
Revisiting Higher-Order Masked Comparison
for Lattice-Based Cryptography: Algorithms

and Bit-Sliced Implementations
Jan-Pieter D’Anvers , Michiel Van Beirendonck, and Ingrid Verbauwhede , Fellow, IEEE

Abstract—Masked comparison is one of the most expensive operations in side-channel secure implementations of lattice-based

post-quantum cryptography, especially for higher masking orders. First, we introduce two new masked comparison algorithms, which

improve the arithmetic comparison of D’Anvers et al. (2021) and the hybrid comparison method of Coron et al. (2021) respectively.

We then look into implementation-specific optimizations, and show that small specific adaptations can have a significant impact on the

overall performance. Finally, we implement various state-of-the-art comparison algorithms and benchmark them on the same platform

(ARM-Cortex M4) to allow a fair comparison between them. We improve on the arithmetic comparison of D’Anvers et al. with a factor �
20% by using Galois Field multiplications and the hybrid comparison of Coron et al. with a factor � 25% by streamlining the design.

Our implementation-specific improvements allow a speedup of a straightforward comparison implementation of � 33%. We discuss

the differences between the various algorithms and provide the implementations and a testing framework to ease future research.

Index Terms—Post-quantum cryptography, lattice-based cryptography, side-channel protection, masking

Ç

1 INTRODUCTION

CURRENT standards for public-key cryptography, such as
RSA or ECC, are under threat of quantum computers.

In response, the cryptographic community started work on
replacement algorithms that are secure in the presence of
large-scale quantum computers. Such quantum computer
resisting algorithms are known under the term post-quan-
tum cryptography. In 2016, the National Institute of Stand-
ards and Technology (NIST) started a standardization
process to find a new post-quantum encryption and digital
signature standard [3]. At the moment we are in the final
stage of this process, with 4 encryption finalists and 3 signa-
ture finalists. Out of these finalists, 3 encryption schemes
(Kyber [4], Saber [5] and NTRU [6]) and 2 signature schemes
(Dilithium [7] and Falcon [8]) are from the family of lattice-
based cryptographic schemes. In this paper we will specifi-
cally focus on lattice-based schemes.

When deploying the future standard, one has to take into
account the possibility of side-channel attacks. Side-channel

attacks are attacks that use information leakage as a result
of computation, such as timing, power consumption or elec-
tromagnetic radiation. These leakages give an adversary
extra information that could be used to break the crypto-
graphic primitive with smaller effort compared to breaking
the underlying mathematics.

Similar to other cryptographic families, lattice-based
encryption schemes are vulnerable to side-channel attacks.
This has been shown in [9], [10], [11] for timing attacks or
in [12], [13], [14], [15], [16], [17], [18] for power consumption
and electromagnetic radiation attacks. These attacks high-
light the importance of protection mechanisms against side-
channel attacks. In their latest update [19], NIST specifically
highlights side-channel protection of post-quantum crypto-
graphic primitives as an important challenge.

One popular method to protect against side-channel
attacks is masking. Masking has been introduced by Chari
et al. [20] and provides a framework to harden crypto-
graphic implementations against side-channel leakage. The
main idea of masking is to split sensitive values into S

shares, so that an adversary that has access to at most t < S

shares does not learn any sensitive information. The param-
eter t denotes the order of the masking, and is typically
equal to S � 1. The terminology around masking has been
extended by Barthe et al. [21], introducing Non-Inference
(NI) and Strong Non-Inference (SNI) to allow easier compo-
sition of masked building blocks, typically called gadgets.

Masked implementations of encryption standardization
candidates were presented for Saber by Van Beirendonck
et al. [22] for first order, and later by Coron et al. [2] for
higher masking orders. A masked Kyber implementation
for generic masking orders was introduced by Bos et al.
[23]. Fritzmann et al. [24] optimized a masked implemen-
tation of Saber and Kyber using instruction set extensions.

� The authors are with imec-COSIC KU Leuven, 3001, Leuven, Belgium.
E-mail: {janpieter.danvers, michiel.vanbeirendonck, Ingrid.Verbauwhede}
@esat.kuleuven.be.

Manuscript received 15 March 2022; revised 8 June 2022; accepted 10 July
2022. Date of publication 8 August 2022; date of current version 13 January
2023.
This work was supported in part by CyberSecurity Research Flanders with ref-
erence number VR20192203, the Research Council KU Leuven (C16/15/058),
the Horizon 2020 ERC Advanced Grant (101020005 Belfort) and SRC grant
2909.001. Michiel Van Beirendonck is funded by an FWO PhD fellowship
strategic basic research. Jan-Pieter D’Anvers is funded by FWO (Research
Foundation – Flanders) as junior post-doctoral fellow (contract number
133185/1238822N LV).
(Corresponding author: Jan-Pieter D’Anvers.)
Recommended for acceptance by Simha Sethumadhavan and Srini Devadas
Guest Editors.
Digital Object Identifier no. 10.1109/TC.2022.3197074

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023 321

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9675-7988
https://orcid.org/0000-0001-9675-7988
https://orcid.org/0000-0001-9675-7988
https://orcid.org/0000-0001-9675-7988
https://orcid.org/0000-0001-9675-7988
https://orcid.org/0000-0002-0879-076X
https://orcid.org/0000-0002-0879-076X
https://orcid.org/0000-0002-0879-076X
https://orcid.org/0000-0002-0879-076X
https://orcid.org/0000-0002-0879-076X
mailto:janpieter.danvers@esat.kuleuven.be
mailto:michiel.vanbeirendonck@esat.kuleuven.be
mailto:Ingrid.Verbauwhede@esat.kuleuven.be

For the signature candidates, Dilithium was masked by
Migliore et al. [25].

Looking at the cost of the masking the various build-
ing blocks, one can see that there are different bottle-
necks between masked and unmasked implementations.
Unmasked implementations are typically dominated by
the polynomial multiplication and the generation of the
public matrix. For masked implementations, the most
expensive building block is an equality check/compari-
son operation between the input ciphertext array and a
re-encrypted ciphertext array. In this paper, we specifi-
cally look at different methods to securely implement
this comparison. A complicating factor is that the input
ciphertext is compressed for both Kyber and Saber,
which will have an effect on which methods can be used
in practice.

One observation that one can make is that there is a clear
difference between first order and higher order masking, in
that there are specific methods that can be used to speed-up
first-order masking that do not scale to higher orders. For the
comparison, one can use the first-order method of Oder et al.
[26]. Their idea is to implement a check to see if a masked
array is zero by hashing both shares separately and compar-
ing only the hashed values in the end. A small change to their
method, necessary for security has been discussed in [27].
The compression can be performed efficiently using table
based A2B conversion [28], [29], specifically developed for
first ordermasking.

For higher orders, several techniques have been devel-
oped, which follow the same pattern: first, a preprocessing
on the arithmetically masked array, second, a conversion
from the arithmetic to the Boolean masking domain, third, a
postprocessing, and finally a comparison on the final Bool-
ean masked values. The difference between the various
methods lies in the preprocessing and postprocessing steps.

Barthe et al. [30] solved the masked comparison chal-
lenge by switching from the arithmetic masking domain to
a Boolean masked representation, and then performing the
comparison using masked bitwise operations. Bache et al.
[31] showed a method to compress the number of array
coefficients that needs to be compared by taking a random
sum. Bhasin et al. [27] showed a security problem in this
method, and adapted the idea to get around the security
problems. The drawback of this method is that it only works
for specific cases, i.e., prime moduli without compression of
the ciphertext. D’Anvers et al. [1] later showed how to
implement this method for both prime and power-of-two
moduli with compression.

A different approach was taken by Bos et al. [23], who
instead of compressing themasked ciphertext, leave it uncom-
pressed and perform two masked checks to see if it is within
the required range, i.e., a high- and low-end check. Removing
the compression here comes at a cost of two (cheaper) checks
per coefficient. Coron et al. [2] introduced several new ideas to
more efficiently perform this range check.

1.1 Contributions

Our contributions are threefold: first we introduce an
improved version of the comparisonmethod of [1]. Instead of
working with arithmetic multiplications modulo some big

power-of-two, we propose to work in a Galois field, which
saves us a conversion from the Boolean to the arithmetic
masking domain and significantly reduces the cost of the
comparison operation.We also develop a streamlined version
of the Kyber-specific compression of Coron et al. [2]. Both our
algorithms outperform the comparisons they are based on.

Second, we discuss specific implementation details such
as bitslicing, and changing the Boolean representation after
A2B conversion. We show that these implementation
changes have a significant impact in reducing the cost of the
algorithms.

