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ABSTRACT

We investigate differential evolution optimization to fit Rutherford backscattering data. The algorithm helps to find, with very high preci-
sion, the sample composition profile that best fits the experimental spectra. The capabilities of the algorithm are first demonstrated with the
analysis of synthetic Rutherford backscattering spectra. The use of synthetic spectra highlights the achievable precision, through which it
becomes possible to differentiate between the counting statistical uncertainty of the spectra and the fitting error. Finally, the capability of the
algorithm to analyze large sets of experimental spectra is demonstrated with the analysis of the position-dependent composition of a
SrxTiyOz layer on a 200 mm silicon wafer. It is shown that the counting statistical uncertainty as well as the fitting error can be determined,
and the reported total analysis uncertainty must cover both.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0096497

I. INTRODUCTION

Rutherford backscattering spectrometry (RBS) is applied to
analyze the elemental composition depth profile of thin films and
near-surface regions. RBS is mainly recognized for the high sensitivity
to heavy elements on a light substrate. The underlying physical phe-
nomena that govern Rutherford backscattering spectrometry are well
understood. The RBS spectrum can be predicted if the experimental
conditions and the composition depth profile of the sample are
known. However, the inverse problem, which is to determine the com-
position depth profile from an experimental RBS spectrum, is more
challenging. The first challenge is that in principle, multiple composi-
tion depth profiles may lead to an identical RBS spectrum.1 Thus, to
fit an RBS spectrum, the analyst must restrict the solution space by
defining the sample structure and the possible elements or by narrow-
ing the solution space by imposing the consistent analysis of multiple
spectra. The second challenge is that the sample composition parame-
ters often appear as highly correlated in the optimization function.

There is a need for an algorithm that can find the sample param-
eters irrespective of the correlation. The potential of simulated anneal-
ing2 in this respect was recognized.3 The simulated annealing
algorithm has been successfully implemented4,5 and is being used to

analyze RBS spectra. In the early stage of optimization, simulated
annealing performs well, while in the last stage, it appears to be less
efficient. Therefore, the last stage of simulated annealing optimization
is conventionally complemented with a local search routine. Artificial
neural networks are attractive alternatives to aid with the analysis of
Rutherford backscattering spectra.6 One of the main advantages of
artificial neural networks is that the analysis is retrieved instanta-
neously, and thus, it is ideally suited to analyze large sets of data for
which only a few parameters vary. Unfortunately, a new network must
be constructed if the parameter search space changes or if the experi-
mental conditions are varied. Besides, the use of artificial neural net-
works to analyze RBS data is found to add around 1% to the
uncertainty budget.6–8 After the analysis with an artificial neural
network, one conventionally uses a traditional analysis code to verify
the correctness and to improve the accuracy.9,10

It is accepted that different optimization algorithms are better
suited to solve different problems.11 In particular, the differential
evolution algorithm has marked a breakthrough in meta-heuristic
optimization.12 In the recent years, many more new and promising
meta-heuristic algorithms have been proposed.13–18 It is, therefore,

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 132, 165302 (2022); doi: 10.1063/5.0096497 132, 165302-1

© Author(s) 2022

https://doi.org/10.1063/5.0096497
https://doi.org/10.1063/5.0096497
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0096497
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0096497&domain=pdf&date_stamp=2022-10-26
http://orcid.org/0000-0002-7679-3401
http://orcid.org/0000-0001-9539-5874
http://orcid.org/0000-0002-8863-9532
http://orcid.org/0000-0003-3084-2543
http://orcid.org/0000-0003-2467-1784
mailto:r.heller@hzdr.de
mailto:johan.meersschaut@imec.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0096497
https://aip.scitation.org/journal/jap


challenging to identify the optimization algorithm that is best
suited for a specific problem.19–22

In the case of Rutherford backscattering spectrometry, an
exploratory study of different optimization strategies is reported.23

However, a more detailed study to assess the performance of the
various optimization algorithms is needed. In this work, we investi-
gate the potential of differential evolution to fit Rutherford back-
scattering spectra. The code is named RUTHELDE. We demonstrate
that the implementation is robust, that it does require minimal
human supervision, and that a very good precision and accuracy
for the extracted parameters can be achieved.

