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Abstract—Installing audio-based applications exposes users to the risk of the data processor
extracting additional information beyond the task the user permitted. To solve these privacy

concerns, we propose to integrate an on-edge data obfuscation between the audio sensor and
the recognition algorithm. We introduce a novel privacy loss metric and use adversarial learning
to train an obfuscator. Contrary to existing work, our technique does not require users to specify
which sensitive attributes they want to protect (opt-out) but instead only provide permission for
specific tasks (opt-in). Moreover, we do not require retraining of recognition algorithms, making
the obfuscated data compatible with existing methods. We experimentally validate our approach
on four voice datasets and show that we can protect several attributes of the speaker, including

gender, identity, and emotional state with a minimal recognition accuracy degradation.

Introduction

B AupIO data is used in an increasing number
of pervasive IoT applications that are deployed
in our private space. Microphones in our houses
and smartphones have been proposed for acoustic
event detection in ambient assisted living [1],
speech processing by smart speakers of voice
commands [2], or cough detection in telemedicine
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[3].

This rich palette of applications are all real-
ized as processing algorithms on the same data
stream. All applications request direct access to
the microphone, but raw audio contains more
data than strictly needed to perform the task.
This problem of data bundling [4], [S] opens the
door for the audio being used for other purposes
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than the one originally agreed upon. An acoustic
system for fall detection of an older person might
also reveal if other persons are present. From
voice commands targeted to a smart speaker,
many sensitive attributes can be derived about the
user that go beyond the content of the spoken
words, such as speaker identity, emotion, gender
or ethnicity. Patent filings indeed show that com-
panies consider these options as valuable sources
of information for targeted advertising [6].

Information extraction from audio is typi-
cally realized by state-of-the-art deep neural net-
works (DNNs) with millions of parameters, such
as CycleGAN-VC2 [7]. High-end edge devices,
such as smartphones, have the necessary substan-
tial computational resources to evaluate machine
learning models of sound and speech applications
locally. Although no raw audio data is transmitted
to a cloud back-end, the risk of data misuse
remains because the machine learning models are
typically integrated in third-party apps. Operating
systems such as Android or iOS require apps to
ask permission to use the microphone, but once
this permission is granted, there is no way for the
user to restrict the type of information that the app
can extract from the raw data. In applications like
audio-based surveillance in smart cities or nursing
homes, up to hundreds of edge devices need to
be installed and maintained. In such cases, cloud-
based audio processing reduces the installation
and maintenance cost but provides data subjects
with even less privacy guarantee.

To protect the privacy of the end user, we
propose to obfuscate the audio on the edge device.
The obfuscation is implemented as a deep neural
network (DNN) with a small computational foot-
print that transforms the original audio in such
a way that only selected sensitive attributes are
retained, such as gender, identity, etc. We use
the principle of adversarial training with a newly
designed privacy loss metric to train the obfusca-
tor. The downstream analysis model (running in
the cloud or on the edge device) then only has
access to the obfuscated audio instead of directly
to the raw microphone data. In this paper, we
refer to this model as the target task, with a
task consisting of the extraction of one or more
permitted attributes. The principle is illustrated in
Figure 1.

Crucially, the audio is transformed in such
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Figure 1. In our proposed system, users authorize
one target task. Raw audio is obfuscated on the
device, resulting in a transformed audio stream that is
transmitted to the target task also on the edge device
or in the cloud.

a way that it can still be processed by a pre-
trained DNN. Our filtering approach could thus
be offered as a virtual sensor to existing 3rd party
applications, with the filter running in a protected
hardware environment.

A second major benefit of our approach, and
differentiating it from existing approaches, is that
it provides an “opt-in” regime, meaning that the
exposed data can only be used for authorized
tasks. Alternative works are “opt-out”, requiring
users to enumerate the attributes they do not want
to provide permission for, which is less protective
of privacy.

The main contributions of this paper are three-
fold. First, to the best of our knowledge, this is
the first work to consider the opt-in regime on
audio analysis tasks.

Secondly, we propose a privacy loss function
that uses latent space feature representations that
capture higher level attributes than the commonly
used metrics that work directly with the raw
audio. Finally, our solution outputs an obfuscated
audio stream that is still compatible with a pre-
trained DNN for the target task, making it com-
patible with 3rd party applications.