In the third and final part of the paper we compare the
state-of-the-art comparison methods. We implement several
algorithms using the same underlying A2B conversion
implementation and on the same target platform. We then
perform the benchmarking on both Saber and Kyber. By
doing this we aim tomake an fair and practically useful com-
parison between the various comparison methods available.
We will make our optimized implementations of these algo-
rithms available at https://github.com/KULeuven-COSIC/
Revisiting-Masked-Comparison.

2 PRELIMINARIES

2.1 Notation

We denote with b�c flooring a number to the nearest lower
integer, and with �d c rounding, with ties rounded upwards.
bxcq!p is a shorthand for modulus switching and rounding
an input x 2 Zq to an output in Zp, i.e, bxcq!p ¼ bpq xc. Simi-

larly, �d cq!p¼ p
q �
l k

. These operations are extended for vec-

tors, polynomials or vectors of polynomials coefficient-wise.
As we will see in Section 2.2, these operations are also
extended for masked variables by applying them share-
wise. Let x� b denote bitwise shifting x to the right with b

positions, which is equal to floorðx=2bÞ. For an array or a

polynomial x, denote with x½i� the ith coefficient of x.

Let x $ x denote sampling x according to a distribution x,
and let x r x denote a pseudorandom sampling based on a
seed r. Let UðSÞ denote the uniform distribution over a set S.

2.2 Masking

Masking is a technique to protect implementations of cryp-
tographic algorithms against side-channel attacks. The main
idea is to split sensitive values into S shares so that an
adversary only learns sensitive information if he has access
to at least tþ 1 shares, where typically tþ 1 ¼ S. For a sensi-
tive value xwe will denote that it is masked with xð�Þ, where
x ¼ xð�Þ. The notation xðiÞ specifically denotes the ith share
of the masked xð�Þ.

There are various methods to accomplish a sharing, and
we will specifically utilize two: Boolean masking and arith-
metic masking. In Boolean masking, a sensitive value is
masked by XOR’ing it with uniformly random strings such
that xB

ð�Þ ¼LS�1
i¼0 xB

ðiÞ. For arithmetic masking, one chooses
a masking modulus q and after which masking is performed
by subtracting uniformly random strings such that xA

ð�Þ ¼PS�1
i¼0 xA

ðiÞmod q. Arithmetic masking is typically used
when performing arithmetic operations on the shares, as
linear operations (addition, multiplication with a constant)
are efficient under this masking. Boolean masking is

322 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

https://github.com/KULeuven-COSIC/Revisiting-Masked-Comparison
https://github.com/KULeuven-COSIC/Revisiting-Masked-Comparison

typically used when performing Boolean operations on
data. For more information on masking we refer to [21], [32].

2.3 Lattice-Based Encryption

In this paper we will specifically look at the comparison
operation that happens at the end of the decapsulation if
compiled using the Fujisaki-Okamoto transformation. To
give some context we introduce lattice-based encryption in
this section, and will explain the Fujisaki-Okamoto (FO)
transformation in the next section. We focus on a general
algorithm that can be used to describe both Saber and Kyber.

Algorithm 1. PKE.KEYGEN

1 sdA $ f0; 1g256;
2 A sdA UðRk�k

q Þ;
3 ðs; eÞ $ xðRk�1

q Þ � xðRk�1
q Þ;

4 t bA � sþ eeq!q2
;

5 return pk :¼ ðsdA; tÞ; sk :¼ s;

Algorithm 2. PKE.ENC

Input: pk ¼ ðsdA; tÞ
Input:m 2 M
Input: r $ f0; 1g256

1 A sdA UðRk�k
q Þ;

2 ðr; e1; e2Þ r xðRk�1
q Þ � xðRk�1

q Þ � xðR1�1
q Þ;

3 u A � rþ e1;
4 v ð qq2 � tÞ � rþ e2 þ q

2

� � �m;

5 uc bueq!p;
6 vc bveq!T ;

7 return c :¼ ðuc; vcÞ;

Algorithm 3. PKE.DEC

Input: sk ¼ s
Input: c ¼ ðuc; vcÞ

1 u bucep!q;
2 v bvceT!q;
3 m bv� sT � ueq!2;
4 returnm;

Algorithms 1, 2, and 3 depict a lattice-based encryption
and decryption procedure. It works on vectors of ring ele-
ments Rk

q , with Rq ¼ Zq½X�=ðXn þ 1Þ. In both Saber and
Kyber, n ¼ 256 and k has a value between 2 and 4 depend-
ing on the security level. The main difference between the
two is that Saber works with a power of two modulus q ¼
213 while Kyber works with a prime q ¼ 3329. Both algo-
rithms compress the ciphertext from modulus q to lower
moduli p and T for transmission of the ciphertext (and the
public key in case of Saber). The values of p and T differ
between the various versions of Kyber and Saber. Both are
chosen to be powers-of-two, with p ¼ 210 or 211 while T has
a smaller value typically around T ¼ 24. The modulus q2 is
the public key compression modulus, which equals 210 for
Saber, but q2 ¼ q for Kyber as it has no public key compres-
sion. The distribution xðRk

qÞ returns vectors with small coef-
ficients that are drawn from a binomial distribution. For

more information we refer to the original publications of
Kyber [33] and Saber [34].

2.4 Fujisaki-Okamoto Transformation

The encryption scheme described in Section 2.3 only pro-
vides security from passive adversaries (IND-CPA). To
achieve active security (IND-CCA) one can use a generic
transformation such as a post-quantum version of the Fuji-
saki-Okamoto transformation [35], [36]. The main idea of
such a transformation is to make the encryption determin-
istic based on a random seed, which is then transmitted as
the message. During decapsulation, the ciphertext is
decrypted into the random seed, which allows the cipher-
text to be recomputed. The re-encrypted ciphertext is then
compared with the input ciphertext and the procedure is
aborted if both ciphertexts are not the same.

Algorithms 4, 5, and 6 give a more detailed look into the
Fujisaki-Okamoto transformation, where the functions G
andH are cryptographic hash functions and where KDF is a
key derivation function. We will denote variables computed
during re-encryption with an accent, to clearly distinguish
from the input ciphertext.

Algorithm 4. KEM.KEYGEN

1 z $ f0; 1g256;
2 ðpk; sk0Þ ¼ PKE:KeyGenðÞ;
3 sk ¼ ðsk0jjpkjjHðpkÞjjzÞ;
4 return pk; sk;

Algorithm 5. KEM.ENCAPS

Input: Public key of KEM pk
1 m $ f0; 1g256;
2 m HðmÞ;
3 ð �K; rÞ ¼ GðmjjHðpkÞÞ;
4 c ¼ PKE:Encðpk;m; rÞ;
5 K ¼ KDFð �KjjHðcÞÞ;
6 return c;K;

In this paperwewill specifically look at the comparison in
line 5 of Algorithm 6. The input ciphertext is a publicly
known value, and thus not sensitive to leakage. The re-
encrypted ciphertext is sensitive and should be masked. As
an example, an attacker that could see (part of) the re-
encrypted ciphertext could mount a chosen-ciphertext side-
channel attack comparable to the attack described in [10],
where side-channel information of the re-encrypted cipher-
text can be used to determine if a ciphertext failed to decrypt.

This re-encrypted ciphertext has initially coefficients
modulo q, but is compressed in lines 5 and 6 of Algorithm 2
before the comparison. The comparison operation we inves-
tigate in this paper includes the compression as an integral
part of the algorithm. The re-encrypted ciphertext (before
compression) is typically arithmetically masked. We will
also ignore the ring structure of the ciphertext, and consider
a polynomial in R ¼ Zq½X�=ðXn þ 1Þ as a vector in Zn and a
vector of polynomials in Rk as a vector in Zkn. This is rea-
sonable as we don’t use any property of the ring in the com-
parison operation.

D’ANVERS ETAL.: REVISITING HIGHER-ORDER MASKED COMPARISON FOR LATTICE-BASED CRYPTOGRAPHY: ALGORITHMS AND... 323

3 COMPARISON METHODS

On a high level, a comparison algorithm can be con-
structed by subtracting the input ciphertext from the re-
encrypted ciphertext and performing a bitwise OR on all
bits representing the result of the subtraction. However,
in practice, there are some obstacles that need to be over-
come to do this.

First, the re-encrypted ciphertext is typically arithmet-
ically masked, which works well for the subtraction of both
ciphertexts, but is ill-suited for the subsequent bitwise OR
operation. Therefore, one typically wants to perform an
arithmetic to Boolean (A2B) conversion on the data between
the subtraction and the bitwise OR.

Second, the input and re-encrypted ciphertext are not in
the same domain, as the input ciphertext is compressed.
Moreover, the A2B conversion is not straightforward when
working with prime moduli q.

We will first discuss these issues, and then give an over-
view of three state-of-the-art comparison techniques.