II. THE DIFFERENTIAL EVOLUTION ALGORITHM

The differential evolution (DE) algorithm was first proposed
by Storn and Price in 1995 as a simple and efficient heuristic for
global optimization over continuous spaces.12 The authors show
that the differential evolution algorithm is able (1) to handle non-
differentiable, nonlinear, and multi-modal fitness functions, (2) is
easily parallelizable, (3) is easy to control and set up, and (4) has
good convergence properties.

The DE algorithm, as a population based search heuristics, at
each generation G, holds a population SG of N solutions. Each solu-
tion with index j, also called an individual, refers to a P dimen-
sional parameter vector XG

j ¼ {xG1,j, x
G
2,j, . . . , x

G
P,j}. The elements of

the parameter vector represent the fit parameters of a particular
problem. The individuals of the initial generation (G ¼ 0) are
chosen randomly from the entire parameter space. The optimiza-
tion in differential evolution is realized as follows.

For each target vector XG
j [ SG, a so-called mutant vector VG

j
is generated according to

VG
j ¼ XG

r1 þ F � XG
r2 � XG

r3

� �
, (1)

where F is the scaling factor (0 � F � 1) and r1, r2, r3 [ [1,
2, . . . , N] point to randomly selected individuals of SG with
r1 = r2 = r3.

Successively, in the crossover process, a new vector called trial
vector UG

j ¼ {uG1,j, u
G
2,j, . . . , u

G
P,j} is derived from the target vector

XG
j and the mutation vector VG

j by

uGi,j ¼
vGi,j if rand(0, 1) � CR,

xGi,j otherwise,

(
(2)

with rand(0, 1) being a random number in [0, 1]. CR is referred to
as the crossover probability (0 , CR , 1) and represents the
second input parameter of the DE algorithm.

In a final step, a comparison between the target vector and the
trial vector is done according to the value of their fitness function
f (X). The vector with the better (higher) fitness value is taken into
the new generation according to

XGþ1
j ¼ UG

j if f (UG
j ) . f (XG

j ),

XG
j otherwise:

(
(3)

Thus, a new generation SGþ1 ¼ {XGþ1
j : j ¼ 1, 2, . . . , N} is pro-

duced. The average and the best fitness of population G are defined
as

�f
G ¼ 1

N
�
XN
j¼1

f (XG
j ) and f Gbest ¼ max

(XG
j [SG)

f (XG
j ): (4)

It follows from Eq. (3) that �f
Gþ1 � �f

G
and that f Gþ1

best � f Gbest.
The operations of mutation, crossover, and selection are con-

tinuously repeated until a predefined termination criterion is
reached. The latter one could be a minimum value for average or
best fitness, a fixed computation time, or a certain number of itera-
tions. A characteristic that makes differential evolution work so
successfully is that mutation is based on differences between indi-
viduals of the entire population. This allows each fit parameter to
self-tune and gives an appropriate reduction in the magnitude as
the optimization proceeds and convergence is approached. This
functionality parallels the approach used successfully in evolution
strategies where the mutation variances are self-tuning.24

In its original form, the differential evolution algorithm has
three fixed input parameters determining its performance: the pop-
ulation size N , the scaling factor F, and the crossover probability
CR. Over the years, several optimizations and derivations to differ-
ential evolution are proposed. Noteworthy are changes in the
initialization,25–27 modifications of the mutation,28–30 variations in
crossover31–34 and selection,35,36 and hybridization with other
search algorithms.37–39 Many efforts have also been spent to imple-
ment one or more DE parameters in an adaptive manner.40–42 A
comprehensive review on the development of differential evolution
during the last two decades is given in Ref. 43.

III. ADOPTION TO RBS SPECTRA FITTING

The analysis of RBS spectra is commonly done by forward
simulation and comparison of the simulated spectrum to the mea-
sured one. The fit parameters are defined as the input values that
are used to simulate the spectrum. Common fit parameters in
Rutherford backscattering analysis are the target model comprising
the thicknesses of all layers as well as the elemental ratios in each
layer and the experimental setup given by the detector calibration,
detector resolution, and the detector solid angle in conjunction
with the total applied charge.