The remainder of this paper is structured
as follows. After discussing related prior work,
we describe our obfuscator framework. This
framework is evaluated in an experimental set-up
involving four datasets and three attributes.
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Finally, we discuss the limitations and scope
of our work and provide pointers for future work.

Related Work

As minor clues can already reveal privacy
sensitive personal information [8], there is an
increasing interest in privacy-enhancing technolo-
gies for machine learning applications. Most of
the existing works protect one specific attribute,
such as gender [9], identity [10], [5], or emotion
[11].

In the VoicePrivacy 2020 Challenge [12], the
task is to protect speaker identity in automatic
speech recognition (ASR) tasks. State-of-the-art
in this competition is the Distribution-Preserving
X-Vector Generation approach [10]. X-vectors are
fixed length embeddings of audio fragments that
capture all information on the speaker identity
but not on the spoken content [13]. Speech is
anonymized by generating synthetic audio, re-
placing the original x-vector with a fake x-vector
sampled from a Gaussian Mixture Model that
was fitted on the principal components of the x-
vectors of speakers in a large public dataset.

Other works on privacy in audio-based ap-
plications focus on acoustic event classification
instead of ASR as the target task. Nelus et al. ob-
served that feature extractors designed for event
classification often produce representations con-
taining a significant amount of speaker-dependent
data [5]. They first train a feature extractor for
the target classification task, which they call
the trust model. Through a hyperparameter, they
control during the training process the balance
between classification performance and the mu-
tual information between the original input and
the extracted feature vector. Afterwards, they
train a threat model that interprets the extracted
feature vectors as x-vectors and aims to ex-
tract speaker information. They experimentally
demonstrate the trade-off between trust and threat
model performance. While they use existing ar-
chitectures for both trust and threat models, the
main disadvantage of their approach is that the
classifier of the target task has to be retrained
with the modified loss function. Our approach,
on the other hand, does not require retraining the
model of the target task.

Other approaches rely on disentanglement to
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protect certain speaker attributes. Noé et al. pro-
pose an adversarial disentangling autoencoder to
conceal the gender attribute from the speaker
identification task [9]. Their framework consists
of a pre-trained gender classifier, an encoder, a
decoder, and a gender classifier. During training,
the decoder tries to generate a gender-protected x-
vector from the output of the encoder and the pre-
trained classifier. During the inference phase, the
decoder is fed with a randomly selected gender
value to generate a gender protected x-vector.
The major disadvantage of this work is that it
is an opt-out approach which only protects pre-
specified attributes.

Whereas these approaches modify feature rep-
resentations to remove a predefined sensitive at-
tribute, we generate a transformed audio signal.
This allows us to use our model in combination
with an off-the-shelf recognition model without
retraining. Moreover, x-vector-based approaches
are limited to applications with ASR as the
target task. Our approach is also applicable to
other tasks. In addition, we provide an opt-in
framework where all task-irrelevant information
is removed.

Opt-in Privacy Protection Framework

Our framework consists of a target model, an
obfuscator and a deobfuscator. The relationship
between these components is visualized in Figure
2. Note that the deobfuscator is only used during
the training phase. The target model T' is a
function that represents the task the user wants to
opt-in for. The input signal X is the log spectrum
of the raw audio, a common feature representation
used as input in many audio DNN processing
applications, while still allowing to decode into
raw audio when needed.

Given the original signal X, the target model
outputs 7'(X), for instance, a label indicating the
recognized gender, emotion or speaker. We only
assume read access to the model 7' and never
change its parameters. In modern applications, 7'
is a pre-trained DNN.

The obfuscator F,, is a DNN with trainable
parameters o that transforms the original signal
X to X = F,(X). To be compatible with the
target model, X has the same dimension as the
input signal X. We also introduce a deobfusca-
tor F,, DNN with trainable parameters p, that
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Figure 2. Overview of the proposed framework. During training, the raw data is fed to the obfuscator which
generates a privacy-preserving version. The pre-trained target model is agnostic to the data obfuscation and
can still perform the intended task. Meanwhile, the deobfuscator tries to reconstruct the original data from the
privacy-preserved data. The deobfuscator is discarded for inference. L., L, and L, are the adversarial loss,
target loss, and privacy loss. The black, and green lines indicate the flow of data, and the calculation of loss,

respectively.

tries to reconstruct the original signal from the
obfuscated signal. Since we aim for an opt-in
approach, we cannot train the deobfuscator on the
performance achieved in particular tasks. Instead,
the training objective is to minimize the Mean
Square error (MSE):

o« = MSE(F,(X), X). (1)