3.1 A2B and Compression

In this section we will discuss the subtraction of both cipher-
texts and subsequent A2B conversion. We will first tackle
the case of Saber, i.e., power-of-two q, and then talk about
Kyber, i.e., prime q. While the power-of-two technique is
relatively straightforward, the necessary adaptations to
make this technique work for prime moduli were intro-
duced by Fritzmann et al. [24].

Looking at the first ciphertext component uc, we want to
compute Duð�Þ ¼ A2Bðu0cð�Þ � ucÞ from the input ciphertext
uc and the re-encrypted uncompressed ciphertext u0ð�Þ.

First we look at the case of power-of-two q; p. To effi-
ciently compute Duð�Þ we want to compute the arithmetic
operations in the arithmetic domain, while computing the
flooring operation in the Boolean domain. To this end we
rewrite the equation as:

A2Bðu0cð�Þ � ucÞ ¼ A2B
p

q
� u0ð�Þ

� �
� uc

� �
(1)

¼ A2B
p

q
� u0ð�Þ � uc

� �� �
(2)

¼ A2B
jp
q
� u0ð�Þ � uc þ 1

2

k� �
(3)

¼ A2B
jp
q
� u0ð�Þ � q

p
� uc þ q

2p

� �k� �
(4)

¼ A2B u0ð�Þ � q

p
� uc þ q

2p

� �
� log 2ð

p

q
Þ: (5)

For prime q, the step from Equations (4) to (5) is not
straightforward for two reasons: first, log 2ðpqÞ is not an
integer, which would mean we have to shift with a frac-
tional number which makes no sense, and second, the
term in the A2B conversion has an infinite fractional
representation.

Fritzmann et al. [24] noticed that only a limited precision
is needed in the fractional representation. Given a number
of bits needed for the required precision t, they rewrite the
expression above as:

A2Bðu0cð�Þ � ucÞ ¼ A2B
jp
q
� u0ð�Þ � uc þ 1

2

k� �
(6)

¼ A2B
j 1
2t
b2t p

q
� u0ð�Þ � uc þ 1

2

� �kk� �
(7)

¼ A2B
j
2t � p

q
� u0ð�Þ � uc þ 1

2

� �k� �
� t; (8)

where we can get to Equation (7) if t is large enough to
avoid any error due to the flooring operation, as proven
in [24]. Note that the flooring operation, the multiplications
and the shift operation are performed independently on
each share. In practice we need t to be an integer bigger
than log 2ðSÞ � log 2ðdq=2eq � 0:5Þ, which is 13 for Kyber if
S ¼ 3.

Algorithm 6. KEM.DECAPS

Input: Ciphertext of KEM c
Input: Secret key of KEM sk
1 Extract ðsk0jjpkjjHðpkÞjjzÞ from sk;
2 m0 ¼ PKE:Decðsk0; cÞ ;
3 ð �K0; r0Þ ¼ Gðm0jjHðpkÞÞ;
4 c0 ¼ PKE:Encðpk;m0; r0Þ;
5 if c ¼ c0 then
6 K ¼ KDFð �K0jjHðcÞÞ;
7 else
8 K ¼ KDFðzjjHðcÞÞ;
9 end
10 returnK;

Similar derivations can be performed to calculate Dvð�Þ ¼
A2Bðv0cð�Þ � vcÞ, where one only needs to replace u with v
and the modulus p with T . To simplify the algorithms pre-
sented in the rest paper, we will define a function
precalcq!pðu0ð�Þ; ucÞ that calculates Duð�Þ ¼ A2Bðu0cð�Þ � ucÞ
from u0ð�Þ and uc as described above. Similarly, we define
precalcq!T ðv0ð�Þ; vcÞ as the function that calculates Dvð�Þ ¼
A2Bðv0cð�Þ � vcÞ from v0ð�Þ and vc.

3.2 Simple Method

The simplest method to perform the comparisonwould be to
perform the preprocessing as described above. This would
result in a Boolean masked array of coefficients, of which
should be checked if it equals zero. Then one can do the zero
check by performing a bitwise masked OR operation, which
can easily be obtained from a masked AND [37] operation
combined with masked NOT operations, the latter operation
only requiring a bitwise negation of one share. This descrip-
tion can be seen as a variant of the comparison method as
used by Barthe et al. [30] to mask the GLP signature scheme.
The resulting algorithm is given in Algorithm 7.

Algorithm 7. SIMPLE

Input: Input ciphertext: uc; vc
Input: Re-encrypted ciphertext: u0ð�Þ; v0ð�Þ

1 Duð�Þ ¼ precalcq!pðu0ð�Þ; ucÞ;
2 Dvð�Þ ¼ precalcq!T ðv0ð�Þ; vcÞ;
3 result ¼ ORðDuð�Þ j Dvð�ÞÞ;
4 return result;

324 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

3.3 Arithmetic Comparison

The masked OR operation in the simple approach needs to
be calculated on kn coefficients of log 2ðpÞ bits and n coeffi-
cients of log 2ðT Þ bits. To reduce the number of masked OR

operations, D’Anvers et al. [1] propose a technique to
reduce the kðnþ 1Þ coefficients that need to be checked into
one (bigger) coefficient by summing them together. This
technique is inspired by the random sum method of Bache
et al. [31]. However, to avoid chosen ciphertext attacks
where adaptations in one coefficient are offset with an
inverse adaptation in another coefficient, all coefficients are
first multiplied with a random number before summation.
As this random number is the same for all shares of a coeffi-
cient, and due to distributivity (i.e,

P
i R � x½i� ¼ R �Pi x½i�),

it can be proven that the resulting sum equals zero if all
masked coefficients are zero.

One drawback of this method is that there is a small colli-
sion probability in which an incorrect input ciphertext is
wrongly accepted. This collision probability equals 2�s with
s a security parameter related to the bit-size of R, and can
not be influenced by an adversary. As such, it is not possible
to increase the probability of obtaining a failure using for
example failure boosting [38]. In many adversarial models,
the adversary is limited in the number of queries Q he can
perform, and the parameter s should be chosen such that an
adversary can not reasonably find collisions, or: 2s 	 Q.

For a more detailed description of the algorithm and
more in-depth security analysis we refer the interested
reader to the original publication [1].

Algorithm 8. ARITHMETIC

Input: Input ciphertext: uc; vc
Input: Re-encrypted ciphertext: u0ð�Þ; v0ð�Þ

1 Duð�Þ ¼ precalcq!pðu0ð�Þ; ucÞ;
2 Dvð�Þ ¼ precalcq!T ðv0ð�Þ; vcÞ;
3 bð�Þ ¼ B2Ap�2s�1ðDuð�ÞÞ j B2Ap�2s�1ðDvð�ÞÞ;
4 Eð�Þ ¼ 0;
5 for i ¼ 1 to ðkþ 1Þn do
6 r $ Uðf0; 1gsÞ;
7 Eð�Þ þ¼ r � bð�Þ½i�mod p � 2s�1;
8 end
9 result ¼ ORðEð�ÞÞ;
10 return result;

3.4 Hybrid Comparison

Coron et al. [2] introduce a hybrid method to perform the
comparison. They first build several subfunctions and com-
bine them into one comparison algorithm aimed at prime
moduli q, as used in Kyber. These subfunctions include two
new tests to check the zeroness of a polynomial and
‘decompress-and-multiply’, a method to process a masked
ciphertext without performing compression, by instead
decompressing the nonsensitive input ciphertext uc. In this
section we give an high-level overview of their comparison
algorithm, which is given in Algorithm 9. For more details
we refer to [2], [24] and [27].

The idea of the hybrid method is that the first and second
ciphertext parts are processed using different approaches.
The reason is that the first part of the ciphertext u only

undergoes a small compression, while the second part v
typically undergoes stronger compression. The decom-
press-and-multiply technique is only efficient for small
compression, and is therefore only used for u, while v is
processed in a more traditional approach. We will first look
into the processing of the first part of the ciphertext u, then
discuss the second part v and finally the postprocessing to
combine both parts.