The fitting of Rutherford backscattering spectra is typically
achieved by minimizing the sum of squared residuals (χ2) between
the simulated and the experimental spectra,

χ2 ¼
XNc

i¼0

(xexpi � xsimi )
2
, (5)

where xexpi and xsimi represent the height of the experimental and
simulated spectrum in channel i and Nc the total number of chan-
nels in the spectrum. Unfortunately, the sum of squared residuals
is not normalized, and thus, it is less intuitive to the user since it
depends on the shape and noise of the experimental spectra and on
the number of channels. Therefore, we use a normalized fitness
function, which is χ2SG=χ

2, with χ2SG being the sum of squared
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residuals between the experimental spectrum and the spectrum
smoothed by applying a Savitzky–Golay filter of width equal to the
detector resolution. The later one can be regarded as the reference
fit since due to its averaging nature, it generates a very smooth rep-
resentation of the input data points. Thus, the fitness function
χ2SG=χ

2 cannot overcome 1, and reaching any value close to 1 may
be used as stopping criteria for the code.

The RUTHELDE software is an implementation of differential
evolution as described above by Eqs. (1)–(3) and without the intro-
duction of adaptive parameters. Yet, as a surplus, we implemented
a mechanism to retain the diversity in the population. This is done
by introducing a threshold value TR [ [0, 1]. With every genera-
tion, 10% of the individuals in the population except the best indi-
vidual is replaced by randomly initialized new ones if
�f
G
= f Gbest . TR.
The four parameters (N , F, CR, and TR) that control the dif-

ferential evolution algorithm are optimized by repeatedly fitting
different RBS spectra and monitoring the performance. The perfor-
mance for each set of four parameters is assessed through the
steepness of the fitness improvement as a function of the number
of generations and through the best final fitness after a fixed
number of iterations. For each set of four parameters, the fitting is
repeated 20 times with random seeds. The following parameters for
the differential evolution algorithm are found to be versatile for
fitting RBS spectra: N ¼ 20, F ¼ 0:6, CR ¼ 0:9, and TR ¼ 0:95.
Based on our exploration, it appears that low values for N
(N , 15) lead to a poor diversity within the population, which
increases the chance of the algorithm being trapped in a local
optimum. On the other hand, high values for N (N . 25) lead to a
long computation time for each generation. Furthermore, we found
that the differential evolution optimization performs well for a
broad range of values for the scaling factor (F) and the crossover
probability (CR), namely, 0:45 , F , 0:65 and 0:65 , CR , 0:95.
The threshold level (TR) is meant to retain a certain level of diver-
sity within the population at the later stage of the fitting. The value
of TR should be high enough (TR . 0:9) not to introduce too
much randomization in the early stage of optimization.

Irrespective of the efficiency of the search algorithm, the eval-
uated fit result can only be as good as the accuracy of the underly-
ing spectrum simulation. If the physical processes are not correctly
implemented, then the forward simulator will generate in-accurate
spectra, and thus, the extracted fit parameters will be incorrect.
Therefore, special care needs to be taken in the proper implementa-
tion of forward simulation.

IV. THE FORWARD SIMULATOR

The physics of Rutherford backscattering spectrometry is
described with great accuracy by assuming elastic scattering with a
central force field and by considering the gradual energy loss of the
ions as they travel through the material.44–46 We implemented the
physics of RBS as described in the documentation of the SIMNRA

code.47,48 The electronic stopping and the nuclear stopping are
implemented according to Ziegler–Biersack formalism.49 The
screening is calculated with the Andersen model.50 The straggling
is modeled as a Gaussian broadening as proposed by Bohr.44 The
propagation of straggling in thick layers is included. In the present

implementation, neither the simulation of pileup nor the treatment
of surface roughness is yet included. The integration of those and
other features to advance the simulator is subject to ongoing code
development.

To test the accuracy of the Rutherford backscattering imple-
mentation, we compare in Fig. 1 simulations based on the present
code with simulations generated with SIMNRA. We adopt conditions
that are close to experimental conditions that are used further on.
The energy of the primary Heþ ion beam is 1.52MeV. The scatter-
ing angle is 170�. Measured from the sample normal, the incidence

FIG. 1. Comparison between simulations obtained with RUTHELDE (black dots)
and with SIMNRA version 7.03 (red line). (a) Simulations for a 2 nm Au thin film
on a SiO2 buffer on a silicon substrate. (b) Simulations for a 100 nm SrTiO3 thin
film on a silicon substrate. (c) Simulations for a In2Ga2Zn1O7 thin film on a
silicon substrate. All simulations assume a primary Heþ beam of 1.52 MeV, an
incident angle of �11�, a scattering angle of 170�, and an exit angle of 21�.
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angle is �11� and the exit angle is 21�. The detector solid angle is
0.42 msr. We assume a detector energy resolution of 15 keV and a
bin-width of 1.5 keV/channel.

