particle positions, i.e. delta-

Dirac mass located in r(i). For more details on the tracker
implementation we refer the reader to our previous work in
[8], [9].

III. EXPERIMENTAL EVALUATION

We base our fusion system on the hardware of the nuScenes
[3] vehicle: a sensor array of 7 heterogeneous sensors, see
figure 1. The sensor array consists of one 3D lidar and 6 color
cameras oriented in a radial pattern. The captured dataset is
annotated for the presence of 8 classes of road users (car,
truck, bus, trailer, construction vehicle, pedestrian, motorcycle
and bicycle) as well as 2 classes of road infrastructure (traffic
cone and barrier). The dataset contains 750 training sequences,
150 validation sequences and 150 testing sequences.



Figure 3. Results obtained by evaluating on the nuScenes validation dataset. Left: Average Precision for object detection; right: AMOTA for object tracking.

We perform object detection using the state-of-the-art lidar
detector Centerpoint [6], and object detection in each of the
6 camera views using the state-of-the-art camera detector
FCOS3D [7]. We use the provided sensor calibration matrices
to project and match Centerpoint detections with camera
detections by FCOS3D. In order to evaluate the detection
accuracy under nominal circumstances, we use the default
nuScenes detection and compute the detection mean Average
Precision over the 150 validation sequences. On the left plot in
figure 3 we show the cooperative fusion mAP compared to the
individual lidar and camera detectors, as well as to a state-of-
the-art early fusion method MVP [10]. The proposed fusion
method outperforms both individual detectors which shows
that probabilistic models are effective. However, as expected,
it is outperformed by the early fusion method.

In a secondary experiment, simulating compromised camera
operation, we deliberately disable the camera feed to both
fusion methods simulating a hard camera failure. The proposed
cooperative fusion method, in this case, shows the same
performance to the lidar-only detector (mAP=0.595), but the
precision of the early fusion method degraded far below the
baseline (mAP=0.247). This experiment shows the fragile
nature of early fusion when faced with out-of-domain input.

For evaluating the tracking performance, we use the
nuScenes tracking dataset which contains labels for 7 classes
of road users (bicycle, bus, car, motorcycle, pedestrian, trailer
and truck). Tracking accuracy is measrured through the
Average Multi-Object Tracking Accuracy (AMOTA) metric
which averages over the MOTA [11] metric at different
recall thresholds [3]. Using the same set of fused detection
inputs, the proposed tracking algorithm was evaluated against
CenterTrack [6] and CBMOT[12]. On the nuScenes valida-
tion sequences our tracking method, figure 3 right, achieves
competitive results outperforming CenterTrack by 3.8% and
falls behind CBMOT by 2.2%. However, as other authors
[13] have discovered, the evaluation protocol of nuScenes
performs post-processing of the submitted tracks, averaging
track scores and filling-in missing track instances by looking
at their past and future locations which puts on-line trackers

at an unfair disadvantage 1. Under this context, the evaluation
removes the fine-grained track score information which any
real-time tracker should compute at each time instance. We
feel concerned that the computed AMOTA values in this way
do not represent the true tracking performance in a real-world
on-line application.

In order to measure the tracking performance in an on-
line setting, we disabled the track score averaging and track
instance interpolation blocks in the official evaluation script.
We obtained the tracking results shown in the second block of
bars in figure 3. In this on-line setting, our tracker significantly
outperforms the state-of-the-art CBMOT (by 13.3%) and Cen-
terTrack (by 14.9%). These results show the effectiveness of
the detailed probabilistic modeling which our method employs
at both detection as well as tracking. The tracking results were
also evaluated on the test set and submitted to the nuScenes
website where we reached an AMOTA score of 0.642.

IV. CONCLUSION AND FUTURE WORK

In this paper we propose a probabilistic cooperative sensor
fusion method for robust detection and tracking of road
users. Our method significantly outperformed the state-of-
the-art early-fusion MVP detector in simulated border cases
of sensor failures. Compared to two state-of-the-art trackers,
the proposed tracker shows competitive performance using
the official nuScenes tracking evaluation protocol. However,
when we evaluate in an on-line setting, the proposed tracker
significantly outperformed the state-of-the-art. We are hopeful
that in the future the nuScenes evaluation server will allow for
a true on-line benchmarking. Our future research directions in-
clude re-training the detection CNNs to produce the likelihood
information necessary for fusion in a Bayesian framework.
In this manuscript we showed that the proposed method is
capable of handling hard sensor failures by design, but the
effect of various soft failure modes such as signal degradation
remains to be seen.

1v1.1.9: https://github.com/nutonomy/nuscenes-devkit/blob/master/python-
sdk/nuscenes/eval/tracking/loaders.py lines:144-168



REFERENCES

[1] S. I. Society of Automotive Engineers, “Taxonomy and definitions for
terms related to driving automation systems for on-road motor vehicle,”
2018.

[2] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, June 2012, pp. 3354–3361.

[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E.
Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and
O. Beijbom, “nuscenes: A multimodal dataset for autonomous
driving,” CoRR, vol. abs/1903.11027, 2019. [Online]. Available:
http://arxiv.org/abs/1903.11027

[4] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 2446–2454.

[5] S. Thrun, “Learning occupancy grid maps with forward sensor models,”
Autonomous Robots, vol. 15, no. 2, pp. 111–127, Sep 2003. [Online].
Available: https://doi.org/10.1023/A:1025584807625

[6] T. Yin, X. Zhou, and P. Krähenbühl, “Center-based 3d object detection
and tracking,” CVPR, 2021.

[7] T. Wang, X. Zhu, J. Pang, and D. Lin, “Fcos3d: Fully convolutional
one-stage monocular 3d object detection,” 2021 IEEE/CVF International
Conference on Computer Vision Workshops (ICCVW), pp. 913–922,
2021.

[8] M. Dimitrievski, P. Veelaert, and W. Philips, “Behavioral pedestrian
tracking using a camera and lidar sensors on a moving vehicle,” Sensors,
vol. 19, no. 2, 2019. [Online]. Available: http://www.mdpi.com/1424-
8220/19/2/391

[9] M. Dimitrievski, D. Van Hamme, P. Veelaert, and W. Philips,
“Cooperative multi-sensor tracking of vulnerable road users in the
presence of missing detections,” Sensors, vol. 20, no. 17, 2020.
[Online]. Available: https://www.mdpi.com/1424-8220/20/17/4817

[10] T. Yin, X. Zhou, and P. Krähenbühl, “Multimodal virtual point 3d
detection,” NeurIPS, 2021.

[11] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: The clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, no. 1, p. 246309, May 2008. [Online].
Available: https://doi.org/10.1155/2008/246309

[12] N. Benbarka, J. Schröder, and A. Zell, “Score refinement for confidence-
based 3d multi-object tracking,” arXiv preprint arXiv:2107.04327, 2021.

[13] Z. Pang, Z. Li, and N. Wang, “Simpletrack: Understanding and rethink-
ing 3d multi-object tracking,” arXiv preprint arXiv:2111.09621, 2021.