Algorithm 9.HYBRID METHOD

Input: Input ciphertext: uc; vc
Input: Re-encrypted ciphertext: u0ð�Þ; v0ð�Þ

// Adapted procedure for u
1 for i ¼ 1 to kn do
2 Du�ð�Þ½i� ¼ 1;
3 for u½i�½j� in Decompressðuc½i�Þ then
4 Du�ð�Þ½i� �¼ ðu½i�½j� � u0ð�Þ½i�Þ;
5 end
6 end
// Normal procedure for v
7 Dvð�Þ ¼ precalcq!T ðv0ð�Þ; vcÞ;
8 resBv

ð�Þ ¼ ORðDvð�ÞÞ;
9 resAv

ð�Þ ¼ B2AqðresBv ð�ÞÞ ;
10 bð�Þ ¼ Du�ð�ÞjresAv

ð�Þ
;

// Compression

11 Eð�Þ ¼ 0;
12 for j ¼ 1 to l2 do
13 for i ¼ 1 to knþ 1 do
14 r $ Uð½0; qÞÞ;
15 Eð�Þ½j� þ¼ r � bð�Þ½i�mod q;
16 end
17 end
// Final comparison

18 result ¼ PolyZeroTestðEð�ÞÞ;
19 return result;

To process the first part of the ciphertext, instead of com-
pressing the masked coefficients of u0ð�Þ, the public cipher-
text uc is decompressed. For each coefficient uc½i�, this
results in multiple possible decompressed values u½i�½j�. For
each of these possible decompressed values we subtract
u½i�½j� from the masked recomputed ciphertext u0ð�Þ½i�. The
result of this subtraction should equal zero for one j (the
one corresponding to the original decompressed value of
uc½i�). We then perform a masked multiply on all these val-
ues Du�ð�Þ ¼

Q
jðu½i�½j� � u0ð�Þ½i�Þ, which results in a masked

zero if and only if the decompressed ciphertext equals the
recomputed ciphertext. These steps are given in line 1 to 6
of Algorithm 9.

Meanwhile, the second part of the ciphertext undergoes
the simple comparison procedure from Section 3.2 in line 7-
8 of Algorithm 9. This results in a Boolean masked bit repre-
senting the result of the comparison of vc and v0ð�Þ. This bit is
then converted to arithmetic masking modulo q and added
to the processed first ciphertext part.

The result of the above algorithm is a vector in Znkþ1
q that

needs to be equal to zero. This vector fulfills the condition
to use the ReduceComparison technique of Bhasin et al.
[27], which reduces the number of coefficients that need to
be checked for zeroness. This reduction is performed in line

D’ANVERS ETAL.: REVISITING HIGHER-ORDER MASKED COMPARISON FOR LATTICE-BASED CRYPTOGRAPHY: ALGORITHMS AND... 325

11-17. The algorithm is then finished by performing a zero
check on the resulting polynomial.

As is the case in the ReduceComparison technique, this
algorithm also has a probability of accepting invalid cipher-
texts. This probability is upper bounded by q�l2 , with q the
modulus and l2 the number of coefficients after compression.
As before, the adversary can not increase this collision proba-
bility as it is entirely dependent on internal values of r.

4 NEW COMPARISON ALGORITHMS

In the previous section we detailed three state-of-the art
comparison algorithms. In this section we first improve on
the arithmetic comparison technique, and then present a
simplified version of the hybrid comparison technique. We
will show in Section 6 that both techniques outperform their
original algorithms.

4.1 Galois Field Compression

We first describe an improved version of the arithmetic
compression method described in Section 3.3. The main dif-
ference between both algorithms is that the multiplication is
changed from an arithmetic multiplication modulo p � 2s�1
to a multiplication in a Galois field with characteristic 2. The
main advantage of this approach is that addition in a Galois
Field of characteristic 2 is an XOR of the inputs, which
works well on a Boolean representation. Therefore, multipli-
cation and addition can be natively perfomed on Boolean
masked shares, eliminating the need for the expensive
B2Ap�2s�1 conversion.

More precisely, for the multiplication operation we rep-
resent the inputs as polynomials with binary coefficients in
Z2½X� and perform a polynomial multiplication, after which
a reduction modulo an irreducible polynomial f is exe-
cuted. We represent this multiplication operation with the

 symbol.

It is possible to avoid the reduction step of this multipli-
cation to reduce complexity of the algorithm. The downside
is an increase in the number of coefficients that need to be
processed in the OR operation. In section Section 3.3 we will
see that the OR operation cost is negligible compared to the
rest of the algorithm, and as such we implement the Galois
field multiplication without the reduction. That is, as a mul-
tiplication between binary polynomials.

The Galois field comparison method can be found in
Algorithm 10.

Algorithm 10. GALOIS FIELD

Input: Input ciphertext: uc; vc
Input: Re-encrypted ciphertext: u0ð�Þ; v0ð�Þ

1 Duð�Þ ¼ precalcq!pðu0ð�Þ; ucÞ;
2 Dvð�Þ ¼ precalcq!T ðv0ð�Þ; vcÞ;
3 bð�Þ ¼ Duð�Þ j Dvð�Þ;
4 Eð�Þ ¼ 0;
5 for i ¼ 1 to ðkþ 1Þn do
6 r $ Uðf0; 1gsÞ;
7 Eð�Þ �¼ r
 bð�Þ½i�;
8 end
9 result ¼ ORðEð�ÞÞ;
10 return result;

Theorem 1 (Correctness and Security of Algorithm 10).
The Galois field compression method of Algorithm 10 returns 1
upon input of a valid ciphertext ðuc; vcÞ ¼ ðdu0ð�Þcq p;
ðdv0ð�Þcq T Þ and 0 with probability at least 1� 2�s if this condi-
tion is not fulfilled.

Proof. This proof largely follows the analogous proof of [1],
with the difference that some sums are replaced with
XOR operations, and some arithmetic multiplications
with GF multiplications. We first derive the value of Eð�Þ

at the end of the algorithm.

Eð�Þ ¼
MS�1
k¼0

EðkÞ (9)

¼
MS�1
k¼0

Mðkþ1Þn�1
i¼0

ðri
 bðkÞ½i�Þ
 !

(10)

¼
Mðkþ1Þn�1
i¼0

MS�1
k¼0
ðri
 bðkÞ½i�Þ

 !
(11)

¼
Mðkþ1Þn�1
i¼0

ri

MS�1
k¼0

bðkÞ½i�
 !

(12)

¼
Lkn�1

i¼0 ri

LS�1

k¼0 DuðkÞ½i�
� 	

�Ln�1
i¼0 rknþi

LS�1
k¼0 DvðkÞ½i�

� 	
0
B@

1
CA; (13)

which by definition of precalcq!p and precalcq!T

equals:

Eð�Þ ¼
Lkn�1

i¼0 ri

PS�1

k¼0 u0ðkÞ
l k

q!p
�uc

� �

� Ln�1
i¼0 rknþi

PS�1
k¼0 v0ðkÞ
l k

q!T
�vc

� �
0
BBB@

1
CCCA; (14)

We will further denote the terms ðPS�1
k¼0 u0ðkÞ
l k

q!p
�ucÞ

and ðPS�1
k¼0 v0ðkÞ
l k

q!T
�vcÞ with bi and gi respectively, for

conciseness. This gives the following simplified expres-

sion for Eð�Þ:

Eð�Þ ¼
Lkn�1

i¼0 ri
 bi

� Ln�1
i¼0 rknþi
 gi

 !
; (15)

Correctness. If the input ciphertext ðuc; vcÞ matches the
recomputed compressed ciphertext ðdu0ð�Þcq!p; dv0ð�Þcq!T Þ,
then all bi and gi are zero and thus Eð�Þ is zero. This
proves the first statement.

Security. If the input ciphertext does not match the
recomputed ciphertext, there is at least one bi or gi that
does not equal zero. Without loss of generality, we will
assume that b0 is a nonzero coefficient. We can then sepa-
rate this coefficient from the equation:

Eð�Þ ¼
r0
 b0

� Lkn�1
i¼1 ri
 bi

� Ln�1
i¼0 rknþi
 gi

0
@

1
A; (16)

326 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

and simplify this equation into:

Eð�Þ ¼ ðr0
XÞ � Y; (17)

by taking:

X ¼ b0 and Y ¼
Mkn�1
i¼1

ri
 bi

 !
�

Mn�1
i¼0

rknþi
 gi

 !
: (18)

The adversary is tasked with finding a value X and Y
so that Eð�Þ ¼ ðr0
XÞ � Y ¼ 0. A necessary condition
for this is that ðr0
XÞ � Y mod f ¼ 0, with f an irreduc-
ible polynomial of degree 2s. Which means that the con-
dition can be rewritten as:

r0 ¼ Y �X�1 mod f: (19)

As r0 is independent of the terms X and Y and is
unknown to the adversary, the probability of finding a
ciphertext such that this condition is fulfilled is limited to
the guessing entropy of r0, which equals 2�s. This proof
can be easily generalized if another value of bi or gi is
nonzero. tu

Theorem 2 (t-SNI of Algorithm 10). The Galois field com-
pression method of Algorithm 10 is t-SNI secure.

Proof. Due to the similarities with the arithmetic compari-
son method, we can rely on the proof from [1]. To support
this claim we will highlight the differences between the
Galois field method and the arithmetic comparison
method, and then show that they do not change the secu-
rity proof.