First, we consider the RBS spectrum for an Au on SiO2 on a
Si substrate sample [Fig. 1(a)] to represent the very thin film case.51

The areal densities are 12� 1015 atoms/cm2 (approximately 2 nm)
for the gold layer and 6:6� 1017 atoms/cm2 (� 100 nm) for the
silicon dioxide layer. The various signal edge positions in spectra
generated with RUTHELDE (black dots) and with SIMNRA (red line)
agree to better than 100 eV. The analyses of the gold areal density
in the two simulations using the surface approximation52 agree to
better than 0.02%.

Second, in Fig. 1(b), we consider the Rutherford backscatter-
ing for a SrTiO3 layer of 625� 1015 atoms/cm2 (�100 nm) on a
silicon substrate. The signals from backscattering on oxygen, on
titanium, and on strontium are indicated in the figure. The intensi-
ties for the different elements obtained with RUTHELDE and SIMNRA

agree to better than 0.03%.
Third, Fig. 1(c) shows the Rutherford backscattering spectrum

for an In2Ga2Zn1O7 layer of 1200� 1015 atoms/cm2 (�140 nm) on
a silicon substrate. Again, one observes that both RUTHELDE and
SIMNRA agree very well. Note that the simulations possess the infor-
mation about the contributions of the different elements even
where they appear to overlap in the total spectrum. See, for
example, the signals from backscattering on zinc, gallium, and
indium indicated in the figure.

The differences between the output from RUTHELDE and from
SIMNRA are small and are similar to the differences between other
state-of-the art implementations for RBS analysis.51 Therefore, we
validate RUTHELDE as a correct forward simulator for Rutherford
backscattering. The three model cases are also selected as they rep-
resent different degrees of difficulty to fit corresponding experi-
mental spectra as there is increasing overlap of the signals.

V. MONTE CARLO GENERATION OF RBS SPECTRA

The simulations in Fig. 1 contain the element-specific proba-
bilities to detect backscattered particles as a function of energy. We
use a Monte Carlo code to generate a draw from the element-
specific probability distributions to generate realistic test spectra.
The accumulated charge is determined by the number of generated
random numbers. For different synthetic spectra, the accumulated
charge ranges between 1 and 1000 μC. For each model system and
for each chosen value of accumulated charge, we produce 30 inde-
pendent synthetic spectra.

One such synthetic spectrum for each model system and
assuming a detector solid angle of 0.42 msr is shown in Fig. 2. The
synthetic spectra, shown as the black data points, correspond to an
accumulated charge of 31.6 μC for the Au [Fig. 2(a)] and the
SrTiO3 [Fig. 2(c)] thin film systems. The synthetic spectrum for the
In2Ga2Zn1O7 model system [Fig. 2(e)] is obtained for an accumu-
lated charge of 56.2 μC.

FIG. 2. (a) Synthetic RBS spectrum obtained for a 2 nm Au film on a silicon-oxide layer on a silicon substrate, (c) for a 100 nm SrTiO3 layer on a silicon substrate, (e) for
a 140 nm InGaZnO layer on a silicon substrate, and (g) for a 130 nm SrTiO3–90 nm LaFeO3–145 nm SiO2 multilayer stack on Si. Black data points are the synthetic spec-
trum obtained with the Monte Carlo method. The red line corresponds to the best fit obtained after fitting the synthetic spectrum with differential evolution. (b), (d), ( f ), and
(h) Evolution of the convergence of the various parameters during the fitting as a function of the number of evaluations. Simulations assume a primary Heþ beam of
1.52 MeV. For (a), (c), and (e), the incident angle is �11� and the scattering angle is 170�. For g, those angles are set to 70� and 100�, respectively.
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Additionally, we added another model system with a more
complex, multi-layered target model, namely, 130 nm SrTiO3, on
top of 90 nm LaFeO3 on top of 145 nm SiO2 [Fig. 2(g)]. A grazing
incidence geometry with an incident angle of 70� and a scattering
angle of 100� was chosen. The solid angle and the applied charge
are 1.0 msr and 25 μC, respectively.