The training objective of the obfuscator con-
sists of two (weighted) loss terms L; and L,
reflecting the opposing goals to sustain task per-
formance after transforming X, while removing
as much information as possible in order to
prevent the reconstruction of X from the modified
signal. In classification target tasks, as used in this
paper, L, is the cross-entropy loss H between the
original and transformed signal:

L, = H(T(X),T(X)). 2)

Following the traditional adversarial approach
with L, = —L, did not provide satisfying results.
The main reason is that the log spectrum of the
audio X is a too sparse feature encoding. Instead,
we use an intermediate distributed representation
of dimension M that is the output after processing
the first N layers of F},. We thus define F, as the

sub-model of F),, with trainable parameters v C
i, and define the privacy loss L,, as the distance
in each dimension of the latent representation:

1 & _
:MZD(FW(X m)
m=1

Since the variance between latent dimensions
might vary significantly, we compute the distance
in each dimension with the following distance
function D:

D(e, ) = |

E(X)m). )

1

o 0k

4

Experimental Setup

Our evaluation focuses on sensitive attributes
that can be extracted from speech. Although the
principle should extend to non-speech applica-
tions as well, the choice to focus on speech was
made because of the availability of public datasets
with labels for multiple sensitive attributes and
existing opt-out algorithms for these attributes to
benchmark against.

We compare our method with the recent Ad-
versarial Disentanglement Representation (ADR)
framework[9], which is to our knowledge the
work that comes closest to our approach. This
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opt-out framework uses x-vector as audio feature
encoding. These x-vectors are converted by an
encoder, which is adversarially trained against a
classifier for a pre-specified protected attribute.

Datasets

We evaluate our proposed method on four
datasets: The Emotional Voices Database (EmoV)
[14], The Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS) [15],
Librispeech [16], and VoxCeleb2 [17]. The EmoV
and RAVDESS datasets contain audio fragments
of speakers with four labeled attributes: gender,
speaker identity, emotion, and utterance. The
five emotions considered in EmoV are neutral,
amused, angry, sleepy and disgust. The eight
emotions considered in RAVDESS are neutral,
calm, happy, sad, angry, fearful, surprise and
disgust. The other two datasets include more
speakers and utterances, but have no labels for
emotion.

In real applications, it is very unlikely that
the end-user of an application is one of the users
whose voice was included in the labelled datasets
used to train the obfuscator and target models.
To mimic this setting, we split Librispeech and
VoxCeleb2 into training and test sets that have
different speakers. For Librispeech, we use as
training set the merger of the trainl00 and
train360 subsets and the testclean subset
as our testing set. As for the VoxCeleb2 [17]
dataset, we followed the experimental set-up of
ADR and consider the V2D subset as our training
set and V2T subset as our testing set. For EmoV
and RAVDESS datasets, limited by the number of
speakers in each dataset, the training and testing
datasets contain different fragments but the same
speakers.

We pre-process the data by first re-sampling
at 16000 Hz and compressing into mono-channel
audio. After normalizing the volume, we follow
the settings of deepspeech2 [18] to extract the
spectrum.

Model Architecture

We use the DeepSpeech2 model [18] as the
architecture of the target model 7. This model
takes raw audio as input and is widely used for
speech-to-text recognition but can be easily ad-
justed to attribute classification tasks. This model
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exists in different variants, for our experiments
we set the number of channels for convolution
and BatchRNN to 16 and 64, respectively. To fit
our target task of classifying sensitive attributes,
we only adapted the dimension of the last fully-
connected layer to the number of classes for the
task at hand. For each segment of the input audio,
the model produces a prediction and the final
class is decided by vote counting over all seg-
ments. While ADR was evaluated against a differ-
ent target model, the evaluation results presented
in the next section indicate that performance of
our target model on original audio fragments is
similar to the performance of the ADR target
model.