The t-SNI security proof of the arithmetic mask-
ing [1] divides the algorithm in 4 types of gadgets.
Gadget G0 and G1 correspond to the preprocessing in
the arithmetic comparison and are exactly the same in
the Galois field method. Gadget G4 corresponds to the
final equality test in the arithmetic masking method
which is the same as OR operation on line 9. The only
difference between both algorithms is thus gadgets G2

and G3. Gadget G2 is no longer needed in the Galois
field method as we no longer need to perform B2A
conversion.

This leaves us gadget G3 which is different between
both approaches. In the arithmetic masking, gadget G3

computes an arithmetic random sum, while in the Galois
field method, the gadget computes a random sum on
binary polynomials. However, both approaches perform
computations on each share separately. This property is
what is used in the original proof [1] and as it also applies
on the Galois field method, the original proof still holds
for the Galois field method. tu

4.2 Streamlined Hybrid

In this section we introduce an improved version of the
hybrid compression technique from [2]. One disadvantage
of the hybrid method is that it is complex in comparison to
the other comparison methods, due to the various subfunc-
tions used. The aim of the streamlined hybrid method is to
simplify the implementation of the hybrid method, while
also improving its efficiency.

One of the main speedups of the hybrid comparison
method is due to the reduction of the number of coefficients
that need to be converted from arithmetic to boolean mask-
ing in the A2B step. This is achieved by using the decom-
press-and-multiply technique from [2] and then perform
the comparison reduction from [27]. These steps are only
efficient for the first ciphertext part u. In the streamlined
hybrid method we still use these techniques as they provide
a significant speedup.

After these operations we revert to the standard simple
procedure from Algorithm 7. As we will show in Section 5,
the A2B and OR operations can be sped up significantly
using implementation tricks. This means that while these
operations theoretically don’t scale as well as some alterna-
tives in [2], they do outperform these functions in practical
implementations. Due to their simplicity and efficiency we
choose the postprocessing of the simple method over the
postprocessing of the hybrid method. Specifically, we con-
vert the remaining coefficients, from both the compressed
ciphertext and the second ciphertext part v, to the Boolean
domain and perform the OR operation on the Boolean
masked coefficients. Algorithm 11 gives a high level over-
view of our streamlined hybrid method.

Algorithm 11. STREAMLINED HYBRID METHOD

Input: Input ciphertext: uc; vc
Input: Re-encrypted ciphertext: u0ð�Þ; v0ð�Þ

// Adapted procedure for u
1 Eð�Þ ¼ 0;
2 for i ¼ 0 to kn� 1 do
3 Duð�Þ½i� ¼ 1;
4 for u½i�½j� in Decompressðuc½i�Þ do
5 Duð�Þ½i� �¼ ðu½i�½j� � u0ð�Þ½i�Þ;
6 end
7 for j ¼ 1 to l2 do
8 r $ Uð½0; qÞÞ;
9 Eð�Þ½j� þ¼ r � Duð�Þmod q;
10 end
11 end
12 EB

ð�Þ ¼ A2Bðb2�þtq � Eð�Þ þ 2t � 1mod 2�þtcÞ � t;
// Normal procedure for v
13 Dvð�Þ ¼ precalcq!T ðv0ð�Þ; vcÞ;
14 resBv

ð�Þ ¼ ORðDvð�ÞjEB
ð�ÞÞ;

15 return result;

Theorem 3 (Correctness and Security of Algorithm 11).
For �þ log 2ð2t=ð2t � 1ÞÞ > log 2ðqÞ and �þ t 	 log 2ðq�
ðS þ 1ÞÞ, the streamlined hybrid compression method of Algo-
rithm 11 returns 1 upon input of a valid ciphertext ðuc; vcÞ ¼
ðdu0ð�Þcq p; ðdv0ð�Þcq T Þ and 0 with probability at least 1� q�l2
if the above condition is not fulfilled.

Proof. The ciphertext consists of two parts. The second part
v is treated in the same way as the simple method, and
thus shares the same characteristics: if vc ¼ dv0ð�Þcq T then
Dvð�Þ ¼ 0, and if the ciphertexts do not match then
Dvð�Þ 6¼ 0.

As such we will focus the proof on the value of EB
ð�Þ.

We will first consider a valid first ciphertext part uc ¼
ðdu0ð�Þcq pÞ, and then an invalid first ciphertext part
where uc 6¼ du0ð�Þcq p.

D’ANVERS ETAL.: REVISITING HIGHER-ORDER MASKED COMPARISON FOR LATTICE-BASED CRYPTOGRAPHY: ALGORITHMS AND... 327

Correctness. If uc ¼ ðdu0ð�Þcq pÞ, then by definition of
Decompress, for each coefficient i one of the decom-
pressed values u½i�½j� equals u0ð�Þ½i�, which means u½i�½j� �
u0ð�Þ½i� ¼ 0 for this u½i�½j�. This also implies that one term
of the multiplication is zero for each coefficient and thus
Duð�Þ is the zero vector. If Duð�Þ is a zero vector, then Eð�Þ is
a sum of terms that are all zero, and thus Eð�Þ equals zero.

This leaves the A2B conversion of line 12 of Algorithm
11. While Eð�Þ is the zero vector, the individual shares are
not necessarily equal to zero. However, similar to the
derivation in [24], we can write:

MS�1
k¼0

EB
ðkÞ ¼

$
1

2t

XS�1
k¼0

$
2�þt

q
� EðkÞ þ 2t � 1mod 2�þt

%%
(20)

¼
$
1

2t

XS�1
k¼0

$
2�þt

q
� EðkÞ

%
þ 2t � 1

2t

%
mod2� (21)

¼
$
1

2t

XS�1
k¼0

2�þt

q
� EðkÞ � ek

� �
þ 2t � 1

2t

%
mod 2�;

(22)

where e is a rounding error in [0,1). Now we can use the
fact that Eð�Þ equals zero to simplify this expression to:

MS�1
k¼0

EB
ðkÞ ¼

$XS�1
k¼0

�ek
2t

� 	
þ 2t � 1

2t

%
mod 2�; (23)

At the upper bound, where all ek ¼ 0, we have:

MS�1
k¼0

EB
ðkÞ ¼

2t � 1

2t

�
¼ 0mod 2�; (24)

while at the lower bound, with ek ¼ 1, this gives

MS�1
k¼0

EB
ðkÞ ¼

�S
2t
þ 2t � 1

2t

�
¼

2t � 1� S

2t

�
mod2�; (25)

which also results in zero as long as 2t � 1 > S, or
t > log 2ðS þ 1Þ.

We proved that if uc ¼ ðdu0ð�Þcq pÞ, then
LS�1

k¼0 EB
ð�Þ

equals zero, and we know from the proofs of the simple
method that if vc ¼ dv0ð�Þcq T then Dvð�Þ ¼ 0. As the result
is computed as an OR of these values, we proved that a
valid ciphertext ðuc; vcÞ ¼ ðdu0ð�Þcq p; ðdv0ð�Þcq T Þ will
return 0.

Security. If the ciphertext is invalid, ðuc; vcÞ 6¼
ðdu0ð�Þcq p; ðdv0ð�Þcq T Þ, at least one of the coefficients of uc

or vc is invalid. As vc is processed using exactly the same
procedure as the simple comparison, we know that an
invalid coefficient of v will propagate to a nonzero Dvð�Þ

and the result of the algorithm will be 1.
The second case is that uc has at least one invalid coef-

ficient, and without loss of generalization we will assume
that this is the first coefficient. This is synonymous to the
fact that none of the decompressed values u½0�½j� equals
the recomputed ciphertext u0ð�Þ½0�. As the multiplication
to obtain Duð�Þ is calculated in the field Zq, and none of
the terms are zero, we know that Duð�Þ½0� 6¼ 0.

Following Theorem 1 of [1], a nonzero input Duð�Þ½0� 6¼
0 leads to a nonzero output Eð�Þ with probability 1� q�l2 .

This means that with this probability, at least one of the
terms of Eð�Þ is nonzero.

In the end, our goal is to have at least one coefficient of
EB
ð�Þ to be nonzero, which would result in a returned

value of 1 due to the OR operation. If a coefficient of Eð�Þ

is nonzero (and without loss of generalization we assume
it is the first coefficient), we have:

MS�1
k¼0

EB
ð�Þ½0� ¼

$
1

2t

XS�1
k¼0

2�þt

q
� EðkÞ½0� � ek

� �
þ 2t � 1

2t

%
mod 2�

(26)

¼
$

2�

q
� Eð�Þ½0�

� �
þ 2t � 1�PS�1

k¼0 ek
2t

%
mod 2�

(27)

with ek a value in [0,1) as derived above. Remember that
Eð�Þ 6¼ 0. As such EB

ð�Þ can only occur due to over- or
underflow. The two closest values are Eð�Þ ¼ 1 or
Eð�Þ ¼ q � 1.