Note that the number of events for the different elements is
monitored during the creation of the draw. For example, the
number of backscattered particles related to the model system
[Fig. 2(c)] is 34 666 events for strontium, 11 508 events for tita-
nium, and 4064 events for oxygen. The knowledge about the inten-
sity of the various contributions allows us to estimate their
respective statistical uncertainties. Interestingly, the exact number
of events for a specific contribution is different for the different
independent synthetic spectra, even if the target accumulated
charge is the same.

VI. DIFFERENTIAL EVOLUTION ANALYSIS

In this section, we investigate the performance of the differen-
tial evolution algorithm to find the elemental profile from a
Rutherford backscattering spectrum.

The synthetic spectrum in Fig. 2(a) is analyzed with a two-
layer model. In total, seven parameters need to be optimized: the
areal densities of the two layers, the atomic ratio for the SiO2 layer,
the detector gain (keV/channel), the detector offset, the detector
resolution, and the charge solid-angle product (charge). A very
good agreement between the synthetic spectrum and the fit after
500 generations (corresponding to 10 000 evaluations at the given
population size N ¼ 20) is observed in Fig. 2(a).

In this example, the search space for the Au thickness ranges
from 0 to 90 nm. The thickness of the SiO2 layer is allowed to vary
between 15 and 180 nm. In general, the parameter search space
does not need to be narrowly confined. For instance, it is generally
not needed to impose boundaries for the elemental ratios in a layer
containing multiple elements. The boundaries for the layer thick-
nesses generally can range from 0 to 5 times the actual value. It is
seen from Fig. 2 that the initial convergence is very efficient. In
contrast, the boundaries for the detector energy calibration need to
be defined more carefully. We have observed that a too wide search
space leads to the algorithm being trapped in “non-physical” solu-
tions. To our experience, the boundaries for the detector gain are
best defined as plus or minus 10% of the expectation value.

Since the differential evolution algorithm is based on a sto-
chastic process, the performance and the capabilities of the algo-
rithm may be investigated by repeating the fitting multiple times
and by inspecting the variance of the obtained parameters. The
analysis of the spectra is repeated 32 times. The plot in Fig. 2(b)
shows the relative standard deviation of a selection of fit parameters
as a function of the number of evaluations. One observes that the
relative standard deviation of the obtained parameters decreases as
more evaluations are allowed and that some parameters converge
faster and better as compared to others. For example, the detector
energy calibration converges to a standard fitting error of less than
0.001% after 5000 evaluations. The charge solid-angle product has
a slightly larger standard deviation. This can be understood since
the charge solid-angle product depends both on the amplitude of

the silicon signal in the spectrum as well as on the detector gain.
Furthermore, a value for the areal density of oxygen and gold in
the sample with a standard fitting error well below 0.01% is
obtained after 7500 evaluations.

The synthetic spectrum for SrxTiyOz in Fig. 2(c) is analyzed
with a single-layer model. The seven parameters to be optimized are
the areal densities of Sr, Ti, and O; the detector gain (keV/channel);
the detector offset; the detector resolution; and the charge solid-angle
product (charge). The areal density of the SrxTiyOz layer is allowed
to vary between 0 and 3� 1018 atoms/cm2. The fit with a random
initial guess and after 12 000 evaluations is shown as the red line. In
Fig. 2(d), the convergence of the fit parameters as a function of the
number of evaluations is shown. Remarkably, repeating the fit
30 times (with random starting conditions) results in values for the
different fit parameters with a spread of less than 0.01%. Therefore,
we demonstrate that differential evolution is a suitable algorithm to
fit Rutherford backscattering spectra to determine the composition
profile of compound layers with a high precision.

The synthetic spectrum for InwGaxZnyOz in Fig. 2(e) is ana-
lyzed with a single-layer model. Eight parameters need to be opti-
mized: the areal densities of In, Ga, Zn, and O; the detector gain
(keV/channel); the detector offset; the detector resolution; and the
charge solid-angle product (charge). The fit with a random initial
guess and after 12 000 evaluations is shown as the red line. The
convergence plot in Fig. 2(f ) shows that repeated fits reproduce the
same result with a spread of less than 0.01% for the detector gain,
the charge, the indium and the oxygen areal densities, and with a
spread of around 1% for zinc and gallium. The performance to fit
most parameters is in line with the results for the other model
systems. It can be understood that the refinement for gallium and
zinc is less unique, as their signals are highly overlapping. In other
words, the fit precision indicates how precisely a specific parameter
can be extracted from a specific spectrum. The fit precision may be
affected by signal overlap or by inaccuracies of the model.