The goal of the obfuscator and deobfuscator
is to transform the input data into an output with
the same format. Since this task is very similar to
voice conversion, we adopted for the obfuscator
and deobfuscator the CycleGAN-VC2 [7] archi-
tecture, a popular state-of-the-art voice converter
that maps the content and style of one speaker
onto another. The obfuscator is downsized to
fit on a resource-constrained edge device. We
adjusted the number of residual blocks (3 in-
stead of 6) and reduced the number of feature
channels by a factor of 8. The deobfuscator was
not downsized. The number of parameters of
the obfuscator and deobfuscator are 0.759M and
6.847M, respectively. We train both obfuscator
and deobfuscator with stochastic gradient descent
with an initial learning rate of le — 2 and a
momentum of 0.9. Obfuscator and deobfusca-
tor were trained jointly on a Tesla V100-SXM2
model. Training converged after 8 hours on the
smaller EmoV and RAVDESS datasets, and after
5 days on the larger VoxCeleb2 and Librispeech
datasets.

Attacker model

We consider two types of attackers: an ig-
norant attacker and an informed attacker. The
ignorant attacker is unaware of the existence
of the obfuscation, but is capable of training
his own classification model based on the same
publicly available datasets that the target task was
trained on. The informed attacker on the other
hand is aware of the existence of the privacy
protector. He has retrieved access to the trained
obfuscator and was able to generate obfuscated



An Opt-in Framework for Privacy Protection in Audio-based Applications

versions of the fragments in the public datasets.
He thus possesses a dataset containing obfuscated
data with ground truth labels and can train a
model specifically to undo the obfuscation. For a
fair comparison, all the attackers share the same
architecture of the target model of our method.

Results

In the following sections, we first discuss the
target task performance and privacy protection
for both systems. We then show how the opt-
in system can protect other attributes that were
not specified beforehand. Finally, we analyze the
computational cost of our approach.

Privacy Protection

In the first experiment, we evaluate our opt-in
system and the opt-out ADR in terms of clas-
sification accuracy on the target task and on the
unauthorised attributes. We focus on the attributes
of gender and speaker id, since these labels were
present in all datasets.

The results of the first experiment are shown
in Figure 3. The classification performance on
the target task and on the unauthorised task are
shown on the Y-axis and X-axis respectively. The
random classification performance on the unau-
thorised task corresponds with optimal protection
and is shown by a vertical dashed line. Good
protection on the unauthorised task and good
performance on the target task corresponds to the
upper left corner of the graphs.

Since we use a different audio encoding than
ADR, we first confirmed if both representations
contain the same amount of information about the
to-be protected attributes by training classifiers on
these input representations, resulting in similar
classification performance as indicated by the
circles in Figure 3. Squares and stars indicate the
results obtained by the ignorant attacker and the
informed attacker, respectively.

Figure 3 (a) illustrates the results obtained by
an attacker on gender while allowing for speaker
recognition. Both our framework and ADR are
able to protect gender recognition up to the level
of random guessing against ignorant attackers.
Informed attackers who were able to train specif-
ically against ADR or our obfuscator manage
to retrieve more information on the protected
gender attribute. Our model provides a slight but

consistently better protection on all datasets.

For both frameworks, this protection comes
at the cost of a degradation in classification
performance of 2-6% on the target task of speaker
identity recognition. Arguably, there is mutual
information between gender and speaker identity
as they are correlated attributes; however a more
in-depth analysis, e.g. as performed in [19] is
needed to determine whether this correlation fully
explains the performance degradation. On the
larger datasets, our model is outperformed by
ADR on the task performance. This could be
caused by two reasons. First, the DeepSpeech2
model takes spectrogram as input, which pre-
serves more information but is also more complex
to reconstruct. The second possible reason is
the correlations between the two attributes. It
is logical that some attributes, e.g. gender and
speaker identity, share some information. Thus it
is impossible to completely remove the informa-
tion from one another.

When we switch the target task and the
unauthorised tasks, similar conclusions can be
drawn, see Figure 3 (b). Ignorant attackers are
not able to perform better than randomly guessing
on data protected by both frameworks, but our
framework provides consistently better protection
against informed attackers than ADR. This im-
proved protection comes at the cost of a small
drop in target task performance.

Opt-out Versus Opt-in

In the second experiment, we aim to demon-
strate the differences between an opt-out and an
opt-in system, and the advantages of the latter.
As mentioned before, an opt-out system requires
explicitly specifying which attribute has to be pro-
tected, rather than which attributes are permitted.
Thus, to demonstrate the difference between an
opt-in system and an opt-out system, we perform
an attack on the attributes that are not specified
by the opt-out system.

Besides the speaker id and gender, we include
emotion as a third sensitive attribute. Since only
the EmoV and RAVDESS datasets provide labels
for these three attributes, this experiment is only
conducted on these two datasets.