First we will look at the possibility of an underflow.
The worst case scenario is that Eð�Þ ¼ 1 and all ek ¼ 1,
which gives:

MS�1
k¼0

EB
ð�Þ½0� ¼

$
2�

q
þ 2t � 1� S

2t

%
mod2�: (28)

This does not equal zero as long as 2�

q þ 2t�1�S
2t 	 1, or

equivalently �þ t 	 log 2ðq � ðS þ 1ÞÞ.
For the scenario of an overflow, we have a worst case

scenario Eð�Þ ¼ q � 1 and ek ¼ 0.

MS�1
k¼0

EB
ð�Þ½0� ¼

$
2�

q
� ðq � 1Þ

� �
þ 2t � 1

2t

%
mod 2� (29)

which is not zero as long as ð2�q � ðq � 1ÞÞ þ 2t�1
2t < 2�, or

2�þt
2t�1 > q.

In conclusion, a non valid ciphertext will result in at
least one nonzero coefficient in resBv

ð�Þ
with probability at

least 1� q�l2 , and thus a result of 1. tu
Theorem 4 (t-SNI of Algorithm 11). The streamlined hybrid

method of Algorithm 11 is t-SNI secure.

Proof. The streamlined hybrid comparison is a combination
of the hybrid comparison and the simple comparison. As
such we can use the t-SNI security of the gadgets of the
hybrid comparison, as proved in [2], to prove t-SNI secu-
rity of the streamlined hybrid comparison. In this proof
we will divide the streamlined hybrid method into gadg-
ets that correspond to gadgets already proven t-SNI
secure for the hybrid comparison ([2], [27]) or the simple
comparison ([1]).

The streamlined hybrid comparison can be split into 4
gadgets. Gadget G1 to G3 correspond to gadgets in the
hybrid comparison: Gadget G1 is the masked multiplica-
tion calculated in line 3 to 5 of Algorithm 11. These lines
correspond to the secMultList algorithm of [2], and is
proven t-SNI secure according to theorem 16 of that
paper. Gadget G2 represents line 7 to 10, which corre-
sponds to the ReduceComparison technique from [27],

328 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

proven t-SNI secure in Theorem 2 of that paper. Gadget
G3 is the A2B conversion, which should be chosen as a t-
SNI secure A2B conversion. The rest of the algorithm,
considered gadget G4, proceeds exactly as the simple
comparison method and has therefore the same security
guarantees. tu

5 IMPLEMENTATION ASPECTS

To obtain an efficient implementation of the comparison, it
is not only important to search for an optimal algorithm,
but also to consider implementation aspects. In this section
we will first look at the importance of bitslicing the A2B
conversion and the OR operation. We will show that bitslic-
ing the A2B conversion gives a significant speedup and is
essential to obtain an efficient implementation. Moreover,
bitslicing is applied in the comparison implementation by
D’Anvers et al. [1] but not in the implementations by Bos
et al. [23] and Coron et al. [2]. This makes comparing these
results difficult.

Bitslicing typically needs a pre- and postprocessing to
correctly align the memory. In the second part of this section
we will show that it is not always necessary to perform this
postprocessing in our case, due to a reinterpretation of the
outputs.

5.1 Bitslicing

Most comparison implementations use the A2B conversion
and OR operation of Coron et al. [37]. A first observation is
that this A2B conversion and the OR function involve almost
exclusively bitwise operations. These operations can be bit-
sliced on a 32-bit CPU, where 32 inputs are taken as input
and the bitwise operations are performed on all 32 inputs at
the same time.

Such an implementation requires an pre- and postpro-
cessing to rearrange the inputs in memory. This means that
32 input coefficients are taken in, and re-arranged in mem-
ory. In the preprocessing, the first bit of each coefficient is
put in the first register, the second bit of each coefficient in
the second register, and so on. Bitwise calculations are then
performed on each register, digesting 32 coefficients at the
same time. At the end of the A2B conversion, the postpro-
cessing restores the output to the 32 coefficients of log 2ðpÞ
or log 2ðT Þ bits.

Due to this pre- and post-A2B memory realignment, the
speedup is not a full factor 32, but as can be seen from
Table 1, bitslicing does have a significant impact on the effi-
ciency of the algorithm.

5.2 Reinterpretation of the Boolean Masked Bits

After the A2B conversion, the main goal of the previous
comparison techniques is to check if all coefficients of the
polynomial or vector are zero. This is equivalent to stating
that all Boolean masked bits need to be zero. As such, after
A2B conversion one can represent the bits at will, for exam-
ple by representing it as a vector with coefficients in Z232

instead of coefficients in Zp and ZT .
There are multiple advantage to such a change in repre-

sentation. For example, in the simple comparison method it
is more efficient to perform the OR operation on coefficients
of 32 bits due to bitslicing. It is also possible to use such a
representation switch in the Galois field method, where line
4 to 8 of Algorithm 10 would work on a vector with coeffi-
cients in Z232 instead of Zp, which results in fewer coeffi-
cients that need to be processed, and thus lower execution
time and less randomness consumption.

Moreover, the representation can be chosen in such a
way to avoid any post-A2B memory alignment in the bit-
sliced A2B function. Remember that the coefficients at
the output are aligned in memory as log 2ðpÞ (or log 2ðT Þ
for v) registers of 32 bits. We can then reinterpret the
registers to be log 2ðpÞ coefficients in Z232 . This means
that we reinterpret the 32 coefficients of log 2ðpÞ bits into
log 2ðpÞ coefficients of 32 bits. The reason this works is
that if all 32 coefficients of log 2ðpÞ bits are zero, then it
must also be true that the log 2ðpÞ coefficients of 32 bits
are zero.

Avoiding the post-A2B memory alignment step has a sig-
nificant impact on the total A2B cost, as can be seen in
Table 2, where the postprocessing accounts for 19-23% of
the full A2B procedure. Table 1 depicts the impact of a rein-
terpretation of the coefficients, as described in this section.
Our method leads to a speedup of around 23% for the sim-
ple comparison. To the best of our knowledge, such a
change of representation has not been presented or imple-
mented in previous works.

6 EVALUATION

We have implemented and benchmarked the various
algorithms described in this paper. Benchmarking was
performed on an STM32F407 board with an ARM-Cortex
M4F using arm-none-eabi-gcc version 9.2.1 with -O3.
The system clock was set to 24 Mhz and TRNG clock to
48 Mhz, in accordance to the popular benchmarking
framework PQM4 [39]. Randomness is sampled from the
on-chip TRNG and its sampling cost is included in the
cycle counts.

TABLE 1
Cycles Counts (x1000) Between the Different Optimization

Levels for the Simple Comparison

Non bitsliced bitsliced bitsliced +

reinterpretation

Precalc 27 26 26
A2B 56,006 (x18.6) 3,015 (x1) 2,384 (x0.79)
OR 7,690 (x8.4) 909 (x1) 244 (x0.27)

Total 63,723 (x16.1) 3,950 (x1) 2,654 (x0.67)

TABLE 2
Cycle Cost (x1000) of All Subfunctions of a Bitsliced A2B

Saber (2nd
order)

Saber (3th
order)

pre-A2B memory realignment 16 (26%) 22 (22%)
A2B 32 (52%) 58 (59%)
post-A2B memory
realignment

14 (23%) 19 (19%)

D’ANVERS ETAL.: REVISITING HIGHER-ORDER MASKED COMPARISON FOR LATTICE-BASED CRYPTOGRAPHY: ALGORITHMS AND... 329

The Simple, Galois field and streamlined hybrid methods
can be optimized using the optimized bitslicing from Sec-
tion 5.2, which is the case for the numbers in Table 3. The
arithmetic method has a security parameters s ¼ 54, while
the Galois field method has an increased security of s ¼ 64,
which should be sufficient for cases where an adversary has
a limit of 264 queries. The reasoning for the specific s values
is that for these values the implementation variables nicely
align with 32 bit registers of our microprocessor. For the
Galois Field method with reinterpretation of the Boolean
masked bits we have 32 bit coefficients and 64 bit random-
ness r, which results in a 96 bit output Eð�Þ. If one would
want to increase s, one can select 32 bits coefficients with for
example 96 or 128 bit randomness r which would result in
respectively 128 and 160 bits Eð�Þ at the output. However,
we believe such an increase of s is overkill in most scenarios
as discussed in Section 3.3.

The Hybrid method is the original implementation of
Coron et al. [2], adapted to allow execution on an ARM
platform and with bitsliced A2B conversion to allow fair
comparison. Both the hybrid and streamlined hybrid
method have a collision probability under 2�128. Note
that it would be possible to increase this collision proba-
bility to around 2�64 without sacrificing security in many
situations as discussed above. However, since the cycle
cost between both options is minimal, we stick to a simi-
lar value as in [2].