Figure 2(g) shows the synthetic spectrum and the best fit for
the multi-layered target model as described above (130 nm SrTiO3/
90 nm LaFeO3/145 nm SiO2/Si). In total, 12 parameters need to be
fitted by the algorithm. Figure 2(h) displays the convergence of the
fit parameters. It is observed that the algorithm converges to a
good fit despite the complex structure and many overlapping con-
tributions in the spectrum structure. The example demonstrates
that it is imperative for each new sample model to assess the con-
vergence of the parameters as it is introduced here.

VII. UNCERTAINTY AND ERROR ANALYSIS

We demonstrated that a repeated refinement of a synthetic
spectrum does produce parameter values with a very small disper-
sion. However, one must differentiate between the fit precision and
the analysis uncertainty.

For example, the repeated analysis of the SrxTiyOz spectrum in
Fig. 2(c) yields areal densities for strontium, titanium, and oxygen
that vary by 0.01% only. For the titanium areal density, the resulting
value evaluates to Ti ¼ (126:324+ 0:007)� 1015 atoms/cm2 after
32 fits of one and the same spectrum. One must realize, however,
that the spread on the values only reflects the fit precision, i.e., the
capability of the algorithm to find this result.
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In contrast, the artificial spectrum in Fig. 2(c) was derived
from an input value of Ti ¼ 125:0� 1015 atoms/cm2. At first sight,
it implies a significant deviation between the fit and fit precision
on the one hand and the expectation value on the other hand. The
reason for the apparent discrepancy is that the artificial spectrum
was generated in a Monte Carlo process, which reflects the natural
counting statistics. The two-sigma counting statistical uncertainty
for a titanium signal of Ti ¼ 125:0� 1015 atoms/cm2

(=11 508 events) is 215 events (¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffi
11 508

p
) or, equivalently,

1.9%. The latter value represents the minimum analysis uncertainty
of the fit due to the counting statistics.

We plot in Fig. 3(a) as blue data points the titanium results
for 32 independent synthetic spectra with nominally the same accu-
mulated charge of 31.6 μC and a detector solid angle of 0.42 msr.
The horizontal axis indicates the number of titanium events in a
specific synthetic spectrum. As expected from POISSON statistics, the
different spectra contain a different amount of titanium events with
a two-sigma of around 215 events. The vertical axis shows for each
synthetic spectrum the refined areal density for titanium. The two-
sigma fit error, as explained in Sec. VI, is plotted on the different
data points. The fit error for one specific spectrum appears to be
comparable to the size of the symbols. In contrast, the uncertainty
to which the parameters of the sample can be refined is dominated
by the statistical variations between the spectra. Thus, the vertical
black error bar in Fig. 2(c) represents the true uncertainty on the
analysis. Therefore, the correct presentation of the result of the
analysis of the synthetic spectrum in Fig. 2(c) for the titanium areal
density reads Ti ¼ (126:3+ 2:5)� 1015 atoms/cm2.

Generally speaking, a proper way to estimate the uncertainty
for a given RBS analysis is to generate a collection of independent
synthetic spectra with a Monte Carlo method based on the best
fitting model and to analyze the resulting spread of the analyzed
parameters. All the uncertainties that are expected to contribute to
the final result must be included during the creation of the collec-
tion of synthetic spectra.

While the above method allows one to estimate the uncer-
tainty for a given experiment, the method can also be used to
investigate the uncertainty as a function of the accumulated charge.
We have created a collection of 32 independent synthetic spectra
for different values of the accumulated charge. For each set of
spectra, the uncertainty on the analyzed value is deduced as
explained in Fig. 3(a). The dependency of the total uncertainty for
the different fit parameters on the accumulated charge is plotted in
Fig. 3(b). Observe that the average fit precision, indicated as the
brown line in Fig. 3(b), is ten times smaller than the statistical
uncertainties for the studied cases. The plot of the total analysis
uncertainty as a function of the accumulated charge may be
instructive for the experimenter to estimate the accumulated charge
that is needed to reach a specific uncertainty. It is reassuring that
the statistical variations in the case of non-overlapping signals
derived with the Monte Carlo method closely match with the
expected uncertainties from Poisson statistics.