Following the description of [9], we train
ADR with speaker recognition as target task.
Being an opt-out system, ADR also requires us to
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Figure 3. Results of sensitive information retrieval on privacy-protected data for different tasks. (a) shows
the cases of allowing speaker identification and defending against attacks on gender retrieval. (b) shows the
cases of allowing gender recognition and defending against attacks on speaker retrieval. The vertical dash
lines indicate the results of random guessing, where the arrow indicate better privacy protection. The horizontal
dash lines indicate the performance on the target task, resulting the crossing of the dash lines as the best
performance. Note that the axes of target task performances are scaled to 90 to 100 for better visualization.

explicitly specify which attribute to be protected.
We choose gender as protected attribute, as in the
original paper. Emotion is thus the unspecified
attribute that a user might inadvertently expose.

The results of this experiment are illustrated
in Figure 4. The axes show the classification per-
formance on the protected gender attribute, and
the unspecified emotion attribute. Dashed lines
indicate the performance of random guessing, the
best possible protection level one can achieve.

Both frameworks provide protection against
an uninformed attacker, as the classification on
obfuscated data approaches those of a random
classifier. Our framework is however much more
robust against informed attacks, protecting both
attributes while ADR only achieves reasonable
protection against the pre-specified gender at-
tribute. An informed attacker manages to retrieve
emotion information with more than 70 % accu-
racy on the ADR-protected data.

This experiment shows that the opt-in regime
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Figure 4. Results of sensitive information retrieval
(gender and emotion) on privacy protected data for
speaker identification. The horizontal and vertical
dash lines indicate the results of sensitive information
retrieval on hypothetically perfectly protected data,
with their crossing indicating the best protection.

provides better protection when the attribute of
interest is not previously known. Although spec-
ifying specify multiple protected attributes could
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remedy this particular case, the fundamental chal-
lenges of opt-out systems remain.It is impossible
to define all the possible attributes that may be
interested by all parties. Thus, opt-out systems
like ADR would still leak privacy information
even with multiple predefined attributes.
Summarizing the results of both experiments,
we conclude that our framework provides good
protection against both ignorant and informed
attackers. The major advantage of our framework
is the opt-in aspect, which aims to only retain
information in the obfuscated signal relevant for
the authorized task. However, this improved pro-
tection comes at a limited cost in classification
performance on the permitted attribute.

Computational Cost

We further measure the computational time
of the framework (without deobfuscator) on edge
devices to simulate how the proposed framework
works in a real-world scenario. In Table 1, we
show the average execution time of obfuscating
one second of audio on different platforms. Only
on devices with embedded GPU, the model can
work in real-time.

Conclusion and Future Work

In this paper, we introduced a novel opt-in
framework to preserve privacy while using audio
applications. We use adversarial training and a
novel privacy-preserving loss metric to train an
obfuscator that removes all but the information
needed for the authorised task. Unlike existing
approaches, we do not require an adaptation of
the target task classification models. This allows
the obfuscator to be integrated in a pipeline with
existing third-party audio services.

We validated our approach on four voice
datasets and compared it against one state-of-the-
art approach for privacy protection. We evaluated
protection against two types of attacks and show
that our method can protect privacy with only a
small reduction in classification accuracy on the
permitted task. We further showed the strength of
the opt-in framework against unspecified attacks
compared to the opt-out framework.

The proposed opt-in framework still has a few
limitations that mandate future research before
being applied in real-world scenarios. Firstly,
we have evaluated our obfuscator architecture

with the classification of one attribute as target
task. How the current model performs on other
task types such as speech-to-text recognition is
yet to be investigated. In its current inception,
having multiple permitted target tasks would re-
quire multiple obfuscators. Creating one obfus-
cator model with configurable target tasks would
first require an in-depth study of the correlation
between attributes. Secondly, although we do not
modify the target task model, we require white-
box access to back-propagate weight updates to
the obfuscator. This makes our approach only
compatible with third-party services with known
architecture and parameter values. To overcome
this limitation, one possible solution is to leverage
transfer learning strategies. Finally, deployment
of the obfuscator on low-end devices would re-
quire network compression techniques such as
pruning and quantization [20].

Audio-based applications are very attractive,
but pose significant privacy risks to the user. We
hope that this paper will inspire other researchers
to contribute to better protection mechanisms.
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