We choose not to measure stack memory usage, as these
comparison methods can be easily optimized for this if
implemented in a full decapsulation operation. The idea of
such optimization would be a greedy approach: Immedi-
ately after a coefficient of u0ð�Þ or v0ð�Þ is available, as much of
the comparison is calculated as possible. Such a greedy
approach would lead to a minimal stack usage compared to
other functions in the decapsulation, as only the coefficient
in current use and a limited number of intermediate varia-
bles need to be stored.

In the rest of this section we will compare the different
methods to the simple method. We will start with the
(streamlined) hybrid comparison, and then move to the
arithmetic/GF method.

6.1 Hybrid Comparison

The (streamlined) hybrid comparison essentially performs
an additional preprocessing step in order to reduce the
number of coefficients that need to be A2B converted. As
can be seen in Table 4, the preprocessing becomes signifi-
cantly more expensive, but it is compensated with a larger
subsequent reduction in A2B cost. Notably, the hybrid com-
parison only works for prime moduli schemes, i.e., Kyber,
and not for power-of-two q.

Our streamlined hybrid comparison, using the simple
method to finish calculations, outperforms the hybrid com-
parison from [40]. While the initial calculations are the
same, the final comparison is significantly faster in the
streamlined hybrid comparison. An additional advantage is
that the codebase of the streamlined hybrid comparison is
less complex as it requires less functions and the complexity
of the functions is lower.

6.2 Arithmetic/GF Comparison

Comparing the arithmetic and Galois field comparison
methods weighs clearly in favour of the Galois field
method. This is mostly due to the elimination of the expen-
sive B2A conversion.

On the other hand, on the ARM-Cortex M4 there is native
support for the arithmetic multiplication, while lacking sup-
port for the Galois field multiplication. This impacts the cost
of the multiply-accumulate operation, which costs 197k
cycles for the arithmetic operations, and 1,619k cycles for
the Galois field multiply-accumulate (these numbers
include randomness sampling, multiplication and addition
to obtain Eð�Þ).

In a scenario where the Galois field multiplication would
have similar hardware support, for example in a hardware
implementation or a hardware-software codesign, the
Galois Field multiplication would slightly outperform the
simple comparison method as can be derived from Table 4.
This would come at a slight increase of implementation
complexity.

It is possible to combine the streamlined hybrid method
with the Galois field method. The streamlined hybrid
method focusses on reducing the preprocessing cost, while
the Galois field method focusses on the postprocessing cost.
It is therefore straightforward to combine both methods, in
which the output of the A2B conversion would serve as the
interface between both methods.

TABLE 3
Results on Cortex M4

Cycles Randomness
(bytes)

Order 2 3 2 3

Simple� Saber 2.5M 3.9M 35K 72K
Kyber 4.4M 7.1M 57K 118K

Simpley (new) Saber 1.6M 2.6M 26K 53K
Kyber 3.1M 5.3M 48K 100K

Arithmetic [1] Saber 3.4M 6.5M 90K 205K
Kyber 5.3M 9.7M 111K 251K

GFy (new) Saber 2.7M 4.0M 26K 49K
Kyber 4.2M 6.7M 47K 95K

Hybrid [2] Kyber 3,3M 4.5M 80K 94K
Streamlined hybridy (new) Kyber 2.5M 3.6M 44K 62K

�With bitslicing but without reinterpretation of the masked Boolean bits.
yWith bitslicing and reinterpretation of the masked Boolean bits.

TABLE 4
Cycle Counts (x1000) for Subfunctions in the Simple,
Streamlined Hybrid and Galois Field Comparison

Methods for a 3th Order Implementation

Kyber Saber

Simple Streamlined hybrid GF Simple GF

Preprocessing 467 2,510 468 27 27
A2B 4,595 1,084 4,595 2,385 2,385
Postprocessing 1,619 1,619
OR 244 43 6 244 6

Total 5,306 3,637 6,688 2,656 4,037

330 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

7 CONCLUSION

The state-of-the art higher-order masked comparison tech-
niques can be generalized into a common framework which
consists of a preprocessing, an A2B conversion, a postpro-
cessing and a final OR operation. In the most simple case,
preprocessing is kept to the bare minimum and no postpro-
cessing is performed. Coron et al. [40] introduced a hybrid
method, specifically aimed at prime moduli q, to reduce the
A2B cost by performing additional preprocessing. We sped
up this design with � 25% in our streamlined hybrid algo-
rithm. D’Anvers et al. [1] introduced a technique to speed
up the OR operation at an increased postprocessing cost.
We improved this method with � 20% by replacing the
arithmetic multiplication with a Galois field multiplication.
While this method does not outperform the simple compari-
son method on a microprocessor platform due to the lack of
hardware support for the Galois field multiplication, it
might be interesting to compare both methods on other plat-
forms where support for the multiplication can be build in.

We also looked into implementation optimizations.
We reiterated the importance of bitslicing, and showed
that additional speedups are possible when reinterpret-
ing the output of the Boolean masked bits output from
the A2B conversion. The latter optimization simplifies
our codebase and reduces the cycle count of the simple
method with � 33%.

Our comparison was performed on an ARM-Cortex M4
microprocessor. Interesting future work could be to make a
similar comparison on other platforms, where one can add
hardware support for the masked A2B and OR operations,
or the multiplications needed in the hybrid and Galois field
compression methods.

REFERENCES

[1] J.-P. D’Anvers, D. Heinz, P. Pessl, M. van Beirendonck, and I. Ver-
bauwhede, “Higher-order masked ciphertext comparison for lat-
tice-based cryptography,” IACR Cryptol. ePrint Arch., 2021,
Art. no. 1422. [Online]. Available: https://ia.cr/2021/1422

[2] J.-S. Coron, F. G�erard, S. Montoya, and R. Zeitoun, “High-order
polynomial comparison and masking lattice-based encryption,”
IACR Cryptol. ePrint Arch., 2021, Art. no. 1615. [Online]. Available:
https://ia.cr/2021/1615

[3] NIST Computer Security Division, “Post-quantum cryptography
standardization,” 2016. [Online]. Available: https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography

[4] P. Schwabe et al., “CRYSTALS-KYBER,” National Institute of Stand-
ards and Technology, 2020. [Online]. Available: https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

[5] J.-P. D’Anvers et al., “SABER,” National Institute of Standards
and Technology, 2020. [Online]. Available: https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions

[6] C. Chen et al., “NTRU,” National Institute of Standards and Tech-
nology, 2020. [Online]. Available: https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

[7] V. Lyubashevsky et al., “Crystals-Dilithium,” National Institute of
Standards and Technology, 2020. [Online]. Available: https://csrc.
nist.gov/projects/post-quantum-cryptography/round-3-submissions

[8] T. Prest et al., “FALCON,”National Institute of Standards and Tech-
nology, 2020. [Online]. Available: https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

[9] J. H. Silverman and W. Whyte, “Timing attacks on NTRUEncrypt
via variation in the number of hash calls,” in Proc. Cryptographers’
Track RSA Conf., 2007, pp. 208–224.

[10] J.-P. D’Anvers, M. Tiepelt, F. Vercauteren, and I. Verbauwhede,
“Timing attacks on error correcting codes in post-quantum
schemes,” in Proc. ACM Workshop Theory Implementation Secur.
Workshop, 2019, pp. 2–9.

[11] Q. Guo, T. Johansson, and A. Nilsson, “A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto
transformation and its application on FrodoKEM,” in Proc. Annu.
Int. Cryptol. Conf., 2020, pp. 359–386.

[12] A. C. Atici, L. Batina, B. Gierlichs, and I. M. R. Verbauwhede,
“Power analysis on NTRU implementations for RFIDs: First
results,” in Proc. 4th Workshop RFID Secur., 2008, pp. 128–139.

[13] A. Wang, X. Zheng, andZ. Wang, “Power analysis attacks and
countermeasures on NTRU-based wireless body area networks,”
KSII Trans. Internet Inf. Syst., vol. 7, no. 5, pp. 1094–1107, 2013.

[14] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel
attacks on masked lattice-based encryption,” in Proc. Int. Conf.
Cryptographic Hardware Embedded Syst., 2017, pp. 513–533.

[15] D. Amiet, A. Curiger, L. Leuenberger, and P. Zbinden, “Defeating
NewHope with a single trace,” in Proc. 11th Int. Conf. Post-Quan-
tum Cryptography, 2020, pp. 189–205.