Finally, we remark in Fig. 3(b) that the detector gain is deter-
mined with a good accuracy from the analysis of an experiment
with even a modest accumulated charge. It is expected that one will
take advantage of this fact to reliably calibrate and sum the various
spectra of a multi-detector setup.53

VIII. PERFORMANCE

From Fig. 2, it is seen that it takes the algorithm between 2000
and 7000 evaluations to find a fit with 1% standard uncertainty. To
give the reader a rough estimate, on a contemporary PC (i5
6267U), the computation time for a single spectrum simulation is
about 55 ms. This leads to a refinement time between 2 and 7min.

However, the time needed to generate a simulation can be
substantially reduced to about 15 ms if the average isotope mass is
used instead of evaluating the isotopes individually. Therefore, we
implemented the fit routine in a way that the individual isotope

FIG. 3. (a) Blue data points are the refined titanium areal density for the differ-
ent synthetic spectra. The horizontal axis is the number of titanium events
derived from the Monte Carlo method. The vertical axis is the average areal
density derived from the fit with RUTHELDE. The error bar on each data point indi-
cates the two-sigma spread on the refined values obtained from fitting the spec-
trum 30 times. The black error bars indicate the two-sigma uncertainty obtained
by analyzing 32 data points. (b) Two-sigma relative uncertainty for the different
fit parameters as a function of the collected charge for a given detector solid-
angle of 1 msr.
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contributions are neglected in the early stage of optimization and are
automatically activated in the later stage. With this, the computation
time is reduced, without loss of accuracy, to a period of 1–3min.

The performance of RUTHELDE to fit Rutherford backscattering
spectra is comparable to the one reported by Silva et al. for
MULTI-SIMNRA using adaptive differential evolution with crossover
rate repair.23 A quantitative comparison cannot be made though
since different target models are used for benchmarking and since
the actual execution time depends on the implementation of the
forward simulator.

The RUTHELDE software can be used either via its graphical
user interface or via the command prompt. The latter enables one
to initiate multiple instances of the program in separate threads.
Therefore, it provides a powerful tool for the unattended fitting of
Rutherford backscattering spectra, as illustrated in Secs. IX.

IX. EXPERIMENTAL STUDY OF SrTiOx FILMS

We investigate the performance of RUTHELDE to analyze a large
set of experimental Rutherford backscattering spectra obtained on
strontium-titanate thin films. Strontium-titanate is an important
high-κ material for the semiconductor technology,54 but it is
known that the electrical and optical properties depend critically
on the stoichiometry and the thickness.55,56

The studied system consists of an SrxTiyOz layer, approxi-
mately 75 nm thick, grown with molecular beam epitaxy (MBE) in
a Riber MBE49OX on a 200 mm diameter (001)-oriented silicon
substrate. The strontium is evaporated from a double filament effu-
sion cell, and the titanium is evaporated from an electron beam
evaporator. An excellent stability of the titanium beam during the
deposition is obtained using a mass spectrometer signal as a feed-
back loop for the electron beam evaporator power. The silicon sub-
strate is kept fixed during the deposition (not rotating), which is
expected to intentionally lead to a composition gradient across the
wafer both for strontium and for titanium. Molecular oxygen is fed
into the deposition system to a pressure of 0.13 mPa.57 The intro-
duction of oxygen into the vacuum chamber, besides allowing the
SrxTiyOz compound to form, is also known to change the growth
rate for titanium and strontium. Since the Ti flux is kept constant
by the feedback loop, the oxygen will affect the strontium growth
rate, and as a result, it is expected that the Sr/Ti ratio is not cons-
tant as a function of depth. The Rutherford backscattering spectra
are acquired with the experimental conditions as described in
Sec. IV.

As opposed to the analysis of the synthetically generated spec-
trum, here, the SrxTiyOz layer is modeled as if it is composed of six
SrxTiyOz layers, each layer with an independently variable concen-
tration. Therefore, it allows one to test the ability to fit a continuous
profile.58 In total, there are 17 degrees of freedom. The quality of the
fit for the measured Rutherford backscattering spectra is evident
from Figs. 4(a)–4(c). Note also the sloped Sr signal as compared to
the one in Fig. 2(c). This is properly accounted for by the fit (red
lines) by modeling the concentration gradient as a function of depth.

A similar analysis is done for the Rutherford backscattering
spectra obtained at other locations along the direction of the gradi-
ent on the wafer. Notably, the same input file is used for the differ-
ential evolution algorithm to fit the various spectra. Also, no initial

guess is provided to the algorithm, and the spectra are analyzed
without human intervention.

The data points in Fig. 4(d) represent the areal density for the
elemental constituents as a function of the position on the wafer.

FIG. 4. (a)–(c) Experimental Rutherford backscattering spectra obtained at
different lateral locations of the wafer. (d) The areal densities for strontium,
titanium, and oxygen as a function of position on the wafer. A primary Heþ
beam of 1.52 MeV, an incident angle of �11�, a scattering angle of 170�, and
an exit angle of 21� were used.
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One may observe that the titanium and the strontium areal densi-
ties have an opposite trend as a function of the position on the
wafer. This is as expected from the deposition conditions. One may
also observe that the oxygen areal density decreases with a decreas-
ing relative concentration of titanium. The results demonstrate that
it becomes possible to study the relation between the composition
of an SrxTiyOz layer and its opto-electronic properties. More gener-
ally, the results convincingly demonstrate that the differential evo-
lution algorithm is capable of refining the areal densities and
elemental depth profiles as a function of the position on the wafer
from the respective Rutherford backscattering spectra.

The two-sigma fit errors plotted in Fig. 4(d) are obtained by
repeating the analyses 30 times. While the fit errors for titanium
and strontium are smaller than the data points, the fit errors for
oxygen are clearly visible. As an example, for the spectrum near the
center of the wafer, the two-sigma fit error on the areal density is
0.8% for titanium and strontium and 3.8% for oxygen.
Interestingly, the fit error obtained on the experimental spectra
exceeds the fit error obtained on the synthetic spectra. This may be
attributed to (a) an imperfect assumption of the sample model or
experimental conditions or (b) additional noise in the experimental
spectrum due to limited differential non-linearity of the detector
electronics. Figuring out which effect contributes to what extent to
the increased fit error is subject to ongoing investigations.
Furthermore, the fit error can be compared with the counting stat-
istical two-sigma uncertainty on the areal density, which is, for the
given example, 0.9% for titanium, 0.5% for strontium, and 1.6% for
oxygen. Thus, in the present case, the fit error is comparable to or
greater than the statistical uncertainty. In general, one must deter-
mine the fit error and the statistical uncertainty independently and
report a total analysis uncertainty that covers both contributions by
adding the variances.

X. CONCLUSIONS

Rutherford backscattering spectrometry is useful to analyze
the presence of heavy elements near the surface of a lighter sub-
strate. The difficulty lies in modeling the measured data since there
is a high degree of correlation between the various parameters.

We demonstrate that differential evolution is a suitable algo-
rithm to aid with the analysis of Rutherford backscattering spectra.
Our work shows that the method is very robust and that very accu-
rate and very precise results can be obtained. Besides, we present a
method to estimate the fit precision on the one hand and the
uncertainty that derives from the counting statistics on the other
hand. The reported total uncertainty should account for both
sources of uncertainty.

The capabilities of differential evolution to aid with the analy-
sis of Rutherford backscattering spectra are demonstrated on differ-
ent model systems. Besides, it is also demonstrated on a practical
use case: a large collection of experimental spectra. With this use
case, it is also shown that the method can refine a depth-dependent
concentration gradient.
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DATA AVAILABILITY

The RUTHELDE code is implemented in the Java programming
language, and thus, its usage is operating system independent.
Besides the optimization algorithm presented here, the software is
also equipped with a responsive user interface that includes fea-
tures, such as stopping calculation, penetration depth plotting, and
scattering kinematics calculation.

The source code is available as an open source under the
GNU General Public License Version 2 on GitHub.59 A pre-
compiled executable is included in the repository as well. The syn-
thetic RBS spectra used for this study are available as an open
source under the Creative Commons Attribution 4.0 International
license on RODARE.60
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