[16] P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin, “Generic side-
channel attacks on CCA-secure lattice-based PKE and KEMs,”
IACR IACR Trans. Cryptographic Hardware Embedded Syst., vol. 2020,
no. 3, pp. 307–335, 2020. [Online]. Available: https://tches.iacr.
org/index.php/TCHES/article/view/8592

[17] Z. Xu, O. Pemberton, S. S. Roy, and D. Oswald, “Magnifying side-
channel leakage of lattice-based cryptosystemswith chosen cipher-
texts: The case study of Kyber,” IACR Cryptol. ePrint Arch., 2020,
Art. no. 912. [Online]. Available: https://eprint.iacr.org/2020/912

[18] R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N.
Homma, “Curse of re-encryption: A generic power/EM analysis
on post-quantum KEMs,” IACR Cryptol. ePrint Arch., 2021,
Art. no. 849. [Online]. Available: https://ia.cr/2021/849

[19] G. Alagic et al., “Status report on the second round of the NIST
post-quantum cryptography standardization process,” 2020.
[Online]. Available: https://csrc.nist.gov/publications/detail/
nistir/8309/final

[20] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound
approaches to counteract power-analysis attacks,” in Proc. Annu.
Int. Cryptol. Conf., 1999, pp. 398–412.

[21] G. Barthe, et al., “Strong non-interference and type-directed
higher-order masking,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2016, pp. 116–129.

[22] M. V. Beirendonck, J. D’Anvers, A. Karmakar, J. Balasch, and
I. Verbauwhede, “A side-channel-resistant implementation of
SABER,” ACM J. Emerg. Technol. Comput. Syst., vol. 17, no. 2,
pp. 10:1–10:26, 2021.

[23] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. van Vreden-
daal, “Masking Kyber: First- and higher-order implementations,”
IACR Trans. Cryptographic Hardware Embedded Syst., vol. 2021,
no. 4, pp. 173–214, 2021. [Online]. Available: https://tches.iacr.
org/index.php/TCHES/article/view/9064

[24] T. Fritzmann et al., “Masked accelerators and instruction set
extensions for post-quantum cryptography,” IACR Trans. Crypto-
graphic Hardware Embedded Syst., vol. 2022, no. 1, pp. 414–460,
Nov. 2021. [Online]. Available: https://tches.iacr.org/index.php/
TCHES/article/view/9303

[25] V. Migliore, B. G�erard, M. Tibouchi, and P.-A. Fouque, “Masking
Dilithium: Efficient implementation and side-channel evaluation,”
in Proc. Int. Conf. Appl. Cryptography Netw. Secur., 2019, pp. 344–362.

[26] T. Oder, T. Schneider, T. P€oppelmann, and T. G€uneysu, “Practical
CCA2-secure masked Ring-LWE implementations,” IACR Trans.
Cryptographic Hardware Embedded Syst., vol. 2018, no. 1, pp. 142–174,
2018. [Online]. Available: https://tches.iacr.org/index.php/TCHES/
article/view/836

[27] S. Bhasin, J.-P. D’Anvers, D. Heinz, T. P€oppelmann, and M. Van
Beirendonck, “Attacking and defending masked polynomial
comparison,” IACR Trans. Cryptographic Hardware Embedded Syst.,
vol. 2021, no. 3, pp. 334–359, 2021. [Online]. Available: https://
tches.iacr.org/index.php/TCHES/article/view/8977

[28] B. Debraize, “Efficient and provably secure methods for switching
from arithmetic to Boolean masking,” in Proc. Int. Workshop Cryp-
tographic Hardware Embedded Syst., 2012, pp. 107–121.

[29] M. Van Beirendonck, J.-P. D’Anvers, and I. Verbauwhede,
“Analysis and comparison of table-based arithmetic to boolean
masking,” IACR Trans. Cryptographic Hardware Embedded Syst.,
vol. 2021, no. 3, pp. 275–297, 2021. [Online]. Available: https://
tches.iacr.org/index.php/TCHES/article/view/8975

[30] G. Barthe, et al., “Masking the GLP lattice-based signature scheme
at any order,” in Proc. Annu. Int. Conf. Theory Appl. Cryptographic
Techn., 2018, pp. 354–384.

D’ANVERS ETAL.: REVISITING HIGHER-ORDER MASKED COMPARISON FOR LATTICE-BASED CRYPTOGRAPHY: ALGORITHMS AND... 331

https://ia.cr/2021/1422
https://ia.cr/2021/1615
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://eprint.iacr.org/2020/912
https://ia.cr/2021/849
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9303
https://tches.iacr.org/index.php/TCHES/article/view/9303
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://tches.iacr.org/index.php/TCHES/article/view/8975
https://tches.iacr.org/index.php/TCHES/article/view/8975

[31] F. Bache, C. Paglialonga, T. Oder, T. Schneider, and T. G€uneysu,
“High-speed masking for polynomial comparison in lattice-based
KEMs,” IACR Trans. Cryptographic Hardware Embedded Syst.,
vol. 2020, no. 3, pp. 483–507, 2020. [Online]. Available: https://
tches.iacr.org/index.php/TCHES/article/view/8598

[32] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hard-
ware against probing attacks,” in Proc. Annu. Int. Cryptol. Conf.,
2003, pp. 463–481.

[33] J. Bos, et al., “CRYSTALS - Kyber: A CCA-secure module-lattice-
based KEM,” in Proc. IEEE Eur. Symp. Secur. Privacy, 2018,
pp. 353–367.

[34] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren,
“Saber: Module-LWR based key exchange, CPA-secure encryp-
tion and CCA-secure KEM,” in Proc. Int. Conf. Cryptol. Afr., 2018,
pp. 282–305.

[35] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric
and symmetric encryption schemes,” in Proc. Annu. Int. Cryptol.
Conf., 1999, pp. 537–554.

[36] D. Hofheinz, K. H€ovelmanns, and E. Kiltz, “A modular analysis of
the Fujisaki-Okamoto transformation,” in Proc. Theory Cryptogra-
phy Conf., 2017, pp. 341–371.

[37] J.-S. Coron, J. Großsch€adl, and P. K. Vadnala, “Secure conversion
between Boolean and arithmetic masking of any order,” in Proc. Int.
Workshop Cryptographic Hardware Embedded Syst., 2014, pp. 188–205.

[38] J.-P. D’Anvers, Q. Guo, T. Johansson, A. Nilsson, F. Vercauteren,
and I. Verbauwhede, “Decryption failure attacks on IND-CCA
secure lattice-based schemes,” in Proc. IACR Int. Workshop Public
Key Cryptography, 2019, pp. 565–598.

[39] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen,
“PQM4: Post-quantum crypto library for the ARM Cortex-M4.”
[Online]. Available: https://github.com/mupq/pqm4

[40] J.-S. Coron, F. G�erard, S. Montoya, and R. Zeitoun, “High-order
table-based conversion algorithms and masking lattice-based
encryption,” IACR Cryptol. ePrint Arch., 2021, Art. no. 1314.
[Online]. Available: https://ia.cr/2021/1314

Jan-Pieter D’Anvers received the MSc and PhD
degrees in electrical engineering from KU
Leuven, in 2015 and 2021, respectively. He is cur-
rently a postdoctoral researcher with the COSIC
Research Group, KU Leuven, funded by an FWO
(Research Foundation Flanders) postdoctoral
grant. His research focuses on the design, secu-
rity and side-channel security of post-quantum
cryptography, and fully homomorphic encryption.
He is co-designer of Saber, one of the final candi-
dates in the NIST post-quantum standardization
process.

Michiel Van Beirendonck received the BSc and
MSc degrees in electrical engineering from KU
Leuven, Belgium, in 2017 and 2019, respectively. He
is currently working toward the PhD degree with the
Research Group COSIC, KU Leuven. During his
MSc studies, he spent one year with EPFL, Switzer-
land, as part of the SEMP exchange program. His
research focuses broadly on the implementational
challenges of lattice-based cryptography. He has
worked extensively on side-channel attacks and
countermeasures for post-quantum cryptosystems,
as well as hardware acceleration of fully homomor-
phic encryption schemes.

Ingrid Verbauwhede (Fellow, IEEE) is a profes-
sor with the Research Group COSIC, Electrical
Engineering Department, KU Leuven. At COSIC,
she leads the secure embedded systems and
hardware group. She was elected as member of
the Royal Flemish Academy of Belgium for sci-
ence and the arts in 2011. She received the IEEE
2017 Computer Society Technical Achievement
Award. She is a recipient of two ERC Advanced
Grants, one in 2016 and a second one in 2021.
She is a pioneer in the field of efficient and secure

implementations of cryptographic algorithms on many different plat-
forms: ASIC, FPGA, embedded, cloud. With her research, she bridges
the gaps between electronics, the mathematics of cryptography, and the
security of trusted computing. Her group owns and operates an
advanced electronic security evaluation lab. She is a fellow of the IACR.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

332 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

https://tches.iacr.org/index.php/TCHES/article/view/8598
https://tches.iacr.org/index.php/TCHES/article/view/8598
https://github.com/mupq/pqm4
https://ia.cr/2021/1314

